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ABSTRACT
Given a graphG , a classical problem in graph theory is the construc-

tion of a spanner H – a sparse subgraph of G that closely approxi-

mates the distances between nodes in G. The distance stretch α of

H is the factor of how much the distances in H increase versus G.
Here, we consider sparse spanner constructions that can also pre-

serve the node congestion of routing problems inG . The congestion
stretch β of H is the factor of how much the (smallest) congestion

of a routing problem increases in H versus G. We introduce the

notion of (α, β)-DC-spanner (i.e., a Distance-Congestion-spanner)
that simultaneously controls the stretches for distance and con-

gestion. We show that for expander graphs with n nodes, there is

a (3,O(logn))-DC-spanner with O(n5/3) edges. We also examine

∆-regular graphs with ∆ ≥ n2/3, where we show how to obtain

a (3,O(
√
∆ · logn))-DC-spanner with O(n5/3 log2 n) edges. Finally,

we show that there is a graph such that any optimal size 3-distance

spanner has Ω(n7/6) edges and is a (3,Ω(n1/6))-DC-spanner.
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1 INTRODUCTION
A classic problem in graph theory is given a graphG to construct a

sparse spanner H with distance stretch α , where every path p in G
has a respective path p′ in H , with the same source and destination,

which is at most α times longer in H . Here, we consider the addi-

tional property where H has β congestion stretch, such that every

routing (set of paths) in G with node congestion C has a respective

routing in H with node congestion at most βC . By combining the
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two stretch properties, we say that H is an (α, β)-DC-spanner of G ,
where DC-spanner is a shorthand for Distance-Congestion-spanner.

An (α, β)-DC-spanner controls simultaneously the distance and

congestion stretch. We are interested in finding sparse (α, β)-DC-
spanners, i.e., spanners with relatively small number of edges, for

small parameters α and β . This can be particularly useful in network
design problems which require a reduced number of edges without

sacrificing the quality of the routing with respect to the original

graph G. It also allows to reduce the total/average size of routing
tables (due to sparsity of the used spanner H ), while maintaining

similar quality of considered routing requests (with respective over-

heads α and β). These routing requests may use different paths,

within a subgraph H of G, but they are still valid, at most α times

longer and β times more congested. See also Section 1.1 for other

application examples.

We give the following results as summarized in Table 1:

• Expander graphs: In Theorem 2 we show that for expander

graphs withn nodes, there is a (3,O(logn))-DC-spanner with

O(n5/3) edges, where the congestion stretch holds in expec-

tation. For ∆-regular expanders with large degree ∆ = Ω(n),
it is possible to obtain an (O(logn),O(log3 n))-DC-spanner
with O(n) edges. We also show that expander graphs (of

any degree) have an (O(logn),O(log4 n))-DC-spanner with
O(n logn) edges.
• Regular graphs: In Theorem 3 we prove that any ∆-regular

graph, with ∆ ≥ n2/3, has a (3,O(
√
∆ · logn))-DC-spanner

with O(n5/3 log2 n) edges. The result holds with high proba-

bility.

• Lower bound: Finally, in Theorem 4 we show the existence of

a graph with node degreesΘ(n1/6) such that any optimal size

3-distance spanner has Ω(n7/6) edges and is a (3,Ω(n1/6))-
DC-spanner.

A basic technique that we use to analyze congestion is that we

replace a routing (set of paths) on G with a set of matchings. Since

each matching has node congestion 1 it is simpler to analyze con-

gestion on the spanner. If each matching is replaced with a routing

of congestion at most x on the spanner H , the final congestion

will beO(x logn) on H (Lemma 22). A routing needsO(n3) distinct
matchings, where some may repeat (Lemma 23).

The ∆-regular graph result in Theorem 3 is based on random

sampling the edges of G with probability 1/
√
∆. This allows the

spanner to have congestion for a matching equal to the sampled

graph degreeΘ(
√
∆). On the other hand, classic sparsification meth-

ods for distance spanners are not guaranteed to give low degree

spanners, and the congestion for a matching may be Ω(n). Our
random sampling method also allows efficient distributed imple-

mentation in the LOCAL model.
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Result Number of Edges Distance Stretch Congestion Stretch Assumptions on ∆-Regular Input Graph

Theorem 2 O
(
n5/3

)
3 O(log2 n) Expander

[5] O(n) O(logn) O(log3 n) Expander with node degree ∆ = Ω (n)
[16] O(n logn) O(logn) O(log4 n) Expander

Theorem 3 O(n5/3 log2 n) 3 O(
√
∆ · logn) ∆-regular with ∆ ≥ n2/3

Theorem 4 Ω(n7/6) 3 Ω(n1/6) Θ(n1/6) node degree

Table 1: Summary of our results, including bounds that follow from prior work.

We obtain the entries in Table 1 referring to [16] and [5] due to

the fact that bounded-degree expander graphs are highly suitable

for routing, and allow solving permutation routing efficiently, where

each node is the source and destination of exactly one message.

More specifically, it is shown in Corollary 7.7.3 in [25] that there

exist routing paths of length O(logn) where the edge congestion is

limited toO
(
logn ·(log logn)2

log log logn

)
= O

(
log

2 n
)
, which we can translate

to good bounds on the node congestion if the node degrees are

small. Thus, given a dense regular expander and applying the spar-

sification algorithm of [16], we obtain an expander with logarithmic

node degree, on which we can solve any matching routing problem

with O(log3 n) node congestion via permutation routing. On the

other hand, for regular expanders with very high node degree, i.e.,

∆ = Ω (n), the sparsification procedure of [5] yields an even sparser

expander with just O(n) edges and O(log2 n) node congestion. For
general routing problems, the congestion stretch for these results is

multiplied by a factor of logn, thus resulting in the bounds shown

in Table 1.

1.1 Related Work
Graph spanners that obtain a small distance stretch were introduced

in [23], and have since found numerous applications in distributed

computing, ranging from routing [18, 24] to achieving more ef-

ficient information dissemination in networks [3, 7]. Simple and

efficient algorithms are known (e.g., see [4]) that construct a (2k−1)-

distance stretch spanner withO(k ·n1+1/k logn) edges. This is close
to optimal in achieving the best possible tradeoff between their size

(i.e., the number of edges) and the provided distance stretch, due to

a widely believed conjecture by Erdős [13], Bollobás [2], Bondy and

Simonovits [6], which states that, for any k ≥ 1, there are graphs

with Ω
(
n1+1/k

)
edges and girth at least 2k + 2, which implies that

these graphs do not permit any (2k − 1)-distance spanners as a

proper subgraph.

Sparse graphs with good connectivity properties have been

widely used for designing distributed fault-tolerant message-

efficient protocols, e.g., consensus, in static [10, 14] and dynamic

systems [17]. They also are useful is shared memory to schedule

access to shared objects by distributed processes, in problems such

as re-naming, store-and-collect, write-all and many others [9, 11].

Therefore, finding efficient spanners with small congestion could

improve these applications in case the original graph was not sparse

or connected enough.

Node congestion plays a significant role in communication in

wireless networks, for instance, when routing packets through

Figure 1: An example of a vertex fault-tolerant spanner that
does not necessarily guarantee low congestion.

such networks, typically at most one packet can be received and

forwarded by a node at a time, see e.g., [12]. Therefore, routing

paths with smaller congestion result in lower packet latency and

queue sizes of packets forwarded along these paths.

A related construction are fault-tolerant spanners, introduced for

general graphs in [8], which extend the standard distance stretch

spanners with some additional robustness guarantees. More specif-

ically, an f -vertex fault-tolerant (f -VFT) (2k − 1)-spanner continues
to provide a distance stretch of (2k − 1) even after any set F of up

to f vertices fail, where the stretch is measured with respect to the

residual graph G \ F . [22] gives efficient algorithms for computing

an f -VFT spanner of size Õ
(
f 1−1/kn1+1/k

)
, which is known to

be existentially optimal. Thus, to obtain an f -VFT 3-spanner that

has an asymptotically equivalent size of O(n5/3) as we obtain for

DC-spanners with stretch 3, it must hold that f ≤ n1/3. This upper
bound, however, turns out to be too restrictive to provide useful

bounds on the node congestion. For instance, consider the graph

on the left-hand side of Figure 1. We have two cliques CA and CB
of size n/2 each that are inter-connected via a perfect matching.

