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Abstract. We define larger variants of the vector spaces one obtains by decategorifying

bordered (sutured) Heegaard Floer invariants of surfaces. We also define bimodule struc-

tures on these larger spaces that are similar to, but more elaborate than, the bimodule

structures that arise from decategorifying the higher actions in bordered Heegaard Floer

theory introduced by Rouquier and the author. In particular, these new bimodule struc-

tures involve actions of both odd generators E and F of gl(1|1), whereas the previous ones

only involved actions of E. Over F2, we show that the new bimodules satisfy the necessary

gluing properties to give a 1+1 open-closed TQFT valued in graded algebras and bimodules

up to isomorphism; in particular, unlike in previous related work we have a gluing theorem

when gluing surfaces along circles as well as intervals. Over the integers, we show that a sim-

ilar construction gives two partially-defined open-closed TQFTs with two different domains

of definition depending on how parities are chosen for the bimodules. We formulate con-

jectures relating these open-closed TQFTs with the psl(1|1) Chern–Simons TQFT recently

studied by Mikhaylov and Geer–Young.
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1. Introduction

This paper aims to address one of the most natural and commonly-asked questions about

work of Rouquier and the author [MR20] as well as related work [LM21, Man20, CM23,

Man22, Man23]: out of the generators E,F,K±1
1 , K±1

2 of Uq(gl(1|1)), [MR20] and these

other papers feature higher actions of E and not F (or F and not E in different conventions)

on the strands algebras of bordered sutured Heegaard Floer homology. Duals of E feature

prominently in the story but upon decategorification they satisfy a different type of relation

with E than do E,F ∈ Uq(gl(1|1)). Why don’t we have both E and F? This paper proposes

an explanation as well as, at the decategorified level, a modified setup in which actions of

both E and F appear naturally. In this modified setup, we will prove gluing theorems when

gluing surfaces along circles as well as intervals, further generalizing the types of surface

gluing considered in [MR20, Man22, Man23].

Intervals and the positive half. Two important features of the higher actions in [MR20]

are as follows:

• They are actions of a categorification of

U(psl(1|1)+) = C[E]/(E2)

where psl(1|1) is the Lie superalgebra generated by two odd elements E and F with

vanishing superbracket and psl(1|1)+ is its positive half, the Lie superalgebra gener-

ated by one odd element E with vanishing superbracket.

• They are associated to intervals, not circles, in the boundaries of surfaces with corners.

We would like to suggest that these two features are closely related in the context of TQFTs

extended down to a point, with the inverval viewed as the identity cobordism from a point

to itself.

Loosely speaking, when a fully extended 3d TQFT assigns the representation category

(with tensor structure) of some Hopf algebra H to a point, it will then assign the rep-

resentation category of the Drinfeld double D(H) to a circle. The 3d Chern–Simons or

Reshetikhin–Turaev TQFT for a Lie algebra g assigns a semisimplified category of represen-

tations of Uq(g) to a circle, and Uq(g) is “almost” the Drinfeld double of Uq(g
+) where g+ is

the positive half of g. However, in general Uq(g) is not actually a Drinfeld double, the modu-

lar category C assigned to the circle by Reshetikhin–Turaev is not actually a Drinfeld center,

and Reshetikhin–Turaev theory cannot actually be described as a fully extended TQFT as-

signing some representation category of Uq(g
+) to a point. By contrast, the Turaev–Viro

theory assigning C to a point should be fully extended and assign the Drinfeld center of C

(in some sense C2) to a circle, and in this sense the Reshetikhin–Turaev theory for C is a

square root of the Turaev–Viro theory for C at the level of 1+1+1 extended TQFTs.

Now, for the special case g = psl(1|1), we have U(psl(1|1)) ∼= D(U(psl(1|1)+)), so (ignoring

q) the above difficulty in extending Reshetikhin–Turaev theory to a point using the positive

half psl(1|1)+ should disappear. We make the following imprecise conjecture.
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Conjecture 1.1. If we take H = U(psl(1|1)+) = C[E]/(E2) with ∆(E) = E ⊗ 1 + 1 ⊗ E

and ε(E) = 0, then the TQFT assigning (Rep(H),⊗) to a point recovers both:

• aspects of the psl(1|1) Chern–Simons TQFT as studied by Mikhaylov [Mik15] and

Geer–Young [GY22];

• aspects of decategorified bordered sutured Heegaard Floer theory in dimensions 1

and 2 as studied in [Man22, Man23]

which are thereby closely related to each other.

Note that the TQFT assigning (Rep(H),⊗) to a point will assign Rep(H) as a bimodule

category over itself to an interval, and it will assign Rep(D(H)) to a circle. For appropriate

surfaces F with corners, then, we should expect actions of U(psl(1|1)+) for intervals in ∂F

and actions of U(psl(1|1)) for circles in ∂F . The first type of action is what gets categorified

by the higher actions of [MR20].

Proposal 1.2. There is “E but not F” in [MR20] because the higher actions and tensor

product of [MR20], as well as the earlier work of [DM14], are more related to the Heegaard

Floer homology of the point and the interval than to the Heegaard Floer homology of the

circle.

Remark 1.3. In the Acknowledgments section of [DM14], Douglas–Manolescu say that their

work in cornered Heegaard Floer homology, upon which [MR20] builds, was inspired by a

question that David Nadler asked of Manolescu: “What is the Seiberg–Witten invariant of

the circle?” In our proposed interpretation, Douglas–Manolescu’s work instead concerns the

Seiberg–Witten or Heegaard Floer invariant of a point, which would be something like

(2Rep(U(psl(1|1)+)), ⊗ )

where U(psl(1|1)+) is the dg monoidal category called U in [MR20] and ⊗ is the higher

tensor product operation defined in [MR20]. If our interpretation is close to accurate, it

would give a very nice conceptual interpretation for the higher tensor product operation of

[MR20] and its relationship to Heegaard Floer homology: very roughly, we propose that

The higher tensor product ⊗ of [MR20] is the key ingredient in the Heegaard Floer

homology of a point.

Remark 1.4. There is another perspective from which this proposal is not entirely implau-

sible. Heegaard Floer homology itself is defined based on the ansatz that Seiberg–Witten

theory, extended down to surfaces, assigns to a surface Σ the Fukaya category of a symmet-

ric power of Σ. Correspondingly, when defining Heegaard Floer homology for a 3-manifold,

one picks a decomposition along a 2d Heegaard surface and works on this surface (which is

one lower dimension than expected for 3-manifold invariants, and this drop in dimension is

because one is utilizing extended TQFT structure).

Now, both Lipshitz–Ozsváth–Thurston’s and Zarev’s variants of bordered Heegaard Floer

theory work by choosing an additional cut on the 3-manifold, transverse to the Heegaard
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surface and intersecting the Heegaard surface in a 1-manifold. To define bordered Floer

invariants of surfaces, one works with this 1-manifold (in the guise of a pointed matched circle

or an arc diagram), and to define bordered Floer invariants of 3d cobordisms, one works with

a Heegaard surface having 1d boundary given by the pointed matched circle or arc diagram.

It is tempting to think that bordered Heegaard Floer theory is again utilizing extended

TQFT structure of one lower dimension (one higher level of extension) than expected, and

indeed, by [MR20] the bordered Floer surface invariants are objects of a 2-representation

2-category that should be assigned to the 1-manifold underlying a pointed matched circle or

arc diagram.

Finally, the tensor product of [MR20] and the corresponding gluing formula for bordered

Floer surface invariants was prefigured by Douglas–Manolescu’s theory of cornered Heegaard

Floer homology [DM14], which yet again is based on making another cut on a 3-manifold

(transverse to both the Heegaard surface and the above “bordered” cut). While Douglas–

Manolescu work with Lipshitz–Ozsváth–Thurston’s variant of bordered Floer theory and

have a different topological interpretation of what’s going on, [MR20] works with Zarev’s

variant and gets a gluing formula for algebras associated to 1d arc diagrams when gluing

like “interval = interval ∪pt interval” (for the surfaces represented by the arc diagrams,

this gives the open pair-of-pants gluing involving the p = 2 case of Example 1.6 below).

Specifically, the algebra for the glued arc diagram is the higher tensor product of the algebras

for the two pieces, which categorifies what one would expect from the TQFT assigning

(Rep(U(psl(1|1)+)),⊗) to a point.

Main results. We now state the main results of this paper, which will be phrased in terms

of open-closed TQFT rather than TQFT extended down to a point. We plan to return to

TQFT extended down to a point in [Man] (in preparation).

In [MR20, Man22, Man23] we do not have the expected actions of U(psl(1|1)) for circles; we

only have actions of U(psl(1|1)+) for intervals. Indeed, while one would expect the identity

cobordism idS1 on S1 to get assigned the identity functor on Rep(U(psl(1|1))), which is

tensor product with U(psl(1|1)) as a bimodule over itself (4-dimensional), the vector space

associated to this cobordism in [Man22, Man23] only has dimension 2. In this paper we will

define related spaces that have the expected actions of both U(psl(1|1)+) for intervals and

U(psl(1|1)) for circles.

