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Abstract— In this paper, we consider the problem of safety
analysis of a closed-loop control system with anytime perception
sensor. We formalize the framework and present a general
procedure for safety analysis using reachable set computa-
tion. We instantiate the procedure for two concrete classes,
namely, the classical discrete-time linear system with linear
state feedback controller and an extension with variable update
rates. We present an exact computational method based on
polyhedral manipulations for the first class and an over-
approximate method for the second class. Our experimental
results demonstrate the feasibility of the approach.

I. INTRODUCTION

Robotic systems are being increasingly deployed in human
environments, and hence, ensuring their safe functioning is
of utmost importance. These systems consist of a controller
interacting with the robot dynamics to make decisions while
navigating the workspace [2], [23]. This had led to the
investigation of rigorous methods to provide guarantees on
the desired requirements of these control systems [12], [21].

A typical architecture for a software controlled robotic
systems consists of a plant modeling the robot dynamics,
sensors measuring the state of the system and a controller
providing inputs to the plant based on the current sensed
state. With the increase in the complexity of the robotic
tasks, computationally expensive sensors such as LIDARs
and cameras are being used. There is a vast range of sensors
to choose from in terms of precision, however, these come
with varying latencies. Specifically, a high precision sensor
has large latency in computing the sensed value. Hence,
anytime sensing has been proposed as a novel paradigm
that allows to exploit the precision-latency trade-off and
has been shown to enhance controller performance [25].
The objective of this work is to formalize the closed-loop
control framework with anytime sensing and explore safety
verification algorithms.

First, we present the closed-loop control system with any-
time sensing that extends the classical sensor with anytime
sensor and the classical controller with one that provides
both the control input and the update rate. More precisely,
the standard sensor that outputs an estimate x̂ of the state x
with error ϵ, is replaced by an anytime sensor that outputs
the estimate x̂ with an error ϵ that depends on a given
latency (upper bounded by the update rate). Next, we present
a general procedure for safety analysis of these systems
based on reachable set computation. We consider two specific
classes of systems, namely, discrete-time linear systems with
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linear state feedback controllers and fixed precision sensors,
and an extension of those to variable update rates and any-
time sensors. The first class of systems is relatively simpler
to analyze and we provide an instantiation of our general
procedure using polyhedral manipulation that computes the
exact reachable set. For the second class of systems, we
provide an algorithm that over-approximates the reachable
set. We ran our experiments on a 2-dimensional toy example
as well as a 4-dimensional robotic control example. Our
experiments demonstrate the feasibility of the safety analysis
approach.

II. RELATED WORK

The notion of anytime algorithm has been studied and
refers to an algorithm that provides an output at any given
point during its run-time, and is in general, expected to
provide better quality answers when given more time [7].
The idea of anytime algorithms has been used widely in
several domains such as in graph search [20] and motion
planning [24]. It has recently been gaining attention in the
area of control theory [10], [11], [28] with the introduction
of anytime perception modules, and has been shown to result
in improved control performance [25].

With the increasing use of anytime perception in au-
tonomous robot control, safety verification of systems em-
ploying them has become important. There is extensive work
in the area of safety verification of closed-loop control
systems [9], [27], [31] using reachable set computation.
Since the problem of computing reachable sets is undecidable
for most dynamical systems, various approaches for over-
approximation of these reachable sets have been explored
including abstraction-refinement based approaches and sym-
bolic approaches based on a variety of data structures [3],
[4], [8], [13], [15]–[18], [26], [30]. There has also been some
work addressing reachable set computation for dynamical
systems with uncertainties [1], [14], [19], [22]. While these
systems model uncertainty arising from the sensors, they
are not sufficient to capture the anytime sensing aspects.
In this work, we present a rigorous modeling and analysis
framework for closed-loop system analysis with anytime
sensing.

