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ABSTRACT

Given a graph G, a classical problem in graph theory is the construc-
tion of a spanner H - a sparse subgraph of G that closely approxi-
mates the distances between nodes in G. The distance stretch a of
H is the factor of how much the distances in H increase versus G.
Here, we consider sparse spanner constructions that can also pre-
serve the node congestion of routing problems in G. The congestion
stretch f§ of H is the factor of how much the (smallest) congestion
of a routing problem increases in H versus G. We introduce the
notion of (a, f)-DC-spanner (i.e., a Distance-Congestion-spanner)
that simultaneously controls the stretches for distance and con-
gestion. We show that for expander graphs with n nodes, there is
a (3, O(log n))-DC-spanner with O(n5/3) edges. We also examine
A-regular graphs with A > n?/3, where we show how to obtain
a (3,0(VA - log n))-DC-spanner with on’? log? n) edges. Finally,
we show that there is a graph such that any optimal size 3-distance
spanner has Q(n7/6) edges and is a (3, Q(nl/6))—DC—spanner.
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1 INTRODUCTION

A classic problem in graph theory is given a graph G to construct a
sparse spanner H with distance stretch a, where every path p in G
has a respective path p’ in H, with the same source and destination,
which is at most o times longer in H. Here, we consider the addi-
tional property where H has f congestion stretch, such that every
routing (set of paths) in G with node congestion C has a respective
routing in H with node congestion at most fC. By combining the
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two stretch properties, we say that H is an («, f)-DC-spanner of G,
where DC-spanner is a shorthand for Distance-Congestion-spanner.

An (a, f)-DC-spanner controls simultaneously the distance and
congestion stretch. We are interested in finding sparse (a, )-DC-
spanners, i.e., spanners with relatively small number of edges, for
small parameters « and . This can be particularly useful in network
design problems which require a reduced number of edges without
sacrificing the quality of the routing with respect to the original
graph G. It also allows to reduce the total/average size of routing
tables (due to sparsity of the used spanner H), while maintaining
similar quality of considered routing requests (with respective over-
heads a and f). These routing requests may use different paths,
within a subgraph H of G, but they are still valid, at most « times
longer and f§ times more congested. See also Section 1.1 for other
application examples.

We give the following results as summarized in Table 1:

o Expander graphs: In Theorem 2 we show that for expander
graphs with n nodes, there is a (3, O(log n))-DC-spanner with
o(n®/?) edges, where the congestion stretch holds in expec-
tation. For A-regular expanders with large degree A = Q(n),
it is possible to obtain an (O(log n), O(log® n))-DC-spanner
with O(n) edges. We also show that expander graphs (of
any degree) have an (O(log n), O(log* n))-DC-spanner with
O(nlogn) edges.

Regular graphs: In Theorem 3 we prove that any A-regular
graph, with A > n?/3, has a (3, O(VA - log n))-DC-spanner
with O(n%/3 log? n) edges. The result holds with high proba-
bility.

Lower bound: Finally, in Theorem 4 we show the existence of
a graph with node degrees ©(n'/®) such that any optimal size
3-distance spanner has Q(n’/6) edges and is a (3, Q(n!/))-
DC-spanner.

A basic technique that we use to analyze congestion is that we
replace a routing (set of paths) on G with a set of matchings. Since
each matching has node congestion 1 it is simpler to analyze con-
gestion on the spanner. If each matching is replaced with a routing
of congestion at most x on the spanner H, the final congestion
will be O(x log n) on H (Lemma 22). A routing needs O(n®) distinct
matchings, where some may repeat (Lemma 23).

The A-regular graph result in Theorem 3 is based on random
sampling the edges of G with probability 1/ VA. This allows the
spanner to have congestion for a matching equal to the sampled
graph degree ©(VA). On the other hand, classic sparsification meth-
ods for distance spanners are not guaranteed to give low degree
spanners, and the congestion for a matching may be Q(n). Our
random sampling method also allows efficient distributed imple-
mentation in the LOCAL model.
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Result Number of Edges Distance Stretch Congestion Stretch ~ Assumptions on A-Regular Input Graph
Theorem 2 0] (n5/3) 3 O(log? n) Expander
[5] O(n) O(logn) O(log® n) Expander with node degree A = Q (n)
[16] O(nlogn) O(logn) O(log* n) Expander
Theorem 3 O(n5/3 log? n) 3 O(VA - logn) A-regular with A > n2/3
Theorem 4 Q(n7/%) 3 Q(nl/%) 0(n!/) node degree

Table 1: Summary of our results, including bounds that follow from prior work.

We obtain the entries in Table 1 referring to [16] and [5] due to
the fact that bounded-degree expander graphs are highly suitable
for routing, and allow solving permutation routing efficiently, where
each node is the source and destination of exactly one message.
More specifically, it is shown in Corollary 7.7.3 in [25] that there
exist routing paths of length O(log n) where the edge congestion is

. 2
limited to O (Wﬂ
ogloglog n

to good bounds on the node congestion if the node degrees are
small. Thus, given a dense regular expander and applying the spar-
sification algorithm of [16], we obtain an expander with logarithmic
node degree, on which we can solve any matching routing problem
with O(log® n) node congestion via permutation routing. On the
other hand, for regular expanders with very high node degree, i.e.,
A = Q (n), the sparsification procedure of [5] yields an even sparser
expander with just O(n) edges and O(log? n) node congestion. For
general routing problems, the congestion stretch for these results is
multiplied by a factor of log n, thus resulting in the bounds shown
in Table 1.

) =0 (Iog2 n), which we can translate

1.1 Related Work

Graph spanners that obtain a small distance stretch were introduced
in [23], and have since found numerous applications in distributed
computing, ranging from routing [18, 24] to achieving more ef-
ficient information dissemination in networks [3, 7]. Simple and
efficient algorithms are known (e.g., see [4]) that construct a (2k—1)-
distance stretch spanner with O(k - n'*1/k log n) edges. This is close
to optimal in achieving the best possible tradeoff between their size
(i.e., the number of edges) and the provided distance stretch, due to
a widely believed conjecture by Erdés [13], Bollobas [2], Bondy and
Simonovits [6], which states that, for any k > 1, there are graphs

with Q (n1+1/ k) edges and girth at least 2k + 2, which implies that

these graphs do not permit any (2k — 1)-distance spanners as a
proper subgraph.

Sparse graphs with good connectivity properties have been
widely used for designing distributed fault-tolerant message-
efficient protocols, e.g., consensus, in static [10, 14] and dynamic
systems [17]. They also are useful is shared memory to schedule
access to shared objects by distributed processes, in problems such
as re-naming, store-and-collect, write-all and many others [9, 11].
Therefore, finding efficient spanners with small congestion could
improve these applications in case the original graph was not sparse
or connected enough.

Node congestion plays a significant role in communication in
wireless networks, for instance, when routing packets through
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Figure 1: An example of a vertex fault-tolerant spanner that
does not necessarily guarantee low congestion.

such networks, typically at most one packet can be received and
forwarded by a node at a time, see e.g., [12]. Therefore, routing
paths with smaller congestion result in lower packet latency and
queue sizes of packets forwarded along these paths.