Let 2Cobext denote the 1 + 1 open-closed cobordism category defined in [LP08]. For an

object M of 2Cobext consisting of a disjoint union of oriented intervals and circles in some

specified order, define AEF (M) to be the tensor product (in order) of super rings

UZ(psl(1|1)+) := Z[E]/(E2)

for interval components of M and

UZ(psl(1|1)) := Z⟨E,F ⟩/(E2, F 2, EF + FE)
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for circle components of M , where Z⟨· · · ⟩ denotes noncommutative polynomials. Give these

super rings Z-gradings by setting deg(E) = −1 and deg(F ) = 1.

We will first state our main result over F2; let AF2
EF (M) = AEF (M) ⊗ F2 viewed as an

ordinary non-super Z-graded algebra. Let F : M1 → M2 be a morphism in 2Cobext and let

S+ = M2 ⊔ (−M1). Let S− denote the closure of ∂F \ S+. Let P be a collection of points,

one in each S+ boundary component of F (the below constructions will be independent of

P up to isomorphism). For any rational number1 A ∈ Q, let

(1)

δA(F ) =− Ah+ (A− 1)#{no-S+ non-closed components of F}

+ A#{no-S− non-closed components of F}

+ (2A− 1)#{closed components of F}

+ ((A− 1)/2)#{S+ intervals} − (1/2)#{S+ circles}.

We will define the structure of a bimodule over (AF2
EF (M2), A

F2
EF (M1)) on the Q-graded vector

space

ZP
δA,F2

(F ) := ∧∗H1(F, P ;F2){δA(F )},

where {·} denotes a shift in the Q-grading and the summand ∧k of the exterior algebra

lives in Q-degree k. Note that ∧∗H1(F, P ) is higher-dimensional than the space ∧∗H1(F, S+)

featuring in [Man22, Man23] if and only if F has at least one component F0 with an S+

boundary circle that is not the only boundary circle of F0.

Theorem 1.5. Let M1, M2, and M3 be objects of 2Cobext and let

M3
F ′

←−M2
F
←−M1

be morphisms in 2Cobext. For any A ∈ Q, we have

ZP
δA,F2

(F ′ ◦ F ) ∼= ZP
δA,F2

(F ′)⊗
A

F2
EF (M2)

ZP
δA,F2

(F )

as Q-graded bimodules over (AF2
EF (M3), A

F2
EF (M1)).

A version of Theorem 1.5 holds over Z; see Theorem 3.3.

Example 1.6. Among the morphisms in 2Cobext are the closed and open p-tuples of pants as

shown in Figure 1. In many TQFTs, such cobordisms are assigned the p-fold tensor product

functor on the monoidal category associated to the circle or the interval respectively. In

terms of bimodules, if the circle or interval is assigned a Hopf algebra H, then one expects

the corresponding p-tuple of pants cobordism to be assignedH⊗p as a bimodule over (H,H⊗p)

with right action by multiplication and left action by the coproduct of H. In our setting, we

can ask which choices of A ∈ Q are such that the closed or open p-tuple of pants cobordisms

get assigned this expected bimodule with the correct grading.

1Rather than restricting to Q-gradings, we could more generally choose A ∈ R or A ∈ C if we wanted. On
the other hand, the choices of A we will be most concerned with are A = 1/2 and A = 1. For these choices
the Q-grading is really just a 1

4
Z-grading or a 1

2
Z-grading respectively.
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• The closed p-tuple of pants Pp,closed has h = p. It has no components intersecting S−

but not S+, one component intersecting S+ but not S−, and no closed components.

It has no S+ intervals and p+ 1 S+ circles. Thus,

δA(Pp,closed) = −Ap+ A− (p+ 1)/2

and we want this quantity to equal −p. The equation

p(−A+ 1/2) + (A− 1/2) = 0

holds for all p if and only if A = 1/2; note that for a general open-closed cobordism

F we have

δ1/2(F ) =− h/2− (1/2)#{no-S+ non-closed components of F}

+ (1/2)#{no-S− non-closed components of F}

− (1/4)#{S+ intervals} − (1/2)#{S+ circles}.

• The open p-tuple of pants Pp,open also has h = p. It has no components intersecting

S− but not S+, no components intersecting S+ but not S−, and no closed components.

It has p+ 1 S+ intervals and no S+ circles. Thus,

δA(Pp,open) = −Ap+ ((A− 1)/2)(p+ 1).

and we want this quantity to equal −p. The equation

p(−A/2 + 1/2) + (A− 1)/2 = 0

holds for all p if and only if A = 1; note that for a general open-closed cobordism F

we have

δ1(F ) =− h+#{no-S− non-closed components of F}

+#{closed components of F} − (1/2)#{S+ circles}.

Thus, the choices A = 1/2 and A = 1 in (1) are of particular interest. The first seems

most natural for circle gluing and the connection with the existing literature on 3d non-

semisimple TQFTs as in [Man23] (discussed further below); the second seems most natural

for the connection between higher tensor products and the type of surface gluing along

intervals that appears in [MR20].

As a corollary of Theorem 1.5, we get a 1 + 1-dimensional open-closed TQFT valued in

algebras and bimodules. Since it is valued in algebras and bimodules rather than vector

spaces and linear maps, we think of it conceptually as being part of the extended structure

of a 2 + 1-dimensional TQFT such as the 3d non-semisimple TQFTs discussed below. The

proof of the following corollary is the same as [Man23, proof of Corollary 1.3].
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Figure 1. Left: closed p-tuple of pants, with p circles on its right side and
one on its left side. Right: open p-tuple of pants, with p intervals on its right
side and one on its left side.

Corollary 1.7. For any A ∈ Q, the assignments

M 7→ AF2
EF (M) and F 7→ ZP

δA(F ),F2
(F )

give a symmetric monoidal functor from 2Cobext to the symmetric monoidal category AlgF2

of Z-graded algebras over F2 and Q-graded bimodules up to isomorphism.

By contrast, when decategorifying the higher actions of [MR20] one is led to spaces

Z
S+

δ,F2
(F ) := ∧∗H1(F, S+;F2){δ(F )}

where δ is chosen from a larger parametrized family of functions S → Q described in [Man23].

If 2Cobext
open denotes the full subcategory of 2Cobext on objects consisting only of intervals and

no circles, then by [Man23, Corollary 1.3], the spaces Z
S+

δ,F2
(F ) give a functor from 2Cobext

open

into Z-graded F2-algebras and Q-graded bimodules. They seem to admit natural actions

only of UF2(psl(1|1)+) and not of UF2(psl(1|1)).

Let V (0, 0)F2 denote the two-dimensional Z-graded module over UF2(psl(1|1)) given by

the quotient UF2(psl(1|1))/(F ); the notation is adapted from [GY22, Section 2.3.2]. Note

that V (0, 0)F2 is localized in Z-degrees −1 and 0. For F with p S+ circles, we will show in

Proposition 2.11 that

(2) Z
S+

δA,F2
(F ) ∼= ZP

δA,F2
(F )⊗(UF2 (psl(1|1)))⊗p (V (0, 0)F2)⊗p.

This formula suggests that the proper interpretation of Z
S+

δA,F2
(F ) is the state space obtained

from the larger state space ZP
δA,F2

(F ) by labeling each S+ boundary component with the

representation V (0, 0)F2 of UF2(psl(1|1)).

Proposal 1.8. We have the expected categorified actions of U(psl(1|1)+) in [MR20], but not

the expected categorified actions of U(psl(1|1)), because the higher actions of [MR20] are

on categorifications of the state spaces Z
S+

δA,F2
(F ) (with all actions of UF2(psl(1|1)) “labeled
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away”) rather than on categorifications of the larger state spaces ZP
δA,F2

(F ). To honestly

get actions of E and F at the same time, one should first categorify ZP
δA,F2

(F ), possibly by

some adaptation or generalization of the strands algebra construction in bordered sutured

Heegaard Floer homology in which the algebras have more basic idempotents whenever

ZP
δA,F2

(F ) is larger than Z
S+

δA,F2
(F ).

Remark 1.9. Even if one were to categorify ZP
δA,F2

(F ) with its actions of both E and F ,

these actions would still satisfy EF + FE = 0 at the decategorified level. The relation

EF + FE = 0 is the gl(1|1) relation EF + FE = (K − K−1)/(q − q−1) when acting on

representations with K-weight 1 or −1, and one would hope to have categorifications of

more general K-weight (e.g. the vector or defining representation of Uq(gl(1|1)) with K = q)

with actions of E and F satisfying the appropriate relations at the decategorified level.

The connection with the 3d psl(1|1) Chern–Simons TQFT [Mik15] and Geer–Young’s Dq,int

TQFT [GY22], in which the relation EF + FE = 0 arises for “critical” or non-generically

decorated surfaces while relations with EF + FE nonzero arise for generically decorated

surfaces, could help see how to further generalize hypothetical categorifications of ZP
δA,F2

(F )

to incorporate higher actions of both E and F with EF + FE nonzero.