III. PRELIMINARIES

We denote the set of natural numbers by N, the set of real
numbers by R, and the set of non-negative reals by R≥0. Let
n ∈ N. For x ∈ Rn, let xi denote the projection of x onto
ith component, that is, x = (x1, x2, ..., xn). For x ∈ Rn, the
infinity norm on x is given by ∥x∥ = max1≤i≤n |xi|, and
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the Euclidean norm is given by ∥x∥2 =
√
x2
1 + · · ·+ x2

n.
Given a set X ⊆ Rn and v ∈ Rn with vi ≥ 0, for
all 1 ≤ i ≤ n, the set Box(X, v) = {x + α |x ∈
X,α ∈ Rn, |αi| < vi, 1 ≤ i ≤ n} represents the box
around X with respect to the vector v. For x ∈ R, the
notation vecn(x) denotes the vector (x, · · · , x) ∈ Rn. The
Minkowski sum of the sets X1, · · · , Xk ⊆ Rn is given by
X1 ⊕ · · · ⊕Xk = {x1 + · · ·+ xk |xi ∈ Xi, 1 ≤ i ≤ k}. For
two sets A,B ∈ Rn, the minimum distance between them is
defined as Dismin(A,B) = min{∥a− b∥2 | a ∈ A, b ∈ B},
and the asymmetric Hausdorff distance from A to B is
defined as DisAH(A,B) = supa∈A infb∈B ∥a − b∥2. Let
G : X → A×B be a function, then the function G1 : X → A
is the projection of G(x) on the set A for all x ∈ X , and
similarly we have another function G2. Any subset of the
Euclidean space considered in the paper is assumed to be
closed and bounded.

IV. FEEDBACK CONTROL SYSTEM WITH ANYTIME
SENSING

In this section, we formalize the notion of closed-loop
control system with anytime sensing. It is similar to the
traditional closed-loop feedback control system with a plant,
a sensor and a controller, wherein the standard sensor is
replaced by an anytime sensor as shown in Figure 1. In the
classical setting, the sensor outputs an approximation of the
sensed value with some precision. An anytime sensor has
the ability to adjust the precision based on user provided
latency, that is, given a time representing the latency (often
dictated by the update rate), the anytime sensor outputs the
sensed value within that time and a precision that depends on
the latency. That is, if given a larger time, the sensor would
output a more precise value than if given a smaller time. So,
the controller outputs both the input and the update rate to
be used by the plant to update the state, wherein the update
rate is also input to the sensor as the latency.

Fig. 1. Feedback Control System with Anytime Sensing

A. Syntax

A feedback control system with anytime sensing is for-
mally defined as follows.

Definition 1: An (n,m)-dimensional feedback control
system with anytime sensing is a tuple S = (F, P,G), where

• F : Rn × Rm × R≥0 −→ Rn models the dynamics of
the plant, n ∈ N and m ∈ N represent the dimesnions
of the state space and the input vector respectively.

• P : R≥0 −→ R≥0 is a decreasing function modeling
the relations between latency and error of the anytime
sensor.

• G : Rn −→ Rm × R≥0 represents the controller,
wherein G1 generates the control input and G2 gen-
erates the update rate for the plant.

The function F takes as input a state and an input along
with a time period for which the input needs to be applied
for, and outputs the state of the plant at the end of that time
period. The anytime perception sensor is characterized by
its precision function P , which takes latency as its input
and outputs a precision on its approximation of the state. In
particular, if more time is given to the sensor to sense the
value of the system, it will give lesser approximation error,
and hence it’s a decreasing function. The sensor is called
anytime perception sensor as it can be asked to sense the state
of the system within a given time. The feedback controller
takes the approximated state as its input, and outputs the next
input value to the system along with an update rate, that is, a
time duration for which it needs to be applied. Note that the
update rate and the latency is same so as so as to command
the sensor to give the next approximated state space value
at the end of that time period.

B. Semantics

Next we define the semantics of a feedback control system
with anytime sensing in terms of its executions. Let S =
(F, P,G) be an (n,m)-dimensional feedback control system
with anytime sensing. The system executes as follows. Start-
ing from a state x with input u and update rate τ , the plant
updates the state to x′ = F (x, u, τ). Next, the sensor outputs
an approximated value x̂ of the updated state x′ which is
guaranteed to be within an error bound of P (τ). Then, the
feedback controller G takes as input the value x̂ and outputs
an input value u′ to be applied for the time period τ ′. The
computation then repeats with the new values x′, u′ and τ ′.

Let X0 ⊆ Rn,U0 ⊆ Rm, and T0 ⊆ R be the sets of
initial states, initial inputs, and initial update time values,
respectively. A sequence

η = x0, x1, x2, · · ·

is called an execution of S from X0,U0 and T0 if there
exist sequences u0, u1, u2, ..., and τ0, τ1, τ2, ... such that the
following holds.