A related construction are fault-tolerant spanners, introduced for
general graphs in [8], which extend the standard distance stretch
spanners with some additional robustness guarantees. More specif-
ically, an f-vertex fault-tolerant (f -VFT) (2k — 1)-spanner continues
to provide a distance stretch of (2k — 1) even after any set F of up
to f vertices fail, where the stretch is measured with respect to the
residual graph G \ F. [22] gives efficient algorithms for computing
Fr/k 11/

an f-VFT spanner of size O ( ), which is known to

be existentially optimal. Thus, to obtain an f-VFT 3-spanner that
has an asymptotically equivalent size of O(n®/3) as we obtain for
DC-spanners with stretch 3, it must hold that f < n!/3. This upper
bound, however, turns out to be too restrictive to provide useful
bounds on the node congestion. For instance, consider the graph
on the left-hand side of Figure 1. We have two cliques C4 and Cp
of size n/2 each that are inter-connected via a perfect matching.
One possible way of constructing a f-VFT spanner, for f = [nl/31,
is to include only a subset M of the [n/3] + 1 of the matching
edges, and also sparsify the cliques accordingly. However, for the
routing problem that corresponds to the perfect matching, some
node that is an endpoint of an edge in M must have a congestion

of at least Q (n2/3).

Paper Outline

We continue as follows. In Section 2, we give basic definitions
and preliminary results. We present the results on expanders in
Section 3. Then, Section 4 presents the result for regular graphs.
Next, we show a construction of graphs with small distance stretch
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but large congestion in Section 5. Section 6 presents and analyzes
generic partition of arbitrary routing paths into matchings, which
we used in Section 4. Distributed implementation of our spanner
constructions are given in Section 7, while the conclusions and
open problems are stated in Section 8.

2 DEFINITIONS AND PRELIMINARIES

Consider a graph G = (V, E). We will also denote V(G) = V and
E(G) = E. Let dg(u, v) denote the distance between a pair of nodes
u,v € V. For a path p, let [(p) denote the length (number of edges)
of p. Let Ng(v) denote the 1-neighborhood of v € V(G), namely,
NG(v) = {u : (u,v) € E(G)}. The degree of v is g(v) = [Ng(u)|.

A subgraph H is a spanner graph of G that has the same set
of nodes, V(H) = V(G), and it uses a subset of the edges, namely,
E(H) € E(G). A spanner H of G is sparse if the size of edge set E(H)
is significantly smaller than the size edge set E(G).

DEFINITION 1 (¢-DISTANCE-SPANNER). Fora > 1, a a-distance-
spanner of G is a spanner graph H such that for every pair of nodes
u,vevV,

dyg(u,v) < a-dg(u,v) .

A routing problem R on G is a set of pairs R =
{(u1,v1), (uz,v2), . .., (ug, o)}, where u;,v; € V, and u; # v,
forall 1 < i < k. For a pair (u;,v;) € R, the node u; is the
source and v; is the destination. A routing P for R is a set of paths
P = {p1,p2,...,pr}, such that path p; has first node u; and last
node v;. Let C(P,v) = [{p; : pi € P A v € p;}|, denote the number
of paths that use node v. The (node) congestion of routing P, de-
noted C(P), is the maximum number of paths that use any node
of G, namely, C(P) = maxycy C(P, u). Let C(R) denote the smallest
congestion achieved by any routing of R. We will use the notation
C(R) when we explicitly refer to routings of R on graph G.

Similar to Definition 1, we can define a spanner related to con-
gestion.

DEFINITION 2 (f-CONGESTION-SPANNER). For f > 1, a f5-
congestion-spanner of G is a spanner graph H such that for every
routing problem R in G,

CaR) < f-Cc(R) .

To give some intuition why, for the distance stretch, we consider
each routing path individually, whereas, for congestion stretch, we
only consider the maximum node congestion and not each node
individually. The reason for that is that, for the distance stretch, the
substitute routing may replace each original path with a potentially
longer path, according to the distance stretch factor. However, a
new path may use a node v which has not been used in the origi-
nal routing, which means that node v had congestion zero in the
original routing. In that case, the congestion stretch with respect to
v is unbounded. For this reason, we consider the maximum node
congestion for the congestion stretch.

For a routing P = {p1,p2,...,px} of some routing problem
R, we say that a routing P’ = {p,p;... .,pl’c} is an (a, f)-stretch
substitute of P, if P’ is a routing for R and l(p]) < a - l(p;) and
C(P’) < B - C(P). We can now combine Definitions 1 and 2 into the
following spanner definition.
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DEFINITION 3 ((a, f)-DC-SPANNER). Fora, f > 1, a (a, f)-DC-
spanner of G is a spanner graph H such that for any routing P in G
there is a respective (a, f)-stretch substitute routing P’ in H.

We say that an (a, §)-DC-spanner graph construction is explicit
if given G and routing P, there is a polynomial-time algorithm to
compute the spanner H and the respective routing P’ in H. For an
(a, p)-DC-spanner H, we refer to « as the distance stretch and to
as the congestion stretch. Analogously, if H is an a-distance spanner
(B-congestion spanner), we refer to parameter « (f) as the distance
stretch (congestion stretch).

LEmMA 1. A (a, f)-DC-spanner of G is also a a-distance-spanner
and a B-congestion-spanner of G.

ProoF. Let H be an (a, f)-DC-spanner of G.

We first show that H has distance stretch . Consider the routing
problem R involving all edges in G, where for each edge (u,v) € E, u
is a source and v is a destination. Clearly, the respective routing for
R is the set of edges E. Since H is an (a, f)-DC-spanner of G, then
with respect to R, for each edge (u,v) € E there is an alternative
path from u to v in H with length at most . Thus, for any path p in
G there is a respective path p’ in H which is obtained by replacing
each edge of p by its detour in H, such that I(p’) < « - I(p). Hence,
H is a a-distance-spanner of G.

Now, we show that H has congestion stretch . Consider an
arbitrary routing problem R in G with congestion Cg(R). Let P be
the routing of R in G that has congestion C(P) = Cg(R). Since H
is an (a, f)-DC-spanner of G, there is a routing P’ of R in H that
has congestion C(P’) < - C(P). Consequently, Cg(R) < - Cg(R).
Hence, H is a f-congestion-spanner of G. O

Next, we show that the (a, f)-DC-spanner property is not im-
mediately implied from independently proving the distance and
congestion stretch properties.

LEMMA 2. There is an infinite family of graphs and parameters
a, P, such that each instance G has a spanner H C G which is an
a-distance-spanner as well as a f-congestion-spanner of G, but H is
not an (a, f)-DC-spanner of G.

Proor. For any sufficiently large n, we define G to be a graph
of 2(a — 1)n nodes, consisting of sets A = {aj,...,an}, B =
{b1,....bp},and nsets D; = {d; 1,...,di g-1} (1 < i < n). There
is a perfect matching M = {(a1, b1), ..., (an, by)} between A and B,
and the subgraph induced by A (respectively B) forms a clique. More-
over, we connect the nodes a;,d; 1, . . ., d;i o—1, b via a simple path
for each set D;. We consider a spanning subgraph H, which we ob-
tain by removing all edges in M from G except for the edge (ay, by).

We first argue that H satisfies Definition 1: Clearly, any two
nodes in A still have distance 1 in H and the same is true for any
two nodes in B. For any two nodes a; € A and b; € B, observe that
there exists a path of length at most 3 in H via the edge (ay, b1),
and thus H is a 3-distance spanner of G.