Remark 1.10. Higher actions of both E and F on bordered strands algebras, satisfying

EF + FE = 0, also appear in work of Ellis–Petkova–Vértesi [EPV19] on Petkova–Vértesi’s

tangle Floer homology [PV16]. The presence of both E and F in this case seems to be a con-

sequence of special symmetries that are enjoyed by the arc diagrams underlying the strands

algebras in question but not by the arc diagrams for more general strands algebras. Tian

[Tia16], repurposing the tools of bordered sutured Heegaard Floer homology in a different

way, also has actions of E and F satisfying the Uq(gl(1|1)) relations on certain algebras.

While neither of these instances seem closely connected to what we discuss here, it would be

interesting to pursue any connections if they exist.

Remark 1.11. In this paper we work with U(psl(1|1)) acting on graded vector spaces. In

some situations it is equivalent to work with U(pgl(1|1)) acting on ordinary vector spaces

such that the extra generator “H2” of U(pgl(1|1)) acts diagonalizably; then eigenspaces for

H2 stand in for summands of a graded vector space in different degrees. However, here we

are especially concerned with functors given by tensor product with the algebra of a circle.

If M is a right module and N is a left module over U(pgl(1|1)), then M ⊗U(pgl(1|1))N tensors

the H2 weight-k subspace of M with the H2 weight-k subspace of N for each k, and the

result has H2 weight k. By contrast, if M is a right graded module and N is a left graded

module over U(psl(1|1)), then M ⊗U(psl(1|1)) N tensors the degree-k subspace of M with the

degree-l subspace of N for each (k, l), and the result has degree k+ l. This second behavior

is compatible with our gluing theorems while the first is not. Thus, the perspective taken

here seems to favor psl(1|1) over pgl(1|1) in this sense.

Signs and parities. If we want to pass from F2 to Q or Z, we need to take signs and

parities into account as well. The exterior algebra ∧∗H1(F, P ;Z) is naturally a super abelian
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group with ∧k in parity k modulo 2; for any given F we may or may not reverse this parity,

and we want our choices to be compatible with gluing.

We are not aware of a way to define a parity-shift function π from the set S of morphisms

in 2Cobext, additive under disjoint union, to Z/2Z such that both interval and circle gluing

theorems are satisfied. However, interesting parity-shift functions exist when restricting

attention to certain subsets of S. We first note that if we could choose A such that δA(F )

were integral for all F , then we could define the parity shift using δA(F ) modulo 2, and

gluing would be compatible with parity because it is compatible with δA. However, there is

no A such that δA(F ) is always an integer (see Proposition 4.1). To proceed, we ask when

δA(F ) is integral in the special cases A = 1/2 and A = 1:

• δ1/2(F ) is an integer if and only if the number of S+ intervals of F is equal modulo 4

to twice the number of boundary components of F intersecting S− nontrivially (see

Section 4). In this case, write

π1/2(F ) := δ1/2(F )

modulo 2.

• δ1(F ) is an integer if and only if the number of S+ circles of F is even. In this case,

write

π1(F ) := δ1(F )

modulo 2.

Both of the above properties are preserved under disjoint union and under gluing an S+

interval to an S+ interval or an S+ circle to an S+ circle.

Definition 1.12. Let 2Cobext
closed++ denote the subcategory of 2Cobext whose morphisms

have number of S+ intervals equal modulo 4 to twice their number of boundary components

intersecting S− nontrivially. Let 2Cobext
open++ denote the subcategory of 2Cobext whose mor-

phisms have an even number of S+ circles. Note that the “closed sector” of 2Cobext (the

usual 1+1-dimensional oriented cobordism category with S− always empty) is a subcategory

of 2Cobext
closed++, while the “open sector” of 2Cobext (the full subcategory on objects with no

circles) is a subcategory of 2Cobext
open++.

For any choice of A ∈ Q and π ∈ Z/2Z:

• If F is a morphism in 2Cobext
closed++, the Q-graded super abelian group

ZP
δA,π1/2

(F ) :=
(
Z0|1

)⊗π1/2(F )
⊗ ∧∗H1(F, P ){δA(F )}

canonically has the structure of a bimodule over (AEF (M2), AEF (M1)).

• If F is a morphism in 2Cobext
open++, the Q-graded super abelian group

ZP
δA,π1

(F ) :=
(
Z0|1

)⊗π1(F )
⊗ ∧∗H1(F, P ){δA(F )}

canonically has the structure of a bimodule over (AEF (M2), AEF (M1)).

Theorem 3.3 (the Z version of Theorem 1.5) gives us the following corollary.
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Corollary 1.13. Let SAlgZ denote the symmetric monoidal category of Z-graded super rings

and Q-graded bimodules up to isomorphism.

• For any A ∈ Q, the assignments

M 7→ AEF (M) and F 7→ ZP
δA,π1/2

(F )

give a symmetric monoidal functor from 2Cobext
closed++ to SAlgZ.

• For any A ∈ Q, the assignments

M 7→ AEF (M) and F 7→ ZP
δA,π1

(F )

give a symmetric monoidal functor from 2Cobext
open++ to SAlgZ.

The proof is the same as [Man23, proof of Corollary 1.3].

Non-semisimple TQFT. Recently there has been considerable interest in non-semisimple

analogues of 3d Witten–Reshetikhin–Turaev TQFTs (see e.g. [ADO92, CGPM14, Mik15,

BCGPM16, GPV17, AGPS18, GPPV20, GHN+21, CGP23, Jag23, GY22]). In particular,

some of these constructions [Mik15, BCGPM16, AGPS18, GY22] arise from the quantum

representation theory of the Lie superalgebra gl(1|1) or its relatives and have connections

with the Alexander polynomial and Reidemeister torsion. A general mechanism for defining

non-semisimple 3d TQFTs is given by De Renzi [DR22], who uses a universal construction to

define a type of 1+1+1 extended TQFT starting with data that he calls a relative modular

category C. In particular, C comes with a decomposition C = ⊕g∈G Cg where G is some

abelian group, and the data also includes another abelian group Z such that the state spaces

of the theory on (decorated) surfaces are Z-graded vector spaces.

In [GY22, Theorem 2.23 with ℏ = πi/2 and q = i] Geer and Young define a C-linear2

relative modular category Dq,int with G = C/((2πi/ℏ)Z) = C/(4Z) and Z = Z× Z× Z/2Z.

They propose that the TQFT associated to Dq,int by De Renzi’s construction [DR22] is

a (homologically truncated, non-derived) mathematical realization of the main subject of

Mikhaylov’s paper [Mik15], referred to by Mikhaylov as the psl(1|1) Chern-Simons TQFT.

We will call the non-extended version of this TQFT ZGY and the extended version ZGY
ext .

To a disjoint union of p circles each decorated by 0 ∈ G, ZGY
ext assigns a category enriched

in Z-graded vector spaces, which can be viewed as the idempotent completion of the p-fold

ordinary tensor power (as in [Kel82, Section 1.4]) of the Z-graded category of Z-graded

projective modules over U(psl(1|1)). The p-fold tensor product

P (0, 0)0 ⊗ · · · ⊗ P (0, 0)0

naturally gives an object of the category, where P (0, 0)0 denotes U(psl(1|1)) with first com-

ponent of the Z-grading identically zero, second component of the Z-grading given by the

usual grading on U(psl(1|1)) as a Z-graded module over itself with deg(E) = −1 and

deg(F ) = 1, and third component of the Z-grading given by the parity on the super vector

space U(psl(1|1)). See [GY22, Section 2.3.3].

2When discussing non-semisimple TQFT we will work over C rather than Z.
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Now, let F be a zero-decorated 2d cobordism from M1 (consisting of p1 zero-decorated

circles) to M2 (consisting of p2 zero-decorated circles), and assume that each component of

F intersects M1 nontrivially, which (given these decorations) amounts to the admissibility

condition defined in [DR22, Section 2.3] for F as a cobordism from M1 to M2. The TQFT

ZGY
ext assigns to F a functor between the above enriched categories, and we can evaluate

this functor on the object corresponding to (P (0, 0)0)
⊗p1 . We get an object of the category

associated to M2, and this category admits a canonical functor to the category of Z-graded

projective modules over (U(psl(1|1)))⊗p2 . Applying this additional functor, we get a Z-

graded super vector space ZGY
ext (F ) (slightly abusing notation) with a left action of

(U(psl(1|1)))⊗p2 = AEF (M2),

projective as a left module. Furthermore, by applying the same sequence of functors to

morphisms from (P (0, 0)0)
⊗p1 to itself, ZGY

ext (F ) also has a right action of

(U(psl(1|1)))⊗p1 = AEF (M1).

Overall, there is a bimodule structure over (AEF (M2), AEF (M1)), projective as a left module,

on ZGY
ext (F ). We can also discard the first component of the grading by Z = Z× Z× Z/2Z,

which will always be zero in this setting, and the third component which is captured by the

super vector space structure. Thus, we will view ZGY
ext (F ) as a Z-graded bimodule.

It turns out (see Proposition 2.8) that the spaces ZP
δ,π(F ) are projective as left modules

over AEF (M2) if and only if each component of F intersects the incoming boundary M1, i.e.

exactly when De Renzi’s admissibility condition is satisfied. The surfaces F in question are

morphisms in 2Cobext
closed++, so they have δ1/2(F ) ∈ Z ⊂ Q. For such F we make the following

conjecture.

