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Abstract—A spanning tree 7 of graph G is a p-
approximate universal Steiner tree (UST) for root vertex
r if, for any subset of vertices S containing r, the cost
of the minimal subgraph of 7" connecting S is within a
p factor of the minimum cost tree connecting S in G.
Busch et al. (FOCS 2012) showed that every graph admits
2018 n) approximate USTs by showing that USTs are
equivalent to strong sparse partition hierarchies (up to
poly-logs). Further, they posed poly-logarithmic USTs and
strong sparse partition hierarchies as open questions.

We settle these open questions by giving polynomial-
time algorithms for computing both O(log” n)-approximate
USTs and poly-logarithmic strong sparse partition hi-
erarchies. We reduce the existence of these objects to
the previously studied cluster aggregation problem and a
class of well-separated point sets which we call dangling
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nets. For graphs with constant doubling dimension or
constant pathwidth we obtain improved bounds by deriving
O(log n)-approximate USTs and O(1) strong sparse parti-
tion hierarchies. Our doubling dimension result is tight up
to second order terms.

I. INTRODUCTION

Consider the problem of designing a network that
allows a server to broadcast a message to a single set of
clients. If sending a message over a link incurs some cost
then designing the best broadcast network is classically
modelled as the Steiner tree problem [HR92]. Here,
we are given an edge-weighted graph G = (V, E, w),
terminals S C V and our goal is a subgraph H C G
connecting .S of minimum weight w(H) := 3 __;; w(e).
We let OPTg be the weight of an optimal solution.

However, Steiner trees fail to model the fact that a
server generally broadcasts different messages to differ-
ent subsets of clients over time. If building network links
is slow and labor-intensive, we cannot simply construct



Family Approximation Ref.
Complete Graphs
O(log®n) [GHRO6]
General
Q(logn) ULN*03]
O(logn) [BLT14]
Planar —
Q(logn) ILN*03]
O(d®) -logn [Fil20]
Doubling (~ ) log :
Qlogn) [LN*05]
Pathwidth | O(pw - logn) [Fil20]
General Graphs
20(Vlogn) [BDR*12]
General ;
O(log' n) Thm. V1.2
Planar O(log'™ n) [BDR*12]
Doubling | O(d7) -logn | Full Ver. (CF+23]
Pathwidth | O(pw® - logn) | Full Ver. [BCF*23]

Fig. 1: A summary of UST work.

new links each time a new broadcast must be performed.
Rather, in such situations we must understand how to
construct a single network in which the broadcast cost
from a server is small for every subset of clients. Ideally,
we would like our network to be a tree since trees have a
simple routing structure. Our goals are similar if our aim
is to perform repeated aggregation of data of different
subsets of clients. Motivated by these settings, Jia et al.
[JLNT05] introduced the idea of universal Steiner trees
(USTs), defined below and illustrated in Figure 2.

Definition I.1 (p-Approximate Universal Steiner Tree).
Given an edge-weighted graph G = (V, E,w) and root
r € V, a p-approximate universal Steiner tree is a
spanning tree T C G such that for every S C V
containing r, we have

w(T{S}) < p- OPTs

where T{S} C T is the minimal subtree of T connect-
ing S, and OPTg is the minimum weight Steiner tree
connecting S in G.

Known UST results are given in Figure 1. Surpris-
ingly, it is known that every n-vertex graph admits a
20(@)—approximate and poly-time-computable UST,
as proven by [BDR " 12] more than a decade ago. On the
other hand, the best known lower bound is p > Q(logn)
[JLN'05]. In fact, even when G is the complete graph
whose distances are induced by an /n x y/n grid, there
is an (logn/loglogn) lower bound. Improved upper

bounds are known for several special cases: fixed minor-
free (e.g. planar) graphs admit O(log'® n)-approximate
USTs [BDR ™ 12]. Complete graphs induced by a metric
admit O(log? n)-approximate USTs [GHROG6]. If the
inducing metric has doubling dimension d, then the
complete graph admits O(d? - log n)-approximate USTs
[Fil20]. Furthermore, better bounds are known for com-
plete graphs when the inducing metric is the shortest
path metric of a restricted graph H: if H is planar or has
pathwidth pw then the complete graph admits O(logn)-
[BLT14] and O(pw - logn)- [Fil20] approximate USTs,
respectively.

Thus, for general graphs, there is a huge gap between
the upper and lower bounds of 20(vV1°8™) and Q(log n).
Closing this gap has been posed as an open question
[BDR' 12, JLN*05, Fil20].

Our main result is a poly-time O(log” n)-
approximate UST, settling this open question.
Furthermore, if G has constant doubling dimension or
pathwidth, we provide an O(logn)-approximate UST.
The doubling dimension result is tight up to second order

terms [JLNT05].

We obtain our results by proving the existence
of certain graph hierarchies—strong sparse partition
hierarchies— and leveraging a previously-established
connection between these hierarchies and USTs. We
prove the existence of these hierarchies, in turn, by
reducing their existence to two objects: (1) low distortion
solutions to the (previously studied) cluster aggregation
problem, and (2) a certain kind of net which we call
dangling nets that provide additive sparsity guarantees.
The existence of these nets can be inferred from an
analysis in [Fil20] of the random-shift techniques of
[MPX13]. For cluster aggregation, we improve the best
bounds in general graphs from O(log®n) [BDR'12]
to O(logn) and prove O(1) bounds for trees, constant
doubling dimension and constant pathwidth graphs. Our
results are summarized in Table I. We spend the rest of
this section describing them in greater detail.'

A. Poly-Logarithmic USTs

As mentioned, our main result is a polynomial-
time computable O(log” n)-approximate UST in general
graphs. Not only is this an exponential improvement for
general graphs, it significantly improves upon the best
bounds known for planar graphs (previously O(log18 n)
[BDRT12]).

'We make use of standard graph notation and concepts throughout
this work; see Section III for definitions.

2Following the conventions in theoretical computer science, we call
f = polylog(g) an exponential improvement over g.
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(b) T{S} C T.

