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ABSTRACT. We define larger variants of the vector spaces one obtains by decategorifying
bordered (sutured) Heegaard Floer invariants of surfaces. We also define bimodule struc-
tures on these larger spaces that are similar to, but more elaborate than, the bimodule
structures that arise from decategorifying the higher actions in bordered Heegaard Floer
theory introduced by Rouquier and the author. In particular, these new bimodule struc-
tures involve actions of both odd generators E and F of gl(1|1), whereas the previous ones
only involved actions of E. Over Fy, we show that the new bimodules satisfy the necessary
gluing properties to give a 14+1 open-closed TQFT valued in graded algebras and bimodules
up to isomorphism; in particular, unlike in previous related work we have a gluing theorem
when gluing surfaces along circles as well as intervals. Over the integers, we show that a sim-
ilar construction gives two partially-defined open-closed TQFTs with two different domains
of definition depending on how parities are chosen for the bimodules. We formulate con-
jectures relating these open-closed TQFTs with the psl(1|1) Chern-Simons TQFT recently
studied by Mikhaylov and Geer—Young.
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2 ANDREW MANION
1. INTRODUCTION

This paper aims to address one of the most natural and commonly-asked questions about
work of Rouquier and the author [MR20] as well as related work [LM21, Man20, CM23,
Man22, Man23]: out of the generators FE, F, Ki', Ki' of U,(gl(1|1)), [MR20] and these
other papers feature higher actions of £ and not F' (or F' and not £ in different conventions)
on the strands algebras of bordered sutured Heegaard Floer homology. Duals of E feature
prominently in the story but upon decategorification they satisfy a different type of relation
with E than do E, F € U,(gl(1]|1)). Why don’t we have both E and F'? This paper proposes
an explanation as well as, at the decategorified level, a modified setup in which actions of
both E and F appear naturally. In this modified setup, we will prove gluing theorems when
gluing surfaces along circles as well as intervals, further generalizing the types of surface
gluing considered in [MR20, Man22, Man23].

Intervals and the positive half. Two important features of the higher actions in [MR20]
are as follows:

e They are actions of a categorification of
Ulpsl(11)") = C[E]/(E?)

where psl(1]1) is the Lie superalgebra generated by two odd elements E and F' with
vanishing superbracket and psl(1|1)" is its positive half, the Lie superalgebra gener-
ated by one odd element E with vanishing superbracket.

e They are associated to intervals, not circles, in the boundaries of surfaces with corners.

We would like to suggest that these two features are closely related in the context of TQFTs
extended down to a point, with the inverval viewed as the identity cobordism from a point
to itself.

Loosely speaking, when a fully extended 3d TQFT assigns the representation category
(with tensor structure) of some Hopf algebra H to a point, it will then assign the rep-
resentation category of the Drinfeld double D(H) to a circle. The 3d Chern—Simons or
Reshetikhin—Turaev TQFT for a Lie algebra g assigns a semisimplified category of represen-
tations of U,(g) to a circle, and U,(g) is “almost” the Drinfeld double of U,(g*) where g* is
the positive half of g. However, in general U,(g) is not actually a Drinfeld double, the modu-
lar category C assigned to the circle by Reshetikhin—Turaev is not actually a Drinfeld center,
and Reshetikhin—Turaev theory cannot actually be described as a fully extended TQFT as-
signing some representation category of U,(g") to a point. By contrast, the Turaev—Viro
theory assigning C to a point should be fully extended and assign the Drinfeld center of C
(in some sense C?) to a circle, and in this sense the Reshetikhin-Turaev theory for C is a
square root of the Turaev—Viro theory for C at the level of 14141 extended TQFTs.

Now, for the special case g = psl(1]1), we have U(psl(1]|1)) = D(U(psl(1]1)1)), so (ignoring
q) the above difficulty in extending Reshetikhin—Turaev theory to a point using the positive
half ps((1]1)" should disappear. We make the following imprecise conjecture.
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Conjecture 1.1. If we take H = U(psl(1]1)") = C[F]/(E?) with A(E) = F®1+1® E
and e(E) = 0, then the TQFT assigning (Rep(H ), ®) to a point recovers both:

e aspects of the psl(1|1) Chern—Simons TQFT as studied by Mikhaylov [Mik15] and
Geer—Young [GY22];

e aspects of decategorified bordered sutured Heegaard Floer theory in dimensions 1
and 2 as studied in [Man22, Man23]

which are thereby closely related to each other.

Note that the TQFT assigning (Rep(H), ®) to a point will assign Rep(H) as a bimodule
category over itself to an interval, and it will assign Rep(D(H)) to a circle. For appropriate
surfaces F' with corners, then, we should expect actions of U(psl(1]|1)") for intervals in OF
and actions of U(psl(1]1)) for circles in OF. The first type of action is what gets categorified
by the higher actions of [MR20].

Proposal 1.2. There is “£ but not F” in [MR20] because the higher actions and tensor
product of [MR20], as well as the earlier work of [DM14], are more related to the Heegaard
Floer homology of the point and the interval than to the Heegaard Floer homology of the
circle.

Remark 1.3. In the Acknowledgments section of [DM14], Douglas-Manolescu say that their
work in cornered Heegaard Floer homology, upon which [MR20] builds, was inspired by a
question that David Nadler asked of Manolescu: “What is the Seiberg-Witten invariant of
the circle?” In our proposed interpretation, Douglas—Manolescu’s work instead concerns the
Seiberg—Witten or Heegaard Floer invariant of a point, which would be something like

(2 Rep(U(psl(1]1)")), ®)

where U(psl(1|1)") is the dg monoidal category called & in [MR20] and (®) is the higher
tensor product operation defined in [MR20]. If our interpretation is close to accurate, it
would give a very nice conceptual interpretation for the higher tensor product operation of
[MR20] and its relationship to Heegaard Floer homology: very roughly, we propose that

The higher tensor product of [MR20] is the key ingredient in the Heegaard Floer
homology of a point.

Remark 1.4. There is another perspective from which this proposal is not entirely implau-
sible. Heegaard Floer homology itself is defined based on the ansatz that Seiberg—Witten
theory, extended down to surfaces, assigns to a surface ¥ the Fukaya category of a symmet-
ric power of ». Correspondingly, when defining Heegaard Floer homology for a 3-manifold,
one picks a decomposition along a 2d Heegaard surface and works on this surface (which is
one lower dimension than expected for 3-manifold invariants, and this drop in dimension is
because one is utilizing extended TQFT structure).

Now, both Lipshitz—Ozsvath—Thurston’s and Zarev’s variants of bordered Heegaard Floer
theory work by choosing an additional cut on the 3-manifold, transverse to the Heegaard
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surface and intersecting the Heegaard surface in a 1-manifold. To define bordered Floer
invariants of surfaces, one works with this 1-manifold (in the guise of a pointed matched circle
or an arc diagram), and to define bordered Floer invariants of 3d cobordisms, one works with
a Heegaard surface having 1d boundary given by the pointed matched circle or arc diagram.
It is tempting to think that bordered Heegaard Floer theory is again utilizing extended
TQFT structure of one lower dimension (one higher level of extension) than expected, and
indeed, by [MR20] the bordered Floer surface invariants are objects of a 2-representation
2-category that should be assigned to the 1-manifold underlying a pointed matched circle or
arc diagram.

Finally, the tensor product of [MR20] and the corresponding gluing formula for bordered
Floer surface invariants was prefigured by Douglas—Manolescu’s theory of cornered Heegaard
Floer homology [DM14], which yet again is based on making another cut on a 3-manifold
(transverse to both the Heegaard surface and the above “bordered” cut). While Douglas—
Manolescu work with Lipshitz—Ozsvath—Thurston’s variant of bordered Floer theory and
have a different topological interpretation of what’s going on, [MR20] works with Zarev’s
variant and gets a gluing formula for algebras associated to 1d arc diagrams when gluing
like “interval = interval U, interval” (for the surfaces represented by the arc diagrams,
this gives the open pair-of-pants gluing involving the p = 2 case of Example 1.6 below).
Specifically, the algebra for the glued arc diagram is the higher tensor product of the algebras
for the two pieces, which categorifies what one would expect from the TQFT assigning
(Rep(U(psl(1|1)*7)),®) to a point.

Main results. We now state the main results of this paper, which will be phrased in terms
of open-closed TQFT rather than TQFT extended down to a point. We plan to return to
TQFT extended down to a point in [Man]| (in preparation).

In [MR20, Man22, Man23| we do not have the expected actions of U (psl(1]1)) for circles; we
only have actions of U(ps((1]|1)") for intervals. Indeed, while one would expect the identity
cobordism idg1 on S! to get assigned the identity functor on Rep(U(psl(1|1))), which is
tensor product with U(psl(1[1)) as a bimodule over itself (4-dimensional), the vector space
associated to this cobordism in [Man22, Man23] only has dimension 2. In this paper we will
define related spaces that have the expected actions of both U(ps((1|1)") for intervals and
U(psl(1|1)) for circles.

Let 2Cob™" denote the 1 + 1 open-closed cobordism category defined in [LP08]. For an
object M of 2Cob™" consisting of a disjoint union of oriented intervals and circles in some
specified order, define Agpr(M) to be the tensor product (in order) of super rings

U%(psl(1]1)") = Z[E]/(E?)
for interval components of M and

UZ(psl(11)) :== Z(E, F)/(E* F* EF + FE)
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for circle components of M, where Z(- - - ) denotes noncommutative polynomials. Give these
super rings Z-gradings by setting deg(F) = —1 and deg(F') = 1.

We will first state our main result over Fy; let AP.(M) = App(M) ® Fy viewed as an
ordinary non-super Z-graded algebra. Let F: M; — M be a morphism in 2Cob®™" and let
Sy = My U (—M). Let S_ denote the closure of OF \ S;. Let P be a collection of points,
one in each S, boundary component of F' (the below constructions will be independent of
P up to isomorphism). For any rational number’ A € Q, let

da(F)=—Ah+ (A — 1)#{no-S; non-closed components of F'}
+ A#{no-S_ non-closed components of F'}
+ (2A — 1)#{closed components of F'}
+ ((A —1)/2)#{S, intervals} — (1/2)#{S, circles}.

We will define the structure of a bimodule over (A32, (M), A%2.(M;)) on the Q-graded vector
space

(1)

Z5 5, (F) == N"Hy(F, P;F2){64(F)},
where {-} denotes a shift in the Q-grading and the summand A of the exterior algebra
lives in Q-degree k. Note that A*H,(F, P) is higher-dimensional than the space A*H; (F, S;)
featuring in [Man22, Man23| if and only if F' has at least one component Fy with an S,
boundary circle that is not the only boundary circle of Fy.

Theorem 1.5. Let M, M,, and M be objects of 2Cob™" and let
My & My E My
be morphisms in 2Cob™". For any A € Q, we have
ZfSDA,Fz(F/ o) = Z6PA7]F2(F/) ®AI§32F(M2) ZZ;A,FQ(F)
as Q-graded bimodules over (A2 (Ms), A2 (M)).
A version of Theorem 1.5 holds over Z; see Theorem 3.3.

