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ABSTRACT
Sharding is used to improve the scalability and performance of

blockchain systems.We investigate the stability of blockchain shard-

ing, where transactions are continuously generated by an adver-

sarial model. The system consists of 𝑛 processing nodes that are

divided into 𝑠 shards. Following the paradigm of classical adversarial

queuing theory, transactions are continuously received at injection

rate 𝜌 ≤ 1 and burstiness 𝑏 > 0. We give an absolute upper bound

max{ 2

𝑘+1 ,
2⌊√
2𝑠
⌋ } on the maximum injection rate for which any

scheduler could guarantee bounded queues and latency of transac-

tions, where𝑘 is the number of shards that each transaction accesses.

We next give a basic distributed scheduling algorithm for uniform

systems where shards are equally close to each other. To guaran-

tee stability, the injection rate is limited to 𝜌 ≤ max{ 1

18𝑘
, 1

⌈18
√
𝑠 ⌉ }.

We then provide a fully distributed scheduling algorithm for non-

uniform systems where shards are arbitrarily far from each other.

By using a hierarchical clustering of the shards, stability is guar-

anteed with injection rate 𝜌 ≤ 1

𝑐1𝑑 log
2 𝑠
· max{ 1

𝑘
, 1√

𝑠
}, where 𝑑 is

the worst distance of any transaction to the shards it will access,

and 𝑐1 is some positive constant. We also conduct simulations to

evaluate the algorithms and measure the average queue sizes and

latency throughout the system. To our knowledge, this is the first

adversarial stability analysis of sharded blockchain systems.
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1 INTRODUCTION
A blockchain is a chain (linked list) of transaction blocks. Due to

its several special features, such as fault tolerance, transparency,

non-repudiation, and immutability [28], it has been used in various

domains, such as cryptocurrency [11, 27], healthcare [26], digital

forensics [2, 3], and supply chain management [6]. In a blockchain

network, all of the participating nodes need to reach a consensus to

append a new block, which is a time and energy-consuming process.

Moreover, each node is required to process and store all transac-

tions, which leads to scalability issues in the blockchain system.

To improve scalability and performance, sharding protocols have
been proposed, such as Elastico [25], OmniLedger [24], RapidChain

[31], and ByShard [19]. Sharding divides the blockchain system

into multiple shards, where each shard is a cluster of nodes. The

shards allow to process transactions in parallel.

We propose to investigate the stability of sharded blockchain

systems in which transactions are continuously generated by an

adversarial model. The arrival of the transactions in the system

depends on the transaction generation rate 𝜌 (also called injection

rate), which is the number of generated transactions amortized

per time unit, and burstiness 𝑏, which models spontaneous arrivals

of transactions not predicted by injection rate. The goal is to de-

sign distributed scheduling algorithms for the sharded blockchains

so that the number of pending transactions is bounded (bounded

queues) and the amount of waiting time for each transaction is

small (low latency). Stability in blockchains is important for scal-

ability and to improve the resiliency to Denial of Service attacks

where malicious nodes try to inject bursts of transactions into the

system in order to delay other transactions.

The adversarial model that we use for generating transactions

in blockchain sharding is motivated by the adversarial queuing

theory introduced by Borodin et al. [8]. This theory has been used to
analyze the stability of routing algorithms with continuous packet

injection into a network [13, 14]. In communication networks, the

transmission of data packets depends on constraints determined by

the network’s characteristics, such as its topology and the capacity

of its links or channels. Similarly, in the context of blockchain

sharding, executing multiple transactions concurrently across the

different shards is constrained by the property that each transaction

must require exclusive access to every account it intends to interact

with, which prevents the execution of several transactions at once.

We consider the system consisting of 𝑛 nodes, which are fur-

ther divided into 𝑠 shards. Each shard is responsible for handling a

subset of the accounts. A transaction 𝑇 is generated at one of the

shards, which is the home shard for𝑇 . Similar to other sharding sys-

tems [1, 19], each transaction 𝑇 is split into subtransactions, where

451

https://orcid.org/0000-0002-8200-9046
https://orcid.org/0000-0002-4381-4333
https://orcid.org/0000-0002-1316-7788
https://doi.org/10.1145/3626183.3659970
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626183.3659970
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626183.3659970&domain=pdf&date_stamp=2024-06-17


SPAA ’24, June 17–21, 2024, Nantes, France Ramesh Adhikari, Costas Busch, and Dariusz R. Kowalski

each subtransaction accesses an account. A subtransaction of 𝑇 is

sent to the destination shard that holds the respective account. Each
destination shard maintains a local blockchain of the subtransac-

tions that are sent to it. The whole blockchain can be recreated by

taking the union of the local blockchains at the shards [1].

Each home shard has an injection queue that stores the pending
transactions to be processed. The home shard picks transactions

from its injection queue and sends their subtransactions to the

respective destination shards. All home shards process transactions

concurrently. A complication arises when they pick conflicting trans-
actions that access the same account. In such a case, the conflict

prohibits the transactions to commit concurrently and forces them

to serialize. A scheduling algorithm coordinates the home shards

and destination shards to process the transactions (and respective

subtransactions) in a conflict-free manner. The main performance

metric for the scheduler is its ability to handle the maximum trans-

action generation rate while maintaining system stability within

adversary constraints. Additional performance metrics include the

size of the pending transaction queues and transaction latency.

Contributions. To our knowledge, we give the first comprehen-

sive adversarial queuing theory analysis for blockchain sharding

systems. We provide the following contributions:

• Injection Rate Limit:We prove an upper bound on injection rate

𝜌 ≤ max{ 2

𝑘+1 ,
2⌊√
2𝑠
⌋ }where 𝑘 is the number of shards that each

transaction accesses, for which a stable scheduling algorithm is

feasible.

• Basic Scheduling Algorithm for Uniform Model: In the uniform

communication model, any shard can communicate with any

other shard within a single round. The uniform model is appro-

priate for systems that have strict guarantees for communica-

tion delay (e.g. multiprocessor systems). The algorithm runs

in epochs, and in each epoch, one of the shards acts as leader
shard, which receives the transaction information from all the

home shards. Then the leader shard calculates a schedule by

coloring the conflict graph of transactions. The schedule is

communicated with the home and destination shards. This al-

gorithm can process transactions with a generation rate limited

to 𝜌 ≤ max{ 1

18𝑘
, 1

⌈18
√
𝑠 ⌉ }. Moreover, we prove that the number

of pending transactions at any round is at most 4𝑏𝑠 (which is

the upper bound on queue size in each shard), and the latency

of transactions is bounded by 36𝑏 ·min{𝑘, ⌈
√
𝑠⌉}.

• Fully Distributed Scheduling Algorithm: We introduce a dis-

tributed transaction scheduling algorithm designed to schedule

transactions in a decentralized manner without requiring a

central authority. Moreover, this algorithm works for the non-

uniform communication model. The algorithm is based on a

hierarchical clustering of the shards. This scheduler remains sta-

ble for a transaction generation rate 𝜌 ≤ 1

𝑐1𝑑 log
2 𝑠
·max{ 1

𝑘
, 1√

𝑠
},

where 𝑑 is the maximum distance for any transaction between

its home shard and the destination shards it will access, and 𝑐1 is

some positive constant. For this scheduling algorithm, we also

provide the upper bound on queue size as 4𝑏𝑠 and transaction

latency is at most 2 · 𝑐1𝑏𝑑 log2 𝑠 ·𝑚𝑖𝑛{𝑘, ⌈
√
𝑠⌉}.

• Simulation Results: To evaluate the performance of our proposed

algorithms, we conducted simulations to measure the average

queue size of pending transactions and transaction latency.

Paper Organization. The rest of this paper is structured as

follows: Section 2 provides related works. Section 3 describes the

preliminaries for this study and the sharding model. We prove

the upper bound on a stable injection rate in Section 4 . Section 5

presents a basic stable solution. Section 6 generalizes the techniques

to a fully distributed setting. In Section 7, we provide the simulation

results. Finally, we give our discussion and conclusions in Section 8.

2 RELATED WORK
In the field of blockchain research, various proposals have been

presented to tackle scalability challenges in the consensus layer [21–

23]. Although these protocols have made some progress in improv-

ing scalability, the system’s performance still suffers as the network

size expands. Blockchain protocols must also guarantee transac-

tion safety, as defined by ACID properties [17]. To address the

blockchain scalability issue, several sharding protocols have been

proposed, such as Elastico [25], Rapidchain [31], OmniLedger [24],

Byshard [19], SharPer [4], Lockless blockchain sharding with multi-

version control [1], and the work [15]. These protocols have shown

promising enhancements in transaction throughput. However, none

of these protocols have specifically explored stable transaction

scheduling techniques with sharding.

