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ABSTRACT

Sharding is used to improve the scalability and performance of
blockchain systems. We investigate the stability of blockchain shard-
ing, where transactions are continuously generated by an adver-
sarial model. The system consists of n processing nodes that are
divided into s shards. Following the paradigm of classical adversarial
queuing theory, transactions are continuously received at injection
rate p < 1 and burstiness b > 0. We give an absolute upper bound

max{%, —2_1 on the maximum injection rate for which any

Vas

scheduler cLoukJi guarantee bounded queues and latency of transac-
tions, where k is the number of shards that each transaction accesses.
We next give a basic distributed scheduling algorithm for uniform
systems where shards are equally close to each other. To guaran-
tee stability, the injection rate is limited to p < max{ ﬁ, h;ﬁ}'
We then provide a fully distributed scheduling algorithm for non-
uniform systems where shards are arbitrarily far from each other.
By using a hierarchical clustering of the shards, stability is guar-
anteed with injection rate p < cldllm . max{%, \/ig} where d is
the worst distance of any transaction to the shards it will access,
and c; is some positive constant. We also conduct simulations to
evaluate the algorithms and measure the average queue sizes and
latency throughout the system. To our knowledge, this is the first
adversarial stability analysis of sharded blockchain systems.
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1 INTRODUCTION

A blockchain is a chain (linked list) of transaction blocks. Due to
its several special features, such as fault tolerance, transparency,
non-repudiation, and immutability [28], it has been used in various
domains, such as cryptocurrency [11, 27], healthcare [26], digital
forensics [2, 3], and supply chain management [6]. In a blockchain
network, all of the participating nodes need to reach a consensus to
append a new block, which is a time and energy-consuming process.
Moreover, each node is required to process and store all transac-
tions, which leads to scalability issues in the blockchain system.
To improve scalability and performance, sharding protocols have
been proposed, such as Elastico [25], OmniLedger [24], RapidChain
[31], and ByShard [19]. Sharding divides the blockchain system
into multiple shards, where each shard is a cluster of nodes. The
shards allow to process transactions in parallel.

We propose to investigate the stability of sharded blockchain
systems in which transactions are continuously generated by an
adversarial model. The arrival of the transactions in the system
depends on the transaction generation rate p (also called injection
rate), which is the number of generated transactions amortized
per time unit, and burstiness b, which models spontaneous arrivals
of transactions not predicted by injection rate. The goal is to de-
sign distributed scheduling algorithms for the sharded blockchains
so that the number of pending transactions is bounded (bounded
queues) and the amount of waiting time for each transaction is
small (low latency). Stability in blockchains is important for scal-
ability and to improve the resiliency to Denial of Service attacks
where malicious nodes try to inject bursts of transactions into the
system in order to delay other transactions.

The adversarial model that we use for generating transactions
in blockchain sharding is motivated by the adversarial queuing
theory introduced by Borodin et al. [8]. This theory has been used to
analyze the stability of routing algorithms with continuous packet
injection into a network [13, 14]. In communication networks, the
transmission of data packets depends on constraints determined by
the network’s characteristics, such as its topology and the capacity
of its links or channels. Similarly, in the context of blockchain
sharding, executing multiple transactions concurrently across the
different shards is constrained by the property that each transaction
must require exclusive access to every account it intends to interact
with, which prevents the execution of several transactions at once.

We consider the system consisting of n nodes, which are fur-
ther divided into s shards. Each shard is responsible for handling a
subset of the accounts. A transaction T is generated at one of the
shards, which is the home shard for T. Similar to other sharding sys-
tems [1, 19], each transaction T is split into subtransactions, where


https://orcid.org/0000-0002-8200-9046
https://orcid.org/0000-0002-4381-4333
https://orcid.org/0000-0002-1316-7788
https://doi.org/10.1145/3626183.3659970
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626183.3659970
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626183.3659970&domain=pdf&date_stamp=2024-06-17

SPAA 24, June 17-21, 2024, Nantes, France

each subtransaction accesses an account. A subtransaction of T is
sent to the destination shard that holds the respective account. Each
destination shard maintains a local blockchain of the subtransac-
tions that are sent to it. The whole blockchain can be recreated by
taking the union of the local blockchains at the shards [1].

Each home shard has an injection queue that stores the pending
transactions to be processed. The home shard picks transactions
from its injection queue and sends their subtransactions to the
respective destination shards. All home shards process transactions
concurrently. A complication arises when they pick conflicting trans-
actions that access the same account. In such a case, the conflict
prohibits the transactions to commit concurrently and forces them
to serialize. A scheduling algorithm coordinates the home shards
and destination shards to process the transactions (and respective
subtransactions) in a conflict-free manner. The main performance
metric for the scheduler is its ability to handle the maximum trans-
action generation rate while maintaining system stability within
adversary constraints. Additional performance metrics include the
size of the pending transaction queues and transaction latency.

Contributions. To our knowledge, we give the first comprehen-
sive adversarial queuing theory analysis for blockchain sharding
systems. We provide the following contributions:

o Injection Rate Limit: We prove an upper bound on injection rate
p < max{ %, ﬁ} where k is the number of shards that each
S

transaction accesses, for which a stable scheduling algorithm is
feasible.

o Basic Scheduling Algorithm for Uniform Model: In the uniform
communication model, any shard can communicate with any
other shard within a single round. The uniform model is appro-
priate for systems that have strict guarantees for communica-
tion delay (e.g. multiprocessor systems). The algorithm runs
in epochs, and in each epoch, one of the shards acts as leader
shard, which receives the transaction information from all the
home shards. Then the leader shard calculates a schedule by
coloring the conflict graph of transactions. The schedule is
communicated with the home and destination shards. This al-
gorithm can process transactions with a generation rate limited
to p < max{ - 8% 13 \f] ———1}. Moreover, we prove that the number

of pending transactions at any round is at most 4bs (which is
the upper bound on queue size in each shard), and the latency
of transactions is bounded by 36b - min{k, [/s]}.

e Fully Distributed Scheduling Algorithm: We introduce a dis-
tributed transaction scheduling algorithm designed to schedule
transactions in a decentralized manner without requiring a
central authority. Moreover, this algorithm works for the non-
uniform communication model. The algorithm is based on a
hierarchical clustering of the shards. This scheduler remains sta-
ble for a transaction generation rate p < ——— o dl s -max{ £ © \f}

where d is the maximum distance for any transaction between
its home shard and the destination shards it will access, and ¢ is
some positive constant. For this scheduling algorithm, we also
provide the upper bound on queue size as 4bs and transaction
latency is at most 2 - ¢;bd log? s - min{k, [v/s1}.
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o Simulation Results: To evaluate the performance of our proposed
algorithms, we conducted simulations to measure the average
queue size of pending transactions and transaction latency.

Paper Organization. The rest of this paper is structured as
follows: Section 2 provides related works. Section 3 describes the
preliminaries for this study and the sharding model. We prove
the upper bound on a stable injection rate in Section 4 . Section 5
presents a basic stable solution. Section 6 generalizes the techniques
to a fully distributed setting. In Section 7, we provide the simulation
results. Finally, we give our discussion and conclusions in Section 8.

2 RELATED WORK

In the field of blockchain research, various proposals have been
presented to tackle scalability challenges in the consensus layer [21-
23]. Although these protocols have made some progress in improv-
ing scalability, the system’s performance still suffers as the network
size expands. Blockchain protocols must also guarantee transac-
tion safety, as defined by ACID properties [17]. To address the
blockchain scalability issue, several sharding protocols have been
proposed, such as Elastico [25], Rapidchain [31], OmniLedger [24],
Byshard [19], SharPer [4], Lockless blockchain sharding with multi-
version control [1], and the work [15]. These protocols have shown
promising enhancements in transaction throughput. However, none
of these protocols have specifically explored stable transaction
scheduling techniques with sharding.