/

(a) UST T. (c) Optimal Steiner tree for S.

Fig. 2: 2a is a UST (blue) in unit-weight G with root 7 (green triangle). 2b is induced subtree T'{S} (orange) of
weight 11 for S (orange diamonds). 2c is weight 6 optimal Steiner tree (green).

Problem Param. | General Thm. Doubling Ref. Pathwidth Ref.
UST p O(log"n) (V12) | O(d")-logn [BCF™23] | O(pw® -logn) [BCF23]
Strong Sparse ! O(logn) O(d) O(pw)
Hierarchy T O(logn) (VLI) O(d) [BCF+23] O(pw?) [BCF+23]
v | O(log’n) O(d%) O(pw?)
Dangling Nets ! O(logn) O(d) O(pw)
[Fil20] T O(logn) O(d) O(pw?)
Cluster Agg. B O(logn)  (V.1) O(d?) [BCF123] O(pw) [BCF*23]

TABLE I: A summary of our results. For details on the results for bounded doubling dimension graphs and bounded
pathwidth graphs, we refer the reader to the full version of the paper [BCF23]. Our solutions for cluster aggregation
on doubling dimension d only work for the instances of cluster aggregation we must solve to compute hierarchies
of strong sparse partitions. O notation hides poly(log d) factors. The results for dangling nets are proven implicitly
in [Fil20]. Our algorithms for general graphs and bounded doubling dimension graphs are randomized and succeed
with high probability (1 —n~*(1)), while our result for pathwidth graphs and trees are deterministic.

We also give improved UST bounds for graphs with
doubling dimension d and graphs with pathwidth pw:
poly(d)-log n and poly(pw)-log n respectively. Bounded
doubling dimension graphs are a well-studied graph
class that generalizes the “bounded growth” of low-
dimensional Euclidean space to arbitrary graphs [FLLO6,
AGGMO06, ACGP16, KRX08, FS16, FKT19]. Bounded
pathwidth graphs are a fundamental graph class that
plays a key role in the celebrated graph minor theorem
[RS86]. As discussed above, it was previously known
that O(logn)-approximate USTs are possible if G is a
complete graph whose edge lengths are induced by either
a constant doubling dimension metric or the shortest
path metric of a constant pathwidth graph. Our results
strengthen this, showing O(logn)-approximate USTs
are possible for these two cases without the additional
assumption that G is the complete graph.

B. Strong Sparse Partitions via Cluster Aggregation and
Dangling Nets

As mentioned, we achieve our UST algorithm by way
of new results in graph hierarchies.

We build on works over the past several decades on
efficiently decomposing and extracting structure from
graphs and metrics. Notable examples of this work
are ball carvings, low-diameter decompositions (LDDs),
network decompositions, padded decompositions and
sparse neighborhood covers, all of which have nu-
merous algorithmic applications, especially in parallel
and distributed computing [AP90, LS93, KPR93, FG19,
BGK™11, Fil19a, FS10, EHRG22, ABCP96, ABNOS,
CG21, Bar04, KK17, RG20, FL22]. Generally speaking,
these constructions separate a graph into clusters of
nearby vertices while respecting graph distances.

The decompositions of our focus are strong sparse



partitions, first defined by [JLNT05] (in their weak
diameter version) and studied in several later works
[BDR*12, CJIK+22, Fil20].

Definition 1.2 (Strong A-Diameter (o, 7)-Sparse Parti-
tions). Given edge-weighted graph G = (V,E,w), a
strong A-diameter (o, T)-sparse partition is a partition

C of V such that:

o Low (Strong) Diameter: YC < C, the induced
graph G[C] has diameter at most A;

e Ball Preservation: Yv € V, the ball Bg(v,%)
intersects at most T clusters from C .

Sparse partitions with weak diameter and poly-
logarithmic parameters can be constructed directly from
classic sparse covers [AP90, JLNT05, Fil20] or ball
carving techniques [Bar96, CJK22]. However, to date,
the only known techniques for poly-logarithmic sparse
partitions with strong diameter guarantees in general
graphs are the (O(logn), O(logn))-sparse partitions of
[Fil20], constructed using exponentially-shifted starting
times.? These start times were first used by [MPX13] to
compute low diameter decompositions and spanners.

The simple graph class of trees cannot do much better
than the strong (O(logn), O(log n))-sparse partitions in
general graphs: both « and 7 have to be essentially
Q(logn). As such, bounded pathwidth and doubling
dimension graphs are of particular interest. In particular,
graphs with bounded pathwidth are exactly the graph
family that excludes a fixed tree as a minor, circumvent-
ing this barrier with constant parameter strong sparse
partitions.Conversely, trees that do not have good sparse
partitions have doubling dimension Q(logn).

Little is known about graph decompositions in hier-
archical settings; in particular, if our goal is a series
of decompositions of increasing diameter where each
decomposition coarsens the previous. One notable such
hierarchy introduced by [BDR™12] is a hierarchy of
strong sparse partitions.*

Definition L.3 (y-Hierarchy of Strong (v, 7)-Sparse Par-
titions). Given edge-weighted graph G = (V,E,w), a
~-hierarchy of strong («,T)-sparse partitions consists
of vertex partitions {{v} : v € V} = Cp,C1,...,Cx =
{{V'}} such that:

o Strong Partitions: C; is a strong ~y'-diameter (o, T)-
sparse partition for every i;

3Worse partitions with 20 (v1og n) parameters are possible by
adapting the greedy approach of [BDR112].

4We assume that the minimal pairwise distance in G is 1. Otherwise,
we can scale all distances accordingly.

o Coarsening: C; 1 coarsens C;, i.e. for each U € C;
there is a U’ € Cyy1 such thar U C U’

If we did not enforce the above coarsening property,
we could trivially compute the above partitions with
poly-logarithmic parameters by using the strong sparse
partitions from [Fil20] independently for each level of
the hierarchy. However, the coarsening property ren-
ders computing such hierarchies highly non-trivial as it
prevents such independent construction. Indeed, while
hierarchies with poly-logarithmic parameterizations have
been stated as an open question (see, e.g. [Fil20]), the
previous best bounds known for such hierarchies are
v = a = 7 = 20(egn) [BDR*12]. Thus, there is
an exponential gap between the bounds known for “one-
level” and hierarchical strong sparse partitions.