Extensive research has been conducted on transaction schedul-

ing in shared memory multi-core systems as well as distributed

systems. A recent work [9] introduced a stable scheduling algorithm

designed specifically for software transactional memory systems

under adversarial transaction generation. Moreover, transaction

scheduling in distributed systems has been explored and aimed to

achieve provable performance bounds onminimum communication

cost [5, 29, 30]. However, these works do not address transaction

scheduling problems in the context of blockchain sharding. The

main reason that the results [5, 29, 30] cannot apply to blockchain

sharding is the mobility of the objects. In their transactional mem-

ory models, an object can move from one node to another node

where the transactions that request it reside. In our blockchain

sharding model, the objects have fixed positions in their respective

shards.

Adversarial queuing theory was proposed by Borodin et al. [8],
which has been applied to study the stability of routing algorithms

with continuous packet injection into a network. More generally,

this is a technique that measures the stability of processing in-

coming data (i.e. transactions) without making any statistical as-

sumptions about data generation. In the dynamic environment,

the adversarial queuing theory provides a framework for establish-

ing worst-case performance bounds for deterministic distributed

algorithms. Moreover, this theory has been applied to different

dynamic tasks in communication networks. The work in [7] exam-

ines the worst-case performance of randomized backoff on simple

multiple-access channels. Similarly, in an adversarial environment,

[13] provides maximum throughput of multiple access channels,

where their protocol achieves throughput 1 for any number of sta-

tions against leaky-bucket adversaries. Moreover, [14] investigates

deterministic distributed broadcasting in multiple access channels.
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As adversarial queuing theory has been applied in different dy-

namic task generations, so we are relating this theory to blockchain

sharding, where the sharding system is unaware of the number of

transactions generated in any time interval.

3 TECHNICAL PRELIMINARIES
Blocks and Blockchain. A blockchain is a decentralized peer-

to-peer ledger replicated across multiple interconnected nodes. A

blockchain is implemented as a linked list (chain) of blocks where

each block consists of a sequence of transactions. Blocks are linked

through hashes, whichmakes them immutable. Blocks are appended

to the blockchain with a distributed consensus mechanism.

Blockchain Sharding. Similar to previous works [1, 19], we

consider a blockchain system with 𝑛 nodes partitioned into 𝑠 shards

𝑆1, 𝑆2, . . . , 𝑆𝑠 such that 𝑆𝑖 ⊆ {1, . . . , 𝑛}, for 𝑖 ≠ 𝑗 , 𝑆𝑖 ∩ 𝑆 𝑗 = ∅, and
𝑛 =

∑
𝑖 |𝑆𝑖 |. Let 𝑛𝑖 = |𝑆𝑖 | denote the number of nodes in shard 𝑆𝑖 .

Shards communicate with each other through message passing.

In this paper, we are not focusing on optimizing the message size.

In the worst case, the message size in our model is upper-bounded

by 𝑂 (𝑏𝑠). Moreover, all non-faulty nodes in a shard agree on each

message before transmission (e.g. using PBFTwithin the shard [12]).

Similar to previous work [19, 20], we assume that we are given

a cluster-sending protocol for reliable and secure communication

between shards, satisfying the following properties for transmitting

dataℜ from shard 𝑆𝑖 to shard 𝑆 𝑗 : (1) Shard 𝑆𝑖 sendsℜ to 𝑆 𝑗 if there

is an agreement among the non-faulty nodes in 𝑆𝑖 to sendℜ; (2) All

non-faulty nodes in recipient shard 𝑆 𝑗 will receive the same data

ℜ; (3) All honest nodes in sender shard 𝑆𝑖 receive confirmation of

dataℜ receipt. We assume that these properties are guaranteed to

be satisfied within a single round.

For inter-shard communication between shards 𝑆1 and 𝑆2, we

used broadcast-based protocol [20] where a set 𝐴1 ⊆ 𝑆1 of 𝑓1 + 1
nodes in 𝑆1 and a set 𝐴2 ⊆ 𝑆2 of 𝑓2 + 1 nodes in 𝑆2 are chosen

(where 𝑓𝑖 is the number of faulty nodes in shard 𝑆𝑖 ). Each node in

𝐴1 is instructed to broadcast the message to all nodes in 𝐴2. Thus,

at least one non-faulty node in 𝑆1 will send the correct message

value to a non-faulty node in 𝑆2.

We assume that the nodes in a shard are close to each other and

connected in a local area network. However, the distance between

shards may vary. We model the interconnection network between

shards as a weighted complete graph (clique graph) of shards𝐺𝑠 . We

measure the distance between shards as the number of rounds that

are needed until a message is delivered over the network, where a

round is the time to reach consensus within a shard. We consider

two communication models:

• Uniform communication model: Any two shards are a unit

distance away, in the sense that any shard can send or receive

information within one round. In other words, the shards

form a clique where each edge has a weight of 1.

• Non-uniform communication model: the distance between

any two shards ranges from 1 to 𝐷 , where 𝐷 is the diameter

of the clique. Hence, the edge weights vary from 1 to 𝐷 . We

can simply say 𝐷 is the upper bound on the time needed to

deliver a message from one shard to another. The unit of

communication time is round, which is the time needed to

reach a consensus within a shard.

Note that the uniform communication model is a special case of

the the non-uniform model where the distance of every edge is 1.

Each shard maintains its own local ledger (local blockchain)

based on the subtransactions it receives. Moreover, in our algo-

rithms, we consider a simple block structure where each block

contains only one transaction. However, our algorithms can be ex-

tended to accommodate multiple transactions per block. We denote

by 𝑓𝑖 is the number of Byzantine nodes in shard 𝑆𝑖 . We assume

that each shard runs the PBFT [12] consensus algorithm to ensure

agreement on the state of the local ledger. To achieve Byzantine

fault tolerance, the number of nodes in each shard must satisfy

𝑛𝑖 > 3𝑓𝑖 . Whenever it is required, it is possible to combine and

serialize the local chains to form a single global blockchain [1].

Consider a set of shared accountsO (we also refer to the accounts

as objects). As in previous studies [1, 19], we assume that each shard

is responsible for a specific subset of the shared objects (accounts).

Namely, O is divided into disjoint subsets O1, . . . ,O𝑠 , where O𝑖
represents the set of objects managed by shard 𝑆𝑖 . Each shard 𝑆𝑖
maintains a local blockchain of subtransactions that access objects

in the respective O𝑖 .

Transactions and Subtransactions. Consider a transaction 𝑇𝑖 .
A transaction is injected into one of the nodes of the system, say

node 𝑣𝑇𝑖 . The home shard of 𝑇𝑖 is the shard that contains 𝑣𝑇𝑖 . Each

shard that receives newly generated transactions acts as a home

shard for those transactions. A home shard maintains a pending
transactions queue, which contains any newly generated transac-

tions that were injected into it. The home shard is responsible for

handling all pending transactions in its queue.

We define a transaction 𝑇𝑖 as a collection of subtransactions

𝑇𝑖,𝑎1 , . . . ,𝑇𝑖,𝑎 𝑗
. Each subtransaction 𝑇𝑖,𝑎𝑙 accesses objects only in

O𝑎𝑙 , and is associated with shard 𝑆𝑎𝑙 . Thus, subtransaction𝑇𝑖,𝑎𝑙 has

a respective destination shard 𝑆𝑎𝑙 . The home shard of 𝑇𝑖 will send

subtransaction 𝑇𝑖,𝑎𝑙 to shard 𝑆𝑎𝑙 for processing, where 𝑇𝑖,𝑎𝑙 will

be appended into the local blockchain of 𝑆𝑎𝑙 . The subtransactions

within a transaction 𝑇𝑖 are independent (i.e. they do not conflict,

as explained below) and can be processed concurrently. Similar to

previous work [19], each subtransaction 𝑇𝑖,𝑎𝑙 has two parts: (i) a

condition check, where it checks whether a condition of the objects

in O𝑎𝑙 is satisfied, and (ii) the main action, where it updates the

values of the objects in O𝑎𝑙 .