Example 1.6. Among the morphisms in 2Cob™" are the closed and open p-tuples of pants as
shown in Figure 1. In many TQFTs, such cobordisms are assigned the p-fold tensor product
functor on the monoidal category associated to the circle or the interval respectively. In
terms of bimodules, if the circle or interval is assigned a Hopf algebra H, then one expects
the corresponding p-tuple of pants cobordism to be assigned H*? as a bimodule over (H, H®?)
with right action by multiplication and left action by the coproduct of H. In our setting, we
can ask which choices of A € Q are such that the closed or open p-tuple of pants cobordisms
get assigned this expected bimodule with the correct grading.

IRather than restricting to Q-gradings, we could more generally choose A € R or A € C if we wanted. On
the other hand, the choices of A we will be most concerned with are A = 1/2 and A = 1. For these choices
the Q-grading is really just a %Z—grading or a %Z—grading respectively.
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e The closed p-tuple of pants P, closed has h = p. It has no components intersecting S_
but not S, , one component intersecting S, but not S_, and no closed components.
It has no S, intervals and p+ 1 S, circles. Thus,

54 (Pp,ctosed) = —Ap+ A — (p+1)/2
and we want this quantity to equal —p. The equation
p(—A+1/2)+(A-1/2)=0
holds for all p if and only if A = 1/2; note that for a general open-closed cobordism
F we have
01)2(F) = — h/2 — (1/2)#{no-S non-closed components of F'}
+ (1/2)#{no-S_ non-closed components of F'}
— (1/4)#{S; intervals} — (1/2)#{S circles}.

e The open p-tuple of pants P, open also has b = p. It has no components intersecting
S_ but not S, , no components intersecting S, but not S_, and no closed components.
It has p+ 1 9, intervals and no S, circles. Thus,

04(Ppopen) = —Ap+ (A =1)/2)(p +1).

and we want this quantity to equal —p. The equation
p(—A/24+1/2)+(A-1)/2=0

holds for all p if and only if A = 1; note that for a general open-closed cobordism F
we have

01(F) = — h + #{no-S_ non-closed components of F'}
+ #{closed components of F'} — (1/2)#{S circles}.

Thus, the choices A = 1/2 and A = 1 in (1) are of particular interest. The first seems
most natural for circle gluing and the connection with the existing literature on 3d non-
semisimple TQFTs as in [Man23] (discussed further below); the second seems most natural
for the connection between higher tensor products and the type of surface gluing along
intervals that appears in [MR20].

As a corollary of Theorem 1.5, we get a 1 + 1-dimensional open-closed TQFT valued in
algebras and bimodules. Since it is valued in algebras and bimodules rather than vector
spaces and linear maps, we think of it conceptually as being part of the extended structure
of a 2 + 1-dimensional TQFT such as the 3d non-semisimple TQFTs discussed below. The
proof of the following corollary is the same as [Man23, proof of Corollary 1.3].
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FIGURE 1. Left: closed p-tuple of pants, with p circles on its right side and
one on its left side. Right: open p-tuple of pants, with p intervals on its right
side and one on its left side.

Corollary 1.7. For any A € Q, the assignments
M — ARo(M)  and  F — Z§, g5, (F)

give a symmetric monoidal functor from 2Cob®™" to the symmetric monoidal category Algp,
of Z-graded algebras over Fy and Q-graded bimodules up to isomorphism.

By contrast, when decategorifying the higher actions of [MR20] one is led to spaces
Zit, (F) = NHi(F, 813 Fo){0(F)}

where 4 is chosen from a larger parametrized family of functions S — Q described in [Man23].

If 2Cobg§2n denotes the full subcategory of 2Cob™" on objects consisting only of intervals and

ext
open

no circles, then by [Man23, Corollary 1.3], the spaces ZE@(F ) give a functor from 2Cob
into Z-graded FFs-algebras and Q-graded bimodules. They seem to admit natural actions
only of U™ (ps[(1]1)™) and not of U2(psl(1]1)).

Let V(0,0)F2 denote the two-dimensional Z-graded module over U*2(psl(1|1)) given by
the quotient U2 (psl(1[1))/(F); the notation is adapted from [GY22, Section 2.3.2]. Note
that 1V/(0,0)F2 is localized in Z-degrees —1 and 0. For I with p S, circles, we will show in
Proposition 2.11 that

s ~
(2) Zs! 5, (F) 2 Z§, 5, (F) @uespaqyer (V(0,0)72)%7.

This formula suggests that the proper interpretation of Z(;S;]FQ (F) is the state space obtained
from the larger state space Zj, p,(F) by labeling each S, boundary component with the
representation V(0,0)"2 of U™ (psl(1[1)).

Proposal 1.8. We have the expected categorified actions of U(psl(1|1)*) in [MR20], but not
the expected categorified actions of U(ps((1|1)), because the higher actions of [MR20] are
on categorifications of the state spaces ZfX’FQ(F ) (with all actions of U™ (psl(1]1)) “labeled
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away”) rather than on categorifications of the larger state spaces Zj, g, (F'). To honestly
get actions of E and F at the same time, one should first categorify Z(I;A7F2(F ), possibly by
some adaptation or generalization of the strands algebra construction in bordered sutured
Heegaard Floer homology in which the algebras have more basic idempotents whenever
Z} g,(F) is larger than Z(;S;FQ(F).

Remark 1.9. Even if one were to categorify Zj, 5 (F) with its actions of both E and F,
these actions would still satisfy EF + FFE = 0 at the decategorified level. The relation
EF + FE = 0 is the gl(1]1) relation EF + FE = (K — K')/(¢ — ¢~') when acting on
representations with K-weight 1 or —1, and one would hope to have categorifications of
more general K-weight (e.g. the vector or defining representation of U,(gl(1]1)) with K = q)
with actions of £ and I satisfying the appropriate relations at the decategorified level.
The connection with the 3d psl(1|1) Chern-Simons TQFT [Mik15] and Geer—Young’s D%
TQFT [GY22], in which the relation EF + FE = 0 arises for “critical” or non-generically
decorated surfaces while relations with EFF + F'E nonzero arise for generically decorated
surfaces, could help see how to further generalize hypothetical categorifications of Z(i F, (F)
to incorporate higher actions of both £ and F' with EF + F'E nonzero.

Remark 1.10. Higher actions of both E and F' on bordered strands algebras, satisfying
EF 4+ FE =0, also appear in work of Ellis-Petkova—Vértesi [EPV19] on Petkova—Vértesi’s
tangle Floer homology [PV16]. The presence of both £ and F' in this case seems to be a con-
sequence of special symmetries that are enjoyed by the arc diagrams underlying the strands
algebras in question but not by the arc diagrams for more general strands algebras. Tian
[Tial6], repurposing the tools of bordered sutured Heegaard Floer homology in a different
way, also has actions of E and F satisfying the U,(gl(1]|1)) relations on certain algebras.
While neither of these instances seem closely connected to what we discuss here, it would be
interesting to pursue any connections if they exist.

Remark 1.11. In this paper we work with U(psl(1|1)) acting on graded vector spaces. In
some situations it is equivalent to work with U(pgl(1|1)) acting on ordinary vector spaces
such that the extra generator “Hy” of U(pgl(1|1)) acts diagonalizably; then eigenspaces for
H, stand in for summands of a graded vector space in different degrees. However, here we
are especially concerned with functors given by tensor product with the algebra of a circle.
If M is a right module and N is a left module over U(pgl(1]1)), then M ®g(pgi(11)) IV tensors
the Hy weight-k subspace of M with the Hy weight-k subspace of N for each k, and the
result has Hy weight k. By contrast, if M is a right graded module and N is a left graded
module over U(psl(1]1)), then M ®ysiaj1)) N tensors the degree-k subspace of M with the
degree-I subspace of N for each (k,[), and the result has degree k + [. This second behavior
is compatible with our gluing theorems while the first is not. Thus, the perspective taken
here seems to favor ps((1|1) over pgl(1]|1) in this sense.

Signs and parities. If we want to pass from Fy to Q or Z, we need to take signs and
parities into account as well. The exterior algebra A*H;(F, P;Z) is naturally a super abelian
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group with A¥ in parity & modulo 2; for any given F we may or may not reverse this parity,
and we want our choices to be compatible with gluing.

We are not aware of a way to define a parity-shift function 7 from the set S of morphisms
in 2Cob™", additive under disjoint union, to Z/2Z such that both interval and circle gluing
theorems are satisfied. However, interesting parity-shift functions exist when restricting
attention to certain subsets of S. We first note that if we could choose A such that §4(F)
were integral for all F', then we could define the parity shift using d4(F") modulo 2, and
gluing would be compatible with parity because it is compatible with 0 4. However, there is
no A such that §4(F') is always an integer (see Proposition 4.1). To proceed, we ask when
da(F") is integral in the special cases A =1/2 and A = 1:

e §1/2(F) is an integer if and only if the number of S, intervals of F is equal modulo 4
to twice the number of boundary components of F' intersecting S_ nontrivially (see
Section 4). In this case, write

7T1/2<F) = (51/2<F)
modulo 2.

e 01(F') is an integer if and only if the number of S, circles of F' is even. In this case,
write
T (F) := 01(F)
modulo 2.

Both of the above properties are preserved under disjoint union and under gluing an S
interval to an S interval or an S, circle to an S, circle.

Definition 1.12. Let 2Cob,.q,, denote the subcategory of 2Cob™" whose morphisms
have number of S, intervals equal modulo 4 to twice their number of boundary components
intersecting S_ nontrivially. Let 2Cobgs,, . . denote the subcategory of 2Cob™" whose mor-
phisms have an even number of S, circles. Note that the “closed sector” of 2Cob®™" (the
usual 141-dimensional oriented cobordism category with S_ always empty) is a subcategory
of 2Cob%e. ., while the “open sector” of 2Cob™" (the full subcategory on objects with no

circles) is a subcategory of 2Cobgt,, . .

For any choice of A € Q and 7 € Z/27:

ext

e If I is a morphism in 2Cobgjg.q, ., the Q-graded super abelian group

Z5 o (F) = (227 @ a1 (FP){04(F)}
canonically has the structure of a bimodule over (Agp(Ms), Apr(My)).

ext
open+-+

e If F'is a morphism in 2Cob the Q-graded super abelian group

Z8, o (F) = (27" @ A Hy (F, P){5a(F)}

04,m1
canonically has the structure of a bimodule over (Agp(Ms), Apr(My)).

Theorem 3.3 (the Z version of Theorem 1.5) gives us the following corollary.
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Corollary 1.13. Let SAlg, denote the symmetric monoidal category of Z-graded super rings
and Q-graded bimodules up to isomorphism.

e For any A € Q, the assignments
M App(M)  and  F > Zg, . (F)

give a symmetric monoidal functor from 2Cobg.q, . to SAlg,.

e For any A € Q, the assignments
M Agp(M)  and Fw—ZF _(F)

04,1

gie a symmetric monoidal functor from 2Cobg’§3n++ to SAlg,.

The proof is the same as [Man23, proof of Corollary 1.3].