Extensive research has been conducted on transaction schedul-
ing in shared memory multi-core systems as well as distributed
systems. A recent work [9] introduced a stable scheduling algorithm
designed specifically for software transactional memory systems
under adversarial transaction generation. Moreover, transaction
scheduling in distributed systems has been explored and aimed to
achieve provable performance bounds on minimum communication
cost [5, 29, 30]. However, these works do not address transaction
scheduling problems in the context of blockchain sharding. The
main reason that the results [5, 29, 30] cannot apply to blockchain
sharding is the mobility of the objects. In their transactional mem-
ory models, an object can move from one node to another node
where the transactions that request it reside. In our blockchain
sharding model, the objects have fixed positions in their respective
shards.

Adversarial queuing theory was proposed by Borodin et al. [8],
which has been applied to study the stability of routing algorithms
with continuous packet injection into a network. More generally,
this is a technique that measures the stability of processing in-
coming data (i.e. transactions) without making any statistical as-
sumptions about data generation. In the dynamic environment,
the adversarial queuing theory provides a framework for establish-
ing worst-case performance bounds for deterministic distributed
algorithms. Moreover, this theory has been applied to different
dynamic tasks in communication networks. The work in [7] exam-
ines the worst-case performance of randomized backoff on simple
multiple-access channels. Similarly, in an adversarial environment,
[13] provides maximum throughput of multiple access channels,
where their protocol achieves throughput 1 for any number of sta-
tions against leaky-bucket adversaries. Moreover, [14] investigates
deterministic distributed broadcasting in multiple access channels.
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As adversarial queuing theory has been applied in different dy-
namic task generations, so we are relating this theory to blockchain
sharding, where the sharding system is unaware of the number of
transactions generated in any time interval.

3 TECHNICAL PRELIMINARIES

Blocks and Blockchain. A blockchain is a decentralized peer-
to-peer ledger replicated across multiple interconnected nodes. A
blockchain is implemented as a linked list (chain) of blocks where
each block consists of a sequence of transactions. Blocks are linked
through hashes, which makes them immutable. Blocks are appended
to the blockchain with a distributed consensus mechanism.

Blockchain Sharding. Similar to previous works [1, 19], we
consider a blockchain system with n nodes partitioned into s shards
51,82,...,Ss such that S; € {1,...,n},fori # j,S;NS; = 0, and
n =Y, |Sil|. Let n; = |S;| denote the number of nodes in shard S;.

Shards communicate with each other through message passing.
In this paper, we are not focusing on optimizing the message size.
In the worst case, the message size in our model is upper-bounded
by O(bs). Moreover, all non-faulty nodes in a shard agree on each
message before transmission (e.g. using PBFT within the shard [12]).
Similar to previous work [19, 20], we assume that we are given
a cluster-sending protocol for reliable and secure communication
between shards, satisfying the following properties for transmitting
data R from shard S; to shard S;: (1) Shard S; sends R to S; if there
is an agreement among the non-faulty nodes in S; to send R; (2) All
non-faulty nodes in recipient shard S; will receive the same data
R; (3) All honest nodes in sender shard S; receive confirmation of
data ‘R receipt. We assume that these properties are guaranteed to
be satisfied within a single round.

For inter-shard communication between shards S; and S;, we
used broadcast-based protocol [20] where a set A; € S of i +1
nodes in S and a set Ay C Sy of f2 + 1 nodes in Sy are chosen
(where f; is the number of faulty nodes in shard S;). Each node in
A1 is instructed to broadcast the message to all nodes in Ay. Thus,
at least one non-faulty node in S; will send the correct message
value to a non-faulty node in Ss.

We assume that the nodes in a shard are close to each other and
connected in a local area network. However, the distance between
shards may vary. We model the interconnection network between
shards as a weighted complete graph (clique graph) of shards G,;. We
measure the distance between shards as the number of rounds that
are needed until a message is delivered over the network, where a
round is the time to reach consensus within a shard. We consider
two communication models:

o Uniform communication model: Any two shards are a unit
distance away, in the sense that any shard can send or receive
information within one round. In other words, the shards
form a clique where each edge has a weight of 1.

e Non-uniform communication model: the distance between
any two shards ranges from 1 to D, where D is the diameter
of the clique. Hence, the edge weights vary from 1 to D. We
can simply say D is the upper bound on the time needed to
deliver a message from one shard to another. The unit of
communication time is round, which is the time needed to
reach a consensus within a shard.
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Note that the uniform communication model is a special case of
the the non-uniform model where the distance of every edge is 1.

Each shard maintains its own local ledger (local blockchain)
based on the subtransactions it receives. Moreover, in our algo-
rithms, we consider a simple block structure where each block
contains only one transaction. However, our algorithms can be ex-
tended to accommodate multiple transactions per block. We denote
by fi is the number of Byzantine nodes in shard S;. We assume
that each shard runs the PBFT [12] consensus algorithm to ensure
agreement on the state of the local ledger. To achieve Byzantine
fault tolerance, the number of nodes in each shard must satisfy
n; > 3f;. Whenever it is required, it is possible to combine and
serialize the local chains to form a single global blockchain [1].

Consider a set of shared accounts O (we also refer to the accounts
as objects). As in previous studies [1, 19], we assume that each shard
is responsible for a specific subset of the shared objects (accounts).
Namely, O is divided into disjoint subsets Oy, ..., Os, where O;
represents the set of objects managed by shard S;. Each shard S;
maintains a local blockchain of subtransactions that access objects
in the respective O;.

Transactions and Subtransactions. Consider a transaction T;.
A transaction is injected into one of the nodes of the system, say
node v7;. The home shard of T; is the shard that contains v7,. Each
shard that receives newly generated transactions acts as a home
shard for those transactions. A home shard maintains a pending
transactions queue, which contains any newly generated transac-
tions that were injected into it. The home shard is responsible for
handling all pending transactions in its queue.

We define a transaction T; as a collection of subtransactions
Tiays - - -» Tia;- Each subtransaction Tj 4, accesses objects only in
Oy, and is associated with shard Sg,. Thus, subtransaction T; 4, has
a respective destination shard Sg;. The home shard of T; will send
subtransaction T4, to shard Sg; for processing, where T; 4, will
be appended into the local blockchain of S;,. The subtransactions
within a transaction T; are independent (i.e. they do not conflict,
as explained below) and can be processed concurrently. Similar to
previous work [19], each subtransaction T; 4, has two parts: (i) a
condition check, where it checks whether a condition of the objects
in Oy, is satisfied, and (ii) the main action, where it updates the
values of the objects in O, .

ExAMPLE 1. Consider a transaction Ty consisting of read-write
operations on the accounts with several conditions. Ty = “Transfer
1000 from Rex’s account to Alice’s account, if Rex has 5000 and Alice
has 200 and Bob has 400”. The home shard of Ty splits this transaction
into three subtransactions Ty,r, T1,q, Ty p, where the destination shards
Sr, Sa, and Sy, handle the respective accounts of Rex, Alice, and Bob:

Th,r - condition: “Check Rex has 5000”

- action: “Remove 1000 from Rex account”
T1,q - condition: “Check Alice has 200”

- action: “Add 1000 to Alice account”
T p, - condition: “Check Bob has 400”

The home shard of T; sends the subtransactions to their respective
destination shards. If the conditions are satisfied (for example in
Ty r if Rex has 5000) and the transaction is valid (for example in
Ti,r Rex has indeed 1000 in the account to be removed) then the
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destination shards are ready to commit the subtransactions in the
local blockchains, which imply that the whole of transaction T
implicitly commits as well. Otherwise, if any of the conditions in the
subtransactions are not satisfied or the subtransactions are invalid,
then all the subtransactions must abort (i.e. they are not added in
the local blockchains), which results in T; aborting as well.