Example 1. Consider a transaction 𝑇1 consisting of read-write
operations on the accounts with several conditions. 𝑇1 = “Transfer
1000 from Rex’s account to Alice’s account, if Rex has 5000 and Alice
has 200 and Bob has 400”. The home shard of𝑇1 splits this transaction
into three subtransactions𝑇1,𝑟 ,𝑇1,𝑎,𝑇1,𝑏 , where the destination shards
𝑆𝑟 , 𝑆𝑎 , and 𝑆𝑏 handle the respective accounts of Rex, Alice, and Bob:

𝑇1,𝑟 - condition: “Check Rex has 5000”

- action: “Remove 1000 from Rex account”

𝑇1,𝑎 - condition: “Check Alice has 200”

- action: “Add 1000 to Alice account”

𝑇
1,𝑏 - condition: “Check Bob has 400”

The home shard of 𝑇1 sends the subtransactions to their respective

destination shards. If the conditions are satisfied (for example in

𝑇1,𝑟 if Rex has 5000) and the transaction is valid (for example in

𝑇1,𝑟 Rex has indeed 1000 in the account to be removed) then the

453



SPAA ’24, June 17–21, 2024, Nantes, France Ramesh Adhikari, Costas Busch, and Dariusz R. Kowalski

destination shards are ready to commit the subtransactions in the

local blockchains, which imply that the whole of transaction 𝑇1
implicitly commits as well. Otherwise, if any of the conditions in the

subtransactions are not satisfied or the subtransactions are invalid,

then all the subtransactions must abort (i.e. they are not added in

the local blockchains), which results in 𝑇1 aborting as well.

Transactions𝑇𝑖 and𝑇𝑗 are said to conflict if they access some ob-

ject 𝑂𝑙 ∈ O and at least one of these transactions writes (updates)

the value of object 𝑂𝑙 . Transactions that conflict should be pro-

cessed in a sequential manner to guarantee atomic object updates.

In such a case, their respective subtransactions should serialize in

the exact same order in every involved shard to ensure atomicity of

transaction execution. In our algorithms, we construct the commit

schedule with the help of a conflict graph of the transactions. A

transaction conflict graph 𝐺 for a set of transactions T is an un-

weighted graph where each transaction 𝑇𝑖 ∈ T corresponds to a

node of𝐺 and an edge between any two transactions𝑇𝑖 and𝑇𝑗 that

conflict. In our algorithms, we will perform a vertex coloring of

graph 𝐺 to produce a conflict-free schedule.

Adversarial Model. We examine an adversarial model where

transactions enter into the system continuously. The adversary

generates and injects transactions into the systemwith injection rate
𝜌 , where 0 < 𝜌 ≤ 1, and burstiness 𝑏 > 0. Each injected transaction

adds congestion of one unit to each shard it accesses, where the

congestion of a shard measures the number of transactions that

access objects in the shard. The adversary is restricted such that

the congestion on each shard within a contiguous time interval

of duration 𝑡 > 0 is limited to at most 𝜌𝑡 + 𝑏 transactions per

shard. While 𝜌 models a bound on the injection rate, the burstiness

parameter 𝑏 expresses the maximum number of transactions that

the adversary can arbitrarily generate in any time interval.

Performance Metrics. A scheduling algorithm responsible for

determining the order in which transactions are processed within

the sharded blockchain. The execution of our proposed algorithm is

synchronous, where the execution timeline is partitioned into time

steps referred to as rounds. We assume that the duration of a round

is enough to allow the execution of the PBFT consensus algorithm

in each shard. A round is also the time to send a message between

shards in a unit distance. The primary goal of a scheduling algorithm

is to efficiently and fairly process all generated transactions while

minimizing latency, ensuring the stability and performance of the

sharded blockchain system.

A scheduler is considered stable with respect to the adversary if

the number of pending transactions remains bounded throughout

any execution (bounded with respect to the system parameters). In

this context, stability implies that the scheduler can handle incom-

ing transactions without an unbounded accumulation of pending

transactions. At any round, exactly one subtransaction can be pro-

cessed in each shard. Thus, the maximum congestion for a shard

in 𝑟 rounds should not exceed 𝑟 . That is, if the injection rate of a

scheduler exceeds 1, no scheduler can achieve stability. Therefore,

we focus on adversaries where 0 < 𝜌 ≤ 1.

The delay of a transaction 𝑇 refers to the number of rounds

between its generation and moment of commit, where all of its sub-
transactions have been appended to the respective local blockchains.

The latency of a scheduler in a particular execution is defined as

the maximum delay among all transactions generated in that exe-

cution. In our algorithms, we bound the latency with respect to the

parameters of the system.

4 UPPER BOUND ON STABLE GENERATION
RATE OF TRANSACTIONS

If the transaction generation rate is sufficiently high, the system can

become unstable. This section gives an upper bound on the max-

imum transaction generation rate 𝜌 under which any blockchain

sharding system could be stable. The following result is adapted

from [9], which originally considered transactions in software trans-

actional memory systems. Here, we adapted the result in the context

of blockchain sharding.

Theorem 1 (Stability Upper Bound). No transaction scheduler
in any sharded blockchain system can be stable if the (worst-case ad-
versarial) transaction generation rate 𝜌 satisfies 𝜌 > 𝑚𝑎𝑥{ 2

𝑘+1 ,
2⌊√
2𝑠
⌋ }

and burstiness 𝑏 > 0, where each transaction accesses at most 𝑘 out
of 𝑠 shards.

Proof. Let us consider a sharded blockchain system with 𝑠

shards. We consider the case where each shard holds one account,

and each transaction accesses at most 𝑘 shards out of the 𝑠 shards.

We analyze two cases.

Case 1: 𝑘 (𝑘+1)
2
≤ 𝑠 : The generated transactions use only shards

𝑆1, 𝑆2, . . . , 𝑆𝑟 , where 𝑟 =
𝑘 (𝑘+1)

2
. We form a set of transactions,

𝑇1,𝑇2, . . . ,𝑇𝑘+1, where each transaction 𝑇𝑖 accesses a subset of 𝑘

shards so that two transactions conflict with each other. Specifically,

every pair of transactions maps to a unique shard used by both

transactions. Note that this shard uniqueness can be guaranteed

by the fact that the number of all transactions’ pairs,
(𝑘+1)𝑘

2
, is not

bigger than the number of shards, 𝑠 . Since the transactions conflict

mutually, only one transaction can be committed in any round.

Thus, the transactions require 𝑘 + 1 rounds for all to be committed.

The given group of 𝑘 + 1 transactions together contribute 2 to

the congestion of each used shard. Hence, to ensure stability, the

inequality 𝜌 · (𝑘 + 1) ≤ 2 must hold, which implies 𝜌 ≤ 2

𝑘+1 .

Case 2: 𝑘 (𝑘+1)
2

> 𝑠 , let 𝑝 be the greatest positive integer sat-

isfying
𝑝 (𝑝+1)

2
≤ 𝑠 . We can adapt a similar argument as in the

case
𝑘 (𝑘+1)

2
≤ 𝑠 . Specifically, we consider a set of transactions

𝑇1,𝑇2, . . . ,𝑇𝑝+1 such that every pair of transactions maps to a unique

shard. The inequality 𝜌 ≤ 2

𝑝+1 can still be obtained through the

same reasoning as above. Furthermore,
𝑝 (𝑝+1)

2
≤ 𝑠 implies 𝑝 + 1 =

⌊ 1
2
(1+
√
1 + 8𝑠)⌋. Bymaking some algebraic deductions, we estimate

2

𝑝+1 = 2

⌊ 1
2
(1+
√
1+8𝑠 ) ⌋ ≤

2

⌊
√
2𝑠 ⌋

.

Hence, if 𝜌 exceeds
2

⌊
√
2𝑠 ⌋

, it also exceeds
2

𝑝+1 . Consequently, an

adversary with 𝜌 exceeding this threshold (and with 𝑏 ≥ 1) can

generate at least one transaction per round for each round 𝑟 , and it

can generate two transactions at some round after 𝑟 , causing the

pending transaction queue at some shard to grow unbounded. □

5 SCHEDULER FOR UNIFORMMODEL
We first consider the uniform model, where any shard can send

a message to any other shard within one round. Algorithm 1 is
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Figure 1: Representation of time slots division in Algorithm 1

the basic distributed algorithm to schedule the transactions in the

uniform model. The algorithm does not need to know the parame-

ters 𝜌 and 𝑏 of the adversary. All the shards are synchronized. The

basic idea is that the algorithm divides time into epochs, and in

each epoch, it first constructs the conflict graph𝐺 of the generated

transaction and then schedules the transactions in a conflict-free

manner by using a coloring of 𝐺 .

In each epoch, one of the shards acts as a leader shard 𝑆
ldr

, which

receives information about transactions from all the home shards.

The leader shard 𝑆
ldr

colors the transactions and then sends the

coloring information back to the home shards. The leader shard is

updated in each epoch using the modulo division on epoch number

and the total number of shards, 𝑆
ldr
← 𝑆 (𝑒𝑝𝑜𝑐ℎ mod 𝑠 )+1. All shards

know the leader shard for the current epoch. The update of the

leader shard in each epoch ensures fair load balancing to the shards.