Conjecture 1.14. If each component of F intersects M1, then as Z-graded bimodules over

(AEF (M2), AEF (M1)) we have

ZGY
ext (F ) ∼= ZP

δ1/2,π1/2
(F ).

Note that Conjecture 1.14 uses the same grading and parity shifts as does [Man23, Con-

jecture 1.6] about ZS+ . For genus zero connected surfaces F , De Renzi discusses the graded

dimensions of state spaces in [DR22, Section 7.5], and our degree and parity shifts for

ZP
δ1/2,π1/2

(F ) are compatible with this discussion. Going beyond the graded dimensions

and looking at the bimodule structure, in Example 2.7 we will show that for the closed

p-tuple of pants cobordism F from (S1)⊔p to S1, the bimodule ZP
δ1/2,π1/2

(F ) can be identified

with (U(psl(1|1)))⊗p with right action of (U(psl(1|1)))⊗p by multiplication and left action of

U(psl(1|1)) induced by the coproduct ∆(E) = E ⊗ 1 + 1⊗E and ∆(F ) = F ⊗ 1 + 1⊗E on

U(psl(1|1)). It follows that the functor (ZP
δ1/2,π1/2

(F )⊗(U(psl(1|1)))⊗p −) gives the p-fold tensor

product of representations of U(psl(1|1)), in line with [DR22, Proposition 7.3] for ZGY
ext (F ).

Remark 1.15. While the TQFT ZGY is functorial on decorated cobordisms as in [GY22]

(roughly: 3d cobordisms without corners, equipped with colored ribbon graphs), ∧∗H1(F, S+)
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is a decategorification of Zarev’s bordered sutured Heegaard Floer invariants of surfaces and

thus should be functorial under certain “sutured cobordisms” (roughly: 3d cobordisms with

corners). While Geer–Young define their TQFT using the universal construction applied to

decorated cobordisms, bordered sutured Heegaard Floer homology and its decategorification

can also be seen as arising from a universal construction applied to sutured cobordisms

(“Zarev caps”), by the ideas of [Zar10].

It seems likely that a subset of decorated cobordisms can be identified with a subset of

sutured cobordisms; the decorated cobordisms allow more general colorings while the sutured

cobordisms allow more general topology. It would be interesting to make this identification

and extend it to define a type of cobordism jointly generalizing decorated cobordisms and

sutured cobordisms (possibly: sutured cobordisms equipped with some more general type

of coloring data). Then one would hope that ZGY is functorial under these more general

cobordisms and that a theory can be defined extending ZGY
ext to surfaces with corners and

sutured cobordisms, and extending decategorified bordered sutured Heegaard Floer theory

from colors related to psl(1|1) to more general colors related to Geer–Young’s UE
q (gl(1|1))

(see the discussion in [GY22, Section 6.1]).

Remark 1.16. The results of this paper were also motivated in a different direction by

open questions in bordered Heegaard Floer homology. Mikhaylov’s psl(1|1) Chern-Simons

theory is meant to recover the Turaev torsion for closed 3-manifolds; in turn, this torsion is

categorified by the sophisticated HF+ and HF− versions of Heegaard Floer homology, while

to this point bordered Heegaard Floer homology has been largely limited to the setting of

the simpler version ĤF . For example, one cannot recover the interesting Ozsváth–Szabó

mixed invariants for smooth 4-manifolds from ĤF ; one needs HF+ and HF−. For genus-

zero surfaces there is some work that goes beyond the ĤF setting (e.g. Ozsváth–Szabó’s

bordered HFK) and in genus one Lipshitz–Ozsváth–Thurston have given talks on a bordered

version [LOT] of HF− that has not yet appeared in the literature (the relevant algebra is

introduced in [LOT21]). In general, though, it is a major open problem to extend bordered

Heegaard Floer techniques so that HF+ and HF− can be recovered by cutting 3-manifolds

along surfaces. One could hope to approach this problem by thoroughly understanding the

decategorified level first, and in particular understanding a suitable TQFT approach to the

Turaev torsion such as psl(1|1) Chern–Simons theory, then trying to categorify everything

and recover HF+ and HF− by combining methods from bordered Heegaard Floer homology

and 3d non-semisimple TQFTs. The current paper attempts to take a step toward this goal.

Organization. In Section 2 we review some preliminary definitions, define algebra actions

on the spaces ∧∗H1(F, P ) for both interval and circle components of S+, discuss when these

actions give projective modules, and relate ∧∗H1(F, S+) to ∧∗H1(F, P ). In Section 3 we

prove our main results, and in Section 4 we explain our choices of degree and parity shifts

in more detail.
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2. Algebra actions for intervals and circles

2.1. Sutured surfaces and open-closed cobordisms. We recall the definition we will

use for sutured surfaces following the presentation in [Man23].

Definition 2.1 (cf. Definition 1.2 of [Zar11], Definition 2.1 of [Man23]). A sutured surface

consists of the data (F,Λ, S+, S−, ℓ) where:

• F is a compact oriented surface, possibly with boundary (F can be disconnected and

is allowed to have closed components);

• Λ is a choice of some even number of points (possibly none) in each boundary com-

ponent of F ;

• The components of ∂F \ Λ are labeled as being in either S+ or S−, in alternating

fashion across the points of Λ. Components of ∂F with no points of Λ are either S+

circles or S− circles; the rest of the components of S+ and S− are closed intervals.

• ℓ consists of a labeling of each component of S+ as “incoming” or “outgoing,” as well

as an ordering on the set of incoming S+ components and an ordering on the set of

outgoing S+ components.

We will usually refer to a sutured surface as F and suppress mention of the rest of the data.

We can view a sutured surface F as a morphism in the 1+1-dimensional open-closed cobor-

dism category 2Cobext defined by Lauda–Pfeiffer in [LP08]. The source of this morphism is

the incoming part M1 of S+ (after orientation reversal) and the target is the outgoing part

M2, so that S+ = M2 ⊔ (−M1). The non-gluing boundary of F is S−. Sutured surfaces

corresponding to a pair of composable morphisms in 2Cobext are shown in [Man23, Figure

2].

2.2. Actions on larger state spaces. Choose a finite subset P of S+ consisting of one

point in each component (interval or circle) of S+. For any δ ∈ Q and π ∈ Z/2Z we will

define superalgebra actions on the super abelian group

ZP
δ,π(F ) := (Z0|1)⊗π(F ) ⊗ ∧∗H1(F, P ){δ(F )}.

Specifically, we will have actions of Z[E]/(E2) for interval components of S+ and actions of

Z⟨E,F ⟩/(E2, F 2, EF +FE) for circle components of S+. The actions will be left actions for

outgoing components of S+ and right actions for incoming components of S+. Write εF for

the standard basis element of (Z0|1)⊗π(F ).

Definition 2.2 (cf. Definition 2.4 of [Man23]). Let (F,Λ, S+, S−, ℓ) be a sutured surface

and let X be an outgoing interval or circle component of S+. Choose a finite set of points

P as above. For any δ ∈ Q and π ∈ Z/2Z, we define

E = EI : Z
P
δ,π(F )→ ZP

δ,π(F )
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as follows.

• Define ϕX : H1(F, P )→ Z to be the composition

ϕX := H1(F, P )
∂
−→ H0(P )

[pX ]∗·−
−−−−→ Z

where [pX ]
∗ is the class in H0(P ) dual to the homology class in H0(P ) of the unique

point pX of P contained in X.

• For k ≥ 1, define ΦX : T kH1(F, P )→ T k−1H1(F, P ) by

ΦX :=
k∑

i=1

(
T i−1H1(F, P )⊗Z H1(F, P )⊗Z T k−iH1(F, P )

(−1)i−1 idTi−1H1(F,P ) ⊗φX⊗idTi−1H1(F,P )

−−−−−−−−−−−−−−−−−−−−−−−−−→ T i−1H1(F, P )⊗Z Z⊗Z T
k−iH1(F, P ).

)

• Because of the sign (−1)i−1 in the above definition, we get an induced map

ΦX : ∧k H1(F, P )→ ∧k−1H1(F, P ).

Define

ΦX
′
: (Z0|1)⊗π(F ) ⊗ ∧kH1(F, P ){δ(F )} → (Z0|1)⊗π(F ) ⊗ ∧k−1H1(F, P ){δ(F )}

by

ΦX
′
(εF ⊗ ω) := (−1)π(F )εF ⊗ ΦX(ω).

• Let E be the sum of the maps ΦX
′
over all k ≥ 1. E is an odd map and the sign

(−1)i−1 in the definition of ΦX ensures that E2 = 0.

Define E similarly when X is an incoming interval or circle component of S+, except that:

• Instead of (−1)i−1 we have (−1)k−i as the sign in the definition of ΦX ;

• We define ΦX
′
by

ΦX
′
(εF ⊗ ω) := εF ⊗ ΦX(ω),

without a sign of (−1)π(F ).

Remark 2.3. In [Man22, Man23], we could have defined actions of Z[E]/(E2) on Z
S+

δ,π(F )

for circle components of S+ like we do in Definition 2.2. However, these actions do not seem

very motivated; if we think of Z
S+

δ,π(F ) as being obtained from ZP
δ,π(F ) as in Proposition 2.11,

then by labeling S+ circles we should be “using up” the algebra action on each S+ circle

without leaving any residual action. Correspondingly, Z
S+

δ,π(F ) does not appear to admit a

gluing theorem when gluing along circles.