Non-semisimple TQFT. Recently there has been considerable interest in non-semisimple
analogues of 3d Witten—Reshetikhin—Turaev TQFTs (see e.g. [AD0O92, CGPM14, Mik15,
BCGPM16, GPV17, AGPS18, GPPV20, GHN21, CGP23, Jag23, GY22|). In particular,
some of these constructions [Mik15, BCGPM16, AGPS18, GY22] arise from the quantum
representation theory of the Lie superalgebra gl(1]|1) or its relatives and have connections
with the Alexander polynomial and Reidemeister torsion. A general mechanism for defining
non-semisimple 3d TQFTs is given by De Renzi [DR22], who uses a universal construction to
define a type of 14141 extended TQFT starting with data that he calls a relative modular
category C. In particular, C comes with a decomposition C = @4cqC, where G is some
abelian group, and the data also includes another abelian group Z such that the state spaces
of the theory on (decorated) surfaces are Z-graded vector spaces.

In [GY22, Theorem 2.23 with A = 7i/2 and ¢ = i] Geer and Young define a C-linear?
relative modular category D™ with G = C/((27i/h)Z) = C/(4Z) and Z =Z x 7 X Z/27Z.
They propose that the TQFT associated to D" by De Renzi’s construction [DR22] is
a (homologically truncated, non-derived) mathematical realization of the main subject of
Mikhaylov’s paper [Mik15], referred to by Mikhaylov as the ps((1|1) Chern-Simons TQFT.

We will call the non-extended version of this TQFT Z%Y and the extended version Z&Y

ext *
GY

ot assigns a category enriched

To a disjoint union of p circles each decorated by 0 € G, Z
in Z-graded vector spaces, which can be viewed as the idempotent completion of the p-fold
ordinary tensor power (as in [Kel82, Section 1.4]) of the Z-graded category of Z-graded

projective modules over U (psl(1]1)). The p-fold tensor product
P(0,0)®---® P(0,0)5

naturally gives an object of the category, where P(0,0)g denotes U (psl(1]1)) with first com-
ponent of the Z-grading identically zero, second component of the Z-grading given by the
usual grading on U(psl(1]1)) as a Z-graded module over itself with deg(£) = —1 and
deg(F) = 1, and third component of the Z-grading given by the parity on the super vector
space U(psl(1[1)). See [GY22, Section 2.3.3].

2When discussing non-semisimple TQFT we will work over C rather than Z.
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Now, let F' be a zero-decorated 2d cobordism from M; (consisting of p; zero-decorated
circles) to My (consisting of p, zero-decorated circles), and assume that each component of
F intersects M; nontrivially, which (given these decorations) amounts to the admissibility

condition defined in [DR22, Section 2.3] for F' as a cobordism from M; to M,. The TQFT
ZGY

ext

this functor on the object corresponding to (P(0,0)g)

assigns to F' a functor between the above enriched categories, and we can evaluate

“P1 We get an object of the category

associated to My, and this category admits a canonical functor to the category of Z-graded

projective modules over (U(psl(1|1)))%72.
7.GY

ext

Applying this additional functor, we get a Z-
(F) (slightly abusing notation) with a left action of

(U(pst(1]1)))"7 = App(Mo),

graded super vector space

projective as a left module. Furthermore, by applying the same sequence of functors to
morphisms from (P(0,0)5)*"" to itself, ZEY (F) also has a right action of

(U(psl(1]1)))""" = App(My).

Overall, there is a bimodule structure over (Agpr(Ms), Agpr(M;)), projective as a left module,
on Z&Y (F). We can also discard the first component of the grading by Z = Z x Z x Z/27Z,
which will always be zero in this setting, and the third component which is captured by the
super vector space structure. Thus, we will view ZZY (F) as a Z-graded bimodule.

It turns out (see Proposition 2.8) that the spaces Zj (F) are projective as left modules
over Agp(M,) if and only if each component of F' intersects the incoming boundary M, i.e.
exactly when De Renzi’s admissibility condition is satisfied. The surfaces F' in question are
morphisms in 2Cob.q. ., S0 they have &;2(F) € Z C Q. For such F we make the following

conjecture.

Conjecture 1.14. If each component of F' intersects M, then as Z-graded bimodules over
(Apr(Ms), App(My)) we have
28V (Fy=2Zf . (F).

ext - (51/2,71'1/2

Note that Conjecture 1.14 uses the same grading and parity shifts as does [Man23, Con-
jecture 1.6] about Z°+. For genus zero connected surfaces F', De Renzi discusses the graded

dimensions of state spaces in [DR22, Section 7.5], and our degree and parity shifts for

P
012,712
and looking at the bimodule structure, in Example 2.7 we will show that for the closed

p-tuple of pants cobordism F' from (S')? to S!, the bimodule ZF (F') can be identified

51/277f1/2
with (U(psl(1|1)))®P with right action of (U(psl(1]1)))®P by multiplication and left action of
U(psl(1|1)) induced by the coproduct A(E) = F®1+1® FEFand A(F)=F®1+1® E on
U(psl(1|1)). It follows that the functor <Z£/2,WI/Q(F) ®(u(pst(11)))2» —) gives the p-fold tensor

product of representations of U(psl(1]1)), in line with [DR22, Proposition 7.3] for Z&Y (F).

ext

(F') are compatible with this discussion. Going beyond the graded dimensions

Remark 1.15. While the TQFT Z%Y is functorial on decorated cobordisms as in [GY22)]
(roughly: 3d cobordisms without corners, equipped with colored ribbon graphs), A*H; (F, S,)
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is a decategorification of Zarev’s bordered sutured Heegaard Floer invariants of surfaces and
thus should be functorial under certain “sutured cobordisms” (roughly: 3d cobordisms with
corners). While Geer—Young define their TQFT using the universal construction applied to
decorated cobordisms, bordered sutured Heegaard Floer homology and its decategorification
can also be seen as arising from a universal construction applied to sutured cobordisms
(“Zarev caps”), by the ideas of [Zar10)].

It seems likely that a subset of decorated cobordisms can be identified with a subset of
sutured cobordisms; the decorated cobordisms allow more general colorings while the sutured
cobordisms allow more general topology. It would be interesting to make this identification
and extend it to define a type of cobordism jointly generalizing decorated cobordisms and
sutured cobordisms (possibly: sutured cobordisms equipped with some more general type

ZGY

of coloring data). Then one would hope that is functorial under these more general

cobordisms and that a theory can be defined extending Z&Y to surfaces with corners and
sutured cobordisms, and extending decategorified bordered sutured Heegaard Floer theory
from colors related to psl(1]1) to more general colors related to Geer-Young’s UF (gl(1[1))

(see the discussion in [GY22, Section 6.1]).

Remark 1.16. The results of this paper were also motivated in a different direction by
open questions in bordered Heegaard Floer homology. Mikhaylov’s ps((1|1) Chern-Simons
theory is meant to recover the Turaev torsion for closed 3-manifolds; in turn, this torsion is
categorified by the sophisticated HF ™ and HF~ versions of Heegaard Floer homology, while
to this point bordered Heegaard Floer homology has been largely limited to the setting of
the simpler version HF. TFor example, one cannot recover the interesting Ozsvath—Szabd
mixed invariants for smooth 4-manifolds from }/IF; one needs HF* and HF~. For genus-
zero surfaces there is some work that goes beyond the OF setting (e.g. Ozsvath—Szabd’s
bordered HFK) and in genus one Lipshitz—Ozsvath-Thurston have given talks on a bordered
version [LOT] of HF~ that has not yet appeared in the literature (the relevant algebra is
introduced in [LOT21]). In general, though, it is a major open problem to extend bordered
Heegaard Floer techniques so that HF* and HF~ can be recovered by cutting 3-manifolds
along surfaces. One could hope to approach this problem by thoroughly understanding the
decategorified level first, and in particular understanding a suitable TQFT approach to the
Turaev torsion such as psl(1|1) Chern—Simons theory, then trying to categorify everything
and recover HF+ and HF~ by combining methods from bordered Heegaard Floer homology
and 3d non-semisimple TQFTs. The current paper attempts to take a step toward this goal.

Organization. In Section 2 we review some preliminary definitions, define algebra actions
on the spaces A*H;(F, P) for both interval and circle components of S, discuss when these
actions give projective modules, and relate A*Hy(F,S;) to A*Hy(F, P). In Section 3 we
prove our main results, and in Section 4 we explain our choices of degree and parity shifts
in more detail.
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2. ALGEBRA ACTIONS FOR INTERVALS AND CIRCLES

2.1. Sutured surfaces and open-closed cobordisms. We recall the definition we will
use for sutured surfaces following the presentation in [Man23].

Definition 2.1 (cf. Definition 1.2 of [Zarl1], Definition 2.1 of [Man23]). A sutured surface
consists of the data (F, A, Sy, S_,¢) where:

e [is a compact oriented surface, possibly with boundary (F' can be disconnected and
is allowed to have closed components);

e A is a choice of some even number of points (possibly none) in each boundary com-
ponent of F';

e The components of OF \ A are labeled as being in either S, or S_, in alternating
fashion across the points of A. Components of OF with no points of A are either S
circles or S_ circles; the rest of the components of Sy and S_ are closed intervals.

e ( consists of a labeling of each component of S, as “incoming” or “outgoing,” as well
as an ordering on the set of incoming S, components and an ordering on the set of
outgoing S, components.

We will usually refer to a sutured surface as F' and suppress mention of the rest of the data.
We can view a sutured surface F' as a morphism in the 14+1-dimensional open-closed cobor-
dism category 2Cob™" defined by Lauda—Pfeiffer in [LP08]. The source of this morphism is
the incoming part M; of S, (after orientation reversal) and the target is the outgoing part
M,, so that S, = My U (—M;). The non-gluing boundary of F'is S_. Sutured surfaces
corresponding to a pair of composable morphisms in 2Cob™" are shown in [Man23, Figure
2].

2.2. Actions on larger state spaces. Choose a finite subset P of S, consisting of one
point in each component (interval or circle) of S;. For any § € Q and 7 € Z/27Z we will
define superalgebra actions on the super abelian group

Z§ (F) = (2™ @ A Hy (F, P){0(F)}.

Specifically, we will have actions of Z[E]/(E?) for interval components of S, and actions of
Z(E,F)/(E* F? EF + FE) for circle components of S. The actions will be left actions for
outgoing components of S, and right actions for incoming components of S,. Write e for
the standard basis element of (Z°1)27(F),

Definition 2.2 (cf. Definition 2.4 of [Man23]). Let (F,A,S;,S_,¢) be a sutured surface
and let X be an outgoing interval or circle component of S,. Choose a finite set of points
P as above. For any 6 € Q and 7 € Z/27Z, we define

E = Er: Z§,(F) — Z§ (F)
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as follows.
e Define ¢x: H,(F, P) — Z to be the composition

ox = Hi(F, P) % Hy(P) X% 7,

where [px]* is the class in H°(P) dual to the homology class in Hy(P) of the unique
point px of P contained in X.
e For k > 1, define &y : T*H,(F, P) — T*1H,(F, P) by
k
Oy =) (Ti—lﬂl(F, P) @y Hy(F, P) @, T""H,(F, P)
i=1

(=1 id i1y, (p,py ®x®idpi-1y, (5 p)
7

T 'H\(F,P)®4Z @z T"'H,(F, P).)

e Because of the sign (—1)"! in the above definition, we get an induced map
Oy : A" H(F, P) — AF"YH(F, P).
Define
Oy (2P @ AVHL(F, P){3(F)} = (Z°1)"") @ AV HL (F, P){S(F)}

by
Dy (cr@w) = (—1)"Pep @ Dy (w).
e Let £ be the sum of the maps CID_X/ over all £ > 1. E is an odd map and the sign
(—1)*"! in the definition of ®x ensures that E? = 0.