1) x0 ∈ X0, u0 ∈ U0, and τ0 ∈ T0.
2) For each i ≥ 1,

• xi = F (xi−1, ui−1, τi−1), and
• (ui, τi) = G(x̂i) for some x̂i ∈ Box({xi}, α),

where α = vecn(P (τi−1))

For each i > 0, let ti =
∑i−1

j=0 τj . Thus for each i > 0,
xi is the state of the system at time ti, x̂i represents the
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approximated state at time ti, and ui is the input vector given
to the plant to evolve from time ti to ti+1. For an execution
η, we use η[i] to denote its ith element, that is, η[i] = xi.

C. Safety Verification Problem

We are interested in verifying the safety of the feedback
control system with anytime sensing with respect to collision
with a given unsafe set. This is accomplished by computing
the reachable states of the system and check that it does not
intersect with the unsafe set. Hence, let us first define the set
of states that a feedback control system with anytime sensing
can reach with a certain number of iterations of the loop. Let
us fix the following notation for the rest of the paper. Let
S = (F, P,G) be an (n,m)-dimensional feedback control
system with anytime sensing. Let X0,U0 and T0 be the sets
of initial states, initial input vectors, and initial time values
respectively.

Definition 2: For each i ≥ 1, the set

ReachS(X0,U0,T0, i) = {η[i] : η is an execution of S},

is called the reachable set of the system within i steps starting
from the initial conditions (X0,U0,T0).

Problem 1: Safety Problem: Given S, X0,U0 and T0, an
unsafe set W ⊆ Rn, and k ∈ N, the safety problem is
to check whether ReachS(X0,U0,T0, i) ∩ W = ∅ for all
1 ≤ i ≤ k.

V. SPECIAL CASES OF FEEDBACK CONTROL SYSTEM
WITH ANYTIME SENSING

In this section, we consider two concrete classes of the
feedback control systems with anytime sensing, namely, the
classical discrete-time linear systems with constant update
rate and an extension of that to a variable update rate setting.

A. Discrete-time linear system

Recall that the plant in a discrete-time linear system is
given by:

x(t+ 1) = Ax(t) +Bu(t) x(0) ∈ X0, u(0) ∈ U0.
(1)

Here, the update rate is always a constant unit time, and
the matrices A ∈ Rn×n and B ∈ Rn×m are time invariant.
The corresponding plant function is F (x, u, τ) = Ax+Bu.
Since, the update rate is constant, we now have a traditional
sensor with a time-independent precision, that is, P (τ) = ϵ.
The linear state feedback controller is given by

u(t) = Kx̂(t),

and corresponds to G(x) = (Kx, 1), where 1 represents the
fact that the update rate is always 1.

B. Linear system with variable update rates

Next, we consider a model for a system with variable
update rates which can capture approximations of linear
continuous-time systems. The plant dynamics is given by:

x(t0 + τ) = Aτx(t0) +Bτu(t0) + Cx(t0) +Du(t0) + E
(2)

The matrices A,C ∈ Rn×n, E ∈ Rn×1, and B,D ∈ Rn×m

are time invariant. We note that the above equation models
an approximation of a continuous time linear system: ẋ(t) =
Ax(t)+Bu(t), x(0) ∈ X0, u(0) ∈ U0, the solution of which
is given by:

x(t) = eAtx(0) +

∫ t

0

eA(t−s)Bu(s)ds

Now, if we assume u to be a constant vector from time
0 to t, the above solution can be approximated by x(t) ≈
I.x(0) +Atx(0) +Btu(0) +R for some matrix R ∈ Rn×1.
Thus we consider a more general form of such a dynamics
in Equation 2.

Thus we consider an (n,m)-dimensional feedback control
system with anytime sensing S = (F, P,G), where F : Rn×
Rm× R≥0 −→ Rn is given by F (x, u, τ) = Aτx+Bτu+
Cx+Du+ E. Recall that the function P models the error
given the latency, so one such natural way to define P is as
P (τ) = c

τ for some constant c > 0.
The feedback controller outputs the control input and

the update rate. We assume that the control input is given
by a linear function as before. Note that the update rate
needs to be small if the current state of the system is close
to the unsafe set W , while it could be large if far from
the unsafe set. Hence, we define G : Rn → Rm × R≥0

to be G(x) = (G1(x), G2(x)) where G1(x) = Kx and
G2(x) = min{rmx, b} for some constants b, r > 0, and
mx = min{∥x− w∥2 |w ∈ W} is the minimum distance of
the state x from the unsafe set W ⊆ Rn. Note that we bound
the update rate from above by some constant b.