Nonetheless, previous work has demonstrated that
these hierarchies can serve as the foundation of remark-
ably powerful algorithmic result such as USTs.

Theorem L4 ([BDRT12]). Given edge-weighted graph
G = (V,E,w) and a ~-hierarchy of strong (o, T)-
sparse partitions, one can compute an O (a2 logn)-
approximate UST in polynomial time.

[BDRT12] gave QO(m)-approximate USTs by com-
bining the above theorem with their hierarchies.

Our second major contribution is a reduction of such
hierarchies to the previously-studied cluster aggregation
problem [BDRT12] and what we call dangling nets.
Informally, cluster aggregation takes a vertex partition
and a collection of portal vertices and coarsens it to a
partition with a portal in each coarsened part. The goal
is to guarantee that the portal in each vertex’s coarsened
cluster is nearly as close in its cluster as its originally-
closest portal. Crucially for our purposes, the distortion
of a solution is measured additively. See Figure 3 for an
illustration of cluster aggregation.

Definition 1.5 (Cluster Aggregation). An instance of
cluster aggregation consists of an edge-weighted graph
G = (V, E,w), a partition C of V into clusters of strong
diameter A and a set of portals P C V. A [-distortion
solution is an assignment [ : C — P such that for every
veV

dair-1(fo)) (v, f(v)) < dg(v, P) + B- A
where C, € C is the cluster containing v and we let
f(v) = f(Cy) and f~'(p) == {v: f(v) = p}

In other words, a [S-distortion cluster aggregation solu-
tion f requires that the distance from v to p = f(v) in
the cluster induced by p, is at most S - A larger than



(a) Cluster aggregation instance.

(b) Cluster aggregation solution.

(c) Solution distortion.

Fig. 3: A cluster aggregation instance with unit-weight edges. 3a gives the instance; portals P are blue squares and
the input partition parts C are blue ovals. 3b gives solution where each red oval is the pre-image of some portal. 3¢
illustrates why the solution is 2-distortion with the path of a vertex to its nearest portal in green and to its nearest

portal in its coarsened cluster in red.

the distance from v to it’s closest portal in G. Observe
that any solution f on input cluster aggregation partition
C naturally corresponds to a coarser partition C’. Also,
observe that, in general, we have that 8 > 1 by Figure 5.
Informally, a dangling net is a collection of net ver-
tices we “dangle” off of a graph so that every vertex
is close to a net vertex but no vertex has too many net
vertices nearby. Crucially, the sense of “nearby” is also
measured additively. See Figure 7b for an illustration.

Definition 1.6 (A-Covering («, 7)-Sparse Dangling Net).
A dangling net for graph G = (V,E,w) consists of
vertices N where N NV = () and a matching M with
edge weights wyy from N to V. We let G+ N := (V U
N,E U M,w Uwy) be the resulting graph. N is A-
covering (o, T)-sparse if

e Covering: dgin(v,N) < A for everyv e V;

o Additive Sparsity: for all v € V we have

|{t € N :dgin(v,t) <dg+n(v,N)+ %}’ <T.

While not explicitly stated in terms of dangling nets,
the random shift analysis of [Fil20] implicitly prove the
existence of good parameter dangling nets: e.g. « =7 =
O(logn) for general graphs; see Theorem III.1.

We state our reduction of strong sparse hierarchies to
cluster aggregation and dangling nets.

Theorem L.7. Fix edge-weighted graph G and o, 8,7 >
0. If for every A > 0:
e Dangling Net: there is a dangling net N that is
A-covering («, T)-sparse and;

o Cluster Aggregation: G + N cluster aggregation
on portals N is always B-distortion solvable;
then, G has a 2 - (2a + 1)-hierarchy of strong (8« +
4,7)-sparse partitions. Furthermore, if each N and clus-

ter aggregation solution is poly-time computable then the
hierarchy is poly-time computable.

C. Improved Cluster Aggregation

The connection we establish between cluster aggre-
gation, strong sparse partition hierarchies and USTs—as
well as the fact that [BDR ' 12] posed improvements on
their O(log2 n)-distortion cluster aggregation solutions
as an open question—motivates further study of cluster
aggregation.

Our third major contribution is an improvement to
cluster aggregation distortion in a variety of graph
classes. Notably, we improve the O(log?n)-distortion
solutions of [BDR"12] to O(logn)-distortion for gen-
eral graphs and give improved bounds for trees, bounded
pathwidth and bounded doubling dimension graphs. For
bounded doubling dimension graphs we must make as-
sumptions on the input (see the full version [BCF23]).
We know of no bounds prior to our work for clus-
ter aggregation other than the previous O(log2 n) of
[BDR™12] for general graphs. We summarize our cluster
aggregation results in Figure 4 (k < n is the number of
clusters in the input partition).

Combining our reduction (Theorem 1.7) with the
above cluster aggregation algorithms and dangling nets
(Theorem III.1 for general graphs) gives our strong
sparse partition hierarchies. Combining these hierarchies
with Theorem 1.4 gives our UST solutions. See Sec-
tion VI for proof details and again, see Table I for an
overview of the resulting bounds.

As the notation we use is quite standard, we defer a
description of it and our (mostly) standard preliminaries
to Section III.



Family Distortion Ref.
General O(log® n) [BDR*12]
O(log k) Theorem V.1
Trees 4 Full ver. [BCF123]
Doubling | O(d? -logd) | Full ver. [BCF23]
Pathwidth | 8(pw + 1) Full ver. [BCFT23]

Fig. 4: Our cluster aggregation results.

— oLt o

Fig. 5: Why 8 > 1 for cluster aggregation. One vertex
in the center cluster must traverse its A-diameter cluster
to get to a portal in any cluster aggregation solution.