Transactions T; and Tj are said to conflict if they access some ob-
ject Oy € O and at least one of these transactions writes (updates)
the value of object O;. Transactions that conflict should be pro-
cessed in a sequential manner to guarantee atomic object updates.
In such a case, their respective subtransactions should serialize in
the exact same order in every involved shard to ensure atomicity of
transaction execution. In our algorithms, we construct the commit
schedule with the help of a conflict graph of the transactions. A
transaction conflict graph G for a set of transactions 7 is an un-
weighted graph where each transaction T; € 7 corresponds to a
node of G and an edge between any two transactions T; and T; that
conflict. In our algorithms, we will perform a vertex coloring of
graph G to produce a conflict-free schedule.

Adversarial Model. We examine an adversarial model where
transactions enter into the system continuously. The adversary
generates and injects transactions into the system with injection rate
p, where 0 < p < 1, and burstiness b > 0. Each injected transaction
adds congestion of one unit to each shard it accesses, where the
congestion of a shard measures the number of transactions that
access objects in the shard. The adversary is restricted such that
the congestion on each shard within a contiguous time interval
of duration ¢t > 0 is limited to at most pt + b transactions per
shard. While p models a bound on the injection rate, the burstiness
parameter b expresses the maximum number of transactions that
the adversary can arbitrarily generate in any time interval.

Performance Metrics. A scheduling algorithm responsible for
determining the order in which transactions are processed within
the sharded blockchain. The execution of our proposed algorithm is
synchronous, where the execution timeline is partitioned into time
steps referred to as rounds. We assume that the duration of a round
is enough to allow the execution of the PBFT consensus algorithm
in each shard. A round is also the time to send a message between
shards in a unit distance. The primary goal of a scheduling algorithm
is to efficiently and fairly process all generated transactions while
minimizing latency, ensuring the stability and performance of the
sharded blockchain system.

A scheduler is considered stable with respect to the adversary if
the number of pending transactions remains bounded throughout
any execution (bounded with respect to the system parameters). In
this context, stability implies that the scheduler can handle incom-
ing transactions without an unbounded accumulation of pending
transactions. At any round, exactly one subtransaction can be pro-
cessed in each shard. Thus, the maximum congestion for a shard
in r rounds should not exceed r. That is, if the injection rate of a
scheduler exceeds 1, no scheduler can achieve stability. Therefore,
we focus on adversaries where 0 < p < 1.

The delay of a transaction T refers to the number of rounds
between its generation and moment of commit, where all of its sub-
transactions have been appended to the respective local blockchains.
The latency of a scheduler in a particular execution is defined as
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the maximum delay among all transactions generated in that exe-
cution. In our algorithms, we bound the latency with respect to the
parameters of the system.

4 UPPER BOUND ON STABLE GENERATION
RATE OF TRANSACTIONS

If the transaction generation rate is sufficiently high, the system can
become unstable. This section gives an upper bound on the max-
imum transaction generation rate p under which any blockchain
sharding system could be stable. The following result is adapted
from [9], which originally considered transactions in software trans-
actional memory systems. Here, we adapted the result in the context
of blockchain sharding.

THEOREM 1 (STABILITY UPPER BOUND). No transaction scheduler
in any sharded blockchain system can be stable if the (worst-case ad-
: . . ; 2 2
versarial) transaction generation rate p satisfies p > max{ ==, —=
) g p satisfies p {3 Vo] }

and burstiness b > 0, where each transaction accesses at most k out
of s shards.

Proor. Let us consider a sharded blockchain system with s
shards. We consider the case where each shard holds one account,
and each transaction accesses at most k shards out of the s shards.
We analyze two cases.

Case 1: @ < s: The generated transactions use only shards
S1,S2,...,S,, where r = k(k2—+1) We form a set of transactions,
T1,To, . .., Tr4q, where each transaction T; accesses a subset of k

shards so that two transactions conflict with each other. Specifically,
every pair of transactions maps to a unique shard used by both
transactions. Note that this shard uniqueness can be guaranteed
by the fact that the number of all transactions’ pairs, (k+21)k’ is not
bigger than the number of shards, s. Since the transactions conflict
mutually, only one transaction can be committed in any round.
Thus, the transactions require k + 1 rounds for all to be committed.
The given group of k + 1 transactions together contribute 2 to
the congestion of each used shard. Hence, to ensure stability, the
inequality p - (k + 1) < 2 must hold, which implies p < k =

Case 2: k(kH)
p(p+1)

> s, let p be the greatest positive integer sat-

isfying < s. We can adapt a similar argument as in the
case @ < s. Specifically, we consider a set of transactions
T1, T, . . ., Tp+1 such that every pair of transactions maps to a unique
shard. The inequality p < I% can still be obtained through the

p(p+1)

same reasoning as above. Furthermore, < simpliesp+1 =
|_ (1+vV1+ 85)] By maklng some algebraic deductlons we estimate

(1+\/1+85)J = L\/7J
Hence if p exceeds v \F T

adversary with p exceeding this threshold (and with b > 1) can
generate at least one transaction per round for each round r, and it
can generate two transactions at some round after r, causing the
pending transaction queue at some shard to grow unbounded. O

;ﬁ

it also exceeds }% Consequently, an

5 SCHEDULER FOR UNIFORM MODEL

We first consider the uniform model, where any shard can send
a message to any other shard within one round. Algorithm 1 is
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Time.
Epochs
| B | Ei | Eix |
Epoch _
Phase 1 Phase 2 Phase 3

Graph coloring and

Knowledge sharing sending colored txn

Transactions scheduling and commit

1 1 4(A + 1)
round round rounds

Figure 1: Representation of time slots division in Algorithm 1

the basic distributed algorithm to schedule the transactions in the
uniform model. The algorithm does not need to know the parame-
ters p and b of the adversary. All the shards are synchronized. The
basic idea is that the algorithm divides time into epochs, and in
each epoch, it first constructs the conflict graph G of the generated
transaction and then schedules the transactions in a conflict-free
manner by using a coloring of G.

In each epoch, one of the shards acts as a leader shard Si4;, which
receives information about transactions from all the home shards.
The leader shard Sjg; colors the transactions and then sends the
coloring information back to the home shards. The leader shard is
updated in each epoch using the modulo division on epoch number
and the total number of shards, Sigr <= S(epoch mod s)+1- All shards
know the leader shard for the current epoch. The update of the
leader shard in each epoch ensures fair load balancing to the shards.

Each epoch consists of several rounds, where the specific dura-
tion varies according to the load of pending transactions. In each
epoch, the home shards process all the pending transactions that
appear in their pending queues at the beginning of the epoch. Pro-
cessing of these transactions occurs in three phases during the
epoch (see Figure 1). In the first phase, the home shards commu-
nicate with the leader shard (Sig;) to discover conflicts among the
transactions. In the second phase, the leader shard Sj4, builds a con-
flict graph G of the transactions and uses a vertex graph coloring
algorithm to color G, then send the transaction coloring informa-
tion back to the respective home shards. Finally, in the third phase,
each transaction T is assigned a specific round based on its color,
and its subtransactions are sent to the destination shards where
all the subtransactions of T commit concurrently at the designated
round in a conflict-free manner.

Let Eq, Eg, E3, . .. denote the sequence of epochs. The number
of rounds required to process transactions in a particular epoch
E; depends on the maximum degree A of the conflict graph G on
that epoch. In particular, Phases 1 and 2 consist of one round, and
Phase 3 consists of 4(A + 1) rounds. Here, we need to multiply
A + 1 by 4 because the home shards and destination shards need
to communicate with each other (back and forth) to check the
validity of the transactions and subtransactions and for consistent
and atomic commitment in each destination shard.