VI. SAFETY VERIFICATION ALGORITHMS

In this section, we present the safety verification frame-
work for a feedback control system with anytime sensing
by computing its reachable set. We begin with a generic
algorithm for the verification of any such system, and then
we instantiate this algorithm to obtain the specific safety
verification algorithms for the two special cases that we
considered in the previous section. Given initial sets of states,
inputs, and update rates, each algorithm in its ith iteration,
computes the reachable set formed using an execution of
length i or an over-approximation of this reachable set, and
checks if it intersects the unsafe state. In case it does, the
algorithm aborts, otherwise it gives the reachable set or its
over-approximation as its output.

Algorithm 1: This algorithm takes the following inputs: an
(n,m)-dimensional anytime feedback system S = (F, P,G),
a set D0 ⊆ Rn+m+1 representing a set of triples of state,
input and update rate values (x, u, t), an unsafe set W, and the
number of iterations k of the feedback loop. The broad idea
is to propagate the set D0 through the plant, anytime sensor
and the controller and repeat these steps k times. Recall from
Figure 1 that in any iteration, first, the plant updates its state,
that is, outputs x′ = F (x, u, t). Next the sensor outputs the
sensed state x̂, however, this depends on the current update
rate in addition to the current state x′. So, just computing the
set of states X ′ corresponding to x′ without keep track of the
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Algorithm 1 Generic Anytime Perception Algorithm
1: Input: D0,W, S = (F, P,G), k
2: Output: Xk

3: D← D0

4: for i = 1 : k do
5: Xtime = {(F (x, u, t), t) | (x, u, t) ∈ D}
6: X̂ = {(x, x+ α) | (x, t) ∈ Xtime, ∥α∥ ≤ P (t)}
7: D = {(x,G1(x̂), G2(x̂)) | (x, x̂) ∈ X̂}
8: X = {x | (x, y, z) ∈ D}
9: if X ∩W ̸= ∅ then Abort

10: end if
11: end for
12: Xk = X
13: return Xk

Algorithm 2 Anytime Perception Algorithm for Discrete-
time Linear System (Exact)

1: Input: P0,W, A,B,K, ϵ, k
2: Output: Xk

3: C =
[
A B

]
, K ′ =

[
I 0
0 K

]
4: P← P0

5: for i = 1 : n do
6: X = LT(C,P)
7: X̂ = Box(Twice(X), βϵ)
8: P = LT(K ′, X̂)
9: if X ∩W ̸= ∅ then Abort

10: end if
11: end for
12: Xk = X
13: return Xk

τs that lead to x′ will not be sufficient to propagate the reach
set through the anytime sensor. Hence, in Line 5, we compute
the set of (x′, t) pairs resulting from propagation through the
plant. Note that the sensor then outputs the sensed state x̂
corresponding to (x′, t), and the controller uses x̂ to output
the (u′, τ ′), that is, the control input and update rate for
the next iteration. Note that for the propagation through the
plant to be exact for the next iteration, it is imperative to
know which x′ led to (u′, τ ′). Hence, this information needs
to be propagated, first through the sensor by computing the
pairs (x′, x̂) and then through the controller by computing
the triples (x′, u′, τ ′). This is reflected in the computations
in Lines 6 and 7. The next theorem establishes that the set
output by this algorithm is the reach set of the system after
k iterations of the loop.

Theorem 1: Algorithm 1 computes the set
ReachS(D0, k).
Note that the above algorithm defines the sets that need to be
computed, however, does not provide explicit procedures to
compute them. Next, we instantiate Algorithm 1 to compute
reachable sets of the two special cases of the feedback control
systems considered in Section V-A and Section V-B. We
begin with the discrete-time linear system.

Algorithm 2: Note that for this class of systems the update
rate is constant and the sensor is the standard sensor, that is,
P (τ) is constant. Therefore, the input set is P0 ⊆ Rm+n

rather than Rm+n+1 and is assumed to be a polyhedron.
Further, we don’t need to keep track of time factor in Line 5
of Algorithm 1 and the function F is a linear transformation
on the set of pairs (x, u) ∈ P ⊆ Rm+n. Hence, we compute
the set X, which is obtained by the linear transformation
LT(C,P) defined by the multiplication of the matrix C
with the polyhedron P, where C =

[
A B

]
∈ Rn×(n+m).