D. Additional Related Work

We review additional related work not discussed ear-
lier.

1) (Online and Oblivious) Steiner Tree: As it is an
elementary NP-hard problem [GJ79], there has been
extensive work on polynomial-time approximation algo-
rithms for Steiner tree and related problems [AKROI,
BGRS13, BGRS10, RZ05, HHZ21, Fil22, GKRO00].

The subset of this work most closely related to our
own is work on online and oblivious Steiner tree. In
online Steiner tree the elements of S\ {r} arrive one at
a time and the algorithm must add a subset of edges to its
solution so that it is feasible and cost-competitive with
the optimal Steiner tree for the so-far arrived subset of
S\{r}. Notably, the greedy algorithm is a tight O(log n)-
approximation [IW91], though improved bounds are
known if elements of S\ {r} leave rather than arrive
[GK14, GGK13]. See [AA92, NPS11, Ang07, XM22]
for further work. Even harder, in oblivious Steiner tree,
for each possible vertex v € V' \ {r}, the algorithm must
pre-commit to a path P, from r to v. Then, a subset S
containing r is revealed and the algorithm must play as
its solution the union of its pre-commited-to paths for .S,
namely |J, . S\{r} P,. The goal of the algorithm is for its
played solution to be cost-competitive with the optimal
Steiner tree for S for every S. Notably, unlike USTs,
the union of the paths played by the algorithm need not
induce a tree. [GHRO6] gave an O(log® n)-approximate

polynomial-time algorithm for this problem and its more
general version “oblivious network design.”

Observe that any p-approximate UST immediately
gives a p-approximate oblivious Steiner tree algorithm
which, in turn, gives a p-approximate online Steiner tree
algorithm. Thus, in this sense UST is at least as hard as
both online and oblivious Steiner tree.

2) Tree Embeddings and (Hierarchical) Graph De-
compositions: There has been extensive work on ap-
proximating arbitrary graphs by distributions over trees
by way of so-called probabilistic tree embeddings
[Bar98, DGR06, ANI12, BGS16, FRT03, ACE™20,
FL21, HHZ21, Fil22]. Notably, any graph admits a distri-
bution over trees that O(log n)-approximate distances in
expectation [FRT03] and a distribution over subtrees that
O(lognloglogn)-approximate distances in expectation
[AN12].

USTs and probabilistic tree embeddings both attempt
to flatten the weight structure of a graph to a tree. How-
ever, tree embeddings only aim to provide pairwise guar-
antees in expectation, while USTs provide guarantees
for every possible subset of vertices deterministically.
While one can always sample many tree embeddings to
provide pairwise guarantees with high probability, the
corresponding subgraph will not be a single tree, unlike
a UST.

As mentioned in Section I-B, decompositions of
graphs into nearby vertices that respect distance struc-
ture have been extensively studied. See, for example,
[CIK™22] for a recent application of sparse partitions
in streaming algorithms. The graph decomposition most
similar to sparse partitions are the scattering partitions
of [Fil20]. Informally, scattering partitions provide the
same guarantees as sparse partitions but with respect to
shortest paths rather than balls.

These sorts of decompositions (and, in particular,
hierarchies of them) are intimately related to tree em-
beddings. For example, the tree embeddings of [Bar98]
can be viewed as a hierarchy of low-diameter de-
compositions. However, we note that, unlike strong
sparse partition hierarchies, these hierarchies generally
do not provide deterministic guarantees and, for exam-
ple, [Bar98]’s hierarchy only provides weak diameter
guarantees. Somewhat similarly, [ACET20] produce a
strong diameter padded decomposition hierarchy.

3) Universal Problems: In addition to Steiner tree,
there are a number of problems whose universal versions
have been studied. For example, the universal travelling
salesman problem has been extensively studied [SSOS,
GKSS10, HKL06, BCK11, JLN*05, PBI89, BG89].
There are also works on universal set cover [JLN105,



GGL™08] and universal versions of clustering problems
[GMP23].

II. OVERVIEW OF CHALLENGES AND INTUITION

Before moving on to our formal results, we give a
brief overview of our techniques.

A. Reducing Hierarchies to Cluster Aggregation and
Dangling Nets

Similarly to previous work, we take a bottom-up ap-
proach to compute strong sparse partition hierarchies. We
begin with the singleton partition Cp = {{v} : v € V}
and then compute each C,;1 using C,. Recall that our
goal is a strong ~'*!-diameter partition C;y; which
coarsens C; and which guarantees that any ball of radius
i1 /v intersects at most 7 clusters of C;y1.

Previous Approach: A natural strategy for comput-
ing the cluster C’; € C;y1 containing cluster Cj € C; is
to start with C; and expand it whenever it intersects a
“violated” ball. Namely, if this cluster is incident to a di-
ameter T /o ball B intersecting more than 7 clusters,
grow this cluster to contain all clusters intersecting B.
The issue with this is that we may end up with a very
long sequence of violated balls, each of which forces us
to grow C; further. See Figures 6a and 6b.

The main observation of [BDR'12] was that if the
number of clusters each violated ball is incident to is
at least 20(‘/@), this sequence of violated balls can
have length at most 20(VIogn) \yhich gives strong sparse
partition hierarchies with a = 7 = ~ = 20(Vlogn),
Notably, the approach of [BDR*12] is “all or nothing”
in that if there is a violated ball incident to more than 7
clusters of C;, then all of these clusters are forced to be
in the same cluster of C;;;. See Figure 6c.

Our Approach: Our approach uses dangling nets to
coordinate cluster aggregation in a way that coarsens C;
without being all or nothing. On one hand, a dangling
net respects balls but not in a way that has anything
to do with C; or coarsening it. In particular, a dangling
net N corresponds to a natural sparse Voronoi partition
(where each vertex goes to the closest net vertex in V)
whose sparsity properties are robust to small (additive)
changes. On the other hand, cluster aggregation provides
a principled way of coarsening a partition C; but does
not necessarily respect balls. In particular, it coarsens a
partition at the cost of small (additive) changes. We use
dangling nets as portals for cluster aggregation to get the
best of both techniques: cluster aggregation ensures that
we coarsen with small additive costs while dangling nets
ensure that these additive costs do not negatively impact

(a) Partition C;.