The following definition is where we finally get F endomorphisms to go along with the E

endomorphisms for circles.

Definition 2.4. Let (F,Λ, S+, S−, ℓ) be a sutured surface and let C be a circle component

of S+. Give C the orientation it has as (part of) an object of 2Cobext; in other words, give

C the boundary orientation induced from F if C is outgoing, and give C the reverse of this
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orientation if C is incoming. Choose a finite set of points P as above. For any δ ∈ Q and

π ∈ Z/2Z, define

F = FC : Z
P
δ,π(F )→ ZP

δ,π(F )

to send

εF ⊗ ω 7→ (−1)π(F )εF ⊗ ([C] ∧ ω)

if C is outgoing and

εF ⊗ ω 7→ εF ⊗ (ω ∧ [C])

if C is incoming.

Proposition 2.5. The following relations hold:

• If I is an interval component of S+, then the endomorphism E = EI from Defini-

tion 2.2 satisfies E2 = 0.

• If C is a circle component of S+, then the endomorphisms E = EC from Definition

2.2 and F = FC from Definition 2.4 satisfy E2 = 0, F 2 = 0, and EF + FE = 0.

• Endomorphisms E or F for any pair of distinct incoming components of S+ anti-

commute, and the same is true for any pair of distinct outgoing components. Any

pair of endomorphisms commute if one comes from an incoming component and the

other comes from an outgoing component.

Proof. The relations E2 = 0 in the interval and circle case follow from the signs (−1)i−1 or

(−1)k−i in Definition 2.2. The relation F 2 = 0 in the circle case follows from [C] ∧ [C] = 0.

Let C be a circle component of S+, so that we have two endomorphisms E and F cor-

responding to C. Informally, if C is outgoing then E acts by moving inward from the left

(picking up a sign when crossing each factor) until it reaches various wedge factors with non-

trivial boundary at the point pC , and summing (with signs) over each way to remove of one

of these wedge factors. Acting with F before E will ensure that each term in the subsequent

action of E will have to cross an extra factor [C] compared with acting with E before F . It

follows that EF + FE = 0. The anticommutativity claim for two incoming components of

S+ and the commutativity claim for one incoming and one outgoing component of S+ follow

by similar arguments. □

For an object M of 2Cobext, let AEF (M) denote the tensor product, in order, of superal-

gebras Z[E]/(E2) for interval components of M and Z⟨E,F ⟩/(E2, F 2, EF + FE) for circle

components of M . If F : M1 →M2 is a morphism in 2Cobext, Proposition 2.5 gives ZP
δ,π(F )

the structure of a bimodule over (AEF (M2), AEF (M1)). If we want, we can also tensor every-

thing with F2 and forget signs and super structures. We will denote the resulting bimodule

as ZP
δ,F2

(F ) since π is irrelevant over F2.

Example 2.6. Figure 2 shows, for a particular sutured surface F and a particular choice of

S+ circle C and S+ interval I in its boundary, the actions of FC , EC , and EI on an element

α1 ∧ α2 ∈ Z
S+

δ,F2
(F ).
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Figure 2. Actions of F for circles and E for circles and intervals (the coeffi-
cients are taken in F2 for simplicity).

2.3. Defining bases from collections of arcs and circles. The proofs of the gluing

results in [Man22, Man23] make use of certain choices of basis for H1(F, S+); the proofs here

will use bases for H1(F, P ) similarly. As in [Man22, proof of Lemma 4.1] and [Man23, proof

of Lemma 3.1], given a sutured surface F , we can choose a homeomorphism (preserving the

sutured data) between F and a finite disjoint union of “standard” sutured surfaces such as

the one shown in Figure 3. Define a collection of oriented arcs and circles in each standard

sutured surface, e.g. the set of blue arcs and circles in Figure 3, as follows.

• In each of the “handles,” take two oriented circles as in Figure 3.

• For all the boundary components of F (whether or not they intersect S− nontriv-

ially), except for one chosen component, take an oriented circle around the boundary

component.

• Choose a connected acyclic directed graph ΓF embedded in F with vertex set P .

The circles and edges of ΓF give a basis for H1(F, P ), so their wedge products give a basis

for ∧∗H1(F, P ). Applying εF ⊗− to these wedge products, we get a basis for (C0|1)⊗π(F ) ⊗

∧∗H1(F, P ){δ(F )}.
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Figure 3. Oriented arcs and circles forming a basis of H1(F, P ), whose prod-
ucts form a basis for ∧∗H1(F, P ). The set P consists of the points labeled p1,
p2, p3, and p4. The subset S+ of ∂F is drawn in orange, while S− is drawn in
black. When compared with [Man22, Figure 16], we have an extra blue circle
here.

2.4. Tensor products. Here we discuss an important family of examples, the closed and

open p-tuples of pants from Example 1.6, in more detail. In fact, for the open p-tuple of pants

Popen, [Man23, Proposition 2.7] applies basically unchanged; we have H1(F, P ) ∼= H1(F, S+)

because Popen has no S+ circles, and the grading shifts of this paper were dealt with in

Example 1.6. It follows that

ZP
δ1,π1

(Popen) ∼= (Z[E]/(E2))⊗p

as Z-graded bimodules over (Z[E]/(E2), (Z[E]/(E2))⊗p) where (Z[E]/(E2))⊗p acts on the

right by multiplication and the left action of Z[E]/(E2) is induced by the coproduct

∆(E) = E ⊗ 1 + 1⊗ E.

Let Pclosed denote the closed p-tuple of pants. In Figure 4, label the arcs as e1, . . . , ep from

top to bottom and the circles as σ1, . . . , σp from top to bottom. Orient them as indicated in

Figure 4:

• ep is oriented from the outgoing boundary to the incoming boundary, ep−1 is oriented

from the incoming boundary to the outgoing boundary, and so on in alternating

fashion;

• σp is given the opposite of the boundary orientation of its corresponding incoming

S+ circle, σp−1 is given the boundary orientation of its corresponding incoming S+

circle, and so on in alternating fashion.

We have the following analogue of [Man23, Proposition 2.7] for the closed p-tuple of pants.
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Figure 4. Orientations on arcs e1, . . . , ep and circles σ1, . . . , σp giving a basis
for H1(Pclosed, P ). The orientations shown on the S+ boundary circles of Pclosed

are the induced boundary orientations without reversal.

Proposition 2.7. Define a map

ZP
δ1/2,π1/2

(Pclosed)→ (Z⟨E,F ⟩/(E2, F 2, EF + FE))⊗p

by sending the basis element

εPclosed
⊗ (eδ11 ∧ σ

δ′1
1 ) ∧ · · · ∧ (eδpp ∧ σ

δ′p
p )

of ZP
δ1/2,π1/2

(Pclosed) (where δi, δ
′
i ∈ {0, 1}) to the element

(E1−δ1F δ′1)⊗ · · · ⊗ (E1−δpF δ′p)

of (Z⟨E,F ⟩/(E2, F 2, EF+FE))⊗p. This map is an isomorphism of Z-graded bimodules over

(Z⟨E,F ⟩/(E2, F 2, EF + FE), (Z⟨E,F ⟩/(E2, F 2, EF + FE))⊗p)

where (Z⟨E,F ⟩/(E2, F 2, EF +FE))⊗p acts on the right by multiplication and the left action

of Z⟨E,F ⟩/(E2, F 2, EF + FE) is induced by the coproduct

∆(E) = E ⊗ 1 + 1⊗ E, ∆(F ) = F ⊗ 1 + 1⊗ F.

Proof. By Example 1.6 and the definition of π1/2 as the parity of δ1/2, the map respects

Z-grading and parity. It gives a bijection on basis elements, so we need to show it is com-

patible with left multiplication by Z⟨E,F ⟩/(E2, F 2, EF + FE) and right multiplication by

(Z⟨E,F ⟩/(E2, F 2, EF + FE))⊗p.

We start with left multiplication by E. Since π1/2(Pclosed) = p, the product

E · (εPclosed
⊗ (eδ11 ∧ σ

δ′1
1 ) ∧ · · · ∧ (eδpp ∧ σ

δ′p
p )),

is given by

(3)

(−1)p
∑

i:δi=1

(−1)δ1+δ′1+···+δi−1+δ′i−1(−1)p−i+1

· εPclosed
⊗ (eδ11 ∧ σ

δ′1
1 ) ∧ · · · ∧ (1 ∧ σ

δ′i
i ) ∧ · · · ∧ (eδpp ∧ σ

δ′p
p );
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the factor (−1)p−i+1 comes from our choice of orientation on ei. Meanwhile,

E · ((E1−δ1F δ′1)⊗ · · · ⊗ (E1−δpF δ′p))

is given by

(4)
∑

i:δi=1

(−1)(1−δ1)+δ′1+···+(1−δi−1)+δ′i−1((E1−δ1F δ′1)⊗ · · · ⊗ (EF δ′i)⊗ · · · ⊗ (E1−δpF δ′p)).

The expressions (3) and (4) correspond under our map, so our map respects left multiplication

by E.