Next, we will argue that H is also a 2-congestion spanner of G, i.e.,
Definition 2 holds for f = 2: Consider any routing problem R and let
P be any routing on G that achieves the smallest possible congestion
for R. We show how to obtain a routing P’ on H that has the same
congestion as follows: Consider any path p € P. If p does not use
an edge that is in G \ H, we simply add p to P’. Otherwise, suppose
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that p uses some removed edge (a;, b;). We obtain a modified path
p’ from p by simply replacing (a;, b;) with the (a + 1)-length detour
along the set D;. As we do not change the parts of the paths that
use edges between nodes in A or between nodes in B, it is clear
that Cg(P,u) = Cy(P’,u), for every u € AU B. Next, we bound
the increase in congestion for any node d € D; (1 < i < [n]).
According to the edges of G, every additional routing path in P’
that used the edge (a;, b;) in P instead must go across both a; and b;
In P/, node d may be on up to min{Cg(P, a;), Cg(P, b;)} additional
paths compared to P. Since Cg(P, a;), Cg(P, b;), and Cg(P, d) are
bounded from above by Cg(R), it follows that C5(P’,d) < 2CG(R).

Finally, to see that H is not an («a, §)-DC-spanner, for any f <
V(G|
2(a-1)’
The optimal routing for R in G has congestion 1, whereas any valid

routing P’ for R in H must use the edge (aj, b;) for each of the n

paths. It follows that Cpr(R) 2 1+ C(R) = 5 CG(R). o

consider the routing problem R = {(ai, b1), ..., (an, bn)}.

Now we give a version of Definition 3 that involves probabil-
ities. We modify the definition of the (a, f)-DC-spanner so that
for a routing P in G has a respective routing P’ in spanner H with
probability p. Our algorithms provide such probabilistic spanners.

DEFINITION 4 (PROBABILISTIC (@, f3, p)-DC-sPANNER). Fora, f >
1and0 < p <1, a(a, p, p)-DC-spanner of G is a spanner graph H
such that any routing P in G has with probability at least p a respective
(a, p)-stretch substitute routing P’ in H. If the probability p is clear
from the context, we omit it and simply write («, f)-DC-spanner.

In Section 6, we prove the following theorem, which enables us to
obtain a DC-spanner for the general routing problem by leveraging
a solution for the special case where the routing problem instance
is a matching.

THEOREM 1 (DECOMPOSITION INTO MATCHINGS). Consider a
graph G and a subgraph H C G such that a matching routing problem
M has an (a’, p’)-substitute routing on H with probability at least
1- # Then, H is a probabilistic (a’, O(f’ log n), 1/n)-DC-spanner
of G. Moreover, in the case that there (deterministically) exists such
an (a’, B’)-substitute routing for every matching routing problem, H
is an (a’, O(B’ log n))-DC-spanner of G.

3 OBTAINING SPANNERS IN EXPANDERS

In this section, we focus on expander graphs and show how to
obtain a spanner that achieves optimal distance stretch and also a
congestion stretch that is almost optimal in expectation. Formally,
we say that an n-node graph G is a (spectral) expander with expansion
A, if max (|A2], [An|) < A, where A4, ..., A, are the eigenvalues of
the adjacency matrix of G, ordered by decreasing magnitude. For
instance, for Ramanujan graphs [19, 20], which attain near optimal
expansion, we have 1 < 2VA — 1.

2/3+6—regular expander graph G with

spectral expansion A, where € < % - % and A < o(nl/3+2€),

THEOREM 2. Consider an n

There exists a 3-distance stretch spanner with O (n5/3) edges (w.h.p.),

an expected node congestion of O(log n), and an overall congestion
of O(log? n) (w.h.p.). Moreover, if the routing problem is a matching,
then the expected node congestion is 1+0(1) and the overall congestion
is O(log n).
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Figure 2: The construction used in the proof of Lemma 4.
The thick orange edges are a maximum matching between
the neighborhoods of v and v.

For now, we assume that the routing problem is a matching, i.e.,
every node occurs at most once as either a source or a destination.

We prove the following technical result by making use of the
expander mixing lemma [1], which we restate for completeness.

LEMMA 3 (SEE [1, 15]). Let G be a A-regular graph with spectral
expansion A. Then, for all subset of nodes S, T C V(G):

A
e(S.7) = = - 18| - ITl| < MWISI-IT.

LEMMA 4. Consider any two vertices u and v and with neigh-
bors Ny, and Ny, respectively. Then, there exists a matching of size

A (1 - %) between Ny, and N,.

Proor. Consider any matching M between N, and N, that is
of maximum size, and let mg = A — |M|. Let M, C Ny, be the subset
of w’s neighbors that do not have an endpoint in M, and define My,
similarly. Clearly, we have that |M,| = |My| = my. Moreover, by
Lemma 3, it must hold that
e(My, M) — %mg <Amg,

(1)

where e(My, M) denotes the number of edges between M,, and
M,. Since M was chosen to be of maximum size, it follows that
e(My, My) = 0, and (1) implies that mg < AA—". This tells us that

M| > A (1 - AA—?) as required. O

To construct the spanner S, we sample every edge of the graph
independently with probability # Consider any edge {u, v} that s
not in the spanner. Let My, ., be the matching between the neighbors
of u and v guaranteed by Lemma 4, and let M;,S,U C My,» be the
subset of these edges that are part of the spanner.

LEmMMA 5. With high probability, for every edge {u, v}, we have
Mo = (1= o() . (@)

ProoF. Let X = |M;Ev|. From Lemma 4 and the upper bound

on A in the premise of Theorem 2, we know that E[X] >
2/3

n 1-

#) > pn2/3 (1 -0(1)). Since each edge is sampled

independently, we can apply a standard Chernoff bound (e.g., The-
orem 4.5 in [21]) to show that Pr [X <(1-6n*1-001)| <

n2/3(1—
exp (—w), for any 6 € (0,1). In particular, for
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5 = cylogn

= 15— Where ¢ > 0 is a suitable constant, we get that,
with high probability,

X >(1-8n?P1-0(1)>n??1-0(1),

where the last inequality follows because § = o(1). O

LEmMMA 6. With high probability, the distance stretch of the spanner
is at most 3.

Proor. It will be sufficient to argue that, for every edge {u, v} ¢
S, nodes u and v both have an edge in S to nodes in Ml‘zv. Let
Bad be the event that this does not happen. Consider any edge
{x,y} € Ml‘zv. The probability that the edges {u, x} and {v, y} are
both part of the spanner is n—és Due to Lemma 5, it follows that
1 ) |M5,v ‘

Pr[Bad] < (1 - —

2_ 1

where the last inequality follows from the upper bound on € as-
sumed in the premise of Theorem 2). O

Choosing the Replacement Paths. For every edge {u, v} ¢ S that
is part of the (matching) routing problem, we choose a 3-hop re-
placement path in S by uniformly at random by picking one of the
available 3-hop paths across M;Z » to route between u and v.

LEMMA 7. The spanner contains at most O(n5/3) edges (w.h.p.).
Moreover, the expected node congestion for any matching routing prob-
lem is at most 1 + o(1), and (w.h.p.) the overall congestion is O(log n).