(b) Sequence of violated balls.

(c) [BDR'12] all or nothing C.

Fig. 6: The challenge of a sequence of violated balls
when constructing the cluster in C; 41 containing C; €
C;. 6a gives C; as blue squares with C; upper-left. 6b
shows the “violated balls” of diameter v**! /a.. 6¢ shows
the solution computed by [BDR™12] assuming that 7 <
5.

sparsity. See Figure 7 for an illustration of our approach
(and its later analysis).

B. Improved Cluster Aggregation

We now briefly discuss our techniques for producing
improved cluster aggregation solutions.

Our General Graphs Approach: Our approach for
achieving an O(log n)-distortion cluster aggregation is a
round-robin process of O(logn) phases. In each phase,
each unassigned cluster has a constant probability of
merging with a cluster containing a portal. We accom-
plish this as follows. Define the maximal internally
disjoint (MID) path of an unassigned cluster C' as the
maximal prefix of the shortest path from some represen-
tative node in C' to a portal which is disjoint from all
assigned clusters. In each phase we iterate through the
clusters with portals. For each cluster C with a portal
we repeatedly flip a fair coin until we get a tails at which
point we move on to the next cluster with a portal. Each
time we get a heads we do an “expansion iteration”,
merging C] with all clusters incident to a MID path that
ends at C/. Intuitively, this is a sort of geometric ball
growing where MID paths are always treated as having
weight 0. See Figure 8 for an illustration.

Every unassigned cluster is assigned in each phase
with constant probability. Therefore with high probabil-
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(a) C; and one "' /v ball.

(b) Dangling net N.
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(c) Ci41 via cluster aggregation.

Fig. 7: An illustration of our algorithm for coarsening C; to C;1. 7a gives C; as transparent blue squares and one
ball of radius v**! /4« centered at v. 7b illustrates our dangling net N (opaque blue squares) and the fact that there
are 7 net vertices within distance d(v, N) + v/« of v; in this case 5 net vertices. 7c gives the C;;1 resulting

i+1

from cluster aggregation (in red) which guarantees that every vertex u € Bg(v, L—) is sent to a portal at distance

i1
a

at most dg(v,N)—l—ﬁ-’yi-l-% <dg(v,N) + 1~

ity after O(logn) iterations, every cluster is assigned
to some portal. The additive distortion of this process
can be bounded by the maximum number of heads any
one cluster gets across all phases. The key to arguing
O(log n) distortion is to observe that, while the distortion
we incur may be as large as ©(logn) in one phase,
the distortion any portal incurs across all phases is also
O(logn). Thus, we bound across all phases at once.
This can be contrasted with [BDR™12] who performed
O(log n) phases of merging with O(logn) distortion per
phase. See the full version of our work [BCFT23] for a
description of how we exploit the structure of the family
to argue that there are limited conflicts when merging
clusters.

III. NOTATION, CONVENTIONS AND PRELIMINARIES

We review the (mostly standard) notation we use
throughout this work.

General: We use U for disjoint union; i.e. U LUV
is the same set as U UV but indicates that U NV = 0.
Geom(p) is the geometric distribution where the proba-
bility for value 7 is (1 — p)*~! - p, and the expectation
is %. Bin(n, p) stands for a binomial distribution with n
samples, each with success probability p.

Graphs: Given edge-weighted graph G
(V,E,w) and vertex subset U C V, we let G[U] =
(U, {e: e C U}, w) be the induced graph of U. Given
two edge-weight functions w and w’ on disjoint edge sets
E and E’, we let w U w’ be the edge-weight function
that gives w(e) to each e € E and w'(¢’) to each
e/ € E'. We let dg(u,v) be the weight of the shortest
path between u and v according to w in G and for S C V'
we let dg(v,S) = minyes dg(v,u). The diameter of
G is the maximum distance between a pair of vertices,
i.e. maxy yev dg(u,v). The strong diameter of S C V

4o

from v, which are exactly the 5 net vertices.

is the diameter of the induced graph G[S], as opposed
to the weak diameter max,, yes dg(u,v) (which is the
maximum distance w.r.t. dg). A partition C of V has
strong (resp. weak) diameter A if G[C;] has strong (resp.
weak) diameter for every C; € C. The (closed) ball
Be(v,r) := {u : dg(u,v) < r} is all vertices within
distance r from v in G. We drop the G subscript when
the graph is clear from context. We let n := |V| be the
number of nodes in G throughout this paper. A metric
space (X,dx) induces a complete graph G with X as
a vertex set, where the weight of the edge {u, v} equals
to the metric distance dx (u,v).

Dangling Net Constructions: We summarize results
regarding dangling nets for general graphs; see the full
version of our paper [BCFT23] for corresponding results
for pathwidth- and doubling dimension-bounded graphs.

Theorem IIL.1 ([Fil20]). Every weighted graph G =
(V,E,w) has a poly-time computable A-covering
(O(logn), O(log n))-sparse dangling net for every A >
0.

Theorems III.1 is proven in [Fil20] in the context of
“MPX partitions”. There we sample shifts {0; };cn and
each vertex v joins the cluster of the center ¢ maximizing
d; — dg(v,t). This is equivalent to our framework here,
where in our dangling net we add ¢ at distance A —
d¢ from its corresponding vertex in G. The statement
corresponding to Theorem III.1 is Theorem 4 of III.1.

IV. HIERARCHIES VIA
CLUSTER AGGREGATION AND DANGLING NETS

In this section we reduce the existence of strong
sparse partition hierarchies to the existence of good
dangling nets and cluster aggregation solutions. Our



algorithm for doing so is Algorithm 1. It may be useful
for the reader to recall the relevant definitions: strong
sparse hierarchies (Definition 1.3), cluster aggregation
(Definition 1.5) and dangling nets (Definition 1.6).