Each epoch consists of several rounds, where the specific dura-

tion varies according to the load of pending transactions. In each

epoch, the home shards process all the pending transactions that

appear in their pending queues at the beginning of the epoch. Pro-

cessing of these transactions occurs in three phases during the

epoch (see Figure 1). In the first phase, the home shards commu-

nicate with the leader shard (𝑆
ldr
) to discover conflicts among the

transactions. In the second phase, the leader shard 𝑆
ldr

builds a con-

flict graph 𝐺 of the transactions and uses a vertex graph coloring

algorithm to color𝐺 , then send the transaction coloring informa-

tion back to the respective home shards. Finally, in the third phase,

each transaction 𝑇 is assigned a specific round based on its color,

and its subtransactions are sent to the destination shards where

all the subtransactions of 𝑇 commit concurrently at the designated

round in a conflict-free manner.

Let 𝐸1, 𝐸2, 𝐸3, . . . denote the sequence of epochs. The number

of rounds required to process transactions in a particular epoch

𝐸𝑖 depends on the maximum degree Δ of the conflict graph 𝐺 on

that epoch. In particular, Phases 1 and 2 consist of one round, and

Phase 3 consists of 4(Δ + 1) rounds. Here, we need to multiply

Δ + 1 by 4 because the home shards and destination shards need

to communicate with each other (back and forth) to check the

validity of the transactions and subtransactions and for consistent

and atomic commitment in each destination shard.

We continue to describe the phases in more detail.

Phase 1: (Knowledge sharing) In this phase, the home shards

send all transaction information from their pending queues to the

leader shard 𝑆
ldr

in parallel using one round.

Algorithm 1: Basic Distributed Scheduler (BDS)

1 𝑆
ldr
← leader shard, updates in each epoch;

2 foreach epoch and appropriate round do
3 // Phase 1: Knowledge Sharing

4 Each home shard picks all pending txn (transactions) from its

queue and sends them to 𝑆
ldr

shard for coloring;

5 // Phase 2: Graph Coloring in leader shard 𝑆ldr

6 𝑆
ldr

colors received txn with at most Δ + 1 colors;
7 𝑆

ldr
sends colored txn to respective home shards;

8 Each home shard inserts received colored txn in pending queue;

9 // Phase 3: Schedule and commit

10 /* color 𝑐𝑜𝑙 is processed at appropriate round(s) */

11 for color 𝑐𝑜𝑙 ← 1 to Δ + 1 do
12 /* Round 1: Home Shards */

13 Home shard picks each txn𝑇𝑖 of color 𝑐𝑜𝑙 from pending

queue and splits it into subtransactions (𝑇𝑖,𝑗 ) which are

sent to destination shards for voting;

14 /* Round 2: Destination shards */

15 Send commit vote to home shard if𝑇𝑖,𝑗 is valid and

condition is satisfied; otherwise, send abort vote;

16 /* Round 3: Home Shards */

17 Send confirm commit to destination shards if all “commit

votes” are received; otherwise, send confirm abort;

18 /* Round 4: Destination Shards */

19 If destination shard receives “confirm commit”, it commits

𝑇𝑖,𝑗 by appeding it in local blockchain; Otherwise, if it

receives “confirmed abort”, it aborts𝑇𝑖,𝑗 ;

Phase 2: (Graph coloring) In this phase, the leader shard 𝑆
ldr

creates a global conflict graph 𝐺 using the received transaction

information from each home shard. Let Δ be the degree of𝐺 . Then,

𝑆
ldr

shard uses a vertex coloring algorithm to color the conflict

graph with at most Δ+1-colors. (We assume the system has enough

resources to color the graph in the beginning of the round.) Then

𝑆
ldr

sends the colored transaction information to the respective

home shards for scheduling based on the colors.

Phase 3: (Transactions scheduling and committing) Transactions

that obtain the same color are conflict-free and can be scheduled to

commit at the same round. To ensure the atomicity of transactions

at each destination shard, the home shard and destination shards

need to communicate with each other, which takes four rounds per

color. Thus, all transactions can be committed within a maximum

of 4(Δ + 1) rounds.
The home shard of a transaction 𝑇𝑖 with color 𝑧 processes the

transaction at round 4𝑧 of the third phase. Each color needs four

rounds. In the first round, each home shard splits 𝑇𝑖 into subtrans-

actions and sends them to the destination shards to check the condi-

tion and constraints. In the second round, if a subtransaction 𝑇𝑖, 𝑗 is

valid and the condition is satisfied, then the destination shard sends

commit vote, or otherwise abort vote, for 𝑇𝑖, 𝑗 to its home shard. In

the third round, if the home shard receives all the commit votes

for 𝑇𝑖 , then it sends confirmed commit to the respective destination

shards; otherwise if any abort vote is received, it sends confirmed
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abort. In the fourth round, the destination shard of each subtrans-

action 𝑇𝑖, 𝑗 either commits 𝑇𝑖, 𝑗 and adds to the local blockchain or

aborts 𝑇𝑖, 𝑗 according to the message from the home shard.

5.1 Analysis for Algorithm 1
For the analysis, consider the case where each transaction accesses

at most 𝑘 ≥ 1 out of 𝑠 ≥ 1 available shards.

Lemma 1. In Algorithm 1, for generation rate 𝜌 ≤ 𝑚𝑎𝑥{ 1

18𝑘
, 1

18⌈
√
𝑠 ⌉ }

and burstiness 𝑏 ≥ 1, every epoch satisfies: (i) the maximum epoch
length is 𝜏 := 18𝑏 ·𝑚𝑖𝑛{𝑘, ⌈

√
𝑠⌉}, and (ii) at most 2𝑏𝑠 new transactions

are generated during the epoch.

Proof. We start by noting that if an epoch 𝐸𝑖 has length at

most 𝜏 , and the adversary generates transactions with a rate 𝜌 ≤
𝑚𝑎𝑥{ 1

18𝑘
, 1

18⌈
√
𝑠 ⌉ } and burstiness 𝑏 ≥ 1, the maximum congestion

added to a shard during the epoch is:

𝜌 · Epoch length + 𝑏 ≤ 𝜌 · 𝜏 + 𝑏 ≤ 𝑏 + 𝑏 = 2𝑏. (1)

Moreover, since each transaction accesses at least one shard and

there are 𝑠 shards, the total number of transactions produced within

epoch 𝐸𝑖 is at most 2𝑏𝑠 . Similarly, 2𝑏𝑠 is the maximum total conges-

tion in 𝐸𝑖 . Hence, property (i) implies property (ii). Thus, it suffices

to prove property (i).

We continue to prove property (i) by induction on the number

of epochs. For the base case, in epoch 𝐸1, there are no transactions

at the beginning, and the epoch length is just two rounds. Thus

property (i) holds since 2 ≤ 𝜏 .

Assume the property (i) holds for every epoch up to 𝐸 𝑗 . For

the inductive step, consider epoch 𝐸 𝑗+1. By design of Algorithm 1,

every transaction which is pending in the beginning of 𝐸 𝑗+1 was
generated during epoch 𝐸 𝑗 ; we refer to these as “old transactions”.

During 𝐸 𝑗+1, only the old transactions are scheduled. We examine

two cases.

(Case 1) 𝑘 ≤ ⌈
√
𝑠⌉: From Equation 1, the congestion of a shard is

at most 2𝑏 old transactions. Since each old transaction accesses at

most 𝑘 shards, each old transaction conflicts with at most (2𝑏 − 1)𝑘
other old transactions. Consequently, the highest degree Δ in the

conflict graph 𝐺 of the old transactions is Δ ≤ (2𝑏 − 1)𝑘 . Thus, in
the second phase of 𝐸 𝑗+1, a (greedy) vertex coloring algorithm on

𝐺 assigns at most Δ + 1 ≤ (2𝑏 − 1)𝑘 + 1 colors. Since 𝑘 ≥ 1, the

total length of epoch 𝐸 𝑗+1 is at most

2 + 4(Δ + 1) ≤ 2 + 4((2𝑏 − 1)𝑘 + 1) < 18𝑏𝑘 = 𝜏 .

Therefore, property (i) holds.

(Case 2) 𝑘 > ⌈
√
𝑠⌉: we classify old transactions into two groups,

the “heavy” transactions which access more than ⌈
√
𝑠⌉ shards, and

the “light” transactions which access at most ⌈
√
𝑠⌉ shards. The max-

imum number of heavy old transactions can be 2𝑏 ⌈
√
𝑠⌉. If there

were more, the total congestion of old transactions would be strictly

greater than 2𝑏 ⌈
√
𝑠⌉ ·
√
𝑠 ≥ 2𝑏𝑠 , which is not possible. A coloring

algorithm for conflict graph 𝐺 can assign each of the heavy trans-

actions a unique color, which requires at most 𝜁1 = 2𝑏 ⌈
√
𝑠⌉ colors.