One possible way of constructing a f -VFT spanner, for f = ⌈n1/3⌉,

is to include only a subset M of the ⌈n1/3⌉ + 1 of the matching

edges, and also sparsify the cliques accordingly. However, for the

routing problem that corresponds to the perfect matching, some

node that is an endpoint of an edge inM must have a congestion

of at least Ω
(
n2/3

)
.

Paper Outline
We continue as follows. In Section 2, we give basic definitions

and preliminary results. We present the results on expanders in

Section 3. Then, Section 4 presents the result for regular graphs.

Next, we show a construction of graphs with small distance stretch
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but large congestion in Section 5. Section 6 presents and analyzes

generic partition of arbitrary routing paths into matchings, which

we used in Section 4. Distributed implementation of our spanner

constructions are given in Section 7, while the conclusions and

open problems are stated in Section 8.

2 DEFINITIONS AND PRELIMINARIES
Consider a graph G = (V , E). We will also denote V (G) = V and

E(G) = E. Let dG (u,v) denote the distance between a pair of nodes

u,v ∈ V . For a path p, let l(p) denote the length (number of edges)

of p. Let NG (v) denote the 1-neighborhood of v ∈ V (G), namely,

NG (v) = {u : (u,v) ∈ E(G)}. The degree of v is δG (v) = |NG (u)|.
A subgraph H is a spanner graph of G that has the same set

of nodes, V (H ) = V (G), and it uses a subset of the edges, namely,

E(H ) ⊆ E(G). A spannerH ofG is sparse if the size of edge set E(H )
is significantly smaller than the size edge set E(G).

Definition 1 (α-distance-spanner). For a ≥ 1, a α-distance-
spanner of G is a spanner graph H such that for every pair of nodes
u,v ∈ V ,

dH (u,v) ≤ α · dG (u,v) .

A routing problem R on G is a set of pairs R =

{(u1,v1), (u2,v2), . . . , (uk ,vk )}, where ui ,vi ∈ V , and ui , vi ,
for all 1 ≤ i ≤ k . For a pair (ui ,vi ) ∈ R, the node ui is the

source and vi is the destination. A routing P for R is a set of paths

P = {p1,p2, . . . ,pk }, such that path pi has first node ui and last

node vi . Let C(P,v) = |{pi : pi ∈ P ∧v ∈ pi }|, denote the number

of paths that use node v . The (node) congestion of routing P , de-
noted C(P), is the maximum number of paths that use any node

ofG , namely,C(P) = maxu ∈V C(P,u). LetC(R) denote the smallest

congestion achieved by any routing of R. We will use the notation

CG (R) when we explicitly refer to routings of R on graph G.
Similar to Definition 1, we can define a spanner related to con-

gestion.

Definition 2 (β-congestion-spanner). For β ≥ 1, a β-
congestion-spanner of G is a spanner graph H such that for every
routing problem R in G,

CH (R) ≤ β ·CG (R) .

To give some intuition why, for the distance stretch, we consider

each routing path individually, whereas, for congestion stretch, we

only consider the maximum node congestion and not each node

individually. The reason for that is that, for the distance stretch, the

substitute routing may replace each original path with a potentially

longer path, according to the distance stretch factor. However, a

new path may use a node v which has not been used in the origi-

nal routing, which means that node v had congestion zero in the

original routing. In that case, the congestion stretch with respect to

v is unbounded. For this reason, we consider the maximum node

congestion for the congestion stretch.

For a routing P = {p1,p2, . . . ,pk } of some routing problem

R, we say that a routing P ′ = {p′
1
,p′

2
, . . . ,p′k } is an (α, β)-stretch

substitute of P , if P ′ is a routing for R and l(p′i ) ≤ α · l(pi ) and
C(P ′) ≤ β ·C(P). We can now combine Definitions 1 and 2 into the

following spanner definition.

Definition 3 ((α, β)-DC-spanner). For α, β ≥ 1, a (α, β)-DC-
spanner of G is a spanner graph H such that for any routing P in G
there is a respective (α, β)-stretch substitute routing P ′ in H .

We say that an (α, β)-DC-spanner graph construction is explicit
if given G and routing P , there is a polynomial-time algorithm to

compute the spanner H and the respective routing P ′ in H . For an

(α, β)-DC-spanner H , we refer to α as the distance stretch and to β
as the congestion stretch. Analogously, if H is an α-distance spanner
(β-congestion spanner), we refer to parameter α (β) as the distance
stretch (congestion stretch).

Lemma 1. A (α, β)-DC-spanner of G is also a α-distance-spanner
and a β-congestion-spanner of G.

Proof. Let H be an (α, β)-DC-spanner of G.
We first show thatH has distance stretch α . Consider the routing

problem R involving all edges inG , where for each edge (u,v) ∈ E,u
is a source and v is a destination. Clearly, the respective routing for

R is the set of edges E. Since H is an (α, β)-DC-spanner of G, then
with respect to R, for each edge (u,v) ∈ E there is an alternative

path from u tov inH with length at most α . Thus, for any path p in

G there is a respective path p′ in H which is obtained by replacing

each edge of p by its detour in H , such that l(p′) ≤ α · l(p). Hence,
H is a α-distance-spanner of G.

Now, we show that H has congestion stretch β . Consider an
arbitrary routing problem R in G with congestion CG (R). Let P be

the routing of R in G that has congestion C(P) = CG (R). Since H
is an (α, β)-DC-spanner of G, there is a routing P ′ of R in H that

has congestionC(P ′) ≤ β ·C(P). Consequently,CH (R) ≤ β ·CG (R).
Hence, H is a β-congestion-spanner of G. □

Next, we show that the (α, β)-DC-spanner property is not im-

mediately implied from independently proving the distance and

congestion stretch properties.

Lemma 2. There is an infinite family of graphs and parameters
α , β , such that each instance G has a spanner H ⊆ G which is an
α-distance-spanner as well as a β-congestion-spanner of G, but H is
not an (α, β)-DC-spanner of G.

Proof. For any sufficiently large n, we define G to be a graph

of 2(α − 1)n nodes, consisting of sets A = {a1, . . . ,an }, B =
{b1, . . . ,bn }, and n sets Di = {di ,1, . . . ,di ,α−1} (1 ≤ i ≤ n). There
is a perfect matchingM = {(a1,b1), . . . , (an,bn )} between A and B,
and the subgraph induced byA (respectivelyB) forms a clique. More-

over, we connect the nodes ai ,di ,1, . . . ,di ,α−1,bi via a simple path

for each set Di . We consider a spanning subgraph H , which we ob-

tain by removing all edges inM fromG except for the edge (a1,b1).
We first argue that H satisfies Definition 1: Clearly, any two

nodes in A still have distance 1 in H and the same is true for any

two nodes in B. For any two nodes ai ∈ A and bj ∈ B, observe that
there exists a path of length at most 3 in H via the edge (a1,b1),
and thus H is a 3-distance spanner of G.

Next, wewill argue thatH is also a 2-congestion spanner ofG , i.e.,
Definition 2 holds for β = 2: Consider any routing problem R and let

P be any routing onG that achieves the smallest possible congestion

for R. We show how to obtain a routing P ′ on H that has the same

congestion as follows: Consider any path p ∈ P . If p does not use

an edge that is inG \H , we simply add p to P ′. Otherwise, suppose
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that p uses some removed edge (ai ,bi ). We obtain a modified path

p′ from p by simply replacing (ai ,bi )with the (α + 1)-length detour

along the set Di . As we do not change the parts of the paths that

use edges between nodes in A or between nodes in B, it is clear
that CG (P,u) = CH (P

′,u), for every u ∈ A ∪ B. Next, we bound
the increase in congestion for any node d ∈ Di (1 ≤ i ≤ [n]).
According to the edges of G, every additional routing path in P ′

that used the edge (ai ,bi ) in P instead must go across both ai and bi
In P ′, node d may be on up to min{CG (P,ai ),CG (P,bi )} additional
paths compared to P . Since CG (P,ai ), CG (P,bi ), and CG (P,d) are
bounded from above by CG (R), it follows that CG (P

′,d) ≤ 2CG (R).
Finally, to see that H is not an (α, β)-DC-spanner, for any β <

|V (G) |
2(α−1) , consider the routing problem R = {(a1,b1), . . . , (an,bn )}.