Since the operation LT(C,P) is a linear transformation on a
polyhedron, X is also a polyhedron.

The next step consists of computing (x, x′), where x′ is
any state within ϵ = P (1) of x, corresponding to Line 6 of
Algorithm 1. Now, this step is accomplished by first stacking
a state twice to form the set of pairs (x, x) for x ∈ X, and
then expanding the second part of every stacked state by
ϵ. Stacking the state vector twice is obtained by the linear

transformation Twice(X) = MX where M =

[
I
I

]
∈ R2n×n.

Bloating the second half of every stacked state by ϵ, that is,
the set Box(Twice(X), βϵ), where (βϵ)i = 0 for 1 ≤ i ≤ n,
and (βϵ)i = ϵ for n + 1 ≤ i ≤ 2n, corresponds to the
Minkowski sum of Twice(X) with Box(0, βϵ). This whole
step is summarized in Line 7 of Algorithm 2.

Finally, we compute the polyhedron P that captures (x′, u)
pairs by the linear transformation LT(K ′, X̂), where K ′ =[
I 0
0 K

]
∈ R(n+m)×2n. Here, the polyhedron P stores all

states and all the possible inputs corresponding to each state.
This step corresponds to the computation of the set D in
Algorithm 1. Since, each step of this algorithm computes the
sets outlined in Algorithm 1 exactly, we obtain the following
result.

Theorem 2: For an initial polyhedron P0 ⊆ Rn+m, an
unsafe polyhedron W, and k ∈ N, Algorithm 2 computes the
exact set ReachS(P0, k).

Next we instantiate Algorithm 1 to compute the reachable
sets of the feedback system defined in Section V-B. Note
that the dynamics has terms that involve product of x and u
with τ . Hence, the system is not linear in the traditional
sense. While non-linear (polynomial) theory of reals can
be use to compute the exact set, it will not be efficient.
Hence, we present Algorithm 3 that only uses polyhedral
manipulations to efficiently compute an over-approximation
of the reachable set. Before studying Algorithm 3, let’s see
the following proposition which helps in over-approximating
the set of states.

Algorithm 3: We represent D0 and the subsequent sets D
in Algorithm 1 through an approximate set that is a Cartesian
product of P0 representing a set of pairs of states and inputs
and T0 representing a set of update rates. We maintain this
data structure through the iteration. Note that if x ∈ Rn, u ∈
Rm, 0 ≤ l′ ≤ u′, and e(τ) = Aτx+Bτu+Cx+Du+E.
Then {e(τ) : τ ∈ [l′, u′]} = Convex Hull{e(l′), e(u′)}.
Thus, in each iteration, given a set of update rates as
an interval [l, u], we compute the state part of Xtime by
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Algorithm 3 Anytime Perception Algorithm for Discrete-
time System with update rates (Over-approximate)

1: Input: P0,T0 = [l0, u0],W, A,B,C,D,E,K, c, r, b, k
2: Output: Xk

3: K ′ =

[
I 0
0 K

]
4: P← P0 × {1}, l← l0, u← u0

5: for i = 1 : n do
6: J1 =

[
Al + C Bl +D E

]
7: J2 =

[
Au+ C Bu+D E

]
8: X1 = LT(J1, P ),
9: X2 = LT(J2, P )

10: X = CH(X1,X2)
11: ϵ = c

l

12: X̂ = Box(Twice(X), βϵ)
13: P1 = LT(K ′, X̂)
14: P = P1 × {1}
15: Xapp = Box(X, αϵ)
16: l = min{b, r.Dismin(Xapp,W)}
17: u = min{b, r.DisAH(Xapp,W)}
18: if X ∩W ̸= ∅ then Abort
19: end if
20: end for
21: Xk = X
22: return Xk

computing the convex hull of two reach sets for Equation
2 corresponding to τ = l and τ = u. This is accomplished
in Lines 6-10 of Algorithm 3.

Next, we need to compute the X̂ . This is done similar
to Algorithm 2. While the exact algorithm would require
computing for every τ ∈ [l, u], a corresponding ϵ and
bloating the state set appropriately, we again approximate
this by taking a conservative value of ϵ corresponding to l.
Recall, for this system, we have P (τ) = c

τ for some constant
c > 0. Since c

l > c
u , ϵ = c

l corresponds to the maximum
bloating and our results will be sound (over-approximate).
This is performed in Lines 11-12 of Algorithm 3.

