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Abstract

Surface plasmon resonance (SPR) proves to be one of the most effective methods of
label-free detection and has been integral for the study of biomolecular interactions and
in the development of biosensors. This Trend delves into the latest SPR research and
progress built upon the Kretschmann configuration, a pivotal platform, and highlights
three key developments that have enhanced the capabilities of the technique. We will first
cover a range of explorations of novel plasmonic materials that have shaped SPR
performance. Innovative signal transduction and collection, which leverages traditional
materials and emerging alternatives, will then be discussed. Finally, the evolving
landscape of data analysis, including the integration of machine learning algorithms to
navigate complex SPR datasets, will be reviewed. We will also discuss the
implementation of these improvements that have enabled new biosensing functions.
These advancements not only pave the way for enhanced biosensing in general but also
open new avenues for the technique to play a more significant role in research concerning

human health.
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Introduction

Surface plasmon resonance (SPR) has seen extensive growth and adoption since the
milestone paper by Liedberg et al in 1983(1) based upon Krestchmann’s account of
surface plasmon polaritons in 1968(2). SPR biosensors have found broad use in a wide
range of human health related research including drug discovery(3-5),
pharmacokinetics(6-8), clinical diagnosis(9, 10), environmental monitoring(11), and
biophysical investigations(12, 13). SPR’s ability to monitor biological interactions
sensitively in real-time without the need of reporters or labels has motivated its
widespread adoption. Technological advances over past decades have impacted the field
through new materials and sensing arrangements that have drastically changed the
function of SPR. Materials that have been recently implemented generally come from
three areas: alternative plasmonic metals(14), 2D substrates(15), and biomimetic
interfaces(12). Further exploration of these advanced materials relies upon improvements
in SPR sensing methodologies. Regarding expansions of SPR methodologies, SPR
imaging (SPRI) utilizes the same Kretschmann configuration but significantly improved
throughput by turning each pixel into a measurement element, allowing arrays of
interactions to be visualized simultaneously(16). Additional methodologies have utilized
changes in the excitation source to perform multiwavelength(17) and phase-sensitive(18)
measurements, providing more information and higher sensitivity for the SPR sensor
systems. Furthermore, by taking advantage of the large and complex datasets provided
by SPR, SPRI, and these new methodologies, machine learning becomes a key tool in
furthering sensor development. This Article aims to discuss the recent trends in SPR

biosensing, which is encompassed by material advancements, novel data collection, and



mathematical tools, to provide a survey of how these improvements have been

implemented to expand the capabilities of SPR biosensors.

SPR Methods

SPRis a label-free analytical technique built upon the fundamental photon-electron
interactions on a plasmonic material as demonstrated by Ritchie(19). These interactions
can be modeled by Fresnel equations(20) based on the properties of the materials and
incident light. The coupling of the photons to a thin metal film through an optical coupler
(i.e., a prism in the Kretschmann configuration) leads to a dipping in the reflection
spectrum, and the angular shift of the incident minimum depends on the refractive index
change above the plasmonic metal (Figure 1)(2). This relationship provides a highly
sensitive detection of refractive index differences caused by the molecular binding events
occurring at the sensor surface(21). Measurement can be realized through collection of
reflected intensity for an array at a fixed angle, or through tracing the minimum of the
reflection spectra. SPR sensors have been regularly utilized in pharmaceutical research
to screen affinities between biomolecules(22). Innovations in the field have generated a
variety of sensors for a range of tasks including protein analysis(9, 23), environmental
monitoring(24), diagnostics(25), and even food analysis(26). The intrinsic sensitivity of
SPR methods has allowed analysis of large biomolecules such as antibodies with
exceptional performance; however, for small molar mass molecules, amplification of the
detection signals(27) and/or improvement of signal transduction may be necessary. To

this end, a plethora of innovative work has appeared and is discussed in this Trend to



show the substantial efforts undertaken in recent years to address technical issues

associated with low signal and complex media.

New Materials

Gold films have been standard for SPR biosensing using Kretschmann
configuration for decades and have proven to be highly effective for interrogating
biological interactions. However, gold is not the only plasmonic substrate for this
application; there are many other plasmonically active elements, alloys, and materials
that have the potential to expand the capabilities of SPR sensors. These materials provide
signal enhancement, antifouling properties, and new surface chemistries for
functionalization, each enabling sensors to be tuned in a transformative way. There are
two major approaches in materials development: a compositional method that explores
material property itself, and a structural method that manipulates 2D and 3D constructs
to derive new functions. Many research efforts bridge both methods, taking advantage of
new structures derived from novel substrates.