The optimal routing for R inG has congestion 1, whereas any valid

routing P ′ for R in H must use the edge (a1,b1) for each of the n

paths. It follows that CH (R) ≥ n ·CG (R) =
|V (G) |
2(α−1)CG (R). □

Now we give a version of Definition 3 that involves probabil-

ities. We modify the definition of the (α, β)-DC-spanner so that

for a routing P in G has a respective routing P ′ in spanner H with

probability ρ. Our algorithms provide such probabilistic spanners.

Definition 4 (Probabilistic (α, β, ρ)-DC-spanner). For α, β ≥
1 and 0 < ρ ≤ 1, a (α, β, ρ)-DC-spanner of G is a spanner graph H
such that any routing P inG has with probability at least ρ a respective
(α, β)-stretch substitute routing P ′ in H . If the probability ρ is clear
from the context, we omit it and simply write (α, β)-DC-spanner.

In Section 6, we prove the following theorem, which enables us to

obtain a DC-spanner for the general routing problem by leveraging

a solution for the special case where the routing problem instance

is a matching.

Theorem 1 (Decomposition into Matchings). Consider a
graphG and a subgraphH ⊆ G such that a matching routing problem
M has an (α ′, β ′)-substitute routing on H with probability at least
1 − 1

n4
. Then, H is a probabilistic (α ′,O(β ′ logn), 1/n)-DC-spanner

of G. Moreover, in the case that there (deterministically) exists such
an (α ′, β ′)-substitute routing for every matching routing problem, H
is an (α ′,O(β ′ logn))-DC-spanner of G.

3 OBTAINING SPANNERS IN EXPANDERS
In this section, we focus on expander graphs and show how to

obtain a spanner that achieves optimal distance stretch and also a

congestion stretch that is almost optimal in expectation. Formally,

we say that ann-node graphG is a (spectral) expander with expansion
λ, if max (|λ2 |, |λn |) ≤ λ, where λ1, . . . , λn are the eigenvalues of

the adjacency matrix of G, ordered by decreasing magnitude. For

instance, for Ramanujan graphs [19, 20], which attain near optimal

expansion, we have λ ≤ 2

√
∆ − 1.

Theorem 2. Consider an n2/3+ϵ -regular expander graph G with
spectral expansion λ, where ϵ < 1

3
−

3 log logn
logn and λ ≤ o(n1/3+2ϵ ).

There exists a 3-distance stretch spanner with O
(
n5/3

)
edges (w.h.p.),

an expected node congestion of O(logn), and an overall congestion
of O(log2 n) (w.h.p.). Moreover, if the routing problem is a matching,
then the expected node congestion is 1+o(1) and the overall congestion
is O(logn).

Figure 2: The construction used in the proof of Lemma 4.
The thick orange edges are a maximum matching between
the neighborhoods of u and v.

For now, we assume that the routing problem is a matching, i.e.,

every node occurs at most once as either a source or a destination.

We prove the following technical result by making use of the

expander mixing lemma [1], which we restate for completeness.

Lemma 3 (see [1, 15]). Let G be a ∆-regular graph with spectral
expansion λ. Then, for all subset of nodes S,T ⊆ V (G):����e(S,T ) − ∆

n
· |S | · |T |

���� ≤ λ
√
|S | · |T .

Lemma 4. Consider any two vertices u and v and with neigh-
bors Nu and Nv , respectively. Then, there exists a matching of size

∆
(
1 − λn

∆2

)
between Nu and Nv .

Proof. Consider any matching M between Nu and Nv that is

of maximum size, and letm0 = ∆− |M |. Let M̄u ⊆ Nu be the subset

of u’s neighbors that do not have an endpoint inM , and define M̄v
similarly. Clearly, we have that |M̄u | = |M̄v | = m0. Moreover, by

Lemma 3, it must hold that����e(M̄u , M̄v ) −
∆

n
m2

0

���� ≤ λm0 , (1)

where e(M̄u , M̄v ) denotes the number of edges between M̄u and

M̄v . Since M was chosen to be of maximum size, it follows that

e(M̄u , M̄v ) = 0, and (1) implies thatm0 ≤
λ n
∆ . This tells us that

|M | ≥ ∆
(
1 − λ n

∆2

)
, as required. □

To construct the spanner S, we sample every edge of the graph

independently with probability
1

nϵ . Consider any edge {u,v} that is
not in the spanner. LetMu ,v be thematching between the neighbors

of u and v guaranteed by Lemma 4, and let MSu ,v ⊆ Mu ,v be the

subset of these edges that are part of the spanner.

Lemma 5. With high probability, for every edge {u,v}, we have

|MSu ,v | ≥ n2/3 (1 − o(1)) . (2)

Proof. Let X = |MSu ,v |. From Lemma 4 and the upper bound

on λ in the premise of Theorem 2, we know that E [X ] ≥
n2/3

(
1 − λ

n1/3+2ϵ

)
≥ n2/3 (1 − o(1)). Since each edge is sampled

independently, we can apply a standard Chernoff bound (e.g., The-

orem 4.5 in [21]) to show that Pr
[
X ≤ (1 − δ )n2/3 (1 − o(1))

]
≤

exp

(
−
δ 2 ·n2/3(1−o(1))

2

)
, for any δ ∈ (0, 1). In particular, for
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δ =
c
√
logn
n1/3 where c > 0 is a suitable constant, we get that,

with high probability,

X > (1 − δ )n2/3 (1 − o(1)) ≥ n2/3 (1 − o(1)) ,

where the last inequality follows because δ = o(1). □

Lemma 6. With high probability, the distance stretch of the spanner
is at most 3.

Proof. It will be sufficient to argue that, for every edge {u,v} <

S, nodes u and v both have an edge in S to nodes in MSu ,v . Let
Bad be the event that this does not happen. Consider any edge

{x,y} ∈ MSu ,v . The probability that the edges {u, x} and {v,y} are

both part of the spanner is
1

n2ϵ . Due to Lemma 5, it follows that

Pr [Bad] ≤
(
1 −

1

n2ϵ

) |MSu ,v |
≤ exp

(
−n

2

3
−2ϵ (1 − o(1))

)
≤

1

n3
,

where the last inequality follows from the upper bound on ϵ as-

sumed in the premise of Theorem 2). □

Choosing the Replacement Paths. For every edge {u,v} < S that

is part of the (matching) routing problem, we choose a 3-hop re-

placement path in S by uniformly at random by picking one of the

available 3-hop paths acrossMSu ,v to route between u and v .

Lemma 7. The spanner contains at most O(n5/3) edges (w.h.p.).
Moreover, the expected node congestion for anymatching routing prob-
lem is at most 1 + o(1), and (w.h.p.) the overall congestion isO(logn).

Proof. Since we sample each edge independently with proba-

bility
1

nϵ , it follows by a standard Chernoff bound that the number

of neighbors of any node in the spanner is at most (1 + o(1)) ∆nϵ =

(1 + o(1))n2/3 with high probability. Let E denote the event that

this bound holds for all nodes, as well as the bound given in (2),

for all every edge {u,v}. By a union bound, we can assume that E

occurs with high probability, which shows the claimed bound on

the size of the spanner.