Next, to compute

(5) F · (εPclosed
⊗ (eδ11 ∧ σ

δ′1
1 ) ∧ · · · ∧ (eδpp ∧ σ

δ′p
p )),

we note that if [C] is the homology class of the outgoing circle of Pclosed, with boundary

orientation, then

[C] = σp − σp−1 + · · ·+ (−1)p−1σ1.

Thus, (5) equals

(6)

(−1)p
∑

i:δ′i=0

(−1)δ1+δ′1+···+δi−1+δ′i−1+δi(−1)p−i

· εPclosed
⊗ (eδ11 ∧ σ

δ′1
1 ) ∧ · · · ∧ (eδii ∧ σi) ∧ · · · ∧ (eδpp ∧ σ

δ′p
p ).

Meanwhile,

F · ((E1−δ1F δ′1)⊗ · · · ⊗ (E1−δpF δ′p))

is given by

(7)
∑

i:δ′i=0

(−1)(1−δ1)+δ′1+···+(1−δi−1)+δ′i−1+(1−δi)(E1−δ1F δ′1)⊗ · · · ⊗ (E1−δiF )⊗ · · · ⊗ (E1−δpF δ′p).

Since (6) and (7) correspond under our map, our map respects left multiplication by F .

Now we consider right multiplication by the element Ei := 1 ⊗ · · · ⊗ 1 ⊗ E ⊗ 1 ⊗ · · · ⊗ 1

of (Z⟨E,F ⟩/(E2, F 2, EF + FE))⊗p. Computing

(εPclosed
⊗ (eδ11 ∧ σ

δ′1
1 ) ∧ · · · ∧ (eδpp ∧ σ

δ′p
p )) · Ei,

we get zero if δi = 0, while if δi = 1 we get

(8)
(−1)δ

′
i+δi+1+δ′i+1+···+δp+δ′p(−1)p−i

· εPclosed
⊗ (eδ11 ∧ σ

δ′1
1 ) ∧ · · · ∧ (ei ∧ σ

δ′i
i ) ∧ · · · ∧ (eδpp ∧ σ

δ′p
p ).

Meanwhile,

((E1−δ1F δ′1)⊗ · · · ⊗ (E1−δpF δ′p)) · Ei

is also zero if δi = 0, while if δi = 1 we get

(9) (−1)δ
′
i+(1−δi+1)+δ′i+1+···+(1−δp)+δ′p(E1−δ1F δ′1)⊗ · · · ⊗ (EF δ′i)⊗ · · · ⊗ (E1−δpF δ′p).

Since (8) and (9) correspond under our map, our map respects right multiplication by Ei.
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Finally, we consider right multiplication by the element Fi := 1⊗ · · · ⊗ 1⊗F ⊗ 1⊗ · · · ⊗ 1

of (Z⟨E,F ⟩/(E2, F 2, EF + FE))⊗p. The action

(εPclosed
⊗ (eδ11 ∧ σ

δ′1
1 ) ∧ · · · ∧ (eδpp ∧ σ

δ′p
p )) · Fi

is zero if δ′i = 1, while if δ′i = 0 we get

(10) (−1)δi+1+δ′i+1+···+δp+δ′p(−1)p−iεPclosed
⊗ (eδ11 ∧ σ

δ′1
1 ) ∧ · · · ∧ (eδii ∧ σi) ∧ · · · ∧ (eδpp ∧ σ

δ′p
p ).

Meanwhile,

((E1−δ1F δ′1)⊗ · · · ⊗ (E1−δpF δ′p)) · Fi

is also zero if δ′i = 1, while if δ′i = 0 we get

(11) (−1)(1−δi+1)+δ′i+1+···+(1−δp)+δ′p(E1−δ1F δ′1)⊗ · · · ⊗ (E1−δiF )⊗ · · · ⊗ (E1−δpF δ′p).

Since (10) and (11) correspond under our map, we have proved the proposition. □

2.5. Projectivity of the actions. Since the TQFT ZGY
ext involves categories of projective

modules, we should investigate when ZP
δ,π(F ) is projective as a left module or right module.

Proposition 2.8. Let M2
F
←−M1 be a morphism in 2Cobext. For any δ ∈ Q and π ∈ Z/2Z:

• If each component of F intersects the incoming boundary M1 then the left action of

AEF (M2) on ZP
δ,π(F ) is projective.

• if each component of F intersects the outgoing boundary M2 then the right action of

AEF (M1) on ZP
δ,π(F ) is projective.

Proof. We will prove the first statement; the second is similar. For a component F0 of F ,

pick a distinguished point p ∈ F0∩P ∩M1. We can arrange that all basis arcs in F0 have one

endpoint at p, and we can choose the component of M1 containing p as the unique boundary

circle in F0 to not get a basis circle around it. Using the resulting Z-basis, one can see that

ZP
δ,π(F ) is free as a left module over AEF (M2) with an AEF (M2)-basis consisting of all wedge

products ω such that:

• For each circle component C of M2, ω is divisible by the corresponding basis arc eC
but not by the corresponding basis circle σC ;

• For each interval component I of M2, ω is divisible by the corresponding basis arc

eI .

It follows that ZP
δ,π(F ) is projective as a left module over AEF (M2). □

Remark 2.9. Over a field, the rings AEF (M) are local, so projective modules are free. If any

component of F is disjoint from M1, then one can construct a nonzero element of AEF (M2)

that acts as zero on ZP
δ,π(F ), contradicting freeness, so the converse to Proposition 2.8 holds

over a field.

Remark 2.10. Recall that for an object M of 2Cobext, the algebra A(M) considered in

[Man23] is a tensor product only of copies of Z[E]/(E2), indexed only by interval components

of M and not circle components. In [Man23], projectivity of the actions of A(M2) and A(M1)
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on Z
S+

δ,π(F ) satisfies properties analogous to those in Proposition 2.8; if each component of F

intersects M1 nontrivially then the left action of A(M2) is projective, and similarly for M2

and the right action of A(M1). The converse holds if we work over a field.

2.6. Relating the larger and smaller state spaces. We now discuss how to recover the

state spaces Z
S+

δ,π(F ) of [Man23] from the spaces ZP
δ,π(F ) we consider here. Let M2

F
←− M1

be a morphism in 2Cobext; when defining Z
S+

δ,π(F ) with its actions of A(Mi), it does not

matter algebraically whether S+ circles of F are considered as incoming or outgoing, so for

simplicity we will assume all S+ circles of F are in its incoming boundary M1.

Proposition 2.11. For any δ ∈ Q and π ∈ Z/2Z, we have

Z
S+

δ,F2
(F ) ∼= ZP

δ,F2
(F )⊗(UF2 (psl(1|1)))⊗p (V (0, 0)F2)⊗p

and

Z
S+

δ,π(F ) ∼= ZP
δ,π(F )⊗(UZ(psl(1|1)))⊗p (V (0, 0)0)

⊗p.

Proof. The tensor products on the right are the quotients of ZP
δ,F2

(F ) and ZP
δ,π(F ) by the

image of the endomorphism FC for all circle components C of S+. Choose a basis forH1(F, P )

as in Section 2.3 while considering two types of components of F .

• For a component of F having at least one boundary component C ′ that is not an S+

circle, we assume that C ′ is the unique boundary circle in its component of F that

is not a basis circle. In particular, each S+ circle in the boundary of this component

of F is a basis circle.

• For a component of F having only S+ circles in its boundary, we choose any of the

S+ circles, say C ′, not to be a basis circle. Note that [C ′] is zero in the quotient of

H1(F, P ) by the classes of the basis S+ circles.

Now, when taking the quotients by the image of FC for all S+ circles C, first take the quotient

only for those S+ circles C that are basis circles. Once this quotient has been taken, the

classes of all non-basis S+ circles already vanish.

When we take the quotient by the image of FC for basis S+ circles C, we have a vector

space with a basis and we are taking the quotient of its exterior algebra (which itself gets a

basis of wedge products) by the linear span of all basis wedge products divisible by certain

basis elements, namely the classes [C] of basis S+ circles C. The result is that any wedge

product divisible by the class [C] of a basis S+ circle is set to zero, and no other relations are

imposed on the remaining wedge products. These remaining wedge-product basis elements

are the same as the basis elements chosen for Z
S+

δ,F2
(F ) and Z

S+

δ,π(F ) in [Man22, Man23]. □

3. A gluing theorem for intervals and circles

3.1. Interval gluing lemma. Let F be a sutured surface with all components of S+ outgo-

ing, i.e. such that F corresponds to a morphism in 2Cobext from ∅ to M for some object M .

Let I1 and I2 be two interval components of S+ containing points p1 and p2 of P and having
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associated maps E1 and E2. Let F be the result of gluing I1 and I2 together compatibly

with the orientations.

Lemma 3.1. [cf. Lemma 4.1 of [Man22], Lemma 3.1 of [Man23]] For any A ∈ Q and any

j ∈ {1/2, 1} such that πj(F ) is defined, it follows that πj(F ) is also defined and we have an

isomorphism

ZP
δA,πj

(F ) ∼=
ZP

δA,πj

im(E1 + E2)

of Q-graded super abelian groups, compatible with the left actions of Z[E]/(E2) for interval

components of S+ that are neither I1 nor I2 and Z⟨E,F ⟩/(E2, F 2, EF + FE) for circle

components of S+. Over F2 we have an analogous isomorphism with no requirement on

well-definedness of πj.