ProoF. Since we sample each edge independently with proba-
bility nig it follows by a standard Chernoff bound that the number
of neighbors of any node in the spanner is at most (1 + 0(1)),% =
(1 + o(1))n?/? with high probability. Let & denote the event that
this bound holds for all nodes, as well as the bound given in (2),
for all every edge {u, v}. By a union bound, we can assume that &
occurs with high probability, which shows the claimed bound on
the size of the spanner.

Consider any edge {u, v} ¢ S. Recall that the replacement path
for {u, v} is chosen uniformly from all 3-hop paths connecting u
to v, where the middle edge is in the matching MLS, »- Thus, the
expected amount contributed to the congestion at nodes x and
y, where {x,y} € Ml‘zv, is at most ﬁ due to being used as
a replacement edge for {u, v}. Each ncl;cﬁ: may be part of such a
matching for each one of its neighbors in S. Let T, be the total
congestion at a node w. We have

BT, | 6] < (1 + o(1))n2/3 _ 1+o)
M3 o]

<1+o(1),

< T S oW

where, in the second inequality, we have used the lower bound on
M,‘f » provided by (2). To complete the proof, observe that

®)

since the maximum possible congestion at any node in the case
where =& holds is A.

To obtain a high probability bound, observe that T,, is a sum
of independent random variables, since each replacement path
is chosen independently. Thus, it follows by a standard Chernoff

E[T,] < E[T,, | €] + nl—z CE[T,, | =E] <1+ 0(1),

387

SPAA 24, June 17-21, 2024, Nantes, France

Algorithm 1: Spanner Construction for Regular Graphs

Input :A-regular graph G = (V, E) with |V| = nand A > n?/3
Output : Probabilistic (3, O(log® n))-DC-spanner H
// Keep random edges
N — \/K;
E « 0
foreach e € E with probability p = AT, do
L E — F U{e};
G «(V,E);
// Reinsert removed edges
6 ¢1 < constant such that0 < ¢; < 1—1/A;
27n%n,
7 //1\<— %,
8 E « edges in G which are (1A’, ¢;A)-supported in at least one direction;
o E” — E\E;
o H«— (V,E' UE");

[

oW

@

bound that T,, = O(log n), and a union bound shows that the same
holds for every node with high probability. O

So far, we have assumed that the routing problem is a matching.
To obtain a bound on the congestion for general matching problems,
we leverage Theorem 1, which shows that the overall congestion
stretch is O(log? n) with high probability. This completes the proof
of Theorem 2.

4 DC-SPANNER FOR A-REGULAR GRAPHS

Consider a A-regular graph G = (V, E), with |[V| = n, A > n?/3 1 we
present an algorithm that constructs a probabilistic (3, O(log n))-
DC-spanner with O(n®/?) edges. We continue with describing the
basic idea behind the algorithm. The details are in Algorithm 1.
We first focus on independent paths of length 1 (matchings), and
then in the final theorem we use the result from Section 6 about
partitioning arbitrary routing paths into matchings.

Basic Idea: Let A’ = VA. The first step to sparsify G is that each
edge is chosen to remain with probability A’/A. This gives a graph
G’ with expected average degree ©(A’) and ©(nA’) = O(nvn)
edges. However, the graph G’ may be disconnected, or it may not
be able to preserve the congestion to be close to that of the routing
problem of G. In order to remedy these issues we may need to
reinsert some of the removed edges back into G’.

We show that most of the removed edges can be replaced with
alternative paths of length at most 3 (3-detours) in G’. Thus, G’ is
a 3-distance-spanner for G. In fact, in the analysis we show that a
removed edge e has multiple alternative 3-detours. A routing on G
that uses e can use instead one of the 3-detours picked at random.
This allows the congestion to be controlled in G’.

However, there could be removed edges that do not have enough
3-detour alternatives to control the congestion. Such removed edges
need to be reinserted. The analysis shows that the number of rein-
serted edges is 5(n5/ 3). This allows the total number of edges to be
O(nvn) + O(n®/) = O(n°/3). This gives the final spanner H.

Detours: Consider graph G. A 2-detourwith base {u, z} and router
v is a pair of edges {(u, v), (v, z)} from E(G). We say that the base
{u, z} is supported if there is a 2-detour that has it as a base. For

10ur result could be easily modified for non-regular graphs with all degrees in ©(A).



SPAA 24, June 17-21, 2024, Nantes, France

v

A\

{@wv), (v, 2)}
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Figure 3: (a) 2-detour extension; (b) 4-supported extension;
(c) alternative 3-detour path for removed edge
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(u,v) is (2,4)-supported toward v in G 3-detour of (u,v) in G’
(a)
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(u, v) is not (2,4)-supported toward v in G no 3-detour of (u,v) in G’

(c) (d)

Figure 4: (a) (2,4)-supported edge; (b) alternative 3-detour
path; (c) not (2, 4)-supported edge; (d) no alternative 3-detour

example, the base {u, z} in Figure 3.a is supported. Moreover, we
say that a base {u, z} is a-supported if there is a set X of a distinct
nodes such that the 2-detour (u, x), (x, z) exists in G for each x €
X. For example, Figure 3.b depicts a 5-supported base {u, z} with
X ={v, x1, x2,Xx3,X4}.

An extension of edge (u,v) toward node/router v is an edge
(v, z), where z # u. The edge (u,v) together with the extension
are forming a 2-detour {(u, v)(v, z)} with base {u, z} (see Figure
3.a). Moreover, we say that the extension (v, z) is a-supported if
base {u,z} is (a + 1)-supported (where one of the 2-detours is
{(u,v)(v, 2)}). Figure 3.b depicts a 4-supported extension (v, z) of
(u, v) toward v. In our algorithm, the a-supported extensions are
important for finding multiple alternatives to replace a removed
edge with a path of length 3 (a 3-detour). For example, Figure
3.c depicts how to replace a removed edge (u,v) with one of 4
possible 3-detours, namely, the removed edge is replaced by the
path u, x1, z, v.

We say that edge e = (u,v) is (a, b)-supported toward v if the
number of a-supported extensions of e toward v is b. Figure 4.a
depicts an example of a (2, 4)-supported edge e = (u, v) toward v.
In the example, node r defines base {r,u} which is 3-supported.
Therefore, the extension (v, r) of e toward v is 2-supported. Similar
to r, each of the nodes y, w, z defines 3 additional 2-supported
extensions for e toward v, making e a (2, 4)-supported edge toward
v. The (a, b)-supported edge has in total a - b 3-detours through its
b a-supported extensions. Figure 4.b depicts one of such 3-detours
of e and how it can be used to replace e.
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Reinserted Edges: An edge e = (u,v) that is in G but has not
been selected for G’ may need to be reinserted. If e is (AA’, ¢1A)-
supported toward v (or u) in G and one of its 3-detours toward
v (or u) still remains in G’, then e does not need to be reinserted,
since an alternative 3-detour is provided for e in G’. Otherwise,
e is reinserted to become an edge of H. All the reinserted edges
together with the edges of G’ form the edges of H.

As an example, Figures 4.c and 4.d depict an edge (u, v) which is
not (2, 4)-supported in G which may result it having no 3-detour at
all in G/, and hence e has to be reinserted (if it was removed from G).

4.1 Analysis

We continue with an analysis of the properties of the graphs in
Algorithm 1. Unless otherwise stated, logarithms are base 2. We also
use the natural logarithm whenever necessary. From the extension
of Taylor sequences for exponential functions, we can obtain the
following fact of inequalities.