Alternative Metals

One exciting advancement is shown in the development of alternative metals as
plasmonic substrates against the traditional gold and silver. Aluminum has emerged as a
particularly promising substrate due to its high plasmonic response under a wide range
of excitation wavelengths, with Tanabe et al. demonstrating its effectiveness in the UV
region(28) and Lambert et al. establishing aluminum thin film-based SPR sensing at 650
nm(14). The aluminum thin-film SPR has demonstrated improved sensitivity as compared

to traditional gold films due to the steeper slope of the aluminum reflectivity dip, as shown



in Figure 2. Inherent anti-fouling properties of the native oxide layer on aluminum were
reported, which can be highly advantageous for biosensing applications. Other metals
such as copper(29) and palladium/platinum(30) have also been explored, but compared
to gold they demonstrate limited benefits. Thiol chemistry has been the traditional
functionalization method for gold (31), while other metals could be functionalized
similarly(32). For aluminum substrates a shift to silane(33) or phosphonic acid(34) based
SAM formation would be necessary, both of which have been employed extensively,
including an example on SPR sensor chips with a thin layer of silica oxide(35).
Nonetheless, the disclosed plasmonic preparties from these metal films prove to be
valuable as they provide insights into key factors towards performance enhancement
when searching for new alloy or layered SPR surfaces.

2D Materials

In addition to novel metals, surface manipulation/functionalization of thin films is
an integral step in the development of new SPR sensors. 2D materials have seen frequent
usage as SPR substrates due to their high uniformity, a necessary trait for Kretschmann
configuration of SPR. Modification with 2D materials has been employed to increase
sensitivity due to larger surface area, better analyte binding, and greater antifouling
capability(36). A multitude of 2D materials have been explored including graphene(37,
38), molybdenum disulfide(39, 40), tungsten disulfide(15) and black phosphorus(41). Cai
et al. demonstrated the combination of graphene and MoS2, taking advantage of the
increased surface area by graphene and the improved sensitivity from MoS: that stems
from increased absorption of the excitation source(42), which showed 1.85 times higher

signal than traditional gold substrates. In addition, these materials provide a unique set



of chemistries that expand the applicability of SPR sensing, through their unique -1
stacking interactions(43) or silane-based SAMs, for graphene oxide(44), molybdenum
disulfide(45), tungsten disulfide(46), and black phosphorus(47). Clearly, the surface
functionalization strategy is not limited to the 2D material space, and improvements have
been made beyond plasmonic materials.

Biological Materials

Biomimetic surfaces for SPR have seen an increasing development due to the
controlled environment favoring the study of interactions in biologically relevant events.
Thus, enabling SPR biosensors to closely mimic the interactions used for detection allows
for more accurate assessment of biomarkers. In particular, usage of lipid bilayers has
been increasingly cited in literature due to its passivating effects reducing nonspecific
interactions from complex media(42) and as a convenient host environment to probe
interactions native to cellular membranes(48). Furthermore, the addition of functionally
modified lipids allows for display of capture moieties enabling specified binding of the
analyte targets(49, 50). Recently, these lipid platforms have been employed to investigate
complex systems such as curvature sensing proteins(12, 51). Chadli et al. demonstrated
the incorporation of transmembrane proteins, obtained from cell free expression, into lipid
vesicles that were then spread on the SPR surface(52). Biomimetic surfaces are not
limited to lipids; peptide polymers have also been employed as an effective avenue for
functionalization of the sensor surfaces. Ozgur et al showed the use of peptide polymer
in the design of molecularly imprinted polymers (MIPs) for the detection of whole E.
coli(53). The biologically inspired surfaces on SPR biosensors play an equally critical role

as the plasmonic thin films by providing desired presentation of the binding sites needed



for effective sensing. They also furnish new platforms to investigate challenging protein

targets such as transmembrane proteins through new hosting environments.

Expanding Methodologies

Another area that has seen marked progress towards SPR improvement is the
implementation of new sensing methodologies that can provide more information than
traditional methods. While the concepts of multiwavelength(54) and phase-sensitive(55)
SPR sensors have floated for some time, only recently have advancements in technology
made them available for applications with SPR biosensing.