Proof. Well-definedness of πj(F ) for j = 1 follows from the fact that interval gluing does

not change the number of S+ circles. For j = 1/2 it follows because while gluing I1 to I2
decreases the number of S+ intervals by two, it also increases or decreases the number of

boundary components of F intersecting S− by one.

For the isomorphism, the proof largely follows [Man23, proof of Lemma 3.1]; we just note

the modifications required to adapt that proof to the current setting. Let δ := δA and

π := πj.

Case 1-2: only I2 is alone. When we show the isomorphism intertwines the remaining

actions, there are now more types of remaining actions that could exist (E and F for cir-

cles along with E for intervals). The argument in [Man23] for an interval E action works

equally well for circle E actions. If C is a circle component of S+ with corresponding F -

endomorphism FC , then in the notation of [Man23, proof of Lemma 3.1] we have

FC(εF ⊗ (e ∧ ω′)) = (−1)π(F )εF ⊗ ([C] ∧ e ∧ ω′) = (−1)π(F )+1εF ⊗ (e ∧ [C] ∧ ω′)

in ZP
δ,π(F ). Under our isomorphism, this element gets sent to

(−1)π(F )+1εF ⊗ ([C] ∧ ω′)

in ZP
δ,π(F ), which is also the result of acting with FC on εF ⊗ ([C] ∧ ω′) because π(F ) =

π(F ) + 1.

Case 1-3: neither I1 nor I2 is alone. Again we must consider the intertwining property of

our isomorphism with respect to more types of actions. Circle E actions follow from the same

proof as for interval E actions. For a circle C in S+ with corresponding F -endomorphism

FC , we have

FC(εF ⊗ (e1 ∧ e2 ∧ ω′)) = (−1)π(F )+2εF ⊗ (e1 ∧ e2 ∧ [C] ∧ ω′)

and

FC(εF ⊗ (e1 ∧ ω′)) = (−1)π(F )+1εF ⊗ (e1 ∧ [C] ∧ ω′).
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Meanwhile, if FC denotes the analogous endomorphism in the F case, we have

FC(εF ⊗ (e ∧ ω′)) = (−1)π(F )+1εF ⊗ (e ∧ [C] ∧ ω′)

and

FC(εF ⊗ ω′) = (−1)π(F )εF ⊗ ([C] ∧ ω′).

The intertwining property follows from π(F ) = π(F ) + 1.

Case 2-1a: I1 and I2 are not alone in their component of F . If C is a circle component

of S+ (whether or not it contains q), then

FC(εF ⊗ (e1 ∧ e2 ∧ ω′)) = (−1)π(F )+2εF ⊗ (e1 ∧ e2 ∧ [C] ∧ ω′)

and

FC(εF ⊗ (e1 ∧ ω′)) = (−1)π(F )+1εF ⊗ (e1 ∧ [C] ∧ ω′).

On the F side, we have

FC(εF ⊗ (e ∧ ω′)) = (−1)π(F )+1εF ⊗ (e ∧ [C] ∧ ω′)

and

FC(εF ⊗ ω′) = (−1)π(F )εF ⊗ ([C] ∧ ω′).

The intertwining property again follows from π(F ) = π(F ) + 1.

Cases 2-1b and 2-2: Arguments as in the above cases continue to work here. □

3.2. Circle gluing lemma. As in the previous section, let F be a sutured surface with all

components of S+ outgoing, i.e. such that F corresponds to a morphism in 2Cobext from ∅

to M for some object M . Let C1 and C2 be two circle components of S+ containing points

p1 and p2 of P and having associated maps E1, F1 and E2, F2. Let F be the result of gluing

C1 and C2 together compatibly with the orientations.

Lemma 3.2. For any A ∈ Q and any j ∈ {1/2, 1} such that πj(F ) is defined, it follows that

πj(F ) is also defined and we have an isomorphism

ZP
δA,πj

(F ) ∼=
ZP

δA,πj

im(E1 + E2) + im(F1 + F2)

of Q-graded super abelian groups, compatible with the left actions of Z[E]/(E2) for interval

components of S+ and Z⟨E,F ⟩/(E2, F 2, EF +FE) for circle components that are neither C1

nor C2. Over F2 we have an analogous isomorphism with no requirement on well-definedness

of πj.

Proof. Well-definedness of πj(F ) when j = 1 follows because gluing an S+ circle to another

S+ circle decreases the total number of S+ circles by two; in particular, gluing along S+

circles does not change the number of S+ circles modulo 2. When j = 1/2, well-definedness

follows because gluing along S+ circles changes neither the number of S+ intervals nor the

number of boundary components of F intersecting S− nontrivially.

For the isomorphism, let δ := δA and π := πj. We will consider various cases.
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Case 1: C1 and C2 are on distinct components of F . Choose a Z-basis for ZP
δ,π(F ) as

in Section 2.3; without loss of generality we may assume that C1 and C2 are each incident

with at most one basis arc.

Case 1-1: C1 and C2 are both alone. Assume that C1 and C2 are each the unique

component of S+ in their component of F .

Case 1-1a: there are no S− circles in the same components of F as C1 or C2. In

this case the gluing produces a closed component of F . The endomorphisms E1, E2, F1,

and F2 are each zero individually, so E1 +E2 and F1 + F2 are zero. The gluing changes the

quantities relevant for δ as follows:

• The number of no-S− non-closed components decreases by 2.

• The number of closed components increases by 1.

• The number of S+ circles decreases by 2.

The resulting change in δ is

−2A+ (2A− 1)− 2(−1/2) = 0,

so the change in π is also zero. The statement now follows from H1(F, P ) ∼= H1(F , P ); the

intertwining property holds because the components of F containing C1 and C2 intersect no

other components of S+.

Case 1-1b: there is an S− circle in the component with C1, but not in the

component with C2. The gluing changes the quantities relevant for δ as follows:

• The number of no-S+ non-closed components increases by 1.

• The number of no-S− non-closed components decreases by 1.

• The number of S+ circles decreases by 2.

The resulting change in δ is

(A− 1)− (A)− 2(−1/2) = 0,

so the change in π is also zero.

When choosing bases, we can ensure that [C1] is a basis circle. Before gluing, basis elements

of ZP
δ,π(F ) are either εF ⊗ ([C1]∧ ω

′) or εF ⊗ ω′ for some wedge product ω′ of basis arcs and

circles not divisible by [C1].

The maps E1 and E2 are both zero individually, so E1 + E2 = 0. For F1, we have

• F1(εF ⊗ ([C1] ∧ ω′)) = 0;

• F1(εF ⊗ ω′) = (−1)π(F )εF ⊗ ([C1] ∧ ω′).

Since F2 is the zero map, we have F1 + F2 = F1 and we are taking the quotient of ZP
δ,π(F )

by the image of F1. A basis for the quotient is given by the elements εF ⊗ ω′ with ω′ not

divisible by [C1]. These same elements give a basis for ZP
δ,π(F ), and we have a bijection

sending εF ⊗ ω′ for F to εF ⊗ ω′ for F . Thus, we have an isomorphism of Q-graded super

abelian groups; the intertwining property holds because the components of F containing C1

and C2 intersect no other components of S+.
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The case where there is an S− circle in the component with C2 but not in the component

with C1 is analogous to this case, so we will not consider it separately.

Case 1-1c: there is an S− circle in both the component with C1 and the component

with C2. The gluing changes the quantities relevant for δ as follows:

• h increases by 1 (because [C1] becomes nonzero in H1(F , S+)).

• The number of no-S+ non-closed components increases by 1.

• The number of S+ circles decreases by 2.

The resulting change in δ is

(−A) + (A− 1) + 2(−1/2) = 0,

so the change in π is also zero.

When choosing bases, we can ensure that both [C1] and [C2] are basis circles. Before

gluing, some other boundary circle in the component of F containing C1 was not a basis

circle, and similarly for the component containing C2. After gluing, the glued component

now has two boundary circles that were not basis circles, but instead of making one of them

into a basis circle we will let [C1] be a basis circle (modulo the other basis circles [C1] is

homologous to either of the non-basis boundary circles up to sign).

Before gluing, basis elements of ZP
δ,π(F ) can take the following forms:

• εF ⊗ ([C1] ∧ [C2] ∧ ω′),

• εF ⊗ ([C1] ∧ ω′),

• εF ⊗ ([C2] ∧ ω′),

• εF ⊗ ω′

where ω′ is divisible by neither [C1] nor [C2]. The maps E1 and E2 are both zero individually;

we have

• F1(εF ⊗ ([C1] ∧ [C2] ∧ ω′)) = 0,

• F1(εF ⊗ ([C1] ∧ ω′)) = 0,

• F1(εF ⊗ ([C2] ∧ ω′)) = (−1)π(F )εF ⊗ ([C1] ∧ [C2] ∧ ω′),

• F1(εF ⊗ ω′) = (−1)π(F )εF ⊗ ([C1] ∧ ω′)

and

• F2(εF ⊗ ([C1] ∧ [C2] ∧ ω′)) = 0,

• F2(εF ⊗ ([C1] ∧ ω′)) = (−1)π(F )+1εF ⊗ ([C1] ∧ [C2] ∧ ω′),

• F2(εF ⊗ ([C2] ∧ ω′)) = 0,

• F2(εF ⊗ ω′) = (−1)π(F )εF ⊗ ([C2] ∧ ω′).