FacT 1. Foranyx,1—-x < e™*. Foranyx € [0,1/2],1-x > e~2%.
Foranyx >1,(1-1/x)* <e L.

We will also use the following versions of the Chernoff bounds.

LEMMA 8 (CHERNOFF BOUNDS). Let X1, X2, -, X be indepen-
dent Poisson trials such that, for 1 < i < m, X; € {0,1}. Then,
for X = Z;’;l)z(i, p = E[X], and any 0 < § < 1, Pr[X >

52;1

Sp
2, and for any

(1+6)p] <e 73 ,andPr[X < 1 -6)u] < e
1<8,PrX > (148l <e 7.

4.1.1  Sparsity Analysis of H. Next, we bound the number of edges
E’ of G'.

LEMMA 9. |E’| < nA’ with probability at least 1 — n~ L.

Proor. For edge e € E, let X, be the random variable such that
X, = 1if e remains in G’ and otherwise X, = 0. From Algorithm 1,
we have that P[X, = 1] = p = A’/A. We also have that E’ =
{e € E | X¢ = 1}. Note that since G is A-regular, |E| = nA/2. Let
p=E[E'|] = Xeep P[Xe = 1] = |[E|A"/A = nA' /2.

Since for sufficiently large n, /3 > Inn, from Lemma 8 with
§ = 1 we have

2

el
Pr(|E'| > 2u] = Pr{|E/| > (1+0)u] < e” 3 =

5 gemlnn _ 1

Hence, |E’| < 2u = nA’ with probability at least 1 — n™1. o

The next result gives an upper bound on the size of E”/, which
is the set of edges of G that are not (AA’, c; A)-supported (in both
directions) in G.

LEMMA 10. |E”’| = O(An®A’/A).

Proor. Let E” = E \ E. Consider an edge e = (u,v) € E”,
that is, e is not (AA’, c;A)-supported in either directions. Let Y
be the neighbors of v different that u.Let Y = Y; U Y5, where Y7
are the nodes where for each x € Yi, the extension (v, x) is AA’-
supported, and Y2 = Y \ ;. Thus, for each x € Y2, the extension
(v, x) is not AA’-supported. Since the degree of v is A, |[Y| = A — 1.
Moreover, |Y1| < ¢c1A. Hence, |Y2| > A—1—c1A = c2A, for constant
¢3 =1—c1—1/A.Notethat0 < ¢; < 1—-1/A,since 0 < ¢; < 1-1/A.



Sparse Spanners with Small Distance and Congestion Stretches

Thus, at least c2A of the extensions of e towards v (or u), are not
AA’-supported. Each such extension (v, x) (or (u, x)) corresponds to
a “special” base {u, x} (or {v, x}) of at most AA’ 2-detours, including
the detour with router v (resp. u). Hence, each e € Y, definess = caA
special bases.

Let B be the 2 detours of a special base b. Clearly, |B| < AA’. Let
b = (u,x) € B. Let {(u,y), (y, x)} be a 2-detour of b. Edge (y, x) can
be an extension of (u, y) that also has special base b. Thus, special
base b can be shared by at most 2|B| < 2AA’ extensions (since each
base has 2 edges each of which can be an extension). Potentially, all
the up to 2AA’ edges in B could belong in E”’. Therefore, the total
number of unique special bases in G defined from such extensions
is at least |E”’|s/(2AA”).

Note that the each special base is a pair of nodes. Hence, there
are at most () = O(n?) special bases. Therefore, |E”’|s/(2AA") =
|E”|c2A/(2AA") = O(n?). Thus, |E”’| = O(An?A’ [ A). o

LemMa 11. |E(H)| = O(nA’ + An?A’ | A) with probability at least
1-n1.

Proor. From Algorithm 1 we have E(H) = E’ U E”. From
Lemma 9, |[E’| = O(nA’) with probability at least 1 — n~!. From
Lemma 10, |[E”| = O(An®A’/A). Hence, with probability at least
1-n"Y |EH)| = O(nA’ + An’A’/A). o

For A’ = VAandn > A > n?/3, from Lemma 11 we get, |[E(H)| =
O(VA + An?/\VA) = O(nyn + An? JVn2/3) = O(An%/3). Therefore,

we have the following corollary.

COROLLARY 1. For A’ = VA andn > A > n?/3, |[EH)| =
o(An’3).

4.1.2  3-Distance-Spanner Analysis for H. We will show that for
each e € E there is a path of length 3 between its endpoints in H.

Consider an edge e = (u,v) € E. Without loss of generality, e is
(AN, c1A)-supported toward v in G. There are sets of nodes A and
B in G defined as follows. Let A = {r1,...,r¢ a} be the c;A nodes
adjacent to v such each (v, r;) is a AA’-supported extension of e
toward v in G. (if there are more than ¢; A extensions of e toward v
that are AA’-supported, then for A we pick and fix exactly c; A nodes,
and we will work with these choices for A for the remaining of the
analysis.) Let B = (J,, B(r;), where B(r;) is the set that contains the
AN’ routers of the 2-detours with base {u, r;} in G. To illustrate, in
Figure 4.a, if ;A = 4 and AA’ = 2, the set A for edge (u, v) would
be A = {r,y, w, z}, and the set B would be the bottom eight (gray
colored) nodes that the nodes in A connect to.

Let A’ C A, be the set of nodes of A which remain adjacent to v
in G, that is, for each r; € A’, (v,r;) € E’. Let

N
Event : a2 < A7 .
2
LEMMA 12. Pr[Event;] > 1 —n73.

Proor. For r; € A, let X; be the random variable such that
X; = 1if r; remains in A’, while X; = 0 otherwise. The events
X; = 1and X; = 1 are pairwise independent, for i # j. We have that
Pr[X; = 1] = p (recall, p = A’/A). We have |A’| = 3, c4 X;. Let
p=E[|A']] = Xy,eaPr(Xi =1] = |A]l - p = c1A - A’/A = ¢;A. For
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sufficiently large n, p = ¢;A’ > 24 In n. Therefore, from Lemma 8
for § = 1/2 we have

A/
Pr[|A’|scl2 ] - Pr[|A’|s§] = Pr{|A’] < (1-8)u]
2
< = ek < e3n n3.
[m]

Let B(A") = Uy, e B(ri) be the set of routers connected to set
A’ in G. For each router x € B(A”), denote by h(x) the number of
nodes in A’ which are adjacent to x with respect to G.

We partition B(A’) into sets By, . . ., Bg, such that for each x € B;,
h(x) € [2171,27), where { = 1+ [log |A’]] < 2+1log|A’| < 2+logn.

Let S; = XxeB, h(x). Let m be such that S, = max; S;.

AN |A'|
2m+tlnn’

LEMMA 13. |By,| >

Proor. Since each r; € A’ is adjacent to AA’ nodes of B(A’),
ZxeB) h(x) = AN'|A’|. Thus, 3; Si = Yyepary Mx) = AA'|A'].
We have for sufficiently large n,

Q. 1A’
o5 iSi ML
¢ ¢
Since for each x € By, h(x) < 2™, we get
Sm AN|A|

Bnl2 — > =
|Bm 2m = om . 2lnnp

AN A | S AN |A |
~ 2+logn

2lnn

AN A
om+ling

O

Denote Blf C B; the nodes of B; that in G’ remain connected to
a node in A’, that is, for each x € B; there is a r; € A’ such that
(x,rj) € E'. Let
ClﬂA’
25Inn
_3.