We continue to describe the phases in more detail.

Phase 1: (Knowledge sharing) In this phase, the home shards
send all transaction information from their pending queues to the
leader shard Sj4, in parallel using one round.
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Algorithm 1: Basic Distributed Scheduler (BDS)

1 Sigr < leader shard, updates in each epoch;

2 foreach epoch and appropriate round do

3 // Phase 1: Knowledge Sharing

4 Each home shard picks all pending txn (transactions) from its
queue and sends them to Sjg, shard for coloring;

5 // Phase 2: Graph Coloring in leader shard Sigr

6 Sidr colors received txn with at most A + 1 colors;
7 Sidr sends colored txn to respective home shards;
8 Each home shard inserts received colored txn in pending queue;

9 // Phase 3: Schedule and commit

10 /* color col is processed at appropriate round(s) */
11 for colorcol — 1to A+1do

12 /* Round 1: Home Shards */
13 Home shard picks each txn T; of color col from pending

queue and splits it into subtransactions (Tj,j) which are
sent to destination shards for voting;

14 /* Round 2: Destination shards */

15 Send commit vote to home shard if T; ; is valid and
condition is satisfied; otherwise, send abort vote;

16 /* Round 3: Home Shards */

17 Send confirm commit to destination shards if all “commit
votes” are received; otherwise, send confirm abort,

18 /* Round 4: Destination Shards */

19 If destination shard receives “confirm commit”, it commits

T; j by appeding it in local blockchain; Otherwise, if it
receives “confirmed abort”, it aborts Tj j;

Phase 2: (Graph coloring) In this phase, the leader shard Sg,
creates a global conflict graph G using the received transaction
information from each home shard. Let A be the degree of G. Then,
Sigr shard uses a vertex coloring algorithm to color the conflict
graph with at most A+ 1-colors. (We assume the system has enough
resources to color the graph in the beginning of the round.) Then
Siar sends the colored transaction information to the respective
home shards for scheduling based on the colors.

Phase 3: (Transactions scheduling and committing) Transactions
that obtain the same color are conflict-free and can be scheduled to
commit at the same round. To ensure the atomicity of transactions
at each destination shard, the home shard and destination shards
need to communicate with each other, which takes four rounds per
color. Thus, all transactions can be committed within a maximum
of 4(A + 1) rounds.

The home shard of a transaction T; with color z processes the
transaction at round 4z of the third phase. Each color needs four
rounds. In the first round, each home shard splits T; into subtrans-
actions and sends them to the destination shards to check the condi-
tion and constraints. In the second round, if a subtransaction T; ; is
valid and the condition is satisfied, then the destination shard sends
commit vote, or otherwise abort vote, for T; j to its home shard. In
the third round, if the home shard receives all the commit votes
for T;, then it sends confirmed commit to the respective destination
shards; otherwise if any abort vote is received, it sends confirmed
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abort. In the fourth round, the destination shard of each subtrans-
action Tj j either commits T; j and adds to the local blockchain or
aborts T; j according to the message from the home shard.

5.1 Analysis for Algorithm 1

For the analysis, consider the case where each transaction accesses
at most k > 1 out of s > 1 available shards.

LemMa 1. In Algorithm 1, for generation rate p < max{ g Ve
and burstiness b > 1, every epoch satisfies: (i) the maximum epoch
length is T := 18b-min{k, [/s]}, and (ii) at most 2bs new transactions

are generated during the epoch.

ProoF. We start by noting that if an epoch E; has length at
most 7, and the adversary generates transactions with a rate p <
max{ﬁ, ﬁ} and burstiness b > 1, the maximum congestion

added to a shard during the epoch is:

p - Epochlength+b < p-7+b<b+b=2b. (1)

Moreover, since each transaction accesses at least one shard and
there are s shards, the total number of transactions produced within
epoch E; is at most 2bs. Similarly, 2bs is the maximum total conges-
tion in E;. Hence, property (i) implies property (ii). Thus, it suffices
to prove property (i).

We continue to prove property (i) by induction on the number
of epochs. For the base case, in epoch Ej, there are no transactions
at the beginning, and the epoch length is just two rounds. Thus
property (i) holds since 2 < 7.

Assume the property (i) holds for every epoch up to E;. For
the inductive step, consider epoch Ej1. By design of Algorithm 1,
every transaction which is pending in the beginning of E ;41 was
generated during epoch Ej; we refer to these as “old transactions”.
During Ej+1, only the old transactions are scheduled. We examine
two cases.

(Case 1) k < [+/s]: From Equation 1, the congestion of a shard is
at most 2b old transactions. Since each old transaction accesses at
most k shards, each old transaction conflicts with at most (2b — 1)k
other old transactions. Consequently, the highest degree A in the
conflict graph G of the old transactions is A < (2b — 1)k. Thus, in
the second phase of Ej1, a (greedy) vertex coloring algorithm on
G assigns at most A + 1 < (2b — 1)k + 1 colors. Since k > 1, the
total length of epoch Ej4; is at most

2+4(A+1) <2+4((2b-1)k+1) < 18bk =1.

Therefore, property (i) holds.

(Case 2) k > [+/s]: we classify old transactions into two groups,
the “heavy” transactions which access more than [+/s] shards, and
the “light” transactions which access at most [+/s] shards. The max-
imum number of heavy old transactions can be 2b[+/s]. If there
were more, the total congestion of old transactions would be strictly
greater than 2b[+/s] - v/s > 2bs, which is not possible. A coloring
algorithm for conflict graph G can assign each of the heavy trans-
actions a unique color, which requires at most {1 = 2b[+/s] colors.

The remaining transactions of G are light. Let G’ be the subgraph
of G with the light transactions. Each light transaction conflicts
with at most (2b—1)[/s] other light transactions. Hence, the degree
of G’ is at most (2b — 1)[v/s]. Thus, G’ can be colored with at most
¢ = (2b — 1)[+/s] + 1 colors.

——
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Consequently, G can be colored with at most { = {1 + {»
2b[/s] + (2b — 1)[/s] + 1 colors. Since s > 1, the length of Ej41 is
at most

2+40 = 6+4(4b—1)[Vs] < 18b[Vs] =17 .

Therefore, property (i) holds. O
THEOREM 2 (BDS sTaABILITY). In Algorithm 1, for generation rate
p= max{ﬁ, L__} and burstiness b > 1, the number of pending

18[Vs]

transactions at any given round is at most 4bs, and the transaction
latency is at most 36b - min{k, [/s]}.

Proor. To estimate the number of pending transactions during
a round, consider a round within an epoch E;. From the proof of
Lemma 1, the maximum number of old transactions during any
round of E; is 2bs. Within E;, there can be at most 2bs newly gen-
erated transactions. Therefore, the upper bound on pending trans-
actions during a round is 4bs.

For estimating transaction latency, we rely on the fact that a
transaction generated in an epoch will be processed by the end of
the next epoch. Consequently, the transaction latency is bounded
by twice the duration of the maximum epoch length 7. From Lemma
1, this results in a latency of at most

27 = 2 - 18b - min{k, [Vs]} = 36b - min{k, [/s]}.

6 FULLY DISTRIBUTED SCHEDULER (DS)

The scheduling algorithm we presented earlier uses a central au-
thority in one shard with knowledge about all current transactions
and the maximum degree of the transaction graph. Here, we discuss
a fully distributed approach that allows the transaction schedule to
be computed in a decentralized manner without requiring a central
authority in any shard.