Consider any edge {u,v} < S. Recall that the replacement path

for {u,v} is chosen uniformly from all 3-hop paths connecting u

to v , where the middle edge is in the matching MSu ,v . Thus, the
expected amount contributed to the congestion at nodes x and

y, where {x,y} ∈ MSu ,v , is at most
1

|MSu ,v |
, due to being used as

a replacement edge for {u,v}. Each node may be part of such a

matching for each one of its neighbors in S. Let Tw be the total

congestion at a nodew . We have

E[Tw | E] ≤
(1 + o(1))n2/3

|MSu ,v |
≤

1 + o(1)

1 − o(1)
≤ 1 + o(1) ,

where, in the second inequality, we have used the lower bound on

MSu ,v provided by (2). To complete the proof, observe that

E[Tw ] ≤ E[Tw | E] +
1

n2
· E[Tw | ¬E] ≤ 1 + o(1) , (3)

since the maximum possible congestion at any node in the case

where ¬E holds is ∆.
To obtain a high probability bound, observe that Tw is a sum

of independent random variables, since each replacement path

is chosen independently. Thus, it follows by a standard Chernoff

Algorithm 1: Spanner Construction for Regular Graphs

Input :∆-regular graph G = (V , E) with |V | = n and ∆ ≥ n2/3

Output :Probabilistic (3,O (log3 n))-DC-spanner H

// Keep random edges

1 ∆′ ←
√
∆;

2 E′ ← ∅;
3 foreach e ∈ E with probability ρ = ∆′

∆ do
4 E′ ← E′ ∪ {e };

5 G′ ← (V , E′);

// Reinsert removed edges

6 c1 ← constant such that 0 < c1 < 1 − 1/∆;

7 λ ← 2
7
ln
2 n

c
1

;

8 Ê ← edges in G which are (λ∆′, c1∆)-supported in at least one direction;

9 E′′ ← E \ Ê ;
10 H ← (V , E′ ∪ E′′);

bound that Tw = O(logn), and a union bound shows that the same

holds for every node with high probability. □

So far, we have assumed that the routing problem is a matching.

To obtain a bound on the congestion for general matching problems,

we leverage Theorem 1, which shows that the overall congestion

stretch is O(log2 n) with high probability. This completes the proof

of Theorem 2.

4 DC-SPANNER FOR ∆-REGULAR GRAPHS
Consider a ∆-regular graphG = (V , E), with |V | = n, ∆ ≥ n2/3.1 We

present an algorithm that constructs a probabilistic (3,O(logn))-

DC-spanner with Õ(n5/3) edges. We continue with describing the

basic idea behind the algorithm. The details are in Algorithm 1.

We first focus on independent paths of length 1 (matchings), and

then in the final theorem we use the result from Section 6 about

partitioning arbitrary routing paths into matchings.

Basic Idea: Let ∆′ =
√
∆. The first step to sparsify G is that each

edge is chosen to remain with probability ∆′/∆. This gives a graph
G ′ with expected average degree Θ(∆′) and Θ(n∆′) = O(n

√
n)

edges. However, the graph G ′ may be disconnected, or it may not

be able to preserve the congestion to be close to that of the routing

problem of G. In order to remedy these issues we may need to

reinsert some of the removed edges back into G ′.
We show that most of the removed edges can be replaced with

alternative paths of length at most 3 (3-detours) in G ′. Thus, G ′ is
a 3-distance-spanner for G. In fact, in the analysis we show that a

removed edge e has multiple alternative 3-detours. A routing on G
that uses e can use instead one of the 3-detours picked at random.

This allows the congestion to be controlled in G ′.
However, there could be removed edges that do not have enough

3-detour alternatives to control the congestion. Such removed edges

need to be reinserted. The analysis shows that the number of rein-

serted edges is Õ(n5/3). This allows the total number of edges to be

O(n
√
n) + Õ(n5/3) = Õ(n5/3). This gives the final spanner H .

Detours: Consider graphG . A 2-detourwith base {u, z} and router
v is a pair of edges {(u,v), (v, z)} from E(G). We say that the base

{u, z} is supported if there is a 2-detour that has it as a base. For

1
Our result could be easily modified for non-regular graphs with all degrees in Θ(∆).
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Figure 3: (a) 2-detour extension; (b) 4-supported extension;
(c) alternative 3-detour path for removed edge

Figure 4: (a) (2, 4)-supported edge; (b) alternative 3-detour
path; (c) not (2, 4)-supported edge; (d) no alternative 3-detour

example, the base {u, z} in Figure 3.a is supported. Moreover, we

say that a base {u, z} is a-supported if there is a set X of a distinct

nodes such that the 2-detour (u, x), (x, z) exists in G for each x ∈
X . For example, Figure 3.b depicts a 5-supported base {u, z} with
X = {v, x1, x2, x3, x4}.

An extension of edge (u,v) toward node/router v is an edge

(v, z), where z , u. The edge (u,v) together with the extension

are forming a 2-detour {(u,v)(v, z)} with base {u, z} (see Figure
3.a). Moreover, we say that the extension (v, z) is a-supported if

base {u, z} is (a + 1)-supported (where one of the 2-detours is

{(u,v)(v, z)}). Figure 3.b depicts a 4-supported extension (v, z) of
(u,v) toward v . In our algorithm, the a-supported extensions are

important for finding multiple alternatives to replace a removed

edge with a path of length 3 (a 3-detour). For example, Figure

3.c depicts how to replace a removed edge (u,v) with one of 4

possible 3-detours, namely, the removed edge is replaced by the

path u, x1, z,v .
We say that edge e = (u,v) is (a,b)-supported toward v if the

number of a-supported extensions of e toward v is b. Figure 4.a
depicts an example of a (2, 4)-supported edge e = (u,v) toward v .
In the example, node r defines base {r ,u} which is 3-supported.

Therefore, the extension (v, r ) of e toward v is 2-supported. Similar

to r , each of the nodes y,w, z defines 3 additional 2-supported

extensions for e toward v , making e a (2, 4)-supported edge toward

v . The (a,b)-supported edge has in total a · b 3-detours through its

b a-supported extensions. Figure 4.b depicts one of such 3-detours

of e and how it can be used to replace e .

Reinserted Edges: An edge e = (u,v) that is in G but has not

been selected for G ′ may need to be reinserted. If e is (λ∆′, c1∆)-
supported toward v (or u) in G and one of its 3-detours toward

v (or u) still remains in G ′, then e does not need to be reinserted,

since an alternative 3-detour is provided for e in G ′. Otherwise,
e is reinserted to become an edge of H . All the reinserted edges

together with the edges of G ′ form the edges of H .

As an example, Figures 4.c and 4.d depict an edge (u,v) which is

not (2, 4)-supported inG which may result it having no 3-detour at

all inG ′, and hence e has to be reinserted (if it was removed fromG).

4.1 Analysis
We continue with an analysis of the properties of the graphs in

Algorithm 1. Unless otherwise stated, logarithms are base 2. We also

use the natural logarithm whenever necessary. From the extension

of Taylor sequences for exponential functions, we can obtain the

following fact of inequalities.

Fact 1. For any x , 1−x ≤ e−x . For any x ∈ [0, 1/2], 1−x ≥ e−2x .
For any x ≥ 1, (1 − 1/x)x ≤ e−1.

We will also use the following versions of the Chernoff bounds.

Lemma 8 (Chernoff bounds). Let X1,X2, · · · ,Xm be indepen-
dent Poisson trials such that, for 1 ≤ i ≤ m, Xi ∈ {0, 1}. Then,
for X =

∑m
i=1 Xi , µ = E[X ], and any 0 ≤ δ ≤ 1, Pr[X ≥

(1 + δ )µ] ≤ e−
δ 2µ
3 , and Pr[X ≤ (1 − δ )µ] ≤ e−

δ 2µ
2 , and for any

1 ≤ δ , Pr[X ≥ (1 + δ )µ] ≤ e−
δ µ
3 .

4.1.1 Sparsity Analysis of H . Next, we bound the number of edges

E ′ of G ′.

Lemma 9. |E ′ | < n∆′ with probability at least 1 − n−1.

Proof. For edge e ∈ E, let Xe be the random variable such that

Xe = 1 if e remains inG ′ and otherwise Xe = 0. From Algorithm 1,

we have that P[Xe = 1] = ρ = ∆′/∆. We also have that E ′ =
{e ∈ E | Xe = 1}. Note that since G is ∆-regular, |E | = n∆/2. Let
µ = E[|E ′ |] =

∑
e ∈E P[Xe = 1] = |E |∆′/∆ = n∆′/2.