Eventy : |B,| <

LEMMA 14. Pr[Event; | Event;] < n

PROOF. Since we assume Eventy is true, |A’| > ¢;A’/2. Consider
now a B;, where 1 < i < {.For x € Bj, let Y,i be the random
variable such that Y = 1if x € B, and YL = 0, otherwise. Note
that the variables Y. are mutually independent for all x € B;, due to
the fact that the edges h(x) that determine these events are disjoint
for different x. The probability that none of the h(x) edges of x
appearin G’ is ¢ = (1 — p)h(x)A Hence, with probability 1 — ¢, node
x stays connected to some node of A’ in G’. Since h(x) > 2!1, from
Fact 1 we get

PriYi=1 = 1-q = 1-(1-p)h® > 1_¢hr
h 1 ; 1
> n ( (ch)p, 5) > min (2’72/), 5) N )
Since |B}| = Y xep, YL, from Equation (4) we get
. ; 1
’ . -2
E[IBil] = Z (Prlyi=1]) > Z min (Zl P, 5)
x€B; X€B;
1
= |Bi| - min (Zl_zp, 5) : (5)

From Lemma 13 and Equation (5), for i = m we get

1 AN'|A 1
_) > Al - min (Zm_zp,—) .
2 2

’ : m—2
E[lel] > |Bm| - min (2 P = m
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Since also pA’ = (A’)?/A = 1, we have c;pA’ = c;. Thus, if
2M2p < 1/2 we get

AN |AY AN p|A’
T R plA|
2m+lnp 23logn
AN pei AN ci AN ©)
- 2¢Inn 24Inn
If2"2p > 1/2,sincem < { < 2+ log|A’|,
, AN|A'| 1 AN A AN A
BB, > -l 1 A4 o
2m+llnn 2 2m+21np 24+log A 1
AN -
|A’|24Inn 24Inn
From Equations (6) and (7), since 0 < ¢; < 1, we get that
AN
E[1B},[] > S

Since A > n?/3, A’ = VA > n'/3, for sufficiently large n we get
u = E[|By},|] = 241nn. Hence, from Lemma 8 for § = 1/2 we have
C]/lA'
2>Inn

IA

Pr[|B;n|s Pr Bl < 8] = PelIB < (1o

< e—31nn

-3

7N
Y

n

]

LEMMA 15. There is a 3-detour for edge e = (u,v) € E in H with
probability at least 1 — 3n73,
ci AN
25Inn
least 1 — n=> (given a lower bound on the size of |A’]). Since
A=2"1n%n/ci, we get |By,| > 4A” Inn. Moreover, since A’ = VA,
p=AJA=1/N.

Given the above lower bound on |By, |, for sufficiently large n,
the probability that none of the nodes in B, remain connected to
uin G’ is

Proor. From Lemma 14, |B),| >

with probability at

< e—4lnn < n—3 )

4N Inn
)

(1-p)lBml < (1 _

From Lemmas 12 and 14, the lower bound for |B;,| does not hold
with probability at most 2n~3. Thus, the probability that none of the
3-detours of e remain in G is at most 3n~3. Hence, with probability
at least 1 — 3n73, a 3-detour remains in G’ and thus in H. m]

From Lemma 15, the probability that some edge in E does not
have a 3-detour in H, is at most |E| 23073 < 0?3073 < 37l
Hence, every edge in E has a 3-detour in H with probability at least
1 - 3n~1. Thus, we obtain the following corollary.

COROLLARY 2. H is a 3-distance-spanner of G, with probability at
least1—3n71.

4.1.3 Congestion Analysis for H. We start with a basic result for
the node degree in G’, which can easily be shown using Lemma 8
(omitted proofs are included in the full paper).

LEMMA 16. Every node in V(G’) has degree at most 27", with

probability at least 1 — n™%.

LEMMA 17. For any matching M in G, there is a routing P in H
with congestion C(P) < 1+ 2VA with high probability.
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Proor. We can write M = M; U My, where My C E(G’) and
M, C E(G) \ E(G’). Suppose the respective routings in H are Py
and Py, and P = P; U P,.

For routing problem Mj, any e € M; also appears in H. Hence,
P; consists of the edges in matching M;, which immediately gives
C(Py) < 1.

Next, consider routing problem M. Let x be an arbitrary node
in G’. For each e € My, we find a 3-detour in G’ as described
in Section 4.1.2. Thus, the congestion on x due to M, can only
be caused by neighbor nodes of x which participate in an edge
of My, and their 3-detours use x in G’. Therefore, the maximum
congestion on x is at most its degree which by Lemma 16 is bounded
by 2A’ = 2VA. Therefore, with high probability, C(P;) < 2VA.
Consequently, C(P) < C(P1) + C(P2) <1+ 2VA. O

THEOREM 3. For A-regular graph G, where A > n?/3, Algorithm 1
returns a probabilistic (3, O(WA- log n))-DC-spanner (w.h.p.) that has
o(n®3 log? n) edges (w.h.p).

Proor. The bound for the number of edges is from Corollary 1
and A = O(log? n).

We continue with the stretches. According to Section 6 and
Lemma 23, a routing P can be decomposed into at most O(n?)
matching routing problems in G.

From Corollary 2, every matching problem M has a respective
substitute-routing Py in H, such that each path in Py has a length
of at most 3. From Lemma 17, the congestion of any specific Py
is at most O(VA). Hence, matching M has a respective (3, O(VA))-
substitute routing Py on H. Therefore, by Theorem 1, the problem
P has a (3, O(VA - log n))-substitute routing on H.

Note that we implicitly take the union bound of the remaining
probabilities of the other lemmas and corollaries that we used above,
all of which hold with high probability. O

5 DISTANCE SPANNERS WITH INHERENT
LARGE CONGESTION STRETCH

We show that there is a graph such that if we try to sparsify it and
produce a 3-distance spanner, the resulting spanner must have high
congestion stretch. We start with the following result that will be
used as a building block in the construction of the final graph.

LEMMA 18. There is a graph G = (V,E) with |V| = 2k + 2 and
|E| = 3k + 1, where k > 1, such that any 3-distance stretch spanner
with |E| — (k + x + 1)/3 edges, where 0 < x < 2k — 1, is also a
(3, B)-congestion spanner with > x/4.

Proor. The graph G = (V, E) has 2k nodes ay, . . ., asg 41 which
are connected in a line arrangement with edges (a;, a;+1)for1 < i <
2k; this is the “line” subgraph of G (see figure below for k = 4). There
is a special node s, different than all the a;, that connects to the odd
indexed a; with “ray” edges. Namely, ray edge r; is r;i = (s, azi+1),
where 0 < i < k. Overall, |[V| = 2k + 2 and |E| = 3k + 1.

S
a; a, as as Qas Ag az ag Qag
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Let “face” f;, where 1 < i < k, be the induced subgraph of G
with nodes {s, azi—1, a2i, azi+1}. Hence, face f; consists of rays r;_;
and r; and two consecutive line edges between the rays. Note that
the k faces fi, ..., fr all have s as a common node, and each face
fi contains rays r;—1 and r;. Note also that for 2 < i < k — 1, face
fi shares ray r;_1 with fj_; and ray r; with fj;1; we say that f; is
adjacent to fj—1 and fi41.