Define E similarly when X is an incoming interval or circle component of S, , except that:

e Instead of (—1)"! we have (—1)*~% as the sign in the definition of ®x;
o We define by
E/(&? Qw) =ep ® Px(w),

without a sign of (—1)7(%).

Remark 2.3. In [Man22, Man23], we could have defined actions of Z[E]/(E?) on Zfﬂ*r(F )
for circle components of S, like we do in Definition 2.2. However, these actions do not seem
very motivated; if we think of Z(;Sjr(F) as being obtained from Zj’ (F) as in Proposition 2.11,
then by labeling S, circles we should be “using up” the algebra action on each S, circle
without leaving any residual action. Correspondingly, Z;;(F ) does not appear to admit a
gluing theorem when gluing along circles.

The following definition is where we finally get ' endomorphisms to go along with the F
endomorphisms for circles.

Definition 2.4. Let (F,A,S,,S_,¢) be a sutured surface and let C' be a circle component
of S,. Give C the orientation it has as (part of) an object of 2Cob™"; in other words, give
C' the boundary orientation induced from F'if C' is outgoing, and give C the reverse of this
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orientation if C' is incoming. Choose a finite set of points P as above. For any § € Q and
€ Z/27Z, define
F=Fc: Z; (F) — Z§ (F)
to send
er@wr (=1)"Pep @ ([C] Aw)
if C' is outgoing and
er@wierp® (wA[C)])

if C is incoming.

Proposition 2.5. The following relations hold:

o [f I is an interval component of Sy, then the endomorphism E = E; from Defini-
tion 2.2 satisfies E* = 0.

o [f C is a circle component of Sy, then the endomorphisms E = E¢ from Definition
2.2 and F = F¢ from Definition 2.4 satisfy E*> =0, F? =0, and EF + FE = 0.

o Endomorphisms E or F for any pair of distinct incoming components of Sy anti-
commute, and the same is true for any pair of distinct outgoing components. Any
pair of endomorphisms commute if one comes from an incoming component and the
other comes from an outgoing component.

Proof. The relations E? = 0 in the interval and circle case follow from the signs (—1)""! or

(=1)%~% in Definition 2.2. The relation F? = 0 in the circle case follows from [C] A [C] = 0.

Let C be a circle component of S, so that we have two endomorphisms E and F cor-
responding to C. Informally, if C' is outgoing then E acts by moving inward from the left
(picking up a sign when crossing each factor) until it reaches various wedge factors with non-
trivial boundary at the point pc, and summing (with signs) over each way to remove of one
of these wedge factors. Acting with F' before E will ensure that each term in the subsequent
action of E will have to cross an extra factor [C] compared with acting with E before F'. It
follows that EF + FE = 0. The anticommutativity claim for two incoming components of
S, and the commutativity claim for one incoming and one outgoing component of S follow
by similar arguments. O

For an object M of 2Cob™", let App(M) denote the tensor product, in order, of superal-
gebras Z[E|]/(E?) for interval components of M and Z(FE, F)/(E? F? EF + FE) for circle
components of M. If F': M; — M, is a morphism in 2Cob®™", Proposition 2.5 gives Zgﬁ(F)
the structure of a bimodule over (Agp(Ms), Agrp(M;)). If we want, we can also tensor every-
thing with Fy and forget signs and super structures. We will denote the resulting bimodule
as Zjy, (F) since 7 is irrelevant over Fy.

Example 2.6. Figure 2 shows, for a particular sutured surface F' and a particular choice of
S, circle C' and S, interval [ in its boundary, the actions of Fo, E¢, and E; on an element
ai Aay € Zik (F).
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FIGURE 2. Actions of F' for circles and E for circles and intervals (the coeffi-
cients are taken in Fy for simplicity).

2.3. Defining bases from collections of arcs and circles. The proofs of the gluing
results in [Man22, Man23] make use of certain choices of basis for Hy(F, S, ); the proofs here
will use bases for H;(F, P) similarly. As in [Man22, proof of Lemma 4.1] and [Man23, proof
of Lemma 3.1], given a sutured surface F', we can choose a homeomorphism (preserving the
sutured data) between F' and a finite disjoint union of “standard” sutured surfaces such as
the one shown in Figure 3. Define a collection of oriented arcs and circles in each standard
sutured surface, e.g. the set of blue arcs and circles in Figure 3, as follows.

e In each of the “handles,” take two oriented circles as in Figure 3.

e For all the boundary components of F' (whether or not they intersect S_ nontriv-
ially), except for one chosen component, take an oriented circle around the boundary
component.

e Choose a connected acyclic directed graph I'r embedded in F' with vertex set P.

The circles and edges of I'r give a basis for H,(F, P), so their wedge products give a basis
for A*H,(F, P). Applying er ® — to these wedge products, we get a basis for (C")®™(F)
AN Hy (F, P){6(F)}.
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FIGURE 3. Oriented arcs and circles forming a basis of H;(F, P), whose prod-
ucts form a basis for A*H;(F, P). The set P consists of the points labeled py,
P2, p3, and py. The subset S, of OF is drawn in orange, while S_ is drawn in
black. When compared with [Man22, Figure 16], we have an extra blue circle
here.

2.4. Tensor products. Here we discuss an important family of examples, the closed and
open p-tuples of pants from Example 1.6, in more detail. In fact, for the open p-tuple of pants
Popens [Man23, Proposition 2.7] applies basically unchanged; we have H(F, P) = Hy(F,S)
because Pypen has no S, circles, and the grading shifts of this paper were dealt with in
Example 1.6. It follows that

Z;5, 7, (Popen) = (Z[E]/(E*))®

as Z-graded bimodules over (Z[E|/(E?),(Z[E]/(E?))®?) where (Z[E]/(E?))®P acts on the
right by multiplication and the left action of Z[E]/(E?) is induced by the coproduct

AE)=E®1+1QE.

Let Peiosea denote the closed p-tuple of pants. In Figure 4, label the arcs as ey, .. ., e, from
top to bottom and the circles as o4, ..., 0, from top to bottom. Orient them as indicated in
Figure 4:

e ¢, is oriented from the outgoing boundary to the incoming boundary, e,_; is oriented
from the incoming boundary to the outgoing boundary, and so on in alternating
fashion;

e 0, is given the opposite of the boundary orientation of its corresponding incoming
Sy circle, o,_; is given the boundary orientation of its corresponding incoming S
circle, and so on in alternating fashion.

We have the following analogue of [Man23, Proposition 2.7] for the closed p-tuple of pants.
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FIGURE 4. Orientations on arcs e, ..., e, and circles 0y, ..., 0, giving a basis
for Hy(Peosed, P). The orientations shown on the S, boundary circles of Pejosed
are the induced boundary orientations without reversal.

Proposition 2.7. Define a map
Zf (Petosed) = (Z(E,F)/(E* F? EF + FE))®P

51/277T1/2
by sending the basis element
! 6/
87)closed ® (e(]s.l A O’fl) JANRERIVAN (eip A Upp)

of ZF (Petosed) (where 0;,0; € {0,1}) to the element

51/2:“1/2

(B F) @ .- @ (B F%)

of (Z{E,F)/(E? F? EF+FE))®P. This map is an isomorphism of Z-graded bimodules over

(Z(E,F)/(E*, F*,EF + FE), (Z(E,F)/(E? F?,EF + FE))®P)

where (Z{E,F)/(E* F* EF + FE))®P acts on the right by multiplication and the left action

of Z{E, F)/(E?* F? EF + FE) is induced by the coproduct
AE)=E®1+19E, A(F)=F®1+10F

Proof. By Example 1.6 and the definition of 7/, as the parity of 6,2, the map respects

Z-grading and parity. It gives a bijection on basis elements, so we need to show it is com-
patible with left multiplication by Z(FE, F)/(E? F? EF + FFE) and right multiplication by

(Z(E,F)/(E* F?,EF + FE))®?.
We start with left multiplication by E. Since 71 /2(Peiosed) = P, the product
B (epyn ® (€ AGYY Ao A (€ Aoy?)),
is given by
(_1)p Z (_1)61+6g+-~+6i,1+5;_1(_l)p_iﬂ
(3) :6,=1
Py @ (A GV A A (LAY Ao A (el A af);
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the factor (—1)P~"! comes from our choice of orientation on e;. Meanwhile,

E-(EV"F%) - @ (B % F%))

is given by
(4) Z (_1)(1—51)+5i+-~+(1—5z‘—1)+5271((E1—51F5i) ®-® (EFEQ) ®-® (El—%p%))_

The expressions (3) and (4) correspond under our map, so our map respects left multiplication
by E.
Next, to compute

(5) F - (6P @ (] AT A= A (e A0},
we note that if [C] is the homology class of the outgoing circle of Pegseq, with boundary
orientation, then
[Cl=0,—0p 1+ -+ (=10

Thus, (5) equals

(_1)p Z (_1)61+5’1+-~+6i_1+6g,1+5i(_1)p—z‘
(6) i:81=0

s @ (AT A A (AT A A (A ).

Meanwhile,
F-(EVY"F%) @ @ (B F%))
is given by
(7) Z (_1)(1—(51)J,-(S’l+~~~+(1—(51-,1)—1-6;_1—1—(1—52-)(E1—51F5i) Q- ® (El—éiF) R ® (E1—5PF6;)‘
:0/=0

Since (6) and (7) correspond under our map, our map respects left multiplication by F.
Now we consider right multiplication by the element £, =1 ® - - 1 QFR1®---® 1
of (Z(E,F)/(E? F? EF + FE))®. Computing
(Prtas & (€ AT Ao A (€l N 07)) - i
we get zero if §; = 0, while if §; = 1 we get
(_1)5§+6¢+1+5§+1+~~+5P+6;,(_1)p—i

(8)

’ 873closed ® (6(;1 /\ 0-:(15/1) /\ e /\ (61 /\ O‘f;) /\ T /\ (6f7p /\ O-gp)

Meanwhile,
(EY O FY) ... @ (B F%)) . E;
is also zero if §; = 0, while if §; = 1 we get

(9) (—1)0F =000t (1=8) 0 (Rl=0 o1y @ ... @ (EF%) @ - - @ (B F%).

Since (8) and (9) correspond under our map, our map respects right multiplication by E;.
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Finally, we consider right multiplication by the element F; = 1®--- 1 F®R1®---®1
of (Z{E,F)/(E?* F? EF + FE))®". The action
(87)closcd ® (6?1 /\ O’fi) /\ e /\ (egp /\ O’z;)) : E
is zero if 6, = 1, while if 6] = 0 we get

(10) (=1t bbby ppien @ (e A0 A Al o) A A (el Aay).
Meanwhile,

(BV"FY) ®-.. @ (B F%)) . F
is also zero if 9, = 1, while if §; = 0 we get
(11) (—1) )+t (=8t (BLl-bi 6y @ L ) (Y0 F) @ ... @ (B0 F%),
Since (10) and (11) correspond under our map, we have proved the proposition. O

2.5. Projectivity of the actions. Since the TQFT ZS&Y involves categories of projective

modules, we should investigate when Zg _(F) is projective as a left module or right module.

Proposition 2.8. Let M, il M, be a morphism in 2Cob™". For any § € Q and 7 € Z/27:

e [f each component of F intersects the incoming boundary M, then the left action of
App(My) on Z3 (F) is projective.

e if each component of F intersects the outgoing boundary My then the right action of
App(My) on Z3 (F) is projective.