6.1 Cluster Decomposition (Shard Clustering)

This algorithm considers a non-uniform communication model
described in Section 3. Consider the (complete) weighted shards
graph G; made by the s shards, where the weights of edges between
shards represent the distances between them. We assume that G
is known to all the shards. Let D be the diameter of Gs (D is the
maximum distance between two shards). The g-neighborhood of
shard S; is defined as the set of shards within a distance of at most
q from S;, and the 0-neighborhood is simply S; itself.

The scheduling algorithm uses a hierarchical decomposition of
Gs which is calculated before the algorithm starts and is known to
all the shards. The graph decomposition is based on the clustering
techniques in [18] and which were later used in [10, 29]. The hier-
archy consists of H; = [log D] + 1 layers (logarithms are in base
2), where a layer is a set of clusters, and a cluster is a set of shards.
Layer [, where 0 < | < Hy, is a sparse cover of G, such that: (i) each
cluster of layer I has (strong) diameter at most o(2! log s); (ii) each
shard participates in no more than O(logs) clusters at layer I; (iii)
for every shard S; there exists a cluster at layer [ such that the entire
(2! = 1)- neighborhood of S; is contained within that cluster. The
clusters have a strong diameter, which measures distances within a
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cluster on the induced subgraph of G induced by the nodes of the
cluster.

For each layer [, the sparse cover construction in [18] is actually
obtained as a collection of Hy = O(logs) partitions of Gs. These
Hj partitions are ordered as sub-layers of layer [ labeled from 0
to Hy — 1. A shard participates in all H, sub-layers but potentially
belongs to a different cluster at each sub-layer. At least one of the
clusters in one of these Hy sub-layers at layer [ contains the whole
2! — 1 neighborhood of S;.

Within each cluster at layer /, a leader shard Syg; is specifically
designated such that the leader’s (2! - 1)-neighborhood is in that
cluster. If we cannot find a leader (because no shard has its (21 -1)-
neighborhood) then no leader will be elected in the cluster. No
shard would have picked such a cluster as its home. Thus, that
cluster will not be used at all. Each transaction T has a home cluster
which is defined as follows: let S; be the home shard of T, and x the
maximum distance from S; to the shards that will be accessed by
T; the home cluster of T is the lowest-layer (and lowest sub-layer)
cluster in the hierarchy that contains the whole x-neighborhood of
Si. The designated leader shard Si4, of the home cluster will handle
all the transactions that have their home shard in that cluster (i.e.,
transactions will move from the home shard to the leader shard
Sidr for processing).

6.2 Fully Distributed Scheduling Algorithm

Our scheduling algorithm runs in epochs. Each layer i has a fixed
epoch length E; = c2logs rounds, for some constant ¢, where
0 < i < Hj. Epochs repeat perpetually, so that the next epoch starts
right after the previous ends. Note that the epochs of different
layers are multiples of each other, that is, E; = 2 - E;_1, for i > 0,
and their begin times are aligned so that the start of E;_; coincides
with the start of E;. Notice all epoch lengths are multiples of the
length Ey = clogs.

Similar to epochs, we also define rescheduling periods Py = 2k Eq,
where k > 0. Rescheduling periods are multiples of epoch Ey, they
repeat perpetually, and the start times are aligned. Rescheduling
periods are also aligned with the epochs. For a cluster at layer i,
the lowest rescheduling period is P; = 21Ey = E;, that is, the epoch
length of layer i is the same as the length of the lowest rescheduling
period for that layer.

The reason for having epochs and rescheduling periods is as
follows. Under normal conditions, in a cluster C at layer i, at each
epoch, the designated leader shard Sj4, colors and schedules trans-
actions received from the home shards in C which it then sends to
the destination shards for confirmation and commit. However, some
of the transactions may not commit right away at the destination
shards due to conflicts and may accumulate at the destination shard
queues. To avoid accumulating delays, stale transactions are given
additional chances to be rescheduled. Such rescheduling chances are
given when the rescheduling periods align with the epochs. When
the end of the current epoch E; aligns with one of the rescheduling
periods Py, where k > i, then Sjg, colors not only newly received
transactions but also those that have already been scheduled but
not yet confirmed (or not committed). This approach expedites the
commitment of multiple non-conflicting transactions in parallel,
reducing the overall transaction waiting time.
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Algorithm 2: Fully Distributed Scheduler (FDS)

1 In parallel do
2 Run Algorithm 2a // Transactions Scheduling
3 L Run Algorithm 2b// Transactions Committing
As discussed earlier, each cluster C belongs at some layer i and
sublayer j, where 0 < i < H; and 0 < j < Hy; we simply say
that C is at level (i, j). Consider a transaction T with home cluster
C; we also say that T is at level (i, j). The leader shard Sig, of C
assigns an integer color to T, during some occurrence of epoch
E;. Let tenq denote the end time of that epoch, where T got col-
ored. We introduce the concept of the height of T represented by
a tuple (tend, i, j, color). The heights of transactions are ordered
lexicographically and implement a priority scheme. The priority for
committing transactions is determined based on this order, giving
precedence to transactions generated in lower cluster layers (with
smaller epoch lengths). This prioritization strategy aims to leverage
locality to improve the transaction latency.
We divided our fully distributed scheduling algorithm (see Algo-
rithm 2) into two sub-algorithms: Transaction Scheduling (Algo-

rithm 2a) and Transaction Confirming and Committing (Algorithm
2b). In the following, we continue to describe each algorithm.

6.2.1 Transactions Scheduling (Algorithm 2a). Every generated trans-
action T has a home cluster at some respective level (i, j). Algo-
rithm 2a runs in epochs whose length depends on the level. Each
transaction is processed at the respective epoch for their level. Each
epoch consists of three phases, which we describe below.

Phase 1: In this phase, at the beginning of each epoch, a home
shard sends transactions to the cluster leader Sy4, of the respective
home cluster. Note that a home shard may have transactions at
various levels. Those transactions will be processed at the respective
level.

Phase 2: In this phase, the cluster leader Si4, colors the trans-
actions received from home shards. If the end time of the current
epoch E; aligns with one of the rescheduling periods P, k > i,
then Sjg, colors all transactions ever received from the home shard,
including those already scheduled but not yet committed (excluding
the already committed). However, if the current epoch does not
align with a rescheduling period, then Sig, only colors the newly re-
ceived transactions, excluding already scheduled transactions. For
the purpose of rescheduling, the leader shard maintains a queue
schyq, which contains all uncommitted transactions it has processed.

After completing the coloring operation, Si4, splits colored trans-
actions into subtransactions and then sends them to destination
shards for scheduling. Additionally, Si4, informs the destination
shards about whether their destination schedule queue schgq needs
updating or appending based on whether the received subtransac-
tion results from rescheduling or regular scheduling. This ensures
destination shards appropriately update their schedule queues.

Phase 3: In this phase, each destination shard appends or up-
dates the scheduled subtransactions in their queues according to
the received information from cluster leader shard Sjq;. Addition-
ally, each destination shard lexicographically sorts subtransactions
based on their latest height (teng, i, j, color). Thus, transactions
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Algorithm 2a: Transactions Scheduling

Algorithm 2b: Transactions Confirming and Committing

1 schyg; < scheduled transaction (txn) queue in each leader shard;

2 schqd « scheduled subtransaction queue in each destination shard;

3 For every new transaction T, the home shard assigns the home
cluster of T;

4 For all layers (i, j) in parallel do

5 foreach epoch E; of layer i and appropriate round do

6 // Phase 1: txn sending

7 Home shard of T sends transaction T to the leader shard
Sidr of the home cluster of T;

8 // Phase 2: Txn Coloring in Sig4r
9 if end time t,,q of E; coincides with end time of one of the
rescheduling periods Py, k > i then
Leader shard Sjg; colors all txn in its queue schyg,
including the transactions it receives during current
epoch E; from the home shards;

10

Sidr updates schyg, with all the colored transactions;

else
Sidr colors all txn it received from home shards during

current epoch E; and appends them to schyg,;

14 Sidr splits colored txn into subtransactions and sends them

to the respective destination shards for scheduling;

15 // Phase 3: Scheduling txn in destination shards

16 Destination shards update or append schqq with received
subtransactions according to message from Syqy;

17 Order subtransactions in schyq lexicographically using

height (Zend, i, j, color);

and subtransactions have the same relative order in all destination
shards, ensuring consistent order.