Any 3-distance spanner H = (V, Efy) of G cannot have resulted
from three consecutive rays r;, rit1, ri+2 being removed from G,
since there would be no substitute 3-distance path for ;1. Thus,
H’ can have up to k/3 rays removed. Moreover, in any face fj we
cannot remove at the same time a line edge and a ray edge, or two
line edges, since in either case one of the line edges of f; will not
have a 3-distance substitute path in H”. On the other hand, a single
line edge of f; can safely be removed from G if no other edge of
fj is removed at the same time. Therefore, at most k edges can be
removed from G to obtain H.

Let Eg = E \ E’. From the above discussion, 0 < |E’| < k. We
can write E’ = Ey U E, where E; are the removed line edges from
G, while E; are the removed ray edges from G. For each e € Eq,
the respective face f; that contains e cannot have any of its other
edges removed from G, since H” would not be a 3-distance spanner.
Hence, k' = k — |E;| faces have their line edges intact in H’. The
configuration that allows the maximum number of ray edges to be
removed out of the k” faces is when the k’ faces are adjacent in a
sequence in G. In this configuration, the total number of ray edges
is at most k” + 1, where at most k’ + 1/3 can be removed. which
gives |Ez| < (k" +1)/3 = (k — |E1| + 1)/3. Therefore,

|E'| = |Ex| + |Ez| < |Eq| + (k = |E1] + 1)/3 = (2|E1| + k +1)/3,

which gives
|E1| > BIE'| -k - 1)/2.

For |[E’| > (k + x + 1)/3, where 0 < x < 2k — 1, we get |E1| > x/2.

Consider a routing problem in G consisting of the edges Ej.
namely, the end-points of each edge in E; are a pair of source and
respective destination nodes (in any direction). The congestion of
such a routing problem in G is at most 2, since two edges in E; may
share a node in the common ray tip. The congestion in H is at least
|E1], since all the alternative 3-distance paths of the |E;| edges go
through node s. Therefore, H is a (3, §)-congestion spanner where
B> |E1]l/2 = x/4. m]

We can prove the following result using the probabilistic method
(see the proof in the full paper).

LEMMA 19. For a set N of size n, where n is sufficiently large, there
are n subsets each of size (n/17)Y/® such that:

(i) each element of N is in O(n'/%) subsets, and
(ii) any pair of subsets has at most one common element.

THEOREM 4. There is a graph G such that any optimal size 3-
distance spanner has Q(n7/%) edges and is a (3, Q(n1/6))-DC-spanner.

Proor. To construct the graph G = (V, E), we use n instances
of the graph in proof of Lemma 18, which we denote as Iy, . . ., I..
Each instance [; has its own separate special node s;, and a set L;
of 2k line nodes, where 2k = (n/17)1/6. We use n nodes for all the
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lines. Each instance I; picks a random set of 2k out of the n nodes.
Then, I; uses an arbitrary order of the L; elements to build its line.

From Lemma 19, the instances are edge-disjoint. The total num-
ber of nodes is |V| = 2n, where n are the special nodes and n are the
total lines nodes. The number of edges is |E| = n- (3k +1) = 3nk +n.

Consider now a spanner graph H of G with |E| — nk = n(3k +
1) —nk = 2nk+n = Q(n7/6) edges. To preserve the 3-distance
property, from Lemma 18, the only possibility is that each instance
of H reduces its edges by k, that is, x = 2k — 1. Therefore, Lemma
18 implies that there is a routing instance on H which can cause
congestion stretch f > x/4 = 2k —1)/4 = Q(nl/é). Note that from
Lemma 19, we cannot decrease asymptotically the number of edges
further without violating the 3-distance stretch property. O

We would like to note that from Lemma 19, the graph G in
Theorem 4 has node degrees ©(n!/®). While G is not exactly regular,
the node degrees are within a constant factor of each other. Similarly,
it easy to see that our upper bounds also hold for graphs with node
degrees within a constant factor of each other.

6 PROOF OF THEOREM 1: DECOMPOSITION
OF ROUTING INTO MATCHINGS

This section contains the proof of a technical result, used in Sec-
tions 3 and 4, about partitioning arbitrary routing paths into match-
ings. Given a matching M on G, we define a respective routing
problem Rys such that each edge on M is a source-destination pair
of Rys, where we pick arbitrarily one of the incident nodes of the
edge to be the source and the other the destination.

Consider now an arbitrary routing problem R on G with a re-
spective routing P. We show how to find a substitute routing P’
on a spanner H by using substitute routings for matchings on G.
The benefit of this approach is that each matching M is a routing
(i.e. Ppr = M) for Ry with congestion 1, and it is easier to find a
respective substitute routing for M on H.

Assume for now that each matching M in G (routing Pys) has
a respective (&', B’)-substitute routing P}, in spanner H. We first
demonstrate the basic approach to convert P to P’ for the case
C(P) = 1 and then generalize for C(P) > 1.

The case C(P) = 1. Suppose that C(P) = 1. Let Gp = (V, Ep) be
the subgraph that consists only of the edges used in P. The degree
in Gp is at most 2, since each node is used by at most one path in P,
and if the node is not the source or destination of the path then the
path uses two incident edges, otherwise, it uses one incident edge.

We can then perform a coloring of Gp with mp < 2 colors. Each
color i, 1 < i < mp, defines a matching M; C Ep on Gp. Clearly,
Ep = Ui<i<mp Mi. Each matching M; corresponds to a routing
problem R;, where each edge in M; defines a source-destination
pair of R;, where we arbitrarily pick one of the edge’s nodes to be
the source and the other the destination.

Suppose that for each routing problem R; we have a correspond-
ing routing P; in H such that for each p € P;, I(p) < a’, and also
C(P;) < p’, for appropriate parameters «” and f’.

We transform P to a routing P’ in H. For each p € P we construct
a respective path p’ € P’. Suppose that p = (v, vy, . . ., v;), where
vk € V.If e; = (vj,vi4+1) € Mj, we replace e; with the respective
path in P; (by orienting the path from v; to vj41).
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LemMA 20. If P has congestion C(P) = 1, then P is a (a’,2p’)-
stretch substitute of P.

ProoF. Let P = {p1,p2.....pr} and P’ = {p].p;, ... ,pl’c}. We
first consider the distance stretch of P’. Since each edge of a path
pi € P is replaced by the respective substitute path of length at
most a’, we get that l(p]) < a’ -z = a’ - l(p;).

We now consider the congestion stretch of P’. For a path p € P,
let E; » be the edges in M; used by p. Since C(P) = 1, each edge of
M;, 1 < i < mp is used by exactly one path in P. Thus, E; p NE; r =
0,forp # p’, p,p’ € P.Hence, each path g, € P; along edge e € M;,
is used in exactly one path pj'. € P’ which corresponds to p; € P
that uses e.

Since, C(P;) < p’, we have that the congestion on any node due
to P; does not exceed f’. Therefore, the congestion on any node
due to all the routings Py, ..., Py, does not exceed mpf’ < 2f’.
This is also the congestion of routing P’ since each path in each P;
is used as a subpath in exactly one path in P’. O

The general case C(P) > 1. If we attempt to generalize the con-
cept above for C(P) = 1, we run into the problem that an edge of a
matching M; might be used by multiple paths in P. This edge-use
multiplicity affects adversely the congestion stretch analysis of
Lemma 20. To remedy this issue, we create additional matchings
such that each matching edge is used in only one path in P.