Proof. We will prove the first statement; the second is similar. For a component Fjy of F
pick a distinguished point p € FyN PN M;. We can arrange that all basis arcs in F{, have one
endpoint at p, and we can choose the component of M; containing p as the unique boundary
circle in Fy to not get a basis circle around it. Using the resulting Z-basis, one can see that
Z§ (F) is free as a left module over App(Ms,) with an Agp(M,)-basis consisting of all wedge
products w such that:

e For each circle component C' of M,, w is divisible by the corresponding basis arc ec
but not by the corresponding basis circle o¢;
e For each interval component I of My, w is divisible by the corresponding basis arc
er.
It follows that Zj (F) is projective as a left module over Agp(Ms,). O

Remark 2.9. Over a field, the rings Agp(M) are local, so projective modules are free. If any
component of F' is disjoint from Mj, then one can construct a nonzero element of Agp(Ms)
that acts as zero on Zf; _(F'), contradicting freeness, so the converse to Proposition 2.8 holds
over a field.

Remark 2.10. Recall that for an object M of 2Cob®* the algebra A(M) considered in
[Man23] is a tensor product only of copies of Z[E]/(E?), indexed only by interval components
of M and not circle components. In [Man23], projectivity of the actions of A(Ms) and A(M;)
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on Z(;S;’F(F ) satisfies properties analogous to those in Proposition 2.8; if each component of F
intersects M; nontrivially then the left action of A(Ms) is projective, and similarly for M,
and the right action of A(M;). The converse holds if we work over a field.

2.6. Relating the larger and smaller state spaces. We now discuss how to recover the
state spaces Zf}(F ) of [Man23] from the spaces Zj (F) we consider here. Let M, L
be a morphism in 2Cob*™"; when defining Zi;(F ) with its actions of A(M;), it does not
matter algebraically whether S, circles of F' are considered as incoming or outgoing, so for
simplicity we will assume all S, circles of F' are in its incoming boundary M.

Proposition 2.11. For any § € Q and 7 € Z/27, we have
S ~
Zst, (F) = Z5s, (F) @wez paianyyer (V(0,0)72)%P

and
S ~
Z(S;r<F) - Zf,ﬂ(F) ®(U2(p5[(1|1)))®1’ (V(an)ﬁ)(@p'

Proof. The tensor products on the right are the quotients of ZJy, (F') and Z§ (F) by the
image of the endomorphism F for all circle components C' of S;. Choose a basis for H;(F, P)
as in Section 2.3 while considering two types of components of F'.

e For a component of F' having at least one boundary component C’ that is not an S
circle, we assume that C’ is the unique boundary circle in its component of F' that
is not a basis circle. In particular, each S, circle in the boundary of this component
of F'is a basis circle.

e For a component of F' having only S, circles in its boundary, we choose any of the
Sy circles, say C’, not to be a basis circle. Note that [C'] is zero in the quotient of
H\(F, P) by the classes of the basis S, circles.

Now, when taking the quotients by the image of Fi for all S, circles C)| first take the quotient
only for those S, circles C' that are basis circles. Once this quotient has been taken, the
classes of all non-basis S, circles already vanish.

When we take the quotient by the image of F» for basis Sy circles C', we have a vector
space with a basis and we are taking the quotient of its exterior algebra (which itself gets a
basis of wedge products) by the linear span of all basis wedge products divisible by certain
basis elements, namely the classes [C] of basis S, circles C. The result is that any wedge
product divisible by the class [C] of a basis S circle is set to zero, and no other relations are
imposed on the remaining wedge products. These remaining wedge-product basis elements
are the same as the basis elements chosen for Z?@(F ) and Zi;(F ) in [Man22, Man23]. O

3. A GLUING THEOREM FOR INTERVALS AND CIRCLES

3.1. Interval gluing lemma. Let F' be a sutured surface with all components of S, outgo-
ing, i.e. such that F corresponds to a morphism in 2Cob™" from @ to M for some object M.
Let I; and I, be two interval components of S containing points p; and ps of P and having
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associated maps F; and E,. Let F be the result of gluing I; and I, together compatibly
with the orientations.

Lemma 3.1. [¢f. Lemma 4.1 of [Man22|, Lemma 3.1 of [Man23]] For any A € Q and any

J € {1/2,1} such that w;(F) is defined, it follows that w;(F') is also defined and we have an
1somorphism

P
Zl  (F)~ — AT
6A’Trj( ) II'Il(El + EQ)

of Q-graded super abelian groups, compatible with the left actions of Z[E]/(E?) for interval
components of Sy that are neither Iy nor Iy and Z{E,F)/(E* F?, EF + FE) for circle
components of Sy. QOwver Fy we have an analogous isomorphism with no requirement on
well-definedness of ;.
Proof. Well-definedness of m;(F) for j = 1 follows from the fact that interval gluing does
not change the number of S, circles. For j = 1/2 it follows because while gluing I; to I
decreases the number of S, intervals by two, it also increases or decreases the number of
boundary components of F' intersecting S_ by one.

For the isomorphism, the proof largely follows [Man23, proof of Lemma 3.1]; we just note
the modifications required to adapt that proof to the current setting. Let § := d4 and

mi= 7'(']'.

Case 1-2: only [, is alone. When we show the isomorphism intertwines the remaining
actions, there are now more types of remaining actions that could exist (£ and F for cir-
cles along with E for intervals). The argument in [Man23| for an interval E action works
equally well for circle F actions. If C is a circle component of S, with corresponding F'-
endomorphism Fg, then in the notation of [Man23, proof of Lemma 3.1] we have

Foler®@ (e Aw)) = (1) Pep @ ([ClAeAW) = (1) e @ (e A [C] AW)
in Zg _(F). Under our isomorphism, this element gets sent to
(—1)" M ep @ ([C] A )
in Zf (F), which is also the result of acting with Fiz on e ® ([C] A w') because 7 (F) =
n(F)+ 1.

Case 1-3: neither [, nor [, is alone. Again we must consider the intertwining property of
our isomorphism with respect to more types of actions. Circle E actions follow from the same
proof as for interval E actions. For a circle C' in S, with corresponding F-endomorphism
Fe, we have

Foler®@ (e1 Aeg Aw')) = (1) e @ (eg Aey A [C] A W)

and
Fc(EF X (61 VAN w’)) = (—I)W(F)—HEF X (61 A [C] VAN w’).
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Meanwhile, if Fi= denotes the analogous endomorphism in the I case, we have
Fe(ep® (e Aw)) = (-1)™ M ep @ (e A [C] AW)

and
Fr(ep®@w) = (-1)™Pep & ([C] Aw).

The intertwining property follows from 7 (F) = w(F) + 1.
Case 2-1a: I, and I, are not alone in their component of F'. If C'is a circle component
of Sy (whether or not it contains ¢), then
Fc(ffp & (61 A €9 VAN w')) = (—1)W(F)+2€F & (61 A €9 VAN [C] N w')
and
Foler @ (e Aw')) = (=1)™ e @ (e A [C] AW).
On the F side, we have

Foleg ® (e AW)) = (=1)"Hep @ (e A [C] AW

and
Felep@w') = (-1)"Pep @ ([C] AW).

The intertwining property again follows from 7(F) = 7(F') + 1.

Cases 2-1b and 2-2: Arguments as in the above cases continue to work here. 0J

3.2. Circle gluing lemma. As in the previous section, let F' be a sutured surface with all
components of S, outgoing, i.e. such that F corresponds to a morphism in 2Cob®™" from @
to M for some object M. Let C and C5 be two circle components of S, containing points
p1 and py of P and having associated maps Ei, Fy and E,, Fy. Let F be the result of gluing
C1 and C5 together compatibly with the orientations.

Lemma 3.2. For any A € Q and any j € {1/2,1} such that 7;(F) is defined, it follows that

7;(F) is also defined and we have an isomorphism

P

Zt  (F) = Zioa,
da,m; 1m(E1 + Eg) + lIIl(Fl + FQ)

of Q-graded super abelian groups, compatible with the left actions of Z[E]/(E?) for interval
components of Sy and Z{E, F)/(E* F? EF+FE) for circle components that are neither Cy
nor Cy. QOuver Fy we have an analogous isomorphism with no requirement on well-definedness

Of 7.

Proof. Well-definedness of 7;(F) when j = 1 follows because gluing an S, circle to another
S, circle decreases the total number of S, circles by two; in particular, gluing along S
circles does not change the number of S, circles modulo 2. When j = 1/2, well-definedness
follows because gluing along S, circles changes neither the number of S, intervals nor the
number of boundary components of F' intersecting S_ nontrivially.

For the isomorphism, let 6 := 04 and 7 := 7;. We will consider various cases.
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Case 1: ()} and C, are on distinct components of F. Choose a Z-basis for Z§ (F) as
in Section 2.3; without loss of generality we may assume that C'; and Cy are each incident
with at most one basis arc.

Case 1-1: () and (5 are both alone. Assume that C; and C5 are each the unique
component of S, in their component of F.

Case 1-1a: there are no S_ circles in the same components of F' as C; or (5. In
this case the gluing produces a closed component of F. The endomorphisms FE;, Es, Fi,
and F, are each zero individually, so F; + Ey and F) + F, are zero. The gluing changes the
quantities relevant for ¢ as follows:

e The number of no-S_ non-closed components decreases by 2.
e The number of closed components increases by 1.
e The number of S circles decreases by 2.

The resulting change in ¢ is
24+ (24— 1) — 2(~1/2) = 0,

so the change in 7 is also zero. The statement now follows from H,(F, P) = H,(F, P); the
intertwining property holds because the components of F' containing C; and C5 intersect no
other components of S, .

Case 1-1b: there is an S_ circle in the component with C;, but not in the
component with C5. The gluing changes the quantities relevant for ¢ as follows:

e The number of no-S; non-closed components increases by 1.
e The number of no-S_ non-closed components decreases by 1.
e The number of S circles decreases by 2.

The resulting change in ¢ is
(A—1)— (4) = 2(~1/2) =0,

so the change in 7 is also zero.

When choosing bases, we can ensure that [C}] is a basis circle. Before gluing, basis elements
of Z§ . (F) are either ep ® ([C1] Aw') or ep ® W' for some wedge product w’ of basis arcs and
circles not divisible by [C}].

The maps E; and Fs, are both zero individually, so £ + Es = 0. For Fi, we have

e Filer @ ([Ci] AW)) =0;
o Filer @) = (—1)"Pep @ ([C1] A ).

Since F5 is the zero map, we have F; + F; = F} and we are taking the quotient of Zf;r(F)
by the image of F;. A basis for the quotient is given by the elements e ® W’ with w' not
divisible by [C1]. These same elements give a basis for Zg _(F), and we have a bijection
sending ep ® ' for F to ep ® ' for F. Thus, we have an isomorphism of Q-graded super
abelian groups; the intertwining property holds because the components of F' containing C
and C intersect no other components of S..
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The case where there is an S_ circle in the component with Cy but not in the component
with (] is analogous to this case, so we will not consider it separately.