Since for sufficiently large n, µ/3 ≥ lnn, from Lemma 8 with

δ = 1 we have

Pr[|E ′ | ≥ 2µ] = Pr[|E ′ | ≥ (1+δ )µ] ≤ e−
δ 2µ
3 = e−

µ
3 ≤ e− lnn = n−1 .

Hence, |E ′ | < 2µ = n∆′ with probability at least 1 − n−1. □

The next result gives an upper bound on the size of E ′′, which
is the set of edges of G that are not (λ∆′, c1∆)-supported (in both

directions) in G.

Lemma 10. |E ′′ | = O(λn2∆′/∆).

Proof. Let E ′′ = E \ Ê. Consider an edge e = (u,v) ∈ E ′′,
that is, e is not (λ∆′, c1∆)-supported in either directions. Let Y
be the neighbors of v different that u.Let Y = Y1 ∪ Y2, where Y1
are the nodes where for each x ∈ Y1, the extension (v, x) is λ∆

′
-

supported, and Y2 = Y \ Y1. Thus, for each x ∈ Y2, the extension
(v, x) is not λ∆′-supported. Since the degree of v is ∆, |Y | = ∆ − 1.
Moreover, |Y1 | < c1∆. Hence, |Y2 | ≥ ∆−1−c1∆ = c2∆, for constant
c2 = 1−c1−1/∆. Note that 0 < c2 < 1−1/∆, since 0 < c1 < 1−1/∆.
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Thus, at least c2∆ of the extensions of e towards v (or u), are not
λ∆′-supported. Each such extension (v, x) (or (u, x)) corresponds to
a “special” base {u, x} (or {v, x}) of at most λ∆′ 2-detours, including
the detourwith routerv (resp.u). Hence, each e ∈ Y2 defines s = c2∆
special bases.

Let B be the 2 detours of a special base b. Clearly, |B | ≤ λ∆′. Let
b = (u, x) ∈ B. Let {(u,y), (y, x)} be a 2-detour of b. Edge (y, x) can
be an extension of (u,y) that also has special base b. Thus, special
base b can be shared by at most 2|B | ≤ 2λ∆′ extensions (since each
base has 2 edges each of which can be an extension). Potentially, all

the up to 2λ∆′ edges in B could belong in E ′′. Therefore, the total
number of unique special bases in G defined from such extensions

is at least |E ′′ |s/(2λ∆′).
Note that the each special base is a pair of nodes. Hence, there

are at most

(n
2

)
= O(n2) special bases. Therefore, |E ′′ |s/(2λ∆′) =

|E ′′ |c2∆/(2λ∆
′) = O(n2). Thus, |E ′′ | = O(λn2∆′/∆). □

Lemma 11. |E(H )| = O(n∆′ + λn2∆′/∆) with probability at least
1 − n−1.

Proof. From Algorithm 1 we have E(H ) = E ′ ∪ E ′′. From
Lemma 9, |E ′ | = O(n∆′) with probability at least 1 − n−1. From
Lemma 10, |E ′′ | = O(λn2∆′/∆). Hence, with probability at least

1 − n−1, |E(H )| = O(n∆′ + λn2∆′/∆). □

For ∆′ =
√
∆ and n ≥ ∆ ≥ n2/3, from Lemma 11 we get, |E(H )| =

O(n
√
∆ + λn2/

√
∆) = O(n

√
n + λn2/

√
n2/3) = O(λn5/3). Therefore,

we have the following corollary.

Corollary 1. For ∆′ =
√
∆ and n ≥ ∆ ≥ n2/3, |E(H )| =

O(λn5/3).

4.1.2 3-Distance-Spanner Analysis for H . We will show that for

each e ∈ Ê there is a path of length 3 between its endpoints in H .

Consider an edge e = (u,v) ∈ Ê. Without loss of generality, e is
(λ∆′, c1∆)-supported toward v in G. There are sets of nodes A and

B in G defined as follows. Let A = {r1, . . . , rc1∆} be the c1∆ nodes

adjacent to v such each (v, ri ) is a λ∆
′
-supported extension of e

toward v inG . (if there are more than c1∆ extensions of e toward v
that are λ∆′-supported, then forAwe pick and fix exactly c1∆ nodes,

and we will work with these choices for A for the remaining of the

analysis.) Let B =
⋃
ri B(ri ), where B(ri ) is the set that contains the

λ∆′ routers of the 2-detours with base {u, ri } in G. To illustrate, in

Figure 4.a, if c1∆ = 4 and λ∆′ = 2, the set A for edge (u,v) would
be A = {r ,y,w, z}, and the set B would be the bottom eight (gray

colored) nodes that the nodes in A connect to.

Let A′ ⊆ A, be the set of nodes of A which remain adjacent to v
in G ′, that is, for each ri ∈ A

′
, (v, ri ) ∈ E

′
. Let

Event1 :
c1∆
′

2

≤ |A′ | .

Lemma 12. Pr[Event1] ≥ 1 − n−3.

Proof. For ri ∈ A, let Xi be the random variable such that

Xi = 1 if ri remains in A′, while Xi = 0 otherwise. The events

Xi = 1 andX j = 1 are pairwise independent, for i , j . We have that

Pr [Xi = 1] = ρ (recall, ρ = ∆′/∆). We have |A′ | =
∑
ri ∈A Xi . Let

µ = E[|A′ |] =
∑
ri ∈A Pr [Xi = 1] = |A| · ρ = c1∆ · ∆

′/∆ = c1∆
′
. For

sufficiently large n, µ = c1∆
′ ≥ 24 lnn. Therefore, from Lemma 8

for δ = 1/2 we have

Pr
[
|A′ | ≤

c1∆
′

2

]
= Pr

[
|A′ | ≤

µ

2

]
= Pr[|A′ | ≤ (1 − δ )µ]

≤ e−
δ 2µ
2 = e−

µ
8 ≤ e−3 lnn = n−3 .

□

Let B(A′) =
⋃
ri ∈A′ B(ri ) be the set of routers connected to set

A′ in G. For each router x ∈ B(A′), denote by h(x) the number of

nodes in A′ which are adjacent to x with respect to G.
We partition B(A′) into sets B1, . . . ,Bζ , such that for each x ∈ Bi ,

h(x) ∈ [2i−1, 2i ), where ζ = 1+ ⌈log |A′ |⌉ ≤ 2+ log |A′ | ≤ 2+ logn.
Let Si =

∑
x ∈Bi h(x). Letm be such that Sm = maxi Si .

Lemma 13. |Bm | ≥
λ∆′ |A′ |
2
m+1

lnn .

Proof. Since each ri ∈ A′ is adjacent to λ∆′ nodes of B(A′),∑
x ∈B(A′) h(x) = λ∆′ |A′ |. Thus,

∑
i Si =

∑
x ∈B(A′) h(x) = λ∆′ |A′ |.

We have for sufficiently large n,

Sm ≥

∑
i Si
ζ
≥

λ∆′ |A′ |

ζ
≥

λ∆′ |A′ |

2 + logn
≥

λ∆′ |A′ |

2 lnn
.

Since for each x ∈ Bm , h(x) < 2
m
, we get

|Bm | ≥
Sm
2
m ≥

λ∆′ |A′ |

2
m · 2 lnn

=
λ∆′ |A′ |

2
m+1

lnn
.

□

Denote B′i ⊆ Bi the nodes of Bi that in G
′
remain connected to

a node in A′, that is, for each x ∈ B′i there is a r j ∈ A
′
such that

(x, r j ) ∈ E
′
. Let

Event2 : |B
′
m | ≤

c1λ∆
′

2
5
lnn
.

Lemma 14. Pr[Event2 | Event1] ≤ n−3.