Thus, in the quotient by im(F1 + F2), we have εF ⊗ ([C1] ∧ [C2] ∧ ω′) = 0 and

εF ⊗ ([C2] ∧ ω′) = −εF ⊗ ([C1] ∧ ω′).

A basis for the quotient is given by the elements εF⊗ω
′ and εF⊗([C1]∧ω

′). By construction,

these basis elements naturally correspond to our basis elements for ZP
δ,π(F ), and we have a

bijection sending εF ⊗ ω′ for F to εF ⊗ ω′ for F and sending εF ⊗ ([C1] ∧ ω′) for F to
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εF ⊗ ([C1]∧ω
′) for F . Thus, we have an isomorphism of Q-graded super abelian groups; the

intertwining property holds for the same reason as in the previous cases.

Case 1-2: only C2 is alone. Now assume that C2 is the unique component of S+ in its

component of F but that C1 has another component of S+ in its component of F .

Case 1-2a: there are no S− circles in the same component as C2. The gluing changes

the quantities relevant for δ as follows, whether or not the component of F containing C1

intersects S− nontrivially:

• h decreases by 1.

• The number of no-S− non-closed components decreases by 1.

• The number of S+ circles decreases by 2.

The resulting change in δ is

−(−A)− (A)− 2(−1/2) = +1,

so π also changes by 1.

When choosing bases, we can ensure that C1 is a basis circle and that there is a unique

basis arc e1 incident with C1. Orient e1 so that it points from the surface into C1. Basis

elements for ZP
δ,π(F ) can take the following forms:

• εF ⊗ (e1 ∧ [C1] ∧ ω′),

• εF ⊗ ([C1] ∧ ω′),

• εF ⊗ (e1 ∧ ω′),

• εF ⊗ ω′.

We have

• E1(εF ⊗ (e1 ∧ [C1] ∧ ω′)) = (−1)π(F )εF ⊗ ([C1] ∧ ω′),

• E1(εF ⊗ ([C1] ∧ ω′)) = 0,

• E1(εF ⊗ (e1 ∧ ω′)) = (−1)π(F )εF ⊗ ω′,

• E1(εF ⊗ ω′) = 0.

The map E2 is zero, so in the quotient by im(E1 +E2) we set the basis elements of the form

εF ⊗ ω′ and εF ⊗ ([C1] ∧ ω′) to zero.

The endomorphisms F1 and F2 of ZP
δ,π(F ) descend to endomorphisms of the quotient by

im(E1 + E2); we have F2 = 0 and

• F1(εF ⊗ (e1 ∧ [C1] ∧ ω′)) = 0,

• F1(εF ⊗ (e1 ∧ ω′)) = (−1)π(F )+1εF ⊗ (e1 ∧ [C1] ∧ ω′).

When we take the further quotient by im(F1 + F2), we set basis elements of the form εF ⊗

(e1 ∧ [C1] ∧ ω′) to zero, and we are left with basis elements of the form εF ⊗ (e1 ∧ ω′).

Meanwhile, in F , neither e1 or [C1] is a basis arc or basis circle anymore; a basis is given

by elements εF ⊗ ω′ where ω′ runs over the same wedge products as above (not divisible by

e1 or [C1]). We have a bijection between the bases for the quotient and for ZP
δ,π(F ) given by

εF ⊗ (e1 ∧ ω′)↔ εF ⊗ ω′.
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Because δ and π are each one more for F than they are for F , this bijection gives an

isomorphism of Q-graded super abelian groups.

To see that this bijection intertwines the remaining actions of E generators, let X /∈

{C1, C2} be an interval or circle component of S+. First assume that e1 is not incident with

X; in
Z
P
δ,π(F )

im(E1+E2)+im(F1+F2)
we have

EX(εF ⊗ (e1 ∧ ω′)) = (−1)π(F )+1εF ⊗ (e1 ∧ EX(ω
′)),

while in ZP
δ,π(F ) we have

EX(εF ⊗ ω′) = (−1)π(F )εF ⊗ EX(ω
′).

These elements are identified under our bijection because π(F ) = π(F ) + 1. If e1 is incident

with X, the extra “remove e1” term we would get in EX(εF ⊗ (e1 ∧ ω′)) is zero in
Z
P
δ,π(F )

im(E1+E2)

even without the additional quotient by im(F1 + F2), so the analysis is unchanged.

To see that the bijection intertwines the remaining actions of F generators, let C /∈

{C1, C2} be a circle component of S+. If C is not in the same component of F as C1, then

whether or not C is a basis circle, the expansion of [C] in terms of basis circles does not

involve [C1], and we have

FC(εF ⊗ (e1 ∧ ω′)) = (−1)π(F )+1εF ⊗ (e1 ∧ ([C] ∧ ω′)) ∈
ZP

δ,π(F )

im(E1 + E2) + im(F1 + F2)
.

We also have

FC(εF ⊗ ω′) = (−1)π(F )εF ⊗ ([C] ∧ ω′) ∈ ZP
δ,π(F );

these elements are identified under our bijection. If C is in the same component of F as C1

but C is also a basis circle, the argument is unchanged. If C is in the same component of

F as C1 and is not a basis circle, then taking the wedge products of our four types of basis

elements for ZP
δ,π(F ) with [C], there is an extra term that multiplies by [C1] rather than

changing ω′. However, this extra term vanishes in
Z
P
δ,π(F )

im(F1+F2)
and thus in

Z
P
δ,π(F )

im(E1+E2)+im(F1+F2)
.

In ZP
δ,π(F ) the basis expansion of [C] is missing the [C1] term, so our bijection intertwines

the actions of FC .

Case 1-2b: there is at least one S− circle in the same component of F as C2. If the

component of F containing C1 is disjoint from S−, then the gluing changes the quantities

relevant for δ as follows:

• h decreases by 1.

• The number of no-S− non-closed components decreases by 1.

• The number of S+ circles decreases by 2.

The resulting change in δ is

−(−A)− (A)− 2(−1/2) = +1,
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so π also changes by 1. On the other hand, if the component of F containing C1 intersects

S− nontrivially, then h is unchanged (in terms of bases for H1(F, S+) rather than H1(F, P )

we lose a basis arc but gain a basis circle) and the quantities relevant for δ change as follows:

• The number of S+ circles decreases by 2.

The resulting change in δ is

−2(−1/2) = +1,

so π also changes by 1.

When choosing bases, we can ensure that C1 and C2 are basis circles; we can also ensure

that C1 is incident with a unique basis arc e1 and that e1 points from the surface into C1.

With respect to divisibility by e1, basis elements are of the form εF ⊗ ω′ or εF ⊗ (e1 ∧ ω
′)

where ω′ is not divisible by e1. We have

• E1(εF ⊗ ω′) = 0,

• E1(εF ⊗ (e1 ∧ ω′)) = (−1)π(F )εF ⊗ ω′

The map E2 is zero, so in the quotient by im(E1 + E2) we set the basis elements of the

form εF ⊗ ω′ to zero. Now, basis elements of the quotient by im(E1 + E2) are of one of the

following forms with respect to divisibility by [C1] and [C2]:

• εF ⊗ (e1 ∧ [C1] ∧ [C2] ∧ ω′),

• εF ⊗ (e1 ∧ [C1] ∧ ω′),

• εF ⊗ (e1 ∧ [C2] ∧ ω′),

• εF ⊗ (e1 ∧ ω′)

where ω′ is divisible by neither e1 nor [C2]. We have

• F1(εF ⊗ (e1 ∧ [C1] ∧ [C2] ∧ ω′)) = 0,

• F1(εF ⊗ (e1 ∧ [C1] ∧ ω′)) = 0,

• F1(εF ⊗ (e1 ∧ [C2] ∧ ω′)) = (−1)π(F )+1εF ⊗ (e1 ∧ [C1] ∧ [C2] ∧ ω′),

• F1(εF ⊗ (e1 ∧ ω′)) = (−1)π(F )+1εF ⊗ (e1 ∧ [C1] ∧ ω′)

and

• F2(εF ⊗ (e1 ∧ [C1] ∧ [C2] ∧ ω′)) = 0,

• F2(εF ⊗ (e1 ∧ [C1] ∧ ω′)) = (−1)π(F )+2εF ⊗ (e1 ∧ [C1] ∧ [C2] ∧ ω′),

• F2(εF ⊗ (e1 ∧ [C2] ∧ ω′)) = 0,

• F2(εF ⊗ (e1 ∧ ω′)) = (−1)π(F )+1εF ⊗ (e1 ∧ [C2] ∧ ω′).

In the quotient by im(F1 + F2), we thus have εF ⊗ (e1 ∧ [C1] ∧ [C2] ∧ ω′) = 0 and

εF ⊗ (e1 ∧ [C2] ∧ ω′) = −εF ⊗ (