Algorithm 1: SSP Hierarchy

input : Weighted graph G = (V, E, w) (edge
weights at least 1), algorithm for
A-covering («, 7)-sparse dangling net,
algorithm for S-distortion cluster
aggregation.

output: A 253 - (2a. + 1)-hierarchy of strong
(8 + 4, 7, )-sparse partitions.

1i=0and v=252a+1).
2 Set Cp = {{v}:v eV}

3 while C; # {{V}} do

4 | Set A=2a8-4.

5 Compute a A-covering (v, 7)-sparse dangling
net N.
6 Compute a [S-distortion cluster aggregation

solution f on G + N with portals N and
clusters C; U {{t} }+en with corresponding
coarsened partition C’ := {f~1(t): t € N}.
7 Let Cl+1:{C\N|C€C/}

8 R

9 return Cy,C1,Cs . ..

Formally, we show the following theorem whose proof
is illustrated in Figure 7.

Theorem L.7. Fix edge-weighted graph G and o, 5,7 >
0. If for every A > 0:

o Dangling Net: there is a dangling net N that is
A-covering («, T)-sparse and;

o Cluster Aggregation: G + N cluster aggregation
on portals N is always B-distortion solvable;
then, G has a 283 - (2« + 1)-hierarchy of strong (8« +
4, 7)-sparse partitions. Furthermore, if each N and clus-
ter aggregation solution is poly-time computable then the

hierarchy is poly-time computable.

Proof. We begin by describing our algorithm for strong
sparse partition hierarchies in words; see Algorithm 1
for pseudo-code. Our algorithm proceeds in rounds in
a bottom up fashion, with round 0 being the trivial
partition Cy to singletons, and round ¢ constructing the
coarsening of strong sparse partition C; to obtain strong
sparse partition C;1.

In the remainder, we elaborate on the coarsening step
of round i. Here, we receive as input a strong *-diameter

(8 + 4, 7)-sparse partition C;. Let A = 2a3 -+, Using
the assumption of our theorem, we create a A-covering
(v, 7)-sparse dangling net N.

Next, we apply the cluster aggregation algorithm in
the graph G + N using N as the portals and C; with
a singleton cluster for each element of N as the input
clusters. As a result we obtain assignment function f
and corresponding coarsening C’ := {f~1(t)}ien. We
obtain C;+1 by removing any vertex in N from any
cluster in C'.

We now establish that for every 4, C; forms a strong
~i-diameter (o, 7)-sparse partition. The claim holds for
i = 0 since Cy is a strong y°-diameter (4(a + 1),7)-
sparse partition. Consider arbitrary ¢ > 0. We assume by
induction that C; is a strong v‘-diameter (4(« + 1), 7)-
sparse partition. Recall that A = 203 - ~*.

We begin by bounding the diameter of every cluster in
C;. For any vertex v € V, we know that dg4n (v, N) <
A. Next we obtain a solution to the cluster aggregation
problem f such that

daynif-1) (v, f(0) < dgn (0, N) + B -
<A+B-AN
It follows that f~1(v) has strong diameter at most
2-(A+B-7") =2 (208 +5) -
=28 (20+1) -+
_ it

Finally, in the actual partition that we use, C;1, we
only remove vertices of degree 1 and this can only
decrease the diameter. We conclude that C;; has strong
diameter at most ! as required. It is also clear that
C;i41 coarsens C;.

Next, we prove the ball preservation property. Fix a
vertex v € V. Consider a ball Bg(v, R) around v of
radius R = ﬁ. For every v € Bg(v, R), the cluster
aggregation solution assigns v to a portal ¢, € N. By
the guarantees of cluster aggregation we have

da+n(v,ty) < dgen(v,u) + dan(u,ty)
<dg(v,u)+deyn(u,N)+ -
S dGJ,_N(’U, N) + ng(v, u) + 6 * Y

A A
< — —
A

= N —
dayn (v, )+a

As N is a A-covering («, 7)-sparse dangling net, it holds
that

A
{te N ldorntot) < dorntoy+ S} <7




It follows that the vertices in Bg(v, R) are assigned to
at most 7 different portals, as required.

Finally, to conclude that C;11 is (8« + 4, 7)-sparse,
we observe that

yiHL it
= A
RTOA
_da -yt
- 2087t
_
B
C2.28-(2a+1)
B
=8a+14,

concluding our analysis and proof.

V. IMPROVED CLUSTER AGGREGATION

Having reduced strong sparse partition hierarchies to
dangling nets and cluster aggregation in the previous
section, we now give our new algorithms for O(log x)-
distortion cluster aggregation solutions in general graphs
when we are given x < n input clusters; see the full ver-
sion of our work [BCF*23] for results for trees, doubling
dimension-bounded and pathwidth-bounded graphs. The
reader may want to review the definition of cluster
aggregation (Definition L.5).

The following summarizes the main theorem of this
section.

Theorem V.1. Every instance of cluster aggregation
with input partition C = {C1,...,Cy} has an O(log k)-
distortion solution that can be computed in polynomial
time.

To show the above we will bound the “detour” of
a given cluster aggregation solution f; informally, how
much extra distance a vertex travels in the solution.

Definition V.2 (Cluster Aggregation Detour). Given
cluster aggregation solution f in graph G on portals
P, we let the detour of vertex v be

dtry(v) == dgr-1(50)) (v, f(v)) = da (v, P).

Observe that cluster aggregation solution f has distortion
B if dtry(v) < - A for every vertex v.

Our main approach is to grow the cluster of each
portal in a round-robin and geometric fashion but treat
each vertex’s path to its nearest cluster with a portal as
having length 0; this idea is generally in the spirit of the
star decompositions of [DGRO6] (see also the related
Relaxed Voronoi algorithm [Fil19b]).
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To formalize this, for each cluster C; € C, arbitrarily
choose a representative vertex v; € C;, and let 7; denote
a shortest path in G from v; to its closest portal in P.
At all times in the algorithm, we refer to the maximal
internally disjoint (MID) prefix of m; as «. It is the
maximal prefix of m; such that its final node is the only
node of the prefix belonging to a cluster already assigned
to some portal. We denote the final node of the prefix
by final(7}). Initially no clusters are assigned, and thus
m; = m;, and final(7}) is the closest portal to v;.