Multiwavelength SPR

While the concept of multiwavelength SPR sensing has been understood for many
years(56) the complexity of instrument to monitor multiple SPR wavelengths at once was
high. Therefore, very few multiwavelength SPR systems were reported. Multiwavelength
measurements have seen considerable growth in recent years, largely owing to the
availability of BioNavis’ instrument. By detecting at two wavelengths, key information
associated with thickness and dielectric properties of the organic layer/film can be
collected, as described by Peterlinz et al(54). This expanded information enabled the
analysis of many systems previously inaccessible, such as extracellular vesicles of
different sizes, as demonstrated by Rupert et al. (17). More recently, it has been applied
to monitor cellular uptake of extracellular vesicles that focus solely on intracellular
events(57). Multi-wavelength measurements have also been employed to study
mechanisms of the interaction between liposomes and influenza virus peptides(58). The

thickness calculation from this work suggests distinct morphological differences upon



peptide introduction, showing a peptide insertion into the liposome surface at pH 4.5 while
at pH 8 the peptides induced a decrease in signal associated with morphological changes.
Clearly, dual wavelength SPR measurements can provide new insights into the properties
of the membranes, facilitating elucidation of the interaction mechanisms.

Phase Sensitive SPR

While multi-wavelength SPR provides more information about the properties of the
surface, phase-based SPR analysis has been exploited to enable highly sensitive
measurement by monitoring the sharp phase shift that occurs at the SPR angle. However,
phase shift measurement has met many technical problems as the complex optical
configurations required to collect phase changes would limit the reproducibility of the
sensor and thus its acceptance(18). In recent years, multiple advancements in phase
based SPR sensing have been made, expanding the capabilities of the system by
alleviating the main problems in sensor variability. Wu et al. showed an approach to
mitigate the inconsistencies from film thickness and angular variations through an
algorithm to build a phase-mapping function in data collection(59). Using this algorithm,
they were able to identify the optical parameters that enabled optimal data collection for
a multi-layer model and maintained the sensitivity and reproducibility of the
measurements. The platform was successfully applied to monitor lung-tropic exosomes,
eliminating the difference caused by film thickness variation that would normally impact
sensor reproducibility in a negative way. Sang et al. have reported a multiplexed phase
interrogating SPR by employing a wavelength-sequential selection technique to enable
analysis across channels with reduced sampling time by optimizing the wavelength for

each individual channel(60). The binding interactions between human transferrin and its



antibody were utilized to demonstrate the feasibility of the platform for monitoring
interactions across six different channels (Figure 3). Further fine-tuning of the technique
will no doubt facilitate the expansion and adoption of phase based SPR measurements

due to the improved sensitivity.

Enabling SPR Sensors Through Machine Learning

Aside from new materials and novel sensing methodologies, there is an emerging
in silico component that aids significantly in SPR measurements and processing of
complex data from the sensors. Introduction of machine learning models have
considerably improved the development, collection, and analysis of SPR sensors. These
models facilitate the utility of new materials and deconvolution of signal complexities,
enabling the sensing of increasingly complex samples and the development of novel
surface chemistry. Machine learning has clearly shown the potential to motivate

substantial advancements in SPR experimental design and analysis.

Enhancing Experimental Design

Recent research has provided a few good examples of using machine learning
algorithms to improve sensor performance. For example, the design of new materials can
be enhanced through ML models as demonstrated by Sebek et al., who utilized a genetic
algorithm to generate highly sensitive SPR films composed of 2D materials based on a
materials database(61). The algorithm identified a unique dual-mode SPR structure and
was utilized to design an ideal substrate for SPR sensing at 633 and 785 nm excitation

wavelengths. With machine learning assistance, the sensor surfaces provided ideal



starting points for experimental validation, which can then be fed back into algorithms to
fine tune material recommendations.

Machine learning has also been used to estimate and quantify biological
interactions measured on SPR biosensors. Palai et al. investigated the adsorption of
serum proteins on various polymer films(62). By choosing descriptors of polymer
structural and chemical properties, the machine learning algorithms predicted the
structure-property relationship, providing key information and properties for blocking
serum adsorption. They found that the hydrophobic nature of the polymer was most
critical to antifouling behavior, followed by film thickness, number of C-H bonds, net
charge, and polymer density. The potential for machine learning algorithms to predict
interaction patterns and properties has a large impact on experimental design and can be
instrumental to future SPR studies aiming at revealing insights into identifying the most
impactful parameters, including key structural and chemical dimensions, for effective

sensing.