6.2.2 Transactions Confirming and Committing (Algorithm 2b). Al-
gorithm 2b is responsible for committing subtransactions in the
destination shard queues, which were scheduled by Algorithm 2a.
Algorithm 2b runs at the destination shards independently and in
parallel with Algorithm 2a. The committing time of transactions
depends on which level (i, j) that transaction belongs to. If the
diameter of the home cluster of transaction T, is d,, then it will
take at most 2d, + 1 rounds to commit because the cluster leader
shard and destination shard need to communicate back and forth
for confirmation of the transaction T,, where step 1 and 2 each
takes dr-rounds and step 3 takes 1 round. We describe each step of
Algorithm 2b as follows:

Step 1: In this step, each destination shard picks one subtrans-
action from the head of the scheduled queue schyq and checks the
condition and validity. If everything checks out, the shard casts a
commit vote and sends it to cluster leader shard Sjq,; otherwise, it
sends an abort vote to Sig, for that subtransaction.

Step 2: In this step, cluster leader shard Sj4, collects all sub-
transaction votes for a specific transaction and sends a commit
confirmation to the destination shard upon receiving all commit
votes. Conversely, if the cluster leader shard receives any abort vote
for a particular transaction, it sends an abort confirmation message.
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1 schqd « schedule queues in destination shards;

2 foreach shard do

3 // Step 1: Condition check at destination shards:
4 T;,j < pick one subtransaction from the head of schqg;
5 Send commit vote to Sig; shard if T; ; is valid and condition is

satisfied; otherwise, send abort vote for Tj j to Sigr;

6 // Step 2: Collect votes at leader Si4r shards:

7 For each txn Tj, Sig, collects the votes about the subtransactions
of T; received from destination shards at Step 1;

8 Send confirmed commit T; ; to destination shards if all “commit
votes” are received for T; and then remove T; from schygy,;

9 Send confirmed abort T; j to destination shards if any “abort
vote” is received for T; and then remove T; from schyg,;

10 // Step 3: Commit SubTxn at destination Shards:

1 Commit (or abort) T; ; and add to local blockchain (or abort)
T;,j according to the message received from Sjg, at Step 2;

12

If T; j gets committed or aborted then remove T; j from schyq

After sending a confirmed commit or abort message, Siq; removes
that transaction from its own queue schyg;.

Step 3: In this step, each destination shard makes a final com-
mitment or abort based on the message received from the cluster
leader shard and removes that subtransaction from its schedule
queue (schyq)-

6.3 Analysis for Algorithm 2

For analysis, consider a case where each transaction accesses at
most k > 1 out of s > 1 shards and burstiness b > 1. Let C
be a cluster at level (i, j), and let d; be the cluster diameter. Let
i := 15bd; - min{k, s}. Let Py be a rescheduling period with
7; < Pr < 27;. Consider a sequence of such rescheduling periods

I, Ip, ..., each of length Py.

LEmMMA 2. In Algorithm 2, assuming that only transactions with
1 1
< P T ——
home cluster C are generated, forp = max{ 304k’ 30 ’zf\/ﬂ} and

b > 1, in any period I, where z > 1: (i) at most 2bs new transactions
are generated with home cluster C, and (ii) all these transactions will
be committed or aborted by the end of I41.

Proor. During any of the periods I, since its length is at most
27;, it follows that the maximum congestion added to any shard in
Cis:

p-Pr+b<2p;+b<b+b=2Db 2)
Moreover, since each transaction accesses at least one shard and
there are at most s shards in C, the total number of transactions
produced in I, is at most 2bs. Thus, the newly generated transac-
tions with home cluster C are also at most 2bs. Hence, property (i)
holds.

We continue to prove property (ii). We prove it by induction on
the number of periods. To simplify, let Iy be a trivial first period
(and not I), such that no transactions were generated in Iy. Then,
there is nothing to schedule in I3, and the basis case trivially holds.

Suppose that property (ii) holds for all periods from I up to I, ;.
We will prove property (ii) for .
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By induction hypothesis, every transaction which is pending at
the beginning of I,,1 was generated during interval I; we refer to
these as “old transactions”. Here, we are considering only one cluster
C with one level. Thus, other levels will not affect the processing
of old transactions. We examine two cases based on the magnitude
of k and [/s].

(Case 1) k < [+/s]: From Equation 2, the congestion of trans-
action to a shard is 2b old transactions. Since each transaction ac-
cesses at most k shards, each old transaction conflicts with at most
(2b — 1)k other old transactions. Consequently, the highest degree
A in the conflict graph G of the old transactions is A < (2b — 1)k.
Thus, in Phase 2 of Algorithm 2a executed in the final epoch of
period I41, a greedy vertex coloring algorithm on G assigns at most
A+1 < (2b - 1)k + 1 colors. Since k > 1, the total length of the
required time interval to schedule and commit/abort the transac-
tions is calculated as follows. Scheduling Algorithm 2a consists of
three phases where Phase 1 and Phase 2, each takes d; rounds, and
Phase 3 takes 1 round for transaction scheduling resulting 2d; + 1
rounds. Similarly, Algorithm 2b takes 2d; + 1 rounds for each color
to confirm and commit the transaction.

2di+1+(2d;+1) (A+1) < 2d;+1+(2d;+1) ((2b—1)k+1) < 15bdik = 7; .

Thus, property (i) holds.

(Case 2) k > [/s]: we classify old transactions into two groups,
the “heavy” transactions, which access more than [/s] shards, and
“light” transactions, which access at most [/s] shards. The max-
imum number of heavy old transactions can be 2b[+/s]. If there
were more, the total congestion of old transactions would be strictly
greater than 2b[+/s] - v/s > 2bs, which is not possible. A coloring
algorithm for conflict graph G can assign each of the heavy trans-
actions a unique color, which requires at most {; = 2b[+/s] colors.

The remaining transactions of G are light. Suppose G’ be the
subgraph of G with the light transactions. Each light transaction
conflicts with at most (2b — 1)[+/s] other light transactions. Hence,
the degree of G’ is at most (2b — 1)[v/s]. Thus, G’ can be colored
with at most {» = (2b — 1)[+/s] + 1 colors.

Consequently, G can be colored with at most { = {1 + {» =
2b[+/s1 + (2b — 1)[+/s] + 1 colors. Since s > 1, the length of L4 is
at most:

2d;+1+(2d;+1){ = 4d;+2+(2d;+1) (4b—1)[Vs] < 15bd;[Vs] =77 .

Since the process was started before the start of period I,11, and
I4+1 has length at least 7;, it follows that property (ii) holds O

We will now consider transactions from all levels. Let i’ be the
maximum layer accessed by any transaction where the diameter
is at most dy. Let 7; := 30bd;H; - min{k,/s}. Consider now a
sequence of such rescheduling periods I, I, . . ., each of length P,
where 7y < P < 277

LEMMA 3. In Algorithm 2, for p < max{ 60d~}H2k’ 0 I—} f\/ﬂ}
i i’ 12

and b > 1, in any period I;, where z > 1, for any destination shard:
(i) at most 2bs new transactions are generated (from all levels), (ii) all
these transactions will be committed or aborted by the end of ;1.