The remaining transactions of𝐺 are light. Let𝐺 ′ be the subgraph
of 𝐺 with the light transactions. Each light transaction conflicts

with at most (2𝑏−1) ⌈
√
𝑠⌉ other light transactions. Hence, the degree

of𝐺 ′ is at most (2𝑏 − 1) ⌈
√
𝑠⌉. Thus,𝐺 ′ can be colored with at most

𝜁2 = (2𝑏 − 1) ⌈
√
𝑠⌉ + 1 colors.

Consequently, 𝐺 can be colored with at most 𝜁 = 𝜁1 + 𝜁2 =

2𝑏 ⌈
√
𝑠⌉ + (2𝑏 − 1) ⌈

√
𝑠⌉ + 1 colors. Since 𝑠 ≥ 1, the length of 𝐸 𝑗+1 is

at most

2 + 4𝜁 = 6 + 4(4𝑏 − 1) ⌈
√
𝑠⌉ ≤ 18𝑏 ⌈

√
𝑠⌉ = 𝜏 .

Therefore, property (i) holds. □

Theorem 2 (BDS stability). In Algorithm 1, for generation rate
𝜌 ≤ 𝑚𝑎𝑥{ 1

18𝑘
, 1

18⌈
√
𝑠 ⌉ } and burstiness 𝑏 ≥ 1, the number of pending

transactions at any given round is at most 4𝑏𝑠 , and the transaction
latency is at most 36𝑏 ·𝑚𝑖𝑛{𝑘, ⌈

√
𝑠⌉}.

Proof. To estimate the number of pending transactions during

a round, consider a round within an epoch 𝐸𝑖 . From the proof of

Lemma 1, the maximum number of old transactions during any

round of 𝐸𝑖 is 2𝑏𝑠 . Within 𝐸𝑖 , there can be at most 2𝑏𝑠 newly gen-

erated transactions. Therefore, the upper bound on pending trans-

actions during a round is 4𝑏𝑠 .

For estimating transaction latency, we rely on the fact that a

transaction generated in an epoch will be processed by the end of

the next epoch. Consequently, the transaction latency is bounded

by twice the duration of the maximum epoch length 𝜏 . From Lemma

1, this results in a latency of at most

2𝜏 = 2 · 18𝑏 ·𝑚𝑖𝑛{𝑘, ⌈
√
𝑠⌉} = 36𝑏 ·𝑚𝑖𝑛{𝑘, ⌈

√
𝑠⌉}.

□

6 FULLY DISTRIBUTED SCHEDULER (DS)
The scheduling algorithm we presented earlier uses a central au-

thority in one shard with knowledge about all current transactions

and the maximum degree of the transaction graph. Here, we discuss

a fully distributed approach that allows the transaction schedule to

be computed in a decentralized manner without requiring a central

authority in any shard.

6.1 Cluster Decomposition (Shard Clustering)
This algorithm considers a non-uniform communication model

described in Section 3. Consider the (complete) weighted shards

graph𝐺𝑠 made by the 𝑠 shards, where the weights of edges between

shards represent the distances between them. We assume that 𝐺𝑠

is known to all the shards. Let 𝐷 be the diameter of 𝐺𝑠 (𝐷 is the

maximum distance between two shards). The 𝑞-neighborhood of

shard 𝑆𝑖 is defined as the set of shards within a distance of at most

𝑞 from 𝑆𝑖 , and the 0-neighborhood is simply 𝑆𝑖 itself.

The scheduling algorithm uses a hierarchical decomposition of

𝐺𝑠 which is calculated before the algorithm starts and is known to

all the shards. The graph decomposition is based on the clustering

techniques in [18] and which were later used in [10, 29]. The hier-

archy consists of 𝐻1 = ⌈log𝐷⌉ + 1 layers (logarithms are in base

2), where a layer is a set of clusters, and a cluster is a set of shards.

Layer 𝑙 , where 0 ≤ 𝑙 < 𝐻1, is a sparse cover of𝐺𝑠 such that: (i) each

cluster of layer 𝑙 has (strong) diameter at most 𝑂 (2𝑙 log 𝑠); (ii) each
shard participates in no more than 𝑂 (log 𝑠) clusters at layer 𝑙 ; (iii)
for every shard 𝑆𝑖 there exists a cluster at layer 𝑙 such that the entire

(2𝑙 − 1)- neighborhood of 𝑆𝑖 is contained within that cluster. The

clusters have a strong diameter, which measures distances within a
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cluster on the induced subgraph of 𝐺𝑠 induced by the nodes of the

cluster.

For each layer 𝑙 , the sparse cover construction in [18] is actually

obtained as a collection of 𝐻2 = 𝑂 (log 𝑠) partitions of 𝐺𝑠 . These

𝐻2 partitions are ordered as sub-layers of layer 𝑙 labeled from 0

to 𝐻2 − 1. A shard participates in all 𝐻2 sub-layers but potentially

belongs to a different cluster at each sub-layer. At least one of the

clusters in one of these 𝐻2 sub-layers at layer 𝑙 contains the whole

2
𝑙 − 1 neighborhood of 𝑆𝑖 .

Within each cluster at layer 𝑙 , a leader shard 𝑆
ldr

is specifically

designated such that the leader’s (2𝑙 − 1)-neighborhood is in that

cluster. If we cannot find a leader (because no shard has its (2𝑙 − 1)-
neighborhood) then no leader will be elected in the cluster. No

shard would have picked such a cluster as its home. Thus, that

cluster will not be used at all. Each transaction𝑇 has a home cluster
which is defined as follows: let 𝑆𝑖 be the home shard of𝑇 , and 𝑥 the

maximum distance from 𝑆𝑖 to the shards that will be accessed by

𝑇 ; the home cluster of 𝑇 is the lowest-layer (and lowest sub-layer)

cluster in the hierarchy that contains the whole 𝑥-neighborhood of

𝑆𝑖 . The designated leader shard 𝑆ldr of the home cluster will handle

all the transactions that have their home shard in that cluster (i.e.,

transactions will move from the home shard to the leader shard

𝑆
ldr

for processing).

6.2 Fully Distributed Scheduling Algorithm
Our scheduling algorithm runs in epochs. Each layer 𝑖 has a fixed

epoch length 𝐸𝑖 = 𝑐2𝑖 log 𝑠 rounds, for some constant 𝑐 , where

0 ≤ 𝑖 < 𝐻1. Epochs repeat perpetually, so that the next epoch starts

right after the previous ends. Note that the epochs of different

layers are multiples of each other, that is, 𝐸𝑖 = 2 · 𝐸𝑖−1, for 𝑖 > 0,

and their begin times are aligned so that the start of 𝐸𝑖−1 coincides
with the start of 𝐸𝑖 . Notice all epoch lengths are multiples of the

length 𝐸0 = 𝑐 log 𝑠 .

Similar to epochs, we also define rescheduling periods 𝑃𝑘 = 2
𝑘 ·𝐸0,

where 𝑘 ≥ 0. Rescheduling periods are multiples of epoch 𝐸0, they

repeat perpetually, and the start times are aligned. Rescheduling

periods are also aligned with the epochs. For a cluster at layer 𝑖 ,

the lowest rescheduling period is 𝑃𝑖 = 2
𝑖𝐸0 = 𝐸𝑖 , that is, the epoch

length of layer 𝑖 is the same as the length of the lowest rescheduling

period for that layer.

The reason for having epochs and rescheduling periods is as

follows. Under normal conditions, in a cluster 𝐶 at layer 𝑖 , at each

epoch, the designated leader shard 𝑆
ldr

colors and schedules trans-

actions received from the home shards in 𝐶 which it then sends to

the destination shards for confirmation and commit. However, some

of the transactions may not commit right away at the destination

shards due to conflicts and may accumulate at the destination shard

queues. To avoid accumulating delays, stale transactions are given

additional chances to be rescheduled. Such rescheduling chances are

given when the rescheduling periods align with the epochs. When

the end of the current epoch 𝐸𝑖 aligns with one of the rescheduling

periods 𝑃𝑘 , where 𝑘 > 𝑖 , then 𝑆
ldr

colors not only newly received

transactions but also those that have already been scheduled but

not yet confirmed (or not committed). This approach expedites the

commitment of multiple non-conflicting transactions in parallel,

reducing the overall transaction waiting time.