Also observe that we may assume without loss of
generality that no cluster contains more than one portal:
any assignment that uses more than one portal contained
in a given cluster C; has infinite detour (that is, the portal
not assigned cluster C; is not reachable from any of its
assigned clusters), and the use of one portal over another
can increase the detour by at most A.

Algorithm Overview: Order the portals arbitrarily
p1,.-.,pL, and proceed in rounds. In every round j,
each portal py in sequence expands f~!(py), the set of
clusters assigned to it, by claiming all clusters C; € C
such that f(final(7})) = pe, and all of the clusters along
the paths 7rl’.. In other words, p, claims all the clusters
C}; such that for some cluster C; with f(final(n})) = pe,
CY, intersects 7).

Portal p, repeats this expansion a geometric variable
g(g] )-many times, then we move on to the next portal.
Clearly f~'(p;) remains connected. We will show that
only O(log(|C])) rounds are needed to assign every
cluster to a portal, and that the total detour of a node
assigned to any portal p, is at most 2A - Zj g((gj),
which will suffice to prove the theorem. The algorithm
is presented formally in Algorithm 2 and illustrated in
Figure 8.

Proof of Theorem V.I. We begin by showing that with
high probability, after 101log|C| rounds f is defined on
the entire set C.

Lemma V.3. The algorithm assigns every cluster, with
high probability.

Proof. We claim that in each round j, an unassigned
cluster C; has probability at least % of being assigned
to a portal. Consider the MID prefix 7, of m; at the
start of round j, and let pp« = f(final(n})). If no vertex
along 7} was assigned to another cluster before iteration
£*, then in iteration ¢* we will set f(C;) = py, and
be done with C;. Otherwise, let ¢ be the first iteration
where some node u lying on =, is assigned to some
other cluster. It may be that C; was assigned, and we
are done. Otherwise, let h be the expansion iteration for



(a) Input partition. (b) Initial MID paths.
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Fig. 8: An illustration of our cluster aggregation algorithm. 8a gives the initial partition C in blue and initialized
output C’ in red. 8b gives the initial MID paths. We assume that the geometric random variables (left to right) is
2,1,1 in the first round and 1,1,0 in the second round. 8c, 8d, 8e, 8f, 8¢ and 8h give the updated C’ and MID

paths after each heads.

Algorithm 2: General Graph CA

input : Weighted graph G = (V, E, w), portal
set P C V, partition C = {C;}; into
clusters of strong diameter at most A.

output: Assignment f : C — P of additive
distortion 5 = O(log|C|).

1 Name the portals P = {p1,...,pr}
2 For each py in cluster C;, set f(C;) = ps
3 for rounds j =1,2,...,10log|C| do

4 for portals py = p1,...,pr do
5 Draw géj )~ Geom(%)
6 forh=1,... ,géj) (expansion iterations)
do
7 Set U, to all C; € C such that C; is
unassigned and f(final(7})) = pe
8 Set Us to all C; € C such that
3C; € Uy such that C; N7, # 0
// Note U; C Us
9 For every cluster C; € Us set
f(Ci) =pe
10 return f

p¢r at which this first occurs. At this point the MID prefix
w; is updated accordingly and f(final(n})) = pp. If
pe performs one additional expansion iteration then the
cluster C; will be assigned to p,s. By the memorylessness
of geometric distributions, this occurs with probability
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L1t follows that indeed C; is clustered in round j with

;robability at least %

While the rounds are not necessarily independent, it
is clear from the above argument that this bound holds
for any unassigned cluster in round j conditioned on any
events that depend only on previous rounds. Therefore,
denoting by Bc, ; the event that cluster C; is not
assigned in round j, we have that Pr[C; not assigned]
is

=Pr

ﬂ Be,,;
j

= HPI‘ [BCi,j ‘ BCi,h ey BCi,j—l]

J
10 log|C|
2)

<1

|C|10 :

1
<

Taking a union bound over C gives the desired result. [

The following summarizes the detour guarantees of
our algorithm.

Lemma V4. The algorithm produces an assignment
with detour dtry < O(log|C|) - A, with high probability.

Proof. We claim that in any round j, a cluster C;
assigned to some py in its A’th iteration of expansion



satisfies Vv € C; that

j-1
dats-1 ey (0,0) < dc(0, P)+2 [ S g 41| - A

§'=1

1
We prove this by induction. When j = 0, only the portals
are sent to themselves, and hence the distortion is 0. For
any j > 1, consider some cluster C; claimed by portal p,
during round j after h expansion iterations. This means
there was some cluster C;; such that it’s MID prefix
w;, intersects C;, and f(final(w},)) = p,; (note that it
is possible that i = ¢’). Let w € C; N «},. Note that
a shortest path from w to P follows «. As final(w},)
is already assigned to p, at this time, by the induction
hypothesis it holds that dG[f 1(p[)](ﬁnal(7rg,),pg) <

dg(final(w,), P) + 2 (zﬂ, g8+ (h— 1)) A, We
conclude that for every vertex v € Cj; it holds that (see
Figure 9 for an illustration)

daif=1(pn) (Vs Pe)
< dap—1(pe)) (0, W) 4 dapp—1 (pyy) (w, final (7)) )
+ dais-1 (poy) (final(m,), pe)
< dap-1(pyy) (v, w) + da(w, ﬁnal(w',))

+ d¢(final( 7T/
Jj—1
+2 Zg(“+ ~|-a
j'=1
= dg(f-1(po)) (v, W) + dg(w, P)
j—1
2SS -1y | A
§’=1
< dg(U,P) +2dG[f71(m)](v,w)
j—1
+2[ S v (-1 |-
§'=1
j—1
< de(w,P) w2 Y g +n| Al
§'=1

With the claim proved, we get that at the end of

the algorithm every p, and v € f~!(p,), satisfies
1010glC] (5’
daii-1(pe) (v, p0) < da(v, P)+2- (L8 g0y - A

Let X ~ Bin(40log|C|, ), and observe that the prob-
ability of needing more than 40log|C| coin tosses to
get 101og|C]| tails is equal to the probability that exactly
401og|C| coin tosses results in fewer than 10log|C| tails.
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Fig. 9: Paths involved in bounding dg(-1(p,) (v, pe).
Blue path 7/, is the MID prefix that caused C; to be
assigned to pg; yellow path is a shortest path in C;, so
has length at most A; red path is a shortest path within
coarsened cluster f~!(p;), so its length is bounded by
the induction hypothesis.