Proor. The total transaction congestion in each shard during a
rescheduling period I, (which has length at most 27;) is p- 27y +b <
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b+ b = 2b. Therefore, the total transaction weight for s shards is at
most 2bs. Hence, property (i) holds.

We continue with property (ii). Consider a destination shard Sy.
From the proof of Lemma 2, if we only had subtransactions from a
layer i, the schedule requires at most 7; rounds in I4+1. However,
Sq needs to process subtransactions from all layers 0,...,i’, and
sublayers 0,...,Hy — 1. Those are executed with their assigned
priorities. since a layer I cluster has a diameter o(2! log s), as dis-
cussed in Section 6.1. Therefore, d; = o(2! logs). Letd; = c2l logss,
for some constant c. This implies Zi:,:o d; < 2dy, the total number
of rounds needed to schedule all levels (i, j) at Sq is at most

i’ Hy—1 i’ Hy—1
Z Z 7 :Z Z 15bd; - min{k, s}
i=0 j=0 i=0 j=0

< 30H3bd; - min{k, \/;} =Tj .

Since the length of I, is at least 7y, there is enough time to com-
mit/abort all these transactions in I+1. Hence, property (ii) holds.
o

THEOREM 3 (FDS STABILITY). In Algorithm 2, for generation rate

1 1 1 . .
< — 21 . 4 L -
p erdlog s max{ T \5}’ where d is worst distance of any trans

action to the shards it will access and c1 is some positive constant
with burstiness b > 1, the number of pending transactions at any
given round is at most 4bs, and the transaction latency is at most
2 - cibdlog? s - min{k, [/s]}.

Proor. To estimate the number of pending transactions during
around, consider a round within a rescheduling period I;. From the
proof of Lemma 3, the maximum number of old transactions during
any round of I; is 2bs. Within I;, there can be at most 2bs newly
generated transactions. Therefore, the upper bound on pending
transactions during a round is 4bs.

For estimating transaction latency, we rely on the fact from
Lemma 3 that a transaction generated in a period I, will be pro-
cessed by the end of the next period. Consequently, the transaction
latency is bounded by twice the duration of the maximum inter-
val length. From Lemma 3, rescheduling period length is 27y =
60H,bd;s - min{k, [/s]}. We can replace H, = clogs and dy =
¢’dlog s. We also combine positive constants ¢ and ¢’ as ¢; which
results in a latency of at most 2 - ¢;bd log? s - min{k, [/s]}. o

7 SIMULATION RESULTS

In this section, we provide our simulation results, conducted on a
MacBook Pro with an Apple M1 chip featuring a 10-core CPU, a
16-core GPU, and 32 GB of RAM. The simulation was implemented
using Python programming language with relevant libraries and
resources. We considered the following specific parameters for
simulation: the total number of shards (s) was set to 64, the total
number of accounts in the system was also set to 64, considering one
account per shard, and the maximum number of shards accessed by
each transaction (k) was limited to 8. The simulation used different
values of the transaction generation rate (p) and burstiness (b). Each
combination of these parameters was tested for 25000 rounds.

In the simulation process, initially, we generated random, unique
accounts and assigned them randomly to different shards, ensur-
ing that each shard maintained its unique set of accounts. The
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Figure 2: Simulation results for Algorithm 1: On the left, the average number of pending transactions in the pending queue of
each home shard is shown versus p. On the right, the average transaction latency measured in rounds is plotted against p.
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Figure 3: Simulation results for Algorithm 2: On the left, the average number of pending scheduled transactions in the queue
(scheduled but not committed) of cluster leader shard is shown versus varying values of p. The average transaction latency

measured in rounds is plotted against p on the right.

simulation operated in epochs and continued until the defined to-
tal rounds were reached. Within each epoch, transactions were
generated based on the previous epoch’s length and the rate of
transaction generation (p). Burstiness was introduced within only
one epoch throughout the total rounds because the number of all
possible adversarial strategies is over-exponential. Therefore, in
simulations, we decided to focus on “pessimistic” strategies used in
the adversarial queuing literature for proving impossibility results.
They represent pessimistic scenarios where queues start being al-
ready loaded (burstiness) and in the remaining time, the system tries
to prevent their further growth under the regular arrival of other
transactions. All generated transactions were assigned randomly to
different shards, and each shard maintains a pending transactions
queue, sorted by transaction ID. For simplicity, we used a simple
greedy coloring algorithm to color the transactions, which ensures
conflicting transactions get different colors.

Simulation Results of Algorithm 1. In this simulation, we
consider the uniform model where each shard can send transaction
information to any shard within the 1 round. Figure 2 shows the
simulation results for Algorithm 1. The left bar chart depicts the
average pending transactions queue in each home shard as a func-
tion of the transaction generation rate (p) and burstiness (b). As

460

expected, after the certain threshold of p, both the average pending
transaction queue size and transaction latency increase exponen-
tially. The queue size and transaction latency grow exponentially
when p > 0.15. Moreover, the right line graph in Figure 2 shows the
average latency of transactions in terms of rounds across various
transaction generation rates. It is observed from the graph that
transaction latency increases with increasing values of p and b.
We observed the average latency of transactions for values up to
p = 0.15 is under 750 rounds.

Simulation Results of Algorithm 2. We simulate Algorithm
2 by arranging shards on a line, where the distances between a
pair of shards are dictated by their position in the line. We used 64
shards, S1 to S¢s4. The distance between two adjacent shards in the
line is set to 1, indicating that the distance between S; and Sy is 1,
and so forth. However, the distance from S; to S3 is 2, S; to Sy is 3,
and so on. To organize the shards, we cluster them into layers and
sublayers. The sublayers in each layer are constructed by shifting
half of the diameter of that layer to the right. In the lowest layer [;,
clusters consist of two shards each. Moving to the next higher layer,
li+1, clusters now consist of four shards, and this pattern continues.
In the highest layer, all shards are part of a single cluster. Each
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cluster has a designated leader Sj4, responsible for coloring and
scheduling all transactions within that cluster.

Figure 3 shows the simulation results of Algorithm 2. The left
bar chart shows the average pending scheduled (i.e. scheduled but
not committed) transaction queue size in cluster leader shard as
a function of the transaction generation rate (p), while the right
line graph shows the average transaction latency. Particularly, the
queue size does not exhibit exponential growth up to p = 0.18,
and the average transaction latency is under 1000 rounds for p
values from 0 to 0.18. Specifically, for b = 3000 and p = 0.27, the
maximum average pending transactions are approximately 175, and
transaction latency reaches around 7000 rounds. This value is signif-
icantly higher than the pending transactions and latency observed
in Algorithm 1, where the pending transactions are around 40, and
transaction latency is approximately 2250 rounds. We observed
that the queue size and transaction latency of Algorithm 2 grew
significantly more than those of Algorithm 1. Transaction latency
of Algorithm 2 is higher than Algorithm 1 due to the non-uniform
model and the distance between shards ranging from 1 to 64. The
propagation and commitment of transactions take more time in
this scenario compared to the uniform communication model of
Algorithm 1, where shards communicate in 1 round.

8 DISCUSSION AND CONCLUSIONS

In conclusion, we provided an absolute upper bound on the stable
transaction generation rate for a sharded blockchain system. More-
over, we design stable distributed scheduling algorithms for uniform
and non-uniform sharded blockchain systems with bounded queue
size and transaction latency. We also provide the simulation re-
sults of the proposed algorithms. The blockchain system designers
can use our results to design stable blockchain systems, which are
resilient to attacks that could overload the system with transactions.

We would like to note that for the basic scheduling algorithm
(BDS) 1, it is possible to use a deterministic distributed coloring
algorithm [16]. But this still requires to learn the degree of the
conflict graph A and the total number of transactions.

For future work, one possible extension could be to study an
asynchronous communication model for the proposed scheduler.
Another could be to study the efficient communication mechanism
between shards that have reduced message sizes.