The details are in Algorithm 2. Given routing P, the algorithm
first creates a sequence of r subgraphs Gi,...,Gy, where G; =
(V,Y;), Y; C E. Moreover, Yj4+q1 C Yj, for 1 < i < r. We refer to G;
as the subgraph at level i. For any path p € P, each edge e € p is
assigned to one of the subgraphs G;, and we say that the level of
pair (p, e) is i. Each edge e € Y; is assigned to exactly one pair (p, e).

Suppose Gy has degree dj.. We perform an edge coloring of Gy
with mj < di + 1 colors. Each color i corresponds to a matching
My i, 1 < i < my, with a respective routing problem Ry, ; defined
on the edges of the matching. Suppose that for each routing prob-
lem Ry ; we have a corresponding routing Py ; in H such that for
each p € Py ;, I(p) < a’, and also C(Py ;) < f’, for appropriate
parameters a’ and 8.

We transform P to a routing P’ in H. Suppose that p =
(v1,v2,...,9v;), where vg € V. If for e; = (v;, vi+1) the pair (p, e;)
is at level i, we replace e; with the respective path g € Py ; (by
orienting the path from v; to v;11).

Unless explicitly stated, logarithms are base 2. We continue to
show a relation of the degrees of the subgraphs with the congestion.

LEMMA 21. Z£=1(dk +1) <12-C(P)logn.

Proor. We have that di < n — 1. Since, Y;j41 C Y, for 1 <
i < r, we get that di;1 < d;. Divide the r subgraph levels into
x = 1+ [log, n] ranges Ry, ..., Ry, such that R; consists of the
levels k with dj. € [2/71,2/). Let Ry be the range that maximizes

the product [Rs |2¢. Therefore,

r r
) £ 1
X IRg|2 zkz_;dkzzkz_;(dk+1).

Each edge of Y; (level i) is used by exactly one path in P. The
congestion due to paths of P at level i is at least dj.. Since at least £
levels in range Ry have degree at least 26-1 and each node with
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Algorithm 2: Substitute Routings via Matchings

Input :Routing P in graph G = (V, E) for routing problem R; spanner
H = (V, E’); each matching M in G has a respective
(a’, B’)-substitute routing in spanner H

Output:Routing P’ for R in connected spanner graph H = (V, E’) built of
substitute routings of matchings of G

1 foreach p € P do
2 | Apefe:eepk

3 17«0

4 while there is an Aj, which is not empty do

5 re—r+1;

6 Y, « Upep Ap;

7 foreach e € Y, do

8 Pick an Ay, such that e € Ap;

9 L Remove e from Ap;

10 The level of (p, ) is r;

11 for k =1tor do

12 Gy «— (V,Y,); // subgraph of G induced by edges Yj
13 d « degree of Gg;

14 Color the edges of G with at most my < dj + 1 colors;

15 for i =1 tomy do

16 My ; < matching corresponding to edges of color i;

17 Ry, i < routing such that each e = (u, v) € My ; corresponds to

a source u and destination v pair;
18 Py.,; < routing in H for Ry ; such that for each p € Py ;,
I(p) < @’ and C(P) < f§';

19 foreach p € P do

20 p' « p;// initialize substitute path p’ € P’

21 Letp = (v1, vz, . .., 01);

22 forj=1tol-1do

23 e «— (vj, Vj41);

2 k « level of (p, e);

25 Suppose that e € My ;;

26 Let ge be the respective path of e in P ; (starting at v1);
27 Replace edge e in p’ with g;

degree 2¢-1 atlevel i + 1 must have degree at least 261 at level i
also (due to the fact that Y;4+1 C Y;), we get that C(P) > |R§|2§_1.
Consequently, for n > 2,

,
Dde+1) <= 2 IRg2f < ax-Cp)
k=1

IA

4-C(P)(1+ [logyn]) < 12-C(P)logyn .

O

We continue with the main result of this section, which proves
Theorem 1 for the case of (deterministic) DC-spanners:

LEMMA 22. P isa(a’,12 - ' log n)-stretch substitute of P.

ProOF. Let P = {p1,p,....px} and P" = {p{, pj, ..., p; }. Since
each edge of a path p; € P is replaced by the respective substitute
path of length at most a’, we get that l(p]) < a’ -z = a’ - l(p;).

We now consider the congestion stretch of P’. Let Cy be the
congestion due the k-level routings Py 1, . . ., Pk, - We have

mg
Cr < D CPrs) < Bmye < B/(di +1) .

i=1
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Hence, since each p. € Py ; is used as a subpath in exactly one path
of P/, from Lemma 21 we get

C(P) < Y. Co < f' D (dx+1) < 12- f'C(P)logn .
k=1 k=1
O

To complete the proof of Theorem 1 for probabilistic DC-
spanners, it suffices that we show that we need to consider at most
O(n3) distinct matchings. To see why this is the case, note that
we have assumed in the premise of Theorem 1 that, for any given
matching routing problem, there exists a suitable (a’, f’)-substitute
with probability at least 1 — # and hence we can simply take a
union bound over all matchings for obtaining a result that holds
with high probability.

LEMMA 23. The number of distinct matchings used to construct P’
is O(n%).

Proor. Since Yj41 C Y;, 1 < i < r, the number of distinct
subgraphs G; is bounded by |Y;| < n?. Moreover, d; < di. Thus,
each level i gives m; < d; +1 < dy + 1 < n+ 1 distinct matchings.
Therefore, the total number of distinct matchings used to build P’

is at most n® - (n + 1) = O(n®). O

7 DISTRIBUTED SPARSE SPANNER

We now show that Algorithm 1 described in Section 4 lends it-
self to a distributed implementation in the LOCAL model. First,
every node u samples each of its incident edges with probability p
and then informs each neighbor v if it did sample the edge (u, v).
This ensures that every node knows its local neighborhood in the
sampled subgraph G’. We can implement the part reinserting the
removed edges by instructing the nodes to forward all information
about G and G’ that they learn for the next 3 rounds. Since the
decision of whether to reinsert an edge only involves the 3-hop
neighborhood of a node in graphs G’ and G, it follows that each
node will obtain the sufficient knowledge for determining locally
which of its incident edges are (AA’, ¢; A)-supported. Finally, if node
u determines that an edge (u, v) needs to be reinserted, it simply
informs its neighbor v using one more round.

COROLLARY 3. There exists a O(1)-round distributed algorithm
in the LOCAL model that computes a (3, O(log n))-DC-spanner with

high probability, on any A-regular graph with A > n?/3.

8 CONCLUSION

We introduced the problem of simultaneously controlling the dis-
tance and congestion stretches in spanner graphs. We presented
algorithms for expanders and regular graphs. We also presented
a lower bound that relates sparsity and congestion. Several open
problems remain. One is to improve the gap between the lower and
upper bounds for the 3-distance spanner in A-regular graphs. An-
other is to increase the distance stretches for the spectral expanders
and regular graphs; this may give better congestion bounds. Finally,
it will be interesting to generalize the results from regular-degree
graphs to arbitrary-degree graphs.
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