That is, we have the sum of IID geometric random

variables Pr [Z}fi‘;g‘c‘ U < 4010g |c@

=Pr[X < 10log|C|]
1

=Pr [X < 2]E[X]]

< e EXI8 o 1

- er

by a standard Chernoff bound. Then, a union bound over
C shows that the algorithm produces an assignment with
detour < 80log|C| - A. Finally, letting By denote the
event that there is an unassigned cluster, and Bp the

event that some assigned node has detour > 801og|C|-A,
we have by lemma V.3 and a union bound:

Pr[dtr; > 801log|C| - A] < Pr[By] + Pr[Bg]

< 1 n 1
“ el el
2
<. O
C|
As k = |C|, the theorem follows. O

VI. COMBINING REDUCTION, CLUSTER
AGGREGATION AND DANGLING NETS

In this section, we combine our reduction of strong
sparse partitions to dangling nets and cluster aggregation
(Theorem 1.7) with known dangling net constructions
and our cluster aggregation solutions from Section V.
The result is our strong sparse partition hierarchies
(Definition 1.3) which when fed into Theorem 1.4 gives
our UST constructions. We give our results for general
graphs; see the full version of our work [BCF'23] for
results on pathwidth- and doubling-dimension bounded
graphs.



Theorem VIL1. Every edge-weighted graph G
(V, E,w) admits a ~y-hierarchy of («,T)-sparse strong
partitions for « = T = O(logn) and v = O(log® n).

Proof. By Theorem III.1 every general graph has a
poly-time computable A-covering (O(logn), O(logn))-
sparse dangling net N for every A > 0. Furthermore,
for any such IV we have that G + N has a poly-time
computable O(logn)-distortion cluster aggregation by
Theorem V.1. Applying our reduction theorem (Theo-
rem 1.7) gives the result. O

We note that our cluster aggregation for trees (see the full
version [BCF'23]) allows us to improve 7 to O(logn)
in the above theorem (for the case where G is a tree).

Combining Theorem 1.4 with Theorem VI.1 gives our
UST theorem for general graphs.

Theorem VIL.2. Every edge-weighted graph G
(V, E,w) admits an O(log” n)-approximate universal
Steiner tree. Furthermore, this tree can be computed in
polynomial time.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this work we gave the first poly-logarithmic
universal Steiner trees in general graphs and strong
sparse partition hierarchies. Our approach reduces poly-
logarithmic strong sparse partition hierarchies to the
cluster aggregation problem and dangling nets and then
leverages a known connection between strong sparse
partition hierarchies and universal Steiner trees. We gave
O(log n)-distortion solutions for cluster aggregation and
improved solutions in trees and bounded pathwidth and
doubling dimension graphs.

We conclude with some open questions and potential
future directions:

1) Improved UST and Strong Sparse Partition
Bounds: The most obvious remaining open direc-
tion is to close the gap between our O(log” n)-
approximate USTs and the known Q(logn) lower
bound of [JLNT05]. Note that even assuming that
G is the complete graph with metric weights, the
best upper bound is O(log”n) [GHRO06]. Along
these lines, it would be interesting to improve the
reduction of USTs to hierarchical strong sparse par-
titions or to improve the ~y-parameter in the strong
hierarchical sparse partitions for general graphs (the
« and T parameters are tight up to a log log n factor
[Fil20]).

USTs and Strong Sparse Partition Hierarchies
for New Graph Families: Similarly, improving
the bounds for new restricted graph families to

2)
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get better USTs and strong sparse partitions is
exciting. Currently, we know of no super-constant
lower bound for UST for either constant treewidth
or constant pathwidth graphs.

Improved Cluster Aggregation in Restricted
Graph Families: One particularly interesting piece
of this puzzle for restricted graph families is the
status of cluster aggregation in special graph fami-
lies. In particular, we conjecture that planar graphs
and, more generally, minor-free graphs always ad-
mit O(1)-distortion cluster aggregation solutions.
Likewise, we conjecture that O(d)-distortion clus-
ter aggregation should be possible in graphs of
doubling dimension d (our current upper bound is
O(d?)).

Scattering Partitions: A graph decomposition
closely related to sparse partitions are the scat-
tering partitions of [Fil20]. A (1,7, A)-scattering
partition is a partition into connected clusters with
(weak) diameter at most A, such that every shortest
path of length at most A intersects at most 7
different clusters. Note that every strong sparse
partition is also scattering, while weak sparse par-
titions and scattering partitions are incomparable.
In a similar spirit to Theorem [.4, in [Fil20] it
was shown that if every induced subgraph of
G admits an (1,7, A)-scattering partition for all
A, then G admits an O(73)-stretch solution for
the “Steiner point removal problem” (SPR). See
[Fil20] for background and definitions. Recently
Chang et al. [CCL"23] showed that planar graphs
admit (1,O(1))-scattering partition schemes (im-
plying an O(1)-stretch solution for SPR prob-
lem on such graphs). However, scattering parti-
tions for general graphs are not yet understood.
Filtser [Fil20] showed that n-vertex graphs ad-
mit (1, O(log® n))-scattering partition schemes, and
conjectured that they admit (1, O(log n))-scattering
partition schemes.

3)

4)
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