The control input computation is similar to that of Algo-
rithm 2 and is done in Lines 13-14 of Algorithm 3. The
Cartesian Prodcut with {1} is a technicality required to
handle the constant E in the dynamics by expanding every
vector with a constant 1. Finally, we need to compute the set
of update rates. Note that the lowest update rate l corresponds
to the state x′ that is closest to the unsafe set. This distance
is computed by Dismin(Xapp,W), where Xapp is the set of
all approximated state values given by the sensor, i.e., the set
of second halves of the vectors in X̂ . The highest update rate
u corresponds to the x′ that is farthest from the unsafe set,
and this value is given by DisAH(Xapp,W). The computation
corresponding to the set of updates rates represented as an
interval [l, u] is summarized in Lines 15-17 of Algorithm 3,
where minimum with respect to b is taken to ensure that the
update rate has a ceiling of b.

Note that when we compute the reachable sets, we don’t
keep track of which states and inputs correspond to which

update rates; hence, the sets computed in each step of Algo-
rithm 3 over-approximate the coresponding sets in Algorithm
1. This is captured in the following theorem.

Theorem 3: For an initial polyhedra P0 ⊆ Rn+m, T0 ⊆ R,
an unsafe polyhedron W, and k ∈ N, Algorithm 3 computes
an over-approximation of the reach set ReachS(P0, k), that
is, ReachS(P0, k) ⊆ Xk.

VII. EXPERIMENTS

In this section, we present the evaluation of Algorithm 2
and Algorithm 3 on two case studies. The first one is a toy
example of 2-dimensional closed loop system, and the second
one is a 4-dimensional closed loop system which is a balance
system of a two wheeled robot with closed-loop control [5].
We implemented our algorithms in a Python toolbox; all the
experiments were run on a Macbook Pro 2021 machine (OS:
MacOS Ventura 13.5.2, Processor: Apple M1 Pro, RAM:
16GB). We considered a vertex-based representation for the
input polyhedral sets, and implemented linear transformation
and Minkowski sum on this representation. Finally, we use
Parma Polyhedra Library [6] on top of the mathematical
software tool Sagemath [29] to report the number of vertices
and the volume of the resulting reachable polyhedral sets.

Recall that in Algorithm 3, we need to calculate the
minimum distance between two polyhedra. We calculate an
approximation of this value by computing the minimum
distance among all the vertices of the two polyhedra. Since
all our polyhedra are convex and bounded and are in the
Euclidean space, we compute the distance DisAH(Xapp,W)
by computing minw∈W maxx∈Xapp

∥w−x∥2. The next result
says that the max in the above expression is achieved on at
least one of the vertices of Xapp. Thus for each vertex of
W, we calculate its maximum distance from all the vertices
of Xapp, and finally we take minimum of all the obtained
values corresponding to each vertex of W.

Proposition 1: Let x ∈ Rn, and P ⊆ Rn be a polyhedron
such that x /∈ P. The maximum distance from x to P, that
is, maxp∈P ∥x − p∥2 is given by ∥p − v∥2 for some vertex
v of P.

The first example we consider is a toy closed loop system,
where the state X belongs to 2-dimensional space and the
input U belongs to 1-dimensional space. For stability, we
choose the feedback controller K such that the eigenvalues
of A−BK are less than 0. We took a polyhedron W in the
state-space as the unsafe region. The sensor function P for
implementing Algorithm 3 is taken to be P (τ) = 500/τ .

The second example is a balance system of a two wheeled
robot with closed-loop control [5]. A balance system is a
mechanical system in which the center of mass is balanced
above a pivot point. The system tries to stabilize an object
on top of its body such that the object does not fall to the
ground. The dynamics of the system is given by:[
(M +m) −ml cos θ
−ml cos θ (J +ml2)

] [
p̈

θ̈

]
+

[
cṗ+ml sin θθ̇2

γθ̇ −mgl sin θ

]
=

[
F
0

]
Here, p and ṗ are the state variables that represent the
position and velocity of the base of the system, θ and θ̇
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TABLE I
ALGORITHM 2 ON THE 2D CLOSED-LOOP SYSTEM

Experiment 1 (ϵ = 0)
Iteration Num Ver(X) Volume(X) Runtime (s)