Proof. Since we assume Event1 is true, |A
′ | ≥ c1∆

′/2. Consider

now a Bi , where 1 ≤ i ≤ ζ . For x ∈ Bi , let Y
i
x be the random

variable such that Y ix = 1 if x ∈ B′i , and Y
i
x = 0, otherwise. Note

that the variablesY ix are mutually independent for all x ∈ Bi , due to
the fact that the edges h(x) that determine these events are disjoint

for different x . The probability that none of the h(x) edges of x

appear inG ′ is q = (1 − ρ)h(x ). Hence, with probability 1 − q, node
x stays connected to some node ofA′ inG ′. Since h(x) ≥ 2

i−1
, from

Fact 1 we get

Pr [Y ix = 1] = 1 − q = 1 − (1 − ρ)h(x ) ≥ 1 − e−h(x )ρ

≥ min

(
h(x)ρ

2

,
1

2

)
≥ min

(
2
i−2ρ,

1

2

)
. (4)

Since |B′i | =
∑
x ∈Bi Y

i
x , from Equation (4) we get

E[|B′i |] =
∑
x ∈Bi

(Pr [Y ix = 1]) ≥
∑
x ∈Bi

min

(
2
i−2ρ,

1

2

)
= |Bi | ·min

(
2
i−2ρ,

1

2

)
. (5)

From Lemma 13 and Equation (5), for i =m we get

E[|B′m |] ≥ |Bm | ·min

(
2
m−2ρ,

1

2

)
≥

λ∆′ |A′ |

2
m+1

lnn
·min

(
2
m−2ρ,

1

2

)
.
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Since also ρ∆′ = (∆′)2/∆ = 1, we have c1ρ∆
′ = c1. Thus, if

2
m−2ρ < 1/2 we get

E[|B′m |] ≥
λ∆′ |A′ |

2
m+1

lnn
· 2m−2ρ =

λ∆′ρ |A′ |

2
3
logn

≥
λ∆′ρc1∆

′

2
4
lnn

≥
c1λ∆

′

2
4
lnn
. (6)

If 2
m−2ρ ≥ 1/2, sincem ≤ ζ ≤ 2 + log |A′ |,

E[|B′m |] ≥
λ∆′ |A′ |

2
m+1

lnn
·
1

2

=
λ∆′ |A′ |

2
m+2

lnn
≥

λ∆′ |A′ |

2
4+log |A′ |

lnn

=
λ∆′ |A′ |

|A′ |24 lnn
=

λ∆′

2
4
lnn
. (7)

From Equations (6) and (7), since 0 ≤ c1 < 1, we get that

E[|B′m |] ≥
c1λ∆′
2
4
lnn .

Since ∆ ≥ n2/3, ∆′ =
√
∆ ≥ n1/3, for sufficiently large n we get

µ = E[|B′m |] ≥ 24 lnn. Hence, from Lemma 8 for δ = 1/2 we have

Pr
[
|B′m | ≤

c1λ∆
′

2
5
lnn

]
≤ Pr

[
|B′m | ≤

µ

2

]
= Pr[|B′m | ≤ (1 − δ )µ]

≤ e−
δ 2µ
2 = e−

µ
8 ≤ e−3 lnn = n−3 .

□

Lemma 15. There is a 3-detour for edge e = (u,v) ∈ Ê in H with
probability at least 1 − 3n−3.

Proof. From Lemma 14, |B′m | >
c1λ∆′
2
5
lnn with probability at

least 1 − n−3 (given a lower bound on the size of |A′ |). Since

λ = 2
7
ln
2 n/c1, we get |B

′
m | > 4∆′ lnn. Moreover, since ∆′ =

√
∆,

ρ = ∆′/∆ = 1/∆′.
Given the above lower bound on |B′m |, for sufficiently large n,

the probability that none of the nodes in B′m remain connected to

u in G ′ is

(1 − ρ) |B
′
m | <

(
1 −

1

∆′

)
4∆′ lnn

≤ e−4 lnn ≤ n−3 .

From Lemmas 12 and 14, the lower bound for |B′m | does not hold
with probability at most 2n−3. Thus, the probability that none of the
3-detours of e remain inG ′ is at most 3n−3. Hence, with probability

at least 1 − 3n−3, a 3-detour remains in G ′ and thus in H . □

From Lemma 15, the probability that some edge in Ê does not

have a 3-detour in H , is at most |Ê | · 3n−3 ≤ n2 · 3n−3 ≤ 3n−1.

Hence, every edge in Ê has a 3-detour in H with probability at least

1 − 3n−1. Thus, we obtain the following corollary.

Corollary 2. H is a 3-distance-spanner of G , with probability at
least 1 − 3n−1.

4.1.3 Congestion Analysis for H . We start with a basic result for

the node degree in G ′, which can easily be shown using Lemma 8

(omitted proofs are included in the full paper).

Lemma 16. Every node in V (G ′) has degree at most 2∆′, with
probability at least 1 − n−4.

Lemma 17. For any matching M in G, there is a routing P in H

with congestion C(P) ≤ 1 + 2
√
∆ with high probability.

Proof. We can write M = M1 ∪ M2, where M1 ⊆ E(G ′) and
M2 ⊆ E(G) \ E(G ′). Suppose the respective routings in H are P1
and P2, and P = P1 ∪ P2.

For routing problemM1, any e ∈ M1 also appears in H . Hence,

P1 consists of the edges in matchingM1, which immediately gives

C(P1) ≤ 1.

Next, consider routing problemM2. Let x be an arbitrary node

in G ′. For each e ∈ M2, we find a 3-detour in G ′ as described
in Section 4.1.2. Thus, the congestion on x due to M2, can only

be caused by neighbor nodes of x which participate in an edge

of M2, and their 3-detours use x in G ′. Therefore, the maximum

congestion on x is at most its degree which by Lemma 16 is bounded

by 2∆′ = 2

√
∆. Therefore, with high probability, C(P2) ≤ 2

√
∆.

Consequently, C(P) ≤ C(P1) +C(P2) ≤ 1 + 2
√
∆. □

Theorem 3. For ∆-regular graphG , where ∆ ≥ n2/3, Algorithm 1
returns a probabilistic (3,O(

√
∆ · logn))-DC-spanner (w.h.p.) that has

O(n5/3 log2 n) edges (w.h.p).

Proof. The bound for the number of edges is from Corollary 1

and λ = O(log2 n).
We continue with the stretches. According to Section 6 and

Lemma 23, a routing P can be decomposed into at most O(n3)
matching routing problems in G.

From Corollary 2, every matching problemM has a respective

substitute-routing PM in H , such that each path in PM has a length

of at most 3. From Lemma 17, the congestion of any specific PM
is at most O(

√
∆). Hence, matchingM has a respective (3,O(

√
∆))-

substitute routing PM on H . Therefore, by Theorem 1, the problem

P has a (3,O(
√
∆ · logn))-substitute routing on H .

Note that we implicitly take the union bound of the remaining

probabilities of the other lemmas and corollaries that we used above,

all of which hold with high probability. □

5 DISTANCE SPANNERS WITH INHERENT
LARGE CONGESTION STRETCH

We show that there is a graph such that if we try to sparsify it and

produce a 3-distance spanner, the resulting spanner must have high

congestion stretch. We start with the following result that will be

used as a building block in the construction of the final graph.

Lemma 18. There is a graph G = (V , E) with |V | = 2k + 2 and
|E | = 3k + 1, where k ≥ 1, such that any 3-distance stretch spanner
with |E | − (k + x + 1)/3 edges, where 0 ≤ x ≤ 2k − 1, is also a
(3, β)-congestion spanner with β ≥ x/4.

Proof. The graph G = (V , E) has 2k nodes a1, . . . ,a2k+1 which
are connected in a line arrangementwith edges (ai ,ai+1) for 1 ≤ i ≤
2k ; this is the “line” subgraph ofG (see figure below fork = 4). There

is a special node s , different than all the ai , that connects to the odd
indexed ai with “ray” edges. Namely, ray edge ri is ri = (s,a2i+1),
where 0 ≤ i ≤ k . Overall, |V | = 2k + 2 and |E | = 3k + 1.
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Let “face” fi , where 1 ≤ i ≤ k , be the induced subgraph of G
with nodes {s,a2i−1,a2i ,a2i+1}. Hence, face fi consists of rays ri−1
and ri and two consecutive line edges between the rays. Note that

the k faces f1, . . . , fk all have s as a common node, and each face

fi contains rays ri−1 and ri . Note also that for 2 ≤ i ≤ k − 1, face
fi shares ray ri−1 with fi−1 and ray ri with fi+1; we say that fi is
adjacent to fi−1 and fi+1.