Case 1-1c: there is an S_ circle in both the component with C; and the component
with (5. The gluing changes the quantities relevant for ¢ as follows:

e h increases by 1 (because [C}] becomes nonzero in H,(F,S,)).
e The number of no-S; non-closed components increases by 1.
e The number of S circles decreases by 2.

The resulting change in ¢ is
(—A)+(A-1)+2(-1/2) =0,

so the change in 7 is also zero.

When choosing bases, we can ensure that both [C}] and [Cy] are basis circles. Before
gluing, some other boundary circle in the component of F' containing C; was not a basis
circle, and similarly for the component containing C5. After gluing, the glued component
now has two boundary circles that were not basis circles, but instead of making one of them
into a basis circle we will let [C}] be a basis circle (modulo the other basis circles [C] is
homologous to either of the non-basis boundary circles up to sign).

Before gluing, basis elements of Zj (F') can take the following forms:
er @ ([Ch] N [Co] AN W),
er ® ([C1] AW),

Er ® ([CQ] N w’),
ErQ@uw

where w' is divisible by neither [C}] nor [C5]. The maps E; and E5 are both zero individually;

we have
o [i(er @ ([C1] N [Ca] ANW')) =0,
o Fi(er® ([Ci] AW')) =0,
o Fi(er @ ([Co) Aw')) = (=1)™Fep @ ([C1] A [Co] AW,
o Fi(er®w) = (—=1)"Fep @ ([C1] A W)
and
[ J FQ(&“F X ([Oﬂ VAN [02] /\w’)) = 0,
o By(ep @ ([C] AW)) = (=1)" M ep @ ([C] A [Co] AW,
o Ih(er® ([Co) AW)) =0,
o Iep W) = (—1)"Fep @ ([Co] AW).

Thus, in the quotient by im(F + F»), we have ep @ ([C1] A [Co] Aw') = 0 and
Er & ([Cg] N w') = —<cr® ([Cl] /\w').

A basis for the quotient is given by the elements ep @w’ and e ® ([C1]Aw’). By construction,
these basis elements naturally correspond to our basis elements for Zf; _(F), and we have a
bijection sending er ® w’ for F to ep ® w' for F and sending cr ® ([Cy] A ') for F to
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er ® ([C1] Aw') for F. Thus, we have an isomorphism of Q-graded super abelian groups; the
intertwining property holds for the same reason as in the previous cases.

Case 1-2: only (5 is alone. Now assume that C is the unique component of S, in its
component of F' but that C has another component of S, in its component of F.

Case 1-2a: there are no S_ circles in the same component as (5. The gluing changes
the quantities relevant for ¢ as follows, whether or not the component of F' containing C
intersects S_ nontrivially:

e h decreases by 1.
e The number of no-S_ non-closed components decreases by 1.
e The number of S, circles decreases by 2.

The resulting change in ¢ is

—(=A4)—(4) —2(-1/2) =
so 7 also changes by 1.
When choosing bases, we can ensure that '} is a basis circle and that there is a unique
basis arc e; incident with C;. Orient e; so that it points from the surface into ;. Basis
elements for Zj (F) can take the following forms:

o cp® (g N[CL AW,
o cr @ ([ AW),
o cr® (e AW,

e s RW.
We have
o Eier® (es N[CiAW)) = (=1)™Pep @ ([C1] AW),
o Bi(er® ([Ch]AW)) =0,
e Bi(er® (e AW)) = (=1 Fep @ W,

[ E1(€F®w/) = 0.

The map FEs is zero, so in the quotient by im(FE; + Es) we set the basis elements of the form
ep @ and ep ® ([C1] AW') to zero.

The endomorphisms F and Fy of Zg _(F') descend to endomorphisms of the quotient by
im(E; + Es); we have F; = 0 and

o [i(er® (e AN[C] AW)) =0,
o Fler® (e AwW)) = (1" lep @ (ey A[CL] AW).

When we take the further quotient by im(F; + F3), we set basis elements of the form ep ®

(e1 A [C1] Aw') to zero, and we are left with basis elements of the form ep ® (e; A w').
Meanwhile, in F, neither e, or [C}] is a basis arc or basis circle anymore; a basis is given

by elements e ® w’ where ' runs over the same wedge products as above (not divisible by

ey or [C1]). We have a bijection between the bases for the quotient and for Z§ (F) given by

EFr ® (61 /\w') <—>€p®w’.
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Because § and 7 are each one more for F' than they are for F, this bijection gives an
isomorphism of Q-graded super abelian groups.
To see that this bijection intertwines the remaining actions of E generators, let X ¢

{C1, C5} be an interval or circle component of S, . First assume that e; is not incident with

. ng(F)
X7 mn im(E1+E2)+im(F1+F2
EX(gF X (61 A w')) = (—1)7F(F)+1€F X (61 A Ex(w,)),

while in Zj (F) we have

; we have

Ex(éf & w’) = (—1)7T(F)€F X Ex(u}/).

These elements are identified under our bijection because 7(F') = w(F) + 1. If e; is incident
with X, the extra “remove e;” term we would get in Ex(ep ® (e; Aw')) is zero in lmz(‘%;%
even without the additional quotient by im(F; + F3), so the analysis is unchanged.

To see that the bijection intertwines the remaining actions of F' generators, let C' ¢
{C1, Cs} be a circle component of S;. If C'is not in the same component of F' as C, then
whether or not C is a basis circle, the expansion of [C] in terms of basis circles does not

involve [C], and we have
Z5.(F)

FC(EF (029 (61 A w')) = (—1)W(F)+16F X (61 VAN ([C] A w')) €

We also have

Fo(ep@w') = (-1)"Pep @ ([C] A W) € 28 (F);
these elements are identified under our bijection. If C'is in the same component of F' as ('
but C is also a basis circle, the argument is unchanged. If C is in the same component of
F as ('] and is not a basis circle, then taking the wedge products of our four types of basis

elements for ZF (F) with [C], there is an extra term that multiplies by [C}] rather than
) Z; (F) Zy (F)

S im(F|+Fy) im(E1+E2)Him(F1+Fo)

In Z (F) the basis expansion of [C] is missing the [Cy] term, so our bijection intertwines

changing w’. However, this extra term vanishes in and thus in

the actions of F.

Case 1-2b: there is at least one S_ circle in the same component of F' as (. If the
component of F' containing (] is disjoint from S_, then the gluing changes the quantities
relevant for ¢ as follows:

e h decreases by 1.
e The number of no-S_ non-closed components decreases by 1.
e The number of S, circles decreases by 2.

The resulting change in ¢ is

—(=A) = (4) - 2(=1/2) = +1,
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so 7 also changes by 1. On the other hand, if the component of F' containing C intersects
S_ nontrivially, then h is unchanged (in terms of bases for H;(F,S,) rather than H,(F, P)
we lose a basis arc but gain a basis circle) and the quantities relevant for ¢ change as follows:

e The number of S, circles decreases by 2.

The resulting change in ¢ is
—-2(-1/2) =
so 7 also changes by 1.
When choosing bases, we can ensure that C; and Cy are basis circles; we can also ensure
that C is incident with a unique basis arc e; and that e; points from the surface into C.
With respect to divisibility by e;, basis elements are of the form ep ® W' or ep ® (e1 A W)
where w' is not divisible by e;. We have
[ ) E1<€F & w’) = O,
e Bi(er® (e AW)) = (=1 Fep @ '
The map FE, is zero, so in the quotient by im(F; + E;) we set the basis elements of the
form ep ® W’ to zero. Now, basis elements of the quotient by im(FE; + E3) are of one of the
following forms with respect to divisibility by [C4] and [Cy]:
er ® (e1 N [C1] A [Co) AW,
er ® (e AN [Ch] AW,
er ® (61 VAN [Cg] A w’),
er ® (ep Aw')

where w’ is divisible by neither e; nor [Cg]. We have

o Fi(er @ (er A [C1] A [Co] A ))
e Fi(ep® (a1 N[Ch] AW)) =
o Filer®(e1 AN|[Co] AW)) = ( D™+ en @ (ep A [C1] A [Ca] Aw'),
o Fi(er® (et AwW)) = (1) ep @ (ey A[C1] AW
and
o [5(er @ (er NG A [Co] AW')) =0,
o Ihep®(eg N[O AW)) = (—=1)"I 2 @ (ep A [C1] A [Co] AW,
o Ihep®(eg AN[Cyl AW)) =0,
o Iep® (e AwW)) = (—1)" I lep @ (ey A[Co] AW).

In the quotient by im(F; + F3), we thus have e ® (e; A [C1] A [Co] Aw') = 0 and
er®(e1 N[Co] ANW') = —ep @ (e A [Ch] AW).

Basis elements of the quotient are of the form ep ® (e Aw') or ep ® (e1 A [C1] AW').

Meanwhile, for F, e; is no longer a basis arc, and rather than adding a new basis circle
elsewhere around one of the remaining boundary components of F, we can take [C]] as a
basis circle for . Define a bijection of basis elements sending

€F®(€1/\w,) <—>€f®w’
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and

er®@ (e NCIIAW) < e @ ([C1] AW).
Because § and 7 are each one more for F' than they are for F, this bijection gives an
isomorphism of Q-graded super abelian groups.

The intertwining property for the remaining actions of E follows as above. For the re-
maining actions of F, the only potentially problematic case is if C' ¢ {C}, Cy} is in the same
component of F' as Cy but is not a basis circle. The expansion of [C] in terms of basis circles
has a term +[C], so

(12) FC<€F ® (61 A w’)) = (—1)W(F)+1€F ® (61 A\ (:i:[Cl]) A w’) —+ .-

where the remaining terms are not divisible by [C}]. For F, because we included [C}] as a
basis circle, it follows that the expansion of [C] in terms of basis circles is the same as it was
for F'. We get

Fc(ﬁf@) w') = (—1)W(F)6f® ((i[(]l]) A w’) + -
where the remaining terms are the same as in (12) with e; removed and with e replaced
by e, and the two instances of & represent the same sign. Because 7(F) = 7(F) + 1, the
intertwining property holds.

Case 1-3: neither C] nor (5 is alone. If either the component of F' containing C or the
component of F' containing Cs is disjoint from S_, then the gluing changes the quantities
relevant for ¢ as follows:

e h decreases by 1
e The number of no-S_ non-closed components decreases by 1.
e The number of S circles decreases by 2.

The resulting change in ¢ is +1 as above, so 7 also changes by 1. On the other hand, if
both the component of F' containing C'; and the component of F' containing C intersect S_
nontrivially, then h is unchanged because we lose a basis arc and gain a basis circle; the only
change in quantities relevant for ¢ is that the number of S, circles decreases by 2. Thus, §
changes by 41 and 7 changes by 1.

When choosing bases, we can ensure that C'; and C5 are basis circles, that C; is incident
with a unique arc e; for i € {1,2}, and that e; points from the surface into C; while e; points
from C5 into the surface. With respect to divisibility by e; and e,, there are four types of
basis elements for Z;{W(F ), on which F; and E, act as follows:

o Fi(ep®@uw) =0,

E1(5F®(61/\w)):( D™ Fep @ W,

o i(er®(ea ANW')) =0,
Ei(er® (er Aeg Aw')) = (—=1)" ey AW

and

Esy(ep @ w') =0,
EQ(EF X (61 A w’)) = 0,
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o Eyer®(eg Aw)) = (1)) Hep @ W,
o Eyer®(er Neg Aw')) = (=1)" ) +2e AW,
In the quotient by im(E; + Es), we see that ep ® ' = 0 and
er®(ea ANw') = —cp ® (e AW).