Data Interpretation

Aside from aiding in experimental design, machine learning can also assist in
extraction of important information from experimental data. For example, SPR is regularly
used to assess the binding kinetics of biomolecular interactions. To streamline data
acquisition, Chang et al. have used deep learning models to build a system for rapid
determination of binding affinity(63), which proved to be highly useful in bioassay work
that requires fast turnaround times. Different from works using machine learning models

for in silico systems, Malinick et al. have applied machine learning to analyze



experimental data, allowing identification of cross-reactive species and separation of the
response signals(35). The study involved an array of gangliosides to sense multiple
sclerosis-specific antibodies, where the signals were heavily convoluted due to
substantial cross reactivity arising from high structural similarity between the glycolipids.
Machine learning algorithms yielded accurate identification of correct ganglioside-
antibody pairs using the whole sensorgram data (Figure 4). Similarly, Jobst et al. have
recently employed deep learning models to classify small molecule purines bound to
graphene oxide sensors(64), which enabled small molecules with similar structure to be
separated based on the minute differences in their binding affinities.

The significant advancements in machine learning assisted biosensing in recent
years have changed the way how complicated and demanding detection is conducted,
allowing identification of material combinations, prediction of surface fouling and isolation
of individual interactions in an array system with ease. However, ML may mask the
reasoning behind the results and becomes dangerous if the algorithms are blindly
trusted(65). The training of ML models on biological datasets is prone to over fitting,
yielding the illusion of effective classification that quickly collapses upon expansion to
other samples(66). Therefore, ML application into SPR systems needs to be carefully

implemented and appropriately controlled for future sensor analysis.

Biosensor Applications
New materials and machine learning algorithms have spurred a new round of
applications towards disease diagnostics by SPR, as reflected by a growing number of

SPR studies on biomarkers in biological media. By applying the innovative techniques



described in previous sections, high performing multiplexed diagnostics could be realized.
SPR can be an extraordinary clinical tool; the small size, simple operation, and quick
generation of data make the technique well suited for rapid diagnostics in a clinical setting.
Complex media and desired modes of direct analysis of patient samples, however, adds
significant complications in sample preparation and data analysis. More efforts for
compelling clinical application of SPR detection have been seen, with studies being
conducted on blood, sera, and cell lysate to demonstrate its capability for diagnostic
purposes. The COVID-19 pandemic has also stimulated much new work with the urgent
need to detect the virus and important markers associated with the infection.

COVID-19 Biosensors

In response to the COVID-19 pandemic, extensive efforts were made in the
biosensor field to search for methodologies for detection and characterization of SARS-
CoV-2 binding. Earlier sensing work had focused on SARS CoV-1 antibodies(67), which
required new development to be applied to the COVID-19 pandemic. SPR proved to be
effective due to the straightforward operation, adaptable surface properties, and potential
for deployment in the field. Aside from pathogen/marker detection, SPR has found
applications in other endeavors that aimed to control the pandemic. Abouhajar et al.
investigated the sequence-specific binding variances of ACE-2 a 1-helix-mimicking
peptides(68), which matched well with molecular docking predictions and proved well
suited for studying mutable viral proteins. SPR sensors could function as an alternative
method for diagnostics aside from conventional RT-PCR and ELISA for detecting either
SARS-CoV-2 antigens or antibodies. Yano et al. reported a CoV-2 antigen biosensor that

utilized nucleocapsid-capturing antibodies followed by antibody-conjugated gold



nanoparticles for signal amplification(69). The sensitivity reported by this work was similar
to most RT-PCR assays, while SPR-based sensors offer simpler operation and quicker
turnaround times of the test. Basso et al. developed COVID-19 antibody sensors with
spike and nucleocapsid proteins anchored to the chip surface(70), capable of identifying
IgG antibodies in patient sera and producing results in ten minutes. SPR sensors are not
limited to the SARS-Cov-2 virus as work by Sharma et al. has shown its effectiveness for
sensing of the Ebola virus(71). The quick adaptability and rapid turnover of diagnostic
data demonstrated for SARS CoV-2 could serve equally well in analysis and diagnosis in
other epidemiological settings.