Algorithm 2: Fully Distributed Scheduler (FDS)

1 In parallel do
2 Run Algorithm 2a // Transactions Scheduling

3 Run Algorithm 2b// Transactions Committing

As discussed earlier, each cluster 𝐶 belongs at some layer 𝑖 and

sublayer 𝑗 , where 0 ≤ 𝑖 < 𝐻1 and 0 ≤ 𝑗 < 𝐻2; we simply say

that 𝐶 is at level (𝑖, 𝑗). Consider a transaction 𝑇 with home cluster

𝐶; we also say that 𝑇 is at level (𝑖, 𝑗). The leader shard 𝑆
ldr

of 𝐶

assigns an integer color to 𝑇 , during some occurrence of epoch

𝐸𝑖 . Let 𝑡end denote the end time of that epoch, where 𝑇 got col-

ored. We introduce the concept of the height of 𝑇 represented by

a tuple (𝑡
end

, 𝑖, 𝑗, color). The heights of transactions are ordered

lexicographically and implement a priority scheme. The priority for

committing transactions is determined based on this order, giving

precedence to transactions generated in lower cluster layers (with

smaller epoch lengths). This prioritization strategy aims to leverage

locality to improve the transaction latency.

We divided our fully distributed scheduling algorithm (see Algo-

rithm 2) into two sub-algorithms: Transaction Scheduling (Algo-

rithm 2a) and Transaction Confirming and Committing (Algorithm

2b). In the following, we continue to describe each algorithm.

6.2.1 Transactions Scheduling (Algorithm 2a). Every generated trans-
action 𝑇 has a home cluster at some respective level (𝑖, 𝑗). Algo-
rithm 2a runs in epochs whose length depends on the level. Each

transaction is processed at the respective epoch for their level. Each

epoch consists of three phases, which we describe below.

Phase 1: In this phase, at the beginning of each epoch, a home

shard sends transactions to the cluster leader 𝑆
ldr

of the respective

home cluster. Note that a home shard may have transactions at

various levels. Those transactions will be processed at the respective

level.

Phase 2: In this phase, the cluster leader 𝑆
ldr

colors the trans-

actions received from home shards. If the end time of the current

epoch 𝐸𝑖 aligns with one of the rescheduling periods 𝑃𝑘 , 𝑘 > 𝑖 ,

then 𝑆
ldr

colors all transactions ever received from the home shard,

including those already scheduled but not yet committed (excluding

the already committed). However, if the current epoch does not

align with a rescheduling period, then 𝑆
ldr

only colors the newly re-

ceived transactions, excluding already scheduled transactions. For

the purpose of rescheduling, the leader shard maintains a queue

𝑠𝑐ℎ
ldr

which contains all uncommitted transactions it has processed.

After completing the coloring operation, 𝑆
ldr

splits colored trans-

actions into subtransactions and then sends them to destination

shards for scheduling. Additionally, 𝑆
ldr

informs the destination

shards about whether their destination schedule queue 𝑠𝑐ℎ
qd

needs

updating or appending based on whether the received subtransac-

tion results from rescheduling or regular scheduling. This ensures

destination shards appropriately update their schedule queues.

Phase 3: In this phase, each destination shard appends or up-

dates the scheduled subtransactions in their queues according to

the received information from cluster leader shard 𝑆
ldr
. Addition-

ally, each destination shard lexicographically sorts subtransactions

based on their latest height (𝑡
end

, 𝑖, 𝑗, 𝑐𝑜𝑙𝑜𝑟 ). Thus, transactions
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Algorithm 2a: Transactions Scheduling
1 𝑠𝑐ℎ

ldr
← scheduled transaction (txn) queue in each leader shard;

2 𝑠𝑐ℎ
qd
← scheduled subtransaction queue in each destination shard;

3 For every new transaction𝑇 , the home shard assigns the home
cluster of𝑇 ;

4 For all layers (𝑖, 𝑗 ) in parallel do
5 foreach epoch 𝐸𝑖 of layer 𝑖 and appropriate round do
6 // Phase 1: txn sending

7 Home shard of𝑇 sends transaction𝑇 to the leader shard

𝑆
ldr

of the home cluster of𝑇 ;

8 // Phase 2: Txn Coloring in 𝑆ldr

9 if end time 𝑡end of 𝐸𝑖 coincides with end time of one of the
rescheduling periods 𝑃𝑘 , 𝑘 > 𝑖 then

10 Leader shard 𝑆
ldr

colors all txn in its queue 𝑠𝑐ℎ
ldr

including the transactions it receives during current

epoch 𝐸𝑖 from the home shards;

11 𝑆
ldr

updates 𝑠𝑐ℎ
ldr

with all the colored transactions;

12 else
13 𝑆

ldr
colors all txn it received from home shards during

current epoch 𝐸𝑖 and appends them to 𝑠𝑐ℎ
ldr
;

14 𝑆
ldr

splits colored txn into subtransactions and sends them

to the respective destination shards for scheduling;

15 // Phase 3: Scheduling txn in destination shards

16 Destination shards update or append 𝑠𝑐ℎ
qd

with received

subtransactions according to message from 𝑆
ldr
;

17 Order subtransactions in 𝑠𝑐ℎ
qd

lexicographically using

height (𝑡
end

, 𝑖, 𝑗, 𝑐𝑜𝑙𝑜𝑟 ) ;

and subtransactions have the same relative order in all destination

shards, ensuring consistent order.

6.2.2 Transactions Confirming and Committing (Algorithm 2b). Al-
gorithm 2b is responsible for committing subtransactions in the

destination shard queues, which were scheduled by Algorithm 2a.

Algorithm 2b runs at the destination shards independently and in

parallel with Algorithm 2a. The committing time of transactions

depends on which level (𝑖, 𝑗) that transaction belongs to. If the

diameter of the home cluster of transaction 𝑇𝑟 is 𝑑𝑟 , then it will

take at most 2𝑑𝑟 + 1 rounds to commit because the cluster leader

shard and destination shard need to communicate back and forth

for confirmation of the transaction 𝑇𝑟 , where step 1 and 2 each

takes 𝑑𝑟 -rounds and step 3 takes 1 round. We describe each step of

Algorithm 2b as follows:

Step 1: In this step, each destination shard picks one subtrans-

action from the head of the scheduled queue 𝑠𝑐ℎ
qd

and checks the

condition and validity. If everything checks out, the shard casts a

commit vote and sends it to cluster leader shard 𝑆
ldr
; otherwise, it

sends an abort vote to 𝑆
ldr

for that subtransaction.

Step 2: In this step, cluster leader shard 𝑆
ldr

collects all sub-

transaction votes for a specific transaction and sends a commit

confirmation to the destination shard upon receiving all commit

votes. Conversely, if the cluster leader shard receives any abort vote

for a particular transaction, it sends an abort confirmation message.

Algorithm 2b: Transactions Confirming and Committing

1 𝑠𝑐ℎ
qd
← schedule queues in destination shards;

2 foreach shard do
3 // Step 1: Condition check at destination shards:

4 𝑇𝑖,𝑗 ← pick one subtransaction from the head of 𝑠𝑐ℎ
qd
;

5 Send commit vote to 𝑆
ldr

shard if𝑇𝑖,𝑗 is valid and condition is

satisfied; otherwise, send abort vote for𝑇𝑖,𝑗 to 𝑆ldr;

6 // Step 2: Collect votes at leader 𝑆ldr shards:

7 For each txn𝑇𝑖 , 𝑆ldr collects the votes about the subtransactions

of𝑇𝑖 received from destination shards at Step 1;

8 Send confirmed commit𝑇𝑖,𝑗 to destination shards if all “commit

votes” are received for𝑇𝑖 and then remove𝑇𝑖 from 𝑠𝑐ℎ
ldr
;

9 Send confirmed abort𝑇𝑖,𝑗 to destination shards if any “abort

vote” is received for𝑇𝑖 and then remove𝑇𝑖 from 𝑠𝑐ℎ
ldr
;

10 // Step 3: Commit SubTxn at destination Shards:

11 Commit (or abort)𝑇𝑖,𝑗 and add to local blockchain (or abort)

𝑇𝑖,𝑗 according to the message received from 𝑆
ldr

at Step 2;

12 If𝑇𝑖,𝑗 gets committed or aborted then remove𝑇𝑖,𝑗 from 𝑠𝑐ℎ
qd

After sending a confirmed commit or abort message, 𝑆
ldr

removes

that transaction from its own queue 𝑠𝑐ℎ
ldr
.