Basis elements for the quotient are of the form ep ® (e; Aw') or ep @ (€3 A ea Aw'). With
respect to divisibility by [C}] and [Cs], there are four types of these elements, on which F}
and F5, act as follows:

o Fi(er®w) = (—1)"Fep @ ([C1] Aw'),
o Fi(er® ([C1]AW)) =0,
o Fi(er @ ([Co] AW)) = (=1)"Fer @ ([C1] A [Co] AW,
° F1(€F & ([Oﬂ A [CQ] /\w’)) =0
and
o [Her®w) = (—1)"Fep @ ([Cy] Aw'),
o By(er @ ([C] Aw')) = (=)™ ep @ ([C1] A [Co] A W),
° FQ(Z‘ZF & ([02} /\w’)) = 0,
° FQ(&F & ([Oﬂ A [02] /\w’)) =0.

Thus, basis elements of the quotient by im(E + Es) +1im(F; + F3) have one of the following
forms:

er ® (ep ANw'),

er®(e1 Neg Aw'),

er ® (er N[C1] A W),

er ® (e1 Nea N[Ch] A W).

Meanwhile, in F we can take [C}] as a basis circle as usual, and the concatenation of e;
and e, produces a new basis arc e. Make the identifications

er® (e AwW') & er@ W,

er® (g Nea AwW') < e ® (e AW'),

er @ (er NC1]AW) < e @ ([Ch] AW,
er®(eg Nea N [C1] AW) ¢ e @ (e N [Ch] AW).

These identifications give an isomorphism of Q-graded super abelian groups. For the in-
tertwining property, actions of E corresponding to intervals or circles X ¢ {C7,C5} that
intersect neither e; nor ey are dealt with as above. If X contains an endpoint of e;, then we
have

o Fx(erp® (g Aw')) =0,

o Ex(er®(e1 Neg Aw')) = (1) *2c @ (e; Aw') (one extra minus sign comes from

removing —e; and the other comes from replacing e; with —ey),
o Ex(er® (g AN[Ci] AW)) =0,
o Ex(er®@(e1 Aea N[C1AW)) = (=120 @ (e A [CL] AW).

In ', X now contains an endpoint of e (which points from X into the surface), so
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o Ex(ep®@uw) =0,

o Ex(ez ® (e AW)) = (—=1)" e @ W,

o Ex(ez® ([C1] Aw')) =0,

o Ex(er @ (e N[Ci A W) = (=1 @ ([Cy] AW).

Because 7(F') = w(F') + 1, our identifications intertwine the remaining actions of E.

For the remaining actions of F', the only case not entirely analogous to the ones above is
if C' ¢ {C},C5} is in the same component as Cy but is not a basis circle. The expansion of
[C] in terms of basis circles has a term £[C5], so

Foler @ (e Aw')) = (=1)™ e p @ (e A (F[CH]) AW) + -

and
Foler®@ (e1 Aea Aw')) = (=)™ e @ (eg Aeg A (F[CL) AW) + - -
The key observation is that in F, the circles C; and Cj are oriented oppositely, so that
[Cy] = —[C4] and the basis expansion of [C] in terms of basis circles has a term F[C}]. We
have
Folep @) = (=1)"Pep @ (F[C1]) Aw) + -+
and
Foep® (e Aw') = (=1)"Pep, @ (e A (F[C1]) Aw') + -+
Thus, the formulas for Fo in the F and F cases agree under our identification.
Case 2: (] and (5 are on the same component of F.

Case 2-1: gluing C; and (5 produces a closed component of F'. Assume that the
component of F' containing €, and Cj is otherwise disjoint from both S, and S_, so that
gluing C7 and C5 produces a closed component of F. The quantities relevant for § change
as follows:

e hincreases by 1 (in terms of bases for Hy(F, S, ), a basis arc turned into a basis circle
and we added another basis circle).

e The number of no-S_ non-closed components decreases by 1.

e The number of closed components increases by 1.

e The number of S, circles decreases by 2.

The resulting change in ¢ is
(—A)—(A)+(2A-1)—-2(-1/2)=0

so 7 is also unchanged.
When choosing bases, we can ensure that ' is a basis circle and that the only basis arc
intersecting C'y or (5 is an arc e pointing out of C5 and into C;. We have
Eil(er @ (e N[CI]AW)) = (=1 Fep @ ([C1] A W),
Ei(er@(enw)) = (-1)Fep @,
Ei(er @ ([Ci] AW')) =0,
Ei(erp®@w) =0
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and
o Fr(er® (e N[Ch] A
o Es(er®(enw')) =
o Eyer @ ([ AW)) =
o [h(ep®@uw)=0.
Thus, £y + E; = 0. For i € {1,2} we also have

W) = (=17 Hep @ ([C] Aw),
( ) F)+1€ R w',

o Filer @ (e N[Ci] AW)) =
e [i(er®(eANW)) = (— I)W(F)HSF@(G/\ [C1] AW,
o Fi(er @ ([Ci] AW)) =
o Fi(ep@uw)=(-1)" F)€F®([01]AW')
and
o Fhlep®@ (e N[Ci]AW)) =0,
L4 2(€F®(6/\u})) ( ) (F)+2€F®(e/\[01]/\w’),
o Ih(er @ ([Ci] AW)) =
o Ih(er®@uw) = (—1)”(F)+1€F ® ([C1] Aw')

so I + F5 is also the zero map.
Meanwhile, in F, the arc e closes up to become a basis circle 7 and we can retain [C}] as
a basis circle. Make the identifications
er® (e N[CiAW) & e @ (TA[CL AW,
er®(eNw) & er® (T AW),
er @ ([Ci] AW) ¢ e @ ([Ch] A W),
EFQuW ¢ epQuw.

These identifications give an isomorphism of Q-graded super abelian groups, and there are
no complications with the intertwining property.

Case 2-2: the component of F' containing ('} and (5 contains no other components
of S, but has at least one S_ circle. The quantities relevant for § change as follows:

e hincreases by 1 (in terms of bases for Hy(F, S, ), a basis arc turned into a basis circle
and we added another basis circle).

e The number of no-S; non-closed components increases by 1.

e The number of S, circles decreases by 2.

The resulting change in ¢ is
(—A) + (A—1)—2(~1/2) = 0,

so 7 is also unchanged.

When choosing bases, we can ensure that both C; and C5 are basis circles and that the
only basis arc intersecting C or C is an arc e pointing out of C; and into C';. When
computing F; and Es, we do not care about divisibility by [C;]; we have

e Bi(cr®@(eAw)) = (=1)"Pep @/,
o Bi(ep@uw) =0
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and
o Bhcr®(eAw)) = (1)t @ W,
o fhep@uw) =0
Thus, Fy + Es is the zero map.
Similarly, when computing F; and F5, we do not care about divisibility by e; we have

o [i(er @ ([Ch] N[Oy /\w’)) =0,
o Fi(er® ([Ci] AW)) =
o Ii(er @ ([Co] NW')) = ( 1)™Flep @ ([C1] A [Co] Aw),
o Fi(ep @uw) = (=1)"Fep @ ([C1] AW)
and
o [her®@ ([CiIN[Col AW)) =
o Fher @ ([Ci]AW)) = (=1)" (F)+15F®([Cl] A [Ca] Aw'),
o Fy(er @ ([Co] Aw)) = 0,
o By(er @) = (—1)"Pep @ ([Co] A ).

Thus, in the quotient by im(F; + Fy), we have ep ® ([C1] A [Co] Aw') = 0 and
Er ® ([Cg] N w') = —€r® ([01] /\w’).

Basis elements for the quotient are of the form e ® W', ep ® ([C1] AW'), ep ® (e AW'), and
e(F)® (e N[Ch] AW).
Meanwhile, in F, the basis arc e closes up to become a basis circle 7, and we can retain
[C] = —[C5] as a basis circle. Make the identifications
EFr@W ¢ ep@u,
er @ ([ AW') & ep @ ([Ch] A W),
er®(eNW) o ep® (TAW),
er®@(eN[C1]AW) ¢ ep@ (T A[C] AW);

we get an isomorphism of Q-graded super abelian groups and again there are no complications

with the intertwining property.

Case 2-3: the component of F' containing ' and ()5 contains at least one other
component of S,. The quantities relevant for ¢ change as follows:

e The number of S, circles decreases by 2.

Note that h is unchanged because, in terms of bases for H;(F, S, ), two basis arcs combined
to form a basis circle (—1 to h) but we also added another basis circle (+1 to h). The
resulting change in ¢ is +1, so 7 also changes by 1.

When choosing bases, we can ensure that both €} and Cy are basis circles, that C; is
incident with a unique basis arc e; for i € {1,2}, and that e; points from the surface into C}
while es points from C5 into the surface.

When computing £ and Es, we do not care about divisibility by [C4] or [Cs]; we have

e Bicr®@(e1 Nea Aw')) = (1) Flep @ (ey AW'),
e Bi(er® (e AW)) = (1) Fep @ W,
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[ ] El(&fp (039 (62 /\w’)) = 0,
e Hi(er®@uw)=0
and
o Eyer®(er Neg Aw')) = (—1)™ 20 @ (e1 A W),
® EQ(EF & (61 /\CL)/)) = 0,
o Bher®(ea ANW)) = (—=1)"FHep @ W,
o fh(erp®@uw) =0.

In the quotient by im(F; + Es), we thus have ep ® w’ = 0 and
EF & (62 /\w') = —<r® (61 /\w').

Basis elements for the quotient are of the form er ® (€3 Aes Aw') and ep ® (e3 Aw').
When computing £} and F5, we do not care about divisibility by e; or es; we have

o Fi(er @ ([C1] AN [Co] AW')) =0,
o Fi(er @ ([C1] Aw')) =0,
o Fi(er @ ([Co) Aw')) = (=1)"Fep @ ([C1] A[Cy] Aw),
o« Filer @) = (1) Pep @ ([C4] Aw)
and
o Fy(er @ ([C1] AN [Co] AW')) =0,
o Fy(er @ ([C1] Aw')) = (=1)"Hep @ ([C1] A [Cy] Aw),
[ ] F2(€F X ([02 /\w’)) = 0,
o Byler @) = (—1)"Pep @ ([Co] A o).

In the quotient by im(F; + Fy) we have e ® ([C1] A [Co] Aw') = 0 and
er @ ([Co) AN') = —ep @ ([C1] AW).
Thus, we have four types of basis element for the quotient by im(E; + Es) + im(F; + Fy):

er® (e Neg Aw'),

er® (e Nea N [Ch] AW,
er ® (ep Aw'),

er ® (e1 A [C1] AW).