Any 3-distance spanner H = (V , EH ) ofG cannot have resulted

from three consecutive rays ri , ri+1, ri+2 being removed from G,
since there would be no substitute 3-distance path for ri+1. Thus,
H ′ can have up to k/3 rays removed. Moreover, in any face fj we
cannot remove at the same time a line edge and a ray edge, or two

line edges, since in either case one of the line edges of fj will not
have a 3-distance substitute path in H ′. On the other hand, a single

line edge of fj can safely be removed from G if no other edge of

fj is removed at the same time. Therefore, at most k edges can be

removed from G to obtain H .

Let EH = E \ E ′. From the above discussion, 0 ≤ |E ′ | ≤ k . We

can write E ′ = E1 ∪ E2, where E1 are the removed line edges from

G, while E2 are the removed ray edges from G. For each e ∈ E1,
the respective face fi that contains e cannot have any of its other

edges removed fromG , since H ′ would not be a 3-distance spanner.
Hence, k ′ = k − |E1 | faces have their line edges intact in H ′. The
configuration that allows the maximum number of ray edges to be

removed out of the k ′ faces is when the k ′ faces are adjacent in a

sequence in G. In this configuration, the total number of ray edges

is at most k ′ + 1, where at most k ′ + 1/3 can be removed. which

gives |E2 | ≤ (k
′ + 1)/3 = (k − |E1 | + 1)/3. Therefore,

|E ′ | = |E1 | + |E2 | ≤ |E1 | + (k − |E1 | + 1)/3 = (2|E1 | + k + 1)/3,

which gives

|E1 | ≥ (3|E
′ | − k − 1)/2.

For |E ′ | ≥ (k + x + 1)/3, where 0 ≤ x ≤ 2k − 1, we get |E1 | ≥ x/2.
Consider a routing problem in G consisting of the edges E1.

namely, the end-points of each edge in E1 are a pair of source and
respective destination nodes (in any direction). The congestion of

such a routing problem inG is at most 2, since two edges in E1 may

share a node in the common ray tip. The congestion in H is at least

|E1 |, since all the alternative 3-distance paths of the |E1 | edges go
through node s . Therefore, H is a (3, β)-congestion spanner where

β ≥ |E1 |/2 ≥ x/4. □

We can prove the following result using the probabilistic method

(see the proof in the full paper).

Lemma 19. For a set N of size n, where n is sufficiently large, there
are n subsets each of size (n/17)1/6 such that:

(i) each element of N is in Θ(n1/6) subsets, and
(ii) any pair of subsets has at most one common element.

Theorem 4. There is a graph G such that any optimal size 3-
distance spanner has Ω(n7/6) edges and is a (3,Ω(n1/6))-DC-spanner.

Proof. To construct the graph G = (V , E), we use n instances

of the graph in proof of Lemma 18, which we denote as I1, . . . , In .
Each instance Ii has its own separate special node si , and a set Li
of 2k line nodes, where 2k = (n/17)1/6. We use n nodes for all the

lines. Each instance Ii picks a random set of 2k out of the n nodes.

Then, Ii uses an arbitrary order of the Li elements to build its line.

From Lemma 19, the instances are edge-disjoint. The total num-

ber of nodes is |V | = 2n, where n are the special nodes and n are the

total lines nodes. The number of edges is |E | = n · (3k +1) = 3nk +n.
Consider now a spanner graph H of G with |E | − nk = n(3k +

1) − nk = 2nk + n = Ω(n7/6) edges. To preserve the 3-distance

property, from Lemma 18, the only possibility is that each instance

of H reduces its edges by k , that is, x = 2k − 1. Therefore, Lemma

18 implies that there is a routing instance on H which can cause

congestion stretch β ≥ x/4 = (2k − 1)/4 = Ω(n1/6). Note that from
Lemma 19, we cannot decrease asymptotically the number of edges

further without violating the 3-distance stretch property. □

We would like to note that from Lemma 19, the graph G in

Theorem 4 has node degreesΘ(n1/6). WhileG is not exactly regular,

the node degrees arewithin a constant factor of each other. Similarly,

it easy to see that our upper bounds also hold for graphs with node

degrees within a constant factor of each other.

6 PROOF OF THEOREM 1: DECOMPOSITION
OF ROUTING INTO MATCHINGS

This section contains the proof of a technical result, used in Sec-

tions 3 and 4, about partitioning arbitrary routing paths into match-

ings. Given a matching M on G, we define a respective routing

problem RM such that each edge onM is a source-destination pair

of RM , where we pick arbitrarily one of the incident nodes of the

edge to be the source and the other the destination.

Consider now an arbitrary routing problem R on G with a re-

spective routing P . We show how to find a substitute routing P ′

on a spanner H by using substitute routings for matchings on G.
The benefit of this approach is that each matchingM is a routing

(i.e. PM = M) for RM with congestion 1, and it is easier to find a

respective substitute routing forM on H .

Assume for now that each matching M in G (routing PM ) has

a respective (α ′, β ′)-substitute routing P ′M in spanner H . We first

demonstrate the basic approach to convert P to P ′ for the case

C(P) = 1 and then generalize for C(P) ≥ 1.

The case C(P) = 1. Suppose that C(P) = 1. Let GP = (V , EP ) be
the subgraph that consists only of the edges used in P . The degree
inGP is at most 2, since each node is used by at most one path in P ,
and if the node is not the source or destination of the path then the

path uses two incident edges, otherwise, it uses one incident edge.

We can then perform a coloring ofGP withmP ≤ 2 colors. Each

color i , 1 ≤ i ≤ mP , defines a matching Mi ⊆ EP on GP . Clearly,

EP =
⋃

1≤i≤mP Mi . Each matching Mi corresponds to a routing

problem Ri , where each edge in Mi defines a source-destination

pair of Ri , where we arbitrarily pick one of the edge’s nodes to be

the source and the other the destination.

Suppose that for each routing problem Ri we have a correspond-
ing routing Pi in H such that for each p ∈ Pi , l(p) ≤ α ′, and also

C(Pi ) ≤ β ′, for appropriate parameters α ′ and β ′.
We transform P to a routing P ′ inH . For each p ∈ P we construct

a respective path p′ ∈ P ′. Suppose that p = (v1,v2, . . . ,vl ), where
vk ∈ V . If ei = (vi ,vi+1) ∈ Mj , we replace ei with the respective

path in Pj (by orienting the path from vi to vi+1).
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Lemma 20. If P has congestion C(P) = 1, then P ′ is a (α ′, 2β ′)-
stretch substitute of P .

Proof. Let P = {p1,p2, . . . ,pk } and P ′ = {p′
1
,p′

2
, . . . ,p′k }. We

first consider the distance stretch of P ′. Since each edge of a path

pi ∈ P is replaced by the respective substitute path of length at

most α ′, we get that l(p′i ) ≤ α ′ · z = α ′ · l(pi ).
We now consider the congestion stretch of P ′. For a path p ∈ P ,

let Ei ,p be the edges inMi used by p. Since C(P) = 1, each edge of

Mi , 1 ≤ i ≤ mP is used by exactly one path in P . Thus, Ei ,p∩Ei ,p′ =
∅, for p , p′, p,p′ ∈ P . Hence, each path qe ∈ Pi along edge e ∈ Mi ,

is used in exactly one path p′j ∈ P ′ which corresponds to pj ∈ P

that uses e .
Since, C(Pi ) ≤ β ′, we have that the congestion on any node due

to Pi does not exceed β ′. Therefore, the congestion on any node

due to all the routings P1, . . . , PmP does not exceedmP β
′ ≤ 2β ′.