ACKNOWLEDGMENTS
This paper is supported by NSF grant CNS-2131538.

REFERENCES

[1] Ramesh Adhikari and Costas Busch. 2023. Lockless Blockchain Sharding with
Multiversion Control. In Structural Information and Communication Complexity:
30th International Colloquium, SIROCCO 2023, Alcala de Henares, Spain, June 6-9,
2023, Proceedings (Alcala de Henares, Spain). Springer-Verlag, Berlin, Heidelberg,
112-131. https://doi.org/10.1007/978-3-031-32733-9_6

Asma Jodeiri Akbarfam, Sina Barazandeh, Deepti Gupta, and Hoda Maleki. 2023.
Deep Learning meets Blockchain for Automated and Secure Access Control.
arXiv preprint arXiv:2311.06236 (2023).

Asma Jodeiri Akbarfam, Mahdieh Heidaripour, Hoda Maleki, Gokila Dorai, and
Gagan Agrawal. 2023. ForensiBlock: A Provenance-Driven Blockchain Frame-
work for Data Forensics and Auditability. arXiv preprint arXiv:2308.03927 (2023).
Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2021. Sharper:
Sharding permissioned blockchains over network clusters. In Proceedings of the
2021 international conference on management of data. 76-88.

[4

flaa

461

[5

l6

[

[10

[11

[12

ey
&

(14

[15]

[16

[17

(18

=
2

[20

[21

[22]

[23

[24

[25

[26

[27
[28]

™
0,

[30

(31]

SPAA 24, June 17-21, 2024, Nantes, France

Hagit Attiya, Vincent Gramoli, and Alessia Milani. 2015. Directory protocols for
distributed transactional memory. Transactional Memory. Foundations, Algorithms,
Tools, and Applications: COST Action Euro-TM IC1001 (2015), 367-391.

Rita Azzi, Rima Kilany Chamoun, and Maria Sokhn. 2019. The power of a
blockchain-based supply chain. Computers & industrial engineering 135 (2019),
582-592.

Michael A Bender, Martin Farach-Colton, Simai He, Bradley C Kuszmaul, and
Charles E Leiserson. 2005. Adversarial contention resolution for simple chan-
nels. In Proceedings of the seventeenth annual ACM symposium on Parallelism in
algorithms and architectures. 325-332.

Allan Borodin, Jon Kleinberg, Prabhakar Raghavan, Madhu Sudan, and David P
Williamson. 2001. Adversarial queuing theory. Journal of the ACM (JACM) 48, 1
(2001), 13-38.

Costas Busch, Bogdan S Chlebus, Dariusz R Kowalski, and Pavan Poudel. 2023.
Stable Scheduling in Transactional Memory. In Algorithms and Complexity: 13th
International Conference, CIAC 2023, Larnaca, Cyprus, June 13-16, 2023, Proceed-
ings. Springer, 172-186.

Costas Busch, Maurice Herlihy, Miroslav Popovic, and Gokarna Sharma. 2022.
Dynamic scheduling in distributed transactional memory. Distributed Computing
35, 1(2022), 19-36.

Vitalik Buterin et al. 2014. A next-generation smart contract and decentralized
application platform. white paper 3, 37 (2014), 2-1.

Miguel Castro, Barbara Liskov, et al. 1999. Practical byzantine fault tolerance. In
OsDI, Vol. 99. 173-186.

Bogdan S Chlebus, Dariusz R Kowalski, and Mariusz A Rokicki. 2009. Maximum
throughput of multiple access channels in adversarial environments. Distributed
Computing 22 (2009), 93-116.

Bogdan S Chlebus, Dariusz R Kowalski, and Mariusz A Rokicki. 2012. Adversarial
queuing on the multiple access channel. ACM Transactions on Algorithms (TALG)
8,1(2012), 1-31.

Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang, Qian Lin,
and Beng Chin Ooi. 2019. Towards scaling blockchain systems via sharding. In
Proceedings of the 2019 international conference on management of data. 123-140.
Mohsen Ghaffari and Fabian Kuhn. 2022. Deterministic distributed vertex col-
oring: Simpler, faster, and without network decomposition. In 2021 IEEE 62nd
Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 1009-1020.
Jim Gray and Andreas Reuter. 1992. Transaction Processing: Concepts and Tech-
niques (1st ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
Anupam Gupta, Mohammad T Hajiaghayi, and Harald Ricke. 2006. Oblivious
network design. In Proceedings of the seventeenth annual ACM-SIAM symposium
on Discrete algorithm. 970-979.

Jelle Hellings and Mohammad Sadoghi. 2021. Byshard: Sharding in a byzantine
environment. Proceedings of the VLDB Endowment 14, 11 (2021), 2230-2243.
Jelle Hellings and Mohammad Sadoghi. 2022. The fault-tolerant cluster-sending
problem. In Foundations of Information and Knowledge Systems: 12th International
Symposium, FoIKS 2022, Helsinki, Finland, June 20-23, 2022, Proceedings. Springer,
168-186.

M. M. Jalalzai and C. Busch. 2018. Window Based BFT Blockchain Consensus. In
iThings, IEEE GreenCom, IEEE (CPSCom) and IEEE SSmartData 2018. 971-979.
Mohammad M Jalalzai, Costas Busch, and Golden G Richard. 2019. Proteus:
A scalable BFT consensus protocol for blockchains. In 2019 IEEE international
conference on Blockchain (Blockchain). IEEE, 308-313.

Mohammad M Jalalzai, Chen Feng, Costas Busch, Golden G Richard, and Jianyu
Niu. 2021. The Hermes BFT for Blockchains. IEEE Transactions on Dependable
and Secure Computing 19, 6 (2021), 3971-3986.

Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa
Syta, and Bryan Ford. 2018. Omniledger: A secure, scale-out, decentralized ledger
via sharding. In 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 583-598.
Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert,
and Prateek Saxena. 2016. A secure sharding protocol for open blockchains. In
Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security. 17-30.

Thomas McGhin, Kim-Kwang Raymond Choo, Charles Zhechao Liu, and De-
biao He. 2019. Blockchain in healthcare applications: Research challenges and
opportunities. Journal of network and computer applications 135 (2019), 62-75.
Satoshi Nakamoto. 2009. Bitcoin : A Peer-to-Peer Electronic Cash System.
Lakshmi Siva Sankar, M Sindhu, and M Sethumadhavan. 2017. Survey of consen-
sus protocols on blockchain applications. In 2017 4th international conference on
advanced computing and communication systems (ICACCS). IEEE, 1-5.

Gokarna Sharma and Costas Busch. 2014. Distributed transactional memory for
general networks. Distributed computing 27, 5 (2014), 329-362.

Gokarna Sharma and Costas Busch. 2015. A load balanced directory for dis-
tributed shared memory objects. J. Parallel and Distrib. Comput. 78 (2015), 6-24.
Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. 2018. RapidChain:
Scaling Blockchain via Full Sharding (CCS °18). Association for Computing Ma-
chinery, New York, NY, USA, 931-948. https://doi.org/10.1145/3243734.3243853


https://doi.org/10.1007/978-3-031-32733-9_6
https://doi.org/10.1145/3243734.3243853

	Abstract
	1 Introduction
	2 Related Work
	3 Technical Preliminaries
	4 Upper Bound on Stable Generation Rate of Transactions
	5 Scheduler for Uniform Model
	5.1 Analysis for Algorithm 1

	6 Fully Distributed Scheduler (DS)
	6.1 Cluster Decomposition (Shard Clustering)
	6.2 Fully Distributed Scheduling Algorithm
	6.3 Analysis for Algorithm 2

	7 Simulation Results
	8 Discussion and Conclusions
	Acknowledgments
	References