Meanwhile, for F, the arcs e; and ey combine into a basis circle 7 and we can also retain
[C1] as a basis circle. Make the identifications

er® (g Nea Aw') < e @ (T A W),

er®(er Nea N[C1AW) < e @ (TA[CL AW,
er® (el ANW) o ep W,

er @ (er AN[C1] AW) < e7 @ ([Ch] AW');

we get an isomorphism of QQ-graded super abelian groups.
For the intertwining property, we need to see what happens if C' ¢ {C}, Cy} is not a basis
circle but lives in the same component of F' as C and Cs. In this case, the expansion of [C]
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in terms of basis circles includes terms £([C4] 4+ [Cs]) and the potentially problematic terms
for the intertwining property are:

Fo(er® (1 Aeg Aw')) = (=1 2ep @ (ep Aeg AE([Ch] 4+ [Co)) Aw' + -+ -,
Foler®@ (e1 Aea N[O AW)) = (=1)" ) 2c @ (ep Aeg A (E[Co]) A[CHA W) 4 -+ -,
Fo(ep @ (ey Aw')) = (=1)" I lep @ (er A ([Cr] + [Co]) Aw + -+ -,

Folerp @ (et N[O AW)) = (—1)" I ep @ (ep A(E[C)) A[CHAW) +---.

H in th : Z§ . (F)
owever, 1n the quotient (BB Fim(Fi 1)

becomes equal to —[C}] and thus £([C}] + [C3]) vanishes from the basis expansion of [C], so

these terms are all zero. Meanwhile, in F, [Cl]

there are no analogues of the above terms when applying F- on Zg _(F). The intertwining
property follows. 0

3.3. Composing open-closed cobordisms. While Theorem 1.5 is phrased only over Fo,
we will prove the following more general version.

Theorem 3.3. Let My, My, and Ms be objects of 2Cob™" and let
M & v, £ vy
be morphisms in 2Cob™". For any A € Q, we have

ZglA,IEb(F, © F) = Z(I;A,FQ(F,) ®A]22

P
- (M2) Z(SA,IFQ (F)

as Q-graded bimodules over the Z-graded Fy-algebras (A%n(Ms), A%2.(M))). Furthermore, if
7;(F) and 7;(F") both make sense for some j € {1/2,1}, then w;j(F' o F') also makes sense
and we have

Z8  (F o )2 ZE (F') @apeon) ZE, o (F)

0A,m;

as Q-graded bimodules over the Z-graded super rings (Agp(Ms), Apr(My)).

Proof. The claim about 7;(F’ o F) follows as in the beginning of the proof of Lemma 3.2.
Below we will assume that either we have j € {1/2,1} such that 7;(F) and 7;(F’) make
sense, or that we are working over Fy; we will use the notation of the Z-version. Let § = d4
and m = 7;.
As in [Man23, proof of Theorem 1.2], we can write Zj (F') ®a,, (1) Z5.(F) as
Z§(F') @7 Z§ . (F)
spang{(ep ®x)a® (ep R yY) — (ep V) Valer ®Y)}

where, in the denominator, a is an arbitrary multiplicative generator

(13)

=19 - QIIERI®---®1
or
a=1® - RIVFR1®---®1

of Agr(Ms), x is an arbitrary basis element of A*Hy(F', P), and y is an arbitrary basis
element of A\*H,(F, P).
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Let Left a, ) [Z5,(F') ®z Zf;ﬂ(F)} denote Zg (F') ®z Zj(F) with the right action of
the supercommutative superalgebra Agp(M;) viewed as a left action; an element a acts on
the left by first passing to the right, which picks up a sign, and then acting from the right. If
we let (F' U F)ef, denote F’ LI F with all of its S, boundary components viewed as outgoing,
then as Q-graded super abelian groups we have

Leftapp (i) [Zr(F') @2 Zgo(F)] = Zi ((F'U F)iert)
via the map ® sending
er @@ @y (1) Oepipy, . ® (z Ay).

The isomorphism ® is compatible with the left actions of Agp(Ms); it is also compatible
with the left actions of F' for incoming circles of F', and it relates the left actions of E for
incoming intervals or circles of F' by a minus sign (the explanation of this minus sign is the
same as in [Man23, proof of Theorem 1.2]).

The map ¢ sends (e ® x)a ® (ep ® y) to

(_1)(Ix\+1)7r(F)6(F,uF)left ® (xa A y)

where za is still computed in Z§ (F’). In terms of the left action e; (coming from F’) of
A(Ms) on Z§ ((F'U F)iet), we can write this element as either

(_1)(|z\+1)7r(F)+7r(F')+7r(F)+|;z\a o g(FluF)left ® (I A y)

_ (_1)\x|7r(F)+7r(F')+\x|a L (L) ® (I A y)

if a is an F' generator or

(_ 1)(|x|+1)7r(F)+7T(F’)+7r(F)+\m|

a @1 E(FIUF) e & (QZ A y)

— _(_1)|x\w(F)+7r(F/)+|x\a O E(FIUF)y @ (x Ay)

if a is an E generator (the extra minus sign arises for the same reason that it does in the
proof of [Man23, Theorem 1.2]). Similarly, ® sends

(er @) ®aler @y) = (—1)"(ep @ 2) @ (e © ay)

to

(=)™ e iy, @ (2 A ay)
where ay is still computed in Z§ (F). In terms of the left action e, (coming from F) of
A(Ms) on Z§ ((F' U F)ie), we can write this element as either

_ (_1)7r(F)+\x|7r(F)+7r(F’)+7r(F)+|x\

@ E(FrLF) . @ (T A Y)

— _(_1)‘x|7r(F)+7T(F’)+|$Ia .2 E(F"—’F)left ® (x /\ y)

if a is an F' generator (the extra minus sign arises because the orientation of the circle added
by a in the F case is the opposite of the orientation of the circle added by a in the (F'UF)eg
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case) or

(—1)ﬂ(F)Hxlﬂ(FHﬂ(F/Hﬂ(F)Hx'a ®2 E(FIUF) e @ (zAy)

= <_1)|I|7T(F)+7T(F’)+|CE‘Q L D) 8(F/UF)1Cft X (SL‘ AN y)

if a is an E generator.
Thus, we get an isomorphism between (13) and

Z5 . ((F'U Fen))

(14) Right
Apr(My) span{a o (€(FUF’)1cft X Z) + a ey (5(FLIF’)1cft ® Z)}

where, in the denominator, a is an arbitrary multiplicative generator of Agpp(M;) and z is

an arbitrary basis element of Zf; ((F"UF)ietr)). The isomorphism is compatible with the left

actions of Agp(Ms); it is also compatible with the left actions of F' for incoming circles of

F'; and it relates the left actions of E for incoming intervals or circles of F' by a minus sign.
The denominator is a sum of subspaces:

e im(FE; + Ey) for each interval component of M, with associated E-endomorphisms
Ei, Es of Zgﬂ((F’ U F)er) ), and
o im(FE; + Ey) + im(F; + F») for each circle component of M, with associated E-
endomorphisms E;, F5 and F-endomorphisms Fy, F5 of Zf; ((F'U F)ett))-
Taking the quotients one component of M, at a time and applying Lemma 3.1 for interval
components and Lemma 3.2 for circle components, the quotient in (14) is isomorphic to

Z5 ((F' o Fetr)

since (F' o F')jf is the surface obtained by doing all these gluings to (F' U F)jeg. It follows
that the right side of the isomorphism in the statement of the corollary is isomorphic to

Right s, ) [Z5(F' 0 F)ier)]

compatibly with the left actions of Agpp(M;) and the right actions of F' generators of
Agp(M,) and relating the right actions of £ generators of Agp(M;) by a minus sign. Equiv-
alently, it is isomorphic to

Zg (F "o F )
compatibly with the left action of Agp(M3) and the right action of Agp(M;) as desired. O

4. DEGREE AND PARITY SHIFTS

We explain here why we chose the formula (1) for d4. As in [Man23, Section 4], we will
postulate a general formula
0 =Cik1+ -+ Cyky
for the grading shift associated to a sutured surface F', where

e k; is the number of components
e ks is the genus (sum over all components)
® k3 is the number of closed components



38 ANDREW MANION

e k4 is the number of non-closed components without S

® k5 is the number of non-closed components without S_

e kg is the number of S intervals
e k7 is the number of S, circles
e kg is the number of S_ circles

® kg is the number of boundary circles of F' with both S, and S_.

As in [Man23], § is compatible with Lemma 3.1 (interval gluing) if and only if the following

system of equations is satisfied:

24

(15) —C1+Cy—2C+Cs —2Cy =0
(16) —C) —205—Cy =1
(17) —Cy — 205+ Cs —2Cy = 1
(18) —205+Cy =1
(19) —2Cs+Cg =1
(20) —205 +2Cs — Cy = 1
(21) Cy— 205 +2C5 — Cy =0
(22) Cy—2C5—Cy =1
(23) Co — 20 +Cg —2Cy =1
(24)

Co+Cy—2C5+Cs —2Cy =0
The general family of solutions is given by
(25) (—2Cy, 2Cy, Cs,
for arbitrary values of Cs, Cs, C7, Cly.

Case 1-2 or 1-3, no S_ circle created)
Cases 1-2 or 1-3, one S_ circle created)

Case 2-1a, no S_ circle created)
Case 2-1a, two S_ circles created)

Case 2-2a, no S_ circle created)

(
(
(
(
(Case 2-1a, one S_ circle created)
(
(
(
(Case 2-2a, one S_ circle created)
(

Case 2-2b)

_17 C57 (09 - 1)/2)7 077 Cg, CQ)

Now, by examining the proof of Lemma 3.2, we see

that ¢ is compatible with circle gluing if and only if the following system of equations is

satisfied:

(26) —C1+C5—2C5 —2C; =0
(27) -C1+Cy—Cs—2C7; =0
(28) —Ch1+C,—207=0
(29) —C,—Cs—2C; =1
(30) —C,—Cs—2C; =1
(31) —C1—2C7 =1
(32) Co+C5—Cs5—2C7; =0
(33) Co+Cy—2C7 =0
(34) Cy —207 =1

Case 1-1a)
)

Case 1-2b or 1-3, no S_ near (')
Case 1-2b or 1-3, S_ near ()
Case 2-1)

Case 2-2)

Case 2-3).
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From (27) and (28) we get C5 = 0. Substituting (25) into (26)—(34), we get:
20y +C5 —2C7; =0
209 —1—-2C7=0
20y —1—2C =0

20y —2C; =1
209 —207 - 1
20y —2C; =1

209 +C3—2C7; =0
209—1—207:0
20y — 207 = 1.

These equations hold if and only if C7 = Cy — 1/2 and C3 = —1. Letting C' = Cy, we arrive
at the general family

(—2C, 2C, -1, -1,0, (C-1)/2,C—1/2, C, C)
of solutions to all the above equations together, so we can take
0 =—=2Cky +2Ckg — ks — ks + ((C = 1)/2)ke + (C — 1/2)k7 + Cks + Cky.

We also have
h = =2k + 2ko + 2k3 + kg + ks + ke + k7 + kg + ko,

SO
Ch = =2Ck, + 2Cky + 2Ck3 + Cky + Cks + Ckg + Cky + Ckg + Chy.

We can thus rewrite 4 as
d=Ch+(-2C - 1Dks+ (=C = ks + (=C)ks + (=C = 1)/2)ks — (1/2) k7.
Letting A = —C, we get
(35) d=—Ah+ 2A—1Dks+ (A —1)ky+ Aks + (A —1)/2)k — (1/2)k7
which recovers equation (1) for 4.
Proposition 4.1. There is no A € C such that (35) is an integer for all sutured surfaces.

Proof. Evaluating (35) on a disk with boundary in S_, we get 6 = A — 1, so A must be an
integer. Evaluating on a disk with boundary in S™ instead, we get § = A—1/2, so A cannot
be an integer. O
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