This is also the congestion of routing P ′ since each path in each Pi
is used as a subpath in exactly one path in P ′. □

The general case C(P) ≥ 1. If we attempt to generalize the con-

cept above for C(P) = 1, we run into the problem that an edge of a

matchingMi might be used by multiple paths in P . This edge-use
multiplicity affects adversely the congestion stretch analysis of

Lemma 20. To remedy this issue, we create additional matchings

such that each matching edge is used in only one path in P .
The details are in Algorithm 2. Given routing P , the algorithm

first creates a sequence of r subgraphs G1, . . . ,Gr , where Gi =

(V ,Yi ), Yi ⊆ E. Moreover, Yi+1 ⊆ Yi , for 1 ≤ i < r . We refer to Gi
as the subgraph at level i . For any path p ∈ P , each edge e ∈ p is

assigned to one of the subgraphs Gi , and we say that the level of

pair (p, e) is i . Each edge e ∈ Yi is assigned to exactly one pair (p, e).
Suppose Gk has degree dk . We perform an edge coloring of Gk

withmk ≤ dk + 1 colors. Each color i corresponds to a matching

Mk ,i , 1 ≤ i ≤ mk , with a respective routing problem Rk ,i defined
on the edges of the matching. Suppose that for each routing prob-

lem Rk ,i we have a corresponding routing Pk ,i in H such that for

each p ∈ Pk ,i , l(p) ≤ α ′, and also C(Pk ,i ) ≤ β ′, for appropriate
parameters α ′ and β ′.

We transform P to a routing P ′ in H . Suppose that p =
(v1,v2, . . . ,vl ), where vk ∈ V . If for ej = (vi ,vi+1) the pair (p, ej )
is at level i , we replace ej with the respective path qe ∈ Pk ,i (by
orienting the path from vi to vi+1).

Unless explicitly stated, logarithms are base 2. We continue to

show a relation of the degrees of the subgraphs with the congestion.

Lemma 21.

∑r
k=1(dk + 1) ≤ 12 ·C(P) logn.

Proof. We have that dk ≤ n − 1. Since, Yi+1 ⊆ Yi , for 1 ≤
i < r , we get that di+1 ≤ di . Divide the r subgraph levels into

χ = 1 + ⌈log
2
n⌉ ranges R1, . . . ,Rχ , such that Rj consists of the

levels k with dk ∈ [2
j−1, 2j ). Let Rξ be the range that maximizes

the product |Rξ |2
ξ
. Therefore,

χ · |Rξ |2
ξ ≥

r∑
k=1

dk ≥
1

2

r∑
k=1

(dk + 1) .

Each edge of Yi (level i) is used by exactly one path in P . The
congestion due to paths of P at level i is at least dk . Since at least ξ

levels in range Rξ have degree at least 2
ξ−1

, and each node with

Algorithm 2: Substitute Routings via Matchings

Input :Routing P in graph G = (V , E) for routing problem R ; spanner
H = (V , E′); each matching M in G has a respective

(α ′, β ′)-substitute routing in spanner H
Output :Routing P ′ for R in connected spanner graph H = (V , E′) built of

substitute routings of matchings ofG

1 foreach p ∈ P do
2 Ap ← {e : e ∈ p };

3 r ← 0;

4 while there is an Ap which is not empty do
5 r ← r + 1;
6 Yr ←

⋃
p∈P Ap ;

7 foreach e ∈ Yr do
8 Pick an Ap such that e ∈ Ap ;
9 Remove e from Ap ;

10 The level of (p, e) is r ;

11 for k = 1 to r do
12 Gk ← (V , Yr ); // subgraph of G induced by edges Yk
13 dk ← degree of Gk ;

14 Color the edges ofGk with at mostmk ≤ dk + 1 colors;
15 for i = 1 tomk do
16 Mk ,i ← matching corresponding to edges of color i ;
17 Rk ,i ← routing such that each e = (u , v) ∈ Mk ,i corresponds to

a source u and destination v pair;

18 Pk ,i ← routing in H for Rk ,i such that for each p ∈ Pk ,i ,
l (p) ≤ α ′ and C(P ) ≤ β ′;

19 foreach p ∈ P do
20 p′ ← p ; // initialize substitute path p′ ∈ P ′

21 Let p = (v1, v2, . . . , vl );
22 for j = 1 to l − 1 do
23 e ← (vj , vj+1);
24 k ← level of (p, e);
25 Suppose that e ∈ Mk ,i ;

26 Let qe be the respective path of e in Pk ,i (starting at v1);

27 Replace edge e in p′ with qe ;

degree 2
ξ−1

at level i + 1 must have degree at least 2
ξ−1

at level i

also (due to the fact that Yi+1 ⊆ Yi ), we get that C(P) ≥ |Rξ |2
ξ−1

.

Consequently, for n ≥ 2,

r∑
k=1

(dk + 1) ≤ 2χ · |Rξ |2
ξ ≤ 4χ ·C(P)

≤ 4 ·C(P)(1 + ⌈log
2
n⌉) ≤ 12 ·C(P) log

2
n .

□

We continue with the main result of this section, which proves

Theorem 1 for the case of (deterministic) DC-spanners:

Lemma 22. P ′ is a (α ′, 12 · β ′ logn)-stretch substitute of P .

Proof. Let P = {p1,p2, . . . ,pk } and P
′ = {p′

1
,p′

2
, . . . ,p′k }. Since

each edge of a path pi ∈ P is replaced by the respective substitute

path of length at most α ′, we get that l(p′i ) ≤ α ′ · z = α ′ · l(pi ).
We now consider the congestion stretch of P ′. Let Ck be the

congestion due the k-level routings Pk ,1, . . . , Pk ,mk . We have

Ck ≤

mk∑
i=1

C(Pk ,i ) ≤ β ′mk ≤ β ′(dk + 1) .
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Hence, since each pe ∈ Pk ,i is used as a subpath in exactly one path

of P ′, from Lemma 21 we get

C(P ′) ≤
r∑

k=1

Ck ≤ β ′
r∑

k=1

(dk + 1) ≤ 12 · β ′C(P) logn .

□

To complete the proof of Theorem 1 for probabilistic DC-

spanners, it suffices that we show that we need to consider at most

O(n3) distinct matchings. To see why this is the case, note that

we have assumed in the premise of Theorem 1 that, for any given

matching routing problem, there exists a suitable (α ′, β ′)-substitute
with probability at least 1 − 1

n4
, and hence we can simply take a

union bound over all matchings for obtaining a result that holds

with high probability.

Lemma 23. The number of distinct matchings used to construct P ′

is O(n3).

Proof. Since Yi+1 ⊆ Yi , 1 ≤ i < r , the number of distinct

subgraphs Gi is bounded by |Y1 | ≤ n2. Moreover, di ≤ d1. Thus,
each level i givesmi ≤ di + 1 ≤ d1 + 1 ≤ n + 1 distinct matchings.

Therefore, the total number of distinct matchings used to build P ′

is at most n2 · (n + 1) = O(n3). □

7 DISTRIBUTED SPARSE SPANNER
We now show that Algorithm 1 described in Section 4 lends it-

self to a distributed implementation in the LOCAL model. First,

every node u samples each of its incident edges with probability ρ
and then informs each neighbor v if it did sample the edge (u,v).
This ensures that every node knows its local neighborhood in the

sampled subgraph G ′. We can implement the part reinserting the

removed edges by instructing the nodes to forward all information

about G and G ′ that they learn for the next 3 rounds. Since the

decision of whether to reinsert an edge only involves the 3-hop

neighborhood of a node in graphs G ′ and G, it follows that each
node will obtain the sufficient knowledge for determining locally

which of its incident edges are (λ∆′, c1∆)-supported. Finally, if node
u determines that an edge (u,v) needs to be reinserted, it simply

informs its neighbor v using one more round.

Corollary 3. There exists a O(1)-round distributed algorithm
in the LOCAL model that computes a (3,O(logn))-DC-spanner with
high probability, on any ∆-regular graph with ∆ ≥ n2/3.

8 CONCLUSION
We introduced the problem of simultaneously controlling the dis-

tance and congestion stretches in spanner graphs. We presented

algorithms for expanders and regular graphs. We also presented

a lower bound that relates sparsity and congestion. Several open

problems remain. One is to improve the gap between the lower and

upper bounds for the 3-distance spanner in ∆-regular graphs. An-
other is to increase the distance stretches for the spectral expanders

and regular graphs; this may give better congestion bounds. Finally,

it will be interesting to generalize the results from regular-degree

graphs to arbitrary-degree graphs.
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