Step 3: In this step, each destination shard makes a final com-

mitment or abort based on the message received from the cluster

leader shard and removes that subtransaction from its schedule

queue (𝑠𝑐ℎ
qd
).

6.3 Analysis for Algorithm 2
For analysis, consider a case where each transaction accesses at

most 𝑘 ≥ 1 out of 𝑠 ≥ 1 shards and burstiness 𝑏 ≥ 1. Let 𝐶

be a cluster at level (𝑖, 𝑗), and let 𝑑𝑖 be the cluster diameter. Let

𝜏𝑖 := 15𝑏𝑑𝑖 · 𝑚𝑖𝑛{𝑘,
√
𝑠}. Let 𝑃𝑘 be a rescheduling period with

𝜏𝑖 ≤ 𝑃𝑘 ≤ 2𝜏𝑖 . Consider a sequence of such rescheduling periods

𝐼1, 𝐼2, . . ., each of length 𝑃𝑘 .

Lemma 2. In Algorithm 2, assuming that only transactions with
home cluster 𝐶 are generated, for 𝜌 ≤ 𝑚𝑎𝑥{ 1

30𝑑𝑖𝑘
, 1

30𝑑𝑖 ⌈
√
𝑠 ⌉ } and

𝑏 ≥ 1, in any period 𝐼𝑧 , where 𝑧 ≥ 1: (i) at most 2𝑏𝑠 new transactions
are generated with home cluster 𝐶 , and (ii) all these transactions will
be committed or aborted by the end of 𝐼𝑧+1.

Proof. During any of the periods 𝐼𝑧 , since its length is at most

2𝜏𝑖 , it follows that the maximum congestion added to any shard in

C is:

𝜌 · 𝑃𝑘 + 𝑏 ≤ 2𝜌𝜏𝑖 + 𝑏 ≤ 𝑏 + 𝑏 = 2𝑏. (2)

Moreover, since each transaction accesses at least one shard and

there are at most 𝑠 shards in 𝐶 , the total number of transactions

produced in 𝐼𝑧 is at most 2𝑏𝑠 . Thus, the newly generated transac-

tions with home cluster 𝐶 are also at most 2𝑏𝑠 . Hence, property (i)

holds.

We continue to prove property (ii). We prove it by induction on

the number of periods. To simplify, let 𝐼0 be a trivial first period

(and not 𝐼1), such that no transactions were generated in 𝐼0. Then,

there is nothing to schedule in 𝐼1, and the basis case trivially holds.

Suppose that property (ii) holds for all periods from 𝐼0 up to 𝐼𝑧−1.
We will prove property (ii) for 𝐼𝑧 .
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By induction hypothesis, every transaction which is pending at

the beginning of 𝐼𝑧+1 was generated during interval 𝐼𝑧 ; we refer to

these as “old transactions”. Here, we are considering only one cluster

𝐶 with one level. Thus, other levels will not affect the processing

of old transactions. We examine two cases based on the magnitude

of 𝑘 and ⌈
√
𝑠⌉.

(Case 1) 𝑘 ≤ ⌈
√
𝑠⌉: From Equation 2, the congestion of trans-

action to a shard is 2𝑏 old transactions. Since each transaction ac-

cesses at most 𝑘 shards, each old transaction conflicts with at most

(2𝑏 − 1)𝑘 other old transactions. Consequently, the highest degree

Δ in the conflict graph 𝐺 of the old transactions is Δ ≤ (2𝑏 − 1)𝑘 .
Thus, in Phase 2 of Algorithm 2a executed in the final epoch of

period 𝐼𝑧+1, a greedy vertex coloring algorithm on𝐺 assigns at most

Δ + 1 ≤ (2𝑏 − 1)𝑘 + 1 colors. Since 𝑘 ≥ 1, the total length of the

required time interval to schedule and commit/abort the transac-

tions is calculated as follows. Scheduling Algorithm 2a consists of

three phases where Phase 1 and Phase 2, each takes 𝑑𝑖 rounds, and

Phase 3 takes 1 round for transaction scheduling resulting 2𝑑𝑖 + 1
rounds. Similarly, Algorithm 2b takes 2𝑑𝑖 + 1 rounds for each color

to confirm and commit the transaction.

2𝑑𝑖+1+(2𝑑𝑖+1) (Δ+1) ≤ 2𝑑𝑖+1+(2𝑑𝑖+1) ((2𝑏−1)𝑘+1) < 15𝑏𝑑𝑖𝑘 = 𝜏𝑖 .

Thus, property (i) holds.

(Case 2) 𝑘 > ⌈
√
𝑠⌉: we classify old transactions into two groups,

the “heavy” transactions, which access more than ⌈
√
𝑠⌉ shards, and

“light” transactions, which access at most ⌈
√
𝑠⌉ shards. The max-

imum number of heavy old transactions can be 2𝑏 ⌈
√
𝑠⌉. If there

were more, the total congestion of old transactions would be strictly

greater than 2𝑏 ⌈
√
𝑠⌉ ·
√
𝑠 ≥ 2𝑏𝑠 , which is not possible. A coloring

algorithm for conflict graph 𝐺 can assign each of the heavy trans-

actions a unique color, which requires at most 𝜁1 = 2𝑏 ⌈
√
𝑠⌉ colors.

The remaining transactions of 𝐺 are light. Suppose 𝐺 ′ be the
subgraph of 𝐺 with the light transactions. Each light transaction

conflicts with at most (2𝑏 − 1) ⌈
√
𝑠⌉ other light transactions. Hence,

the degree of 𝐺 ′ is at most (2𝑏 − 1) ⌈
√
𝑠⌉. Thus, 𝐺 ′ can be colored

with at most 𝜁2 = (2𝑏 − 1) ⌈
√
𝑠⌉ + 1 colors.

Consequently, 𝐺 can be colored with at most 𝜁 = 𝜁1 + 𝜁2 =

2𝑏 ⌈
√
𝑠⌉ + (2𝑏 − 1) ⌈

√
𝑠⌉ + 1 colors. Since 𝑠 ≥ 1, the length of 𝐼𝑧+1 is

at most:

2𝑑𝑖+1+(2𝑑𝑖+1)𝜁 = 4𝑑𝑖+2+(2𝑑𝑖+1) (4𝑏−1) ⌈
√
𝑠⌉ ≤ 15𝑏𝑑𝑖 ⌈

√
𝑠⌉ = 𝜏𝑖 .

Since the process was started before the start of period 𝐼𝑧+1, and
𝐼𝑧+1 has length at least 𝜏𝑖 , it follows that property (ii) holds □

We will now consider transactions from all levels. Let 𝑖′ be the
maximum layer accessed by any transaction where the diameter

is at most 𝑑𝑖′ . Let 𝜏𝑖 := 30𝑏𝑑𝑖𝐻2 · 𝑚𝑖𝑛{𝑘,
√
𝑠}. Consider now a

sequence of such rescheduling periods 𝐼1, 𝐼2, . . ., each of length 𝑃𝑘 ,

where 𝜏𝑖′ ≤ 𝑃𝑘 ≤ 2𝜏𝑖′ .

Lemma 3. In Algorithm 2, for 𝜌 ≤ 𝑚𝑎𝑥{ 1

60𝑑𝑖′𝐻2𝑘
, 1

60𝑑𝑖′𝐻2 ⌈
√
𝑠 ⌉ }

and 𝑏 ≥ 1, in any period 𝐼𝑧 , where 𝑧 ≥ 1, for any destination shard:
(i) at most 2𝑏𝑠 new transactions are generated (from all levels), (ii) all
these transactions will be committed or aborted by the end of 𝐼𝑧+1.

Proof. The total transaction congestion in each shard during a

rescheduling period 𝐼𝑧 (which has length at most 2𝜏𝑖′ ) is 𝜌 ·2𝜏𝑖′ +𝑏 ≤

𝑏 + 𝑏 = 2𝑏. Therefore, the total transaction weight for 𝑠 shards is at

most 2𝑏𝑠 . Hence, property (i) holds.

We continue with property (ii). Consider a destination shard 𝑆𝑞 .