Biosensing in Complex Media and Clinical Samples

There have been many studies targeting biomarkers in complex media for a broad
range of diseases and health concerns(72-74), paving a solid path for SPR’s adoption in
clinical diagnosis. Recent work on cancer biomarkers, as shown in Figure 5,
demonstrated the potential to rapidly detect HER2 cancer cells using an SPRI
platform(75). The sensor can monitor the binding of cells and distinctly differentiate
between HER2 positive and negative cells based on nanobody specific interactions.
Similarly, Eletxigerra et al. utilized SPR to identify ErbB2 breast cancer biomarkers in both
patient sera and lysates from breast cancer cell lines(76). Wong et al. have reported an
SPRi sensor for microRNA cancer biomarkers in patient samples, further showcasing
SPR’s capability for clinical diagnosis(77). Others have employed SPR to monitor the
changes of serum proteins between a control group and patients with non-metastatic or
metastatic breast cancer(78), where data from the post-treatment metastatic patients

provided insight into factors leading to biomarker protein’s up- or down-regulation. The



study identified significant upregulation of proteins for patients with ER+ and HER2+
cancers and considerable downregulation in the metastatic group after 3 months of
therapy, providing important information about treatment impact and outcome.

SPR sensors have also been developed for various other diseases including
Alzheimer’s(23, 79) and cardiovascular disease(80). Oldak et al. employed an SPRIi
immunosensor to quantify phosphor-Tau 181 in human plasma samples (81). Lee et al
demonstrated the detection of TNF-a and NT-proBNP cardiac disease markers in patient
serum using aptamers (82). While these studies highlight SPR’s potential for clinical
biosensing, it has yet to be formally implemented as a standalone tool in a clinical
diagnostic setting. Nonetheless, the promising results from these studies suggest that we
may soon be entering a stage where SPR devices will find more applications in clinical
research or hospitals.

Small Molecule Biosensors

The broad sensing capability of SPR has been further reflected in recent efforts in
the detection of small molecule biomarkers and metabolites. Li et al. developed an
electrochemical-SPR system using electrically-polymerized dopamine to capture several
amphetamines in both urine and serum samples(83), and reached nanomolar detection
limits. The work demonstrates SPR’s promise not only as a clinical diagnostic method,
but also as a competent forensic tool. Yao et al. reported a portable SPR biosensor for
the detection of methamphetamine and cocaine in saliva samples(84). SPR sensors have
also been employed to detect antibiotic contamination of river water and milk in efforts to
monitor the overuse that has led to antibiotic resistance(85). Food allergen detection is

another area that shows SPR’s involvement in small molecule sensing. Small allergens



such as histamine can be detected in food-based media of dairy and fish products, as
demonstrated by Rahtuvanoglu et al(86). In this case, amplification of the tiny histamine
binding shifts was achieved using molecularly imprinted nanoparticles. In addition, SPR
has been used to detect other small molecules, such as Aflatoxin B1(87), okadaic
acid(42), and glucose(88). These examples point to a level of considerable shift in SPR’s
development and applications. Converging with the end goal of serving clinical testing,
the development of SPR sensors has aimed to improve performance when dealing with
complex media, which will eventually lead to its transformation into a major technical

platform for disease diagnosis and other human health related assessments.

Outlook

Today there is an increasing number of SPR biosensors focused on solving clinical
problems, but they all face some limitations. The sensitivity limits of SPR with small
molecular mass, which directly affects many of the emerging biomarkers, necessitate new
strategies for improvement. Moving towards clinical applications entails effective sensing
in complex matrices, which require new materials or methods to deal with surface fouling
and nonspecific signals. Expansion into diagnostic use demands fast data processing
and streamlined analysis. The recent advances in SPR sensors, which are driven by the
introduction of new materials, methods, and the implementation of machine learning
algorithms, begin to provide solutions to these problems. Many of the limitations in SPR
systems are seeing marked improvements. However, much of the work is still in its early
stage and will require continuous investigation and improvement. In recent years machine

learning algorithms have shown a great potential in lifting SPR biosensing into a new



stage. For example, the possibility to identify yet untested material combinations that have
the potential to enhance sensitivity is groundbreaking. Experimentally testing new
materials pinpointed by algorithms to iteratively revise the datasets and parameters used
for predictions could generate highly desirable conditions for sensing work. ML can also
enhance new sensing configurations such as those recently introduced in
multiwavelength and phase-based detection. As these improvements are integrated into
commercial instruments, an expedited expansion of SPR adoption and utility in biomarker
sensing can be forecast. Therefore, the collective improvements in surface chemistries,
novel methodologies, and computational models discussed here will make SPR sensors
more versatile and powerful, facilitating its transformation into a practical, simple, and fast

diagnostic tool in clinical detection.
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Figure 1. (a) Scheme of Kretschmann configuration SPR sensors. (b) Shift in reflectivity
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