1 4 18 6.286159277
5 4 18 6.357446909
10 4 18 6.438996077
50 4 18 7.113317251

Experiment 2 (ϵ = 0.2)
Iteration Num Ver(X) Volume(X) Runtime (s)

1 4 18 0.004370928
3 64 281.68 0.065777779
5 1024 586.32 0.310337067
8 65536 1201.36 23.40886497

Experiment 3 (ϵ = 2)
Iteration Num Ver(X) Volume(X) Runtime (s)

1 4 18 0.00424099
3 64 4498 0.065255165
5 1024 13074 0.324712038
8 65536 33970 24.02043891

represent the angle and angular rate of the object above the
base, M is the mass of the base, m and J are the mass
and moment of inertia of the object to be balanced, l is the
distance from the base to the center of mass, c and γ are
coefficients of the viscous friction, and g is the acceleration
due to gravity. The above equations when represented in the
state space form correspond to a system with 4-dimensional
state space and 1-dimensional input vector.

Table I summarizes the results of running Algorithm 2 on
the 2-dimensional closed loop system for varying values of
sensor error ϵ, and varying number of iterations of the closed-
loop. The columns Num Ver(X), Volume(X), and Runtime
report the number of vertices, the volume and the compu-
tation time of the polyhedron representing the reachable set
of states. For ϵ = 0, we do not need to perform Minkowski
sum operation with a box, hence, the number of vertices in
the reach set remains constant. For all ϵ > 0, the number
of vertices of the reachable set increases with increase in
the number of iterations due to repeated Minkowski sum
operations with a box, however, it is still independent of the
specific value of ϵ, and hence, the specific value of ϵ does not
affect the runtime drastically. On the other hand, the volume
of the reachable set is affected by the specific value of the ϵ.
Table II summarizes the results of running Algorithm 2 on
4-dimensional balance system. We observe similar trends as
in Table I, however, due to the increased dimension of this
system, the computations are more expensive.

Table III summarizes the results of running Algorithm
3 on both the 2-dimensional and 4-dimensional systems.
We do not compare with different values of ϵ since the
error bound dynamically changes during the execution of the
algorithm. Note that the volumes of reachable set increase
much more drastically than for Algorithm 2. This reflects the
over-approximation in the computation of the reachable sets
as captured in Theorem 3. For large number of iterations, all
of the above algorithms fail to compute the reach sets within
a reasonable time limit, with Algorithm 3 getting stuck for
smaller number of iterations as compared to Algorithm 2.

TABLE II
ALGORITHM 2 ON THE 4D BALANCE SYSTEM

Experiment 1 (ϵ = 0)
Iteration Num Ver(X) Volume(X) Runtime (s)

1 4 112 0.022784948
5 4 112 0.088227034
10 4 112 0.161881685
50 4 112 0.780392885

Experiment 2 (ϵ = 0.2)
Iteration Num Ver(X) Volume(X) Runtime (s)

1 4 112 0.79925704
2 16 269.22 0.83965683
3 256 628.18 1.201859951
4 4096 2054.44 6.627283812

Experiment 3 (ϵ = 2)
Iteration Num Ver(X) Volume(X) Runtime (s)

1 4 112 0.02553606
2 16 1380.87 0.065253019
3 256 6428.18 0.429074049
4 4096 30337.77 7.774876118

TABLE III
ALGORITHM 3 ON THE TWO SYSTEMS

Experiment 1: 2D Closed-loop System
Iteration Num Ver(X) Volume(X) Runtime (s)

1 6 2.6745e+03 1.3740808
2 8 3.1948e+10 1.4058749
3 10 3.1854e+14 1.6339948
4 12 3.1693e+18 3.4348258
5 14 3.1533e+22 21.029801
6 18 3.1374e+26 327.53359

Experiment 2: 4D Balance System
Iteration Num Ver(X) Volume(X) Runtime (s)

1 2 112 2.820056915
2 16 54377 3.089679003
3 129 2.7646e+08 13.276090

VIII. CONCLUSION

We formalized the safety verification problem for closed-
loop control system with anytime perception and presented
a generic procedure for safety analysis. We instantiated the
procedure for two classes of systems, and presented algo-
rithms based on polyhedral manipulations. Our experiments
demonstrate the feasibility of the approach. However, there
are several computational challenges with respect to the
scalability of the approach. In the future, we would like
to experiment on real case studies as well as extend the
framework to non-linear systems.
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