From the proof of Lemma 2, if we only had subtransactions from a

layer 𝑖 , the schedule requires at most 𝜏𝑖 rounds in 𝐼𝑧+1. However,
𝑆𝑞 needs to process subtransactions from all layers 0, . . . , 𝑖′, and
sublayers 0, . . . , 𝐻2 − 1. Those are executed with their assigned

priorities. since a layer 𝑙 cluster has a diameter 𝑂 (2𝑙 log 𝑠), as dis-
cussed in Section 6.1. Therefore, 𝑑𝑙 = 𝑂 (2𝑙 log 𝑠). Let 𝑑𝑙 = 𝑐2𝑙 log 𝑠 ,

for some constant 𝑐 . This implies

∑𝑖′
𝑖=0 𝑑𝑖 ≤ 2𝑑𝑖′ , the total number

of rounds needed to schedule all levels (𝑖, 𝑗) at 𝑆𝑞 is at most

𝑖′∑︁
𝑖=0

𝐻2−1∑︁
𝑗=0

𝜏𝑖 =

𝑖′∑︁
𝑖=0

𝐻2−1∑︁
𝑗=0

15𝑏𝑑𝑖 ·𝑚𝑖𝑛{𝑘,
√
𝑠}

≤ 30𝐻2𝑏𝑑𝑖′ ·min{𝑘,
√
𝑠} = 𝜏𝑖′ .

Since the length of 𝐼𝑧+1 is at least 𝜏𝑖′ , there is enough time to com-

mit/abort all these transactions in 𝐼𝑧+1. Hence, property (ii) holds.

□

Theorem 3 (FDS stability). In Algorithm 2, for generation rate
𝜌 ≤ 1

𝑐1𝑑 log
2 𝑠
·max{ 1

𝑘
, 1√

𝑠
}, where 𝑑 is worst distance of any trans-

action to the shards it will access and 𝑐1 is some positive constant
with burstiness 𝑏 ≥ 1, the number of pending transactions at any
given round is at most 4𝑏𝑠 , and the transaction latency is at most
2 · 𝑐1𝑏𝑑 log2 𝑠 ·𝑚𝑖𝑛{𝑘, ⌈

√
𝑠⌉}.

Proof. To estimate the number of pending transactions during

a round, consider a round within a rescheduling period 𝐼𝑖 . From the

proof of Lemma 3, the maximum number of old transactions during

any round of 𝐼𝑖 is 2𝑏𝑠 . Within 𝐼𝑖 , there can be at most 2𝑏𝑠 newly

generated transactions. Therefore, the upper bound on pending

transactions during a round is 4𝑏𝑠 .

For estimating transaction latency, we rely on the fact from

Lemma 3 that a transaction generated in a period 𝐼𝑧 will be pro-

cessed by the end of the next period. Consequently, the transaction

latency is bounded by twice the duration of the maximum inter-

val length. From Lemma 3, rescheduling period length is 2𝜏𝑖′ =

60𝐻2𝑏𝑑𝑖′ · 𝑚𝑖𝑛{𝑘, ⌈
√
𝑠⌉}. We can replace 𝐻2 = 𝑐 log 𝑠 and 𝑑𝑖′ =

𝑐′𝑑 log 𝑠 . We also combine positive constants 𝑐 and 𝑐′ as 𝑐1 which
results in a latency of at most 2 · 𝑐1𝑏𝑑 log2 𝑠 ·𝑚𝑖𝑛{𝑘, ⌈

√
𝑠⌉}. □

7 SIMULATION RESULTS
In this section, we provide our simulation results, conducted on a

MacBook Pro with an Apple M1 chip featuring a 10-core CPU, a

16-core GPU, and 32 GB of RAM. The simulation was implemented

using Python programming language with relevant libraries and

resources. We considered the following specific parameters for

simulation: the total number of shards (𝑠) was set to 64, the total

number of accounts in the systemwas also set to 64, considering one

account per shard, and the maximum number of shards accessed by

each transaction (𝑘) was limited to 8. The simulation used different

values of the transaction generation rate (𝜌) and burstiness (𝑏). Each

combination of these parameters was tested for 25000 rounds.

In the simulation process, initially, we generated random, unique

accounts and assigned them randomly to different shards, ensur-

ing that each shard maintained its unique set of accounts. The
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Figure 2: Simulation results for Algorithm 1: On the left, the average number of pending transactions in the pending queue of
each home shard is shown versus 𝜌 . On the right, the average transaction latency measured in rounds is plotted against 𝜌 .

Figure 3: Simulation results for Algorithm 2: On the left, the average number of pending scheduled transactions in the queue
(scheduled but not committed) of cluster leader shard is shown versus varying values of 𝜌 . The average transaction latency
measured in rounds is plotted against 𝜌 on the right.

simulation operated in epochs and continued until the defined to-

tal rounds were reached. Within each epoch, transactions were

generated based on the previous epoch’s length and the rate of

transaction generation (𝜌). Burstiness was introduced within only

one epoch throughout the total rounds because the number of all

possible adversarial strategies is over-exponential. Therefore, in

simulations, we decided to focus on “pessimistic” strategies used in

the adversarial queuing literature for proving impossibility results.

They represent pessimistic scenarios where queues start being al-

ready loaded (burstiness) and in the remaining time, the system tries

to prevent their further growth under the regular arrival of other

transactions. All generated transactions were assigned randomly to

different shards, and each shard maintains a pending transactions

queue, sorted by transaction ID. For simplicity, we used a simple

greedy coloring algorithm to color the transactions, which ensures

conflicting transactions get different colors.

Simulation Results of Algorithm 1. In this simulation, we

consider the uniform model where each shard can send transaction

information to any shard within the 1 round. Figure 2 shows the

simulation results for Algorithm 1. The left bar chart depicts the

average pending transactions queue in each home shard as a func-

tion of the transaction generation rate (𝜌) and burstiness (𝑏). As

expected, after the certain threshold of 𝜌 , both the average pending

transaction queue size and transaction latency increase exponen-

tially. The queue size and transaction latency grow exponentially

when 𝜌 > 0.15. Moreover, the right line graph in Figure 2 shows the

average latency of transactions in terms of rounds across various

transaction generation rates. It is observed from the graph that

transaction latency increases with increasing values of 𝜌 and 𝑏.

We observed the average latency of transactions for values up to

𝜌 = 0.15 is under 750 rounds.

Simulation Results of Algorithm 2. We simulate Algorithm

2 by arranging shards on a line, where the distances between a

pair of shards are dictated by their position in the line. We used 64

shards, 𝑆1 to 𝑆64. The distance between two adjacent shards in the

line is set to 1, indicating that the distance between 𝑆1 and 𝑆2 is 1,

and so forth. However, the distance from 𝑆1 to 𝑆3 is 2, 𝑆1 to 𝑆4 is 3,

and so on. To organize the shards, we cluster them into layers and

sublayers. The sublayers in each layer are constructed by shifting

half of the diameter of that layer to the right. In the lowest layer 𝑙𝑖 ,

clusters consist of two shards each. Moving to the next higher layer,

𝑙𝑖+1, clusters now consist of four shards, and this pattern continues.

In the highest layer, all shards are part of a single cluster. Each
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cluster has a designated leader 𝑆
ldr

responsible for coloring and

scheduling all transactions within that cluster.

Figure 3 shows the simulation results of Algorithm 2. The left

bar chart shows the average pending scheduled (i.e. scheduled but

not committed) transaction queue size in cluster leader shard as

a function of the transaction generation rate (𝜌), while the right

line graph shows the average transaction latency. Particularly, the

queue size does not exhibit exponential growth up to 𝜌 = 0.18,

and the average transaction latency is under 1000 rounds for 𝜌

values from 0 to 0.18. Specifically, for 𝑏 = 3000 and 𝜌 = 0.27, the

maximum average pending transactions are approximately 175, and

transaction latency reaches around 7000 rounds. This value is signif-

icantly higher than the pending transactions and latency observed

in Algorithm 1, where the pending transactions are around 40, and

transaction latency is approximately 2250 rounds. We observed

that the queue size and transaction latency of Algorithm 2 grew

significantly more than those of Algorithm 1. Transaction latency

of Algorithm 2 is higher than Algorithm 1 due to the non-uniform

model and the distance between shards ranging from 1 to 64. The

propagation and commitment of transactions take more time in

this scenario compared to the uniform communication model of

Algorithm 1, where shards communicate in 1 round.

8 DISCUSSION AND CONCLUSIONS
In conclusion, we provided an absolute upper bound on the stable

transaction generation rate for a sharded blockchain system. More-

over, we design stable distributed scheduling algorithms for uniform

and non-uniform sharded blockchain systems with bounded queue

size and transaction latency. We also provide the simulation re-

sults of the proposed algorithms. The blockchain system designers

can use our results to design stable blockchain systems, which are

resilient to attacks that could overload the system with transactions.

We would like to note that for the basic scheduling algorithm

(BDS) 1, it is possible to use a deterministic distributed coloring

algorithm [16]. But this still requires to learn the degree of the

conflict graph Δ and the total number of transactions.

For future work, one possible extension could be to study an

asynchronous communication model for the proposed scheduler.

Another could be to study the efficient communication mechanism

between shards that have reduced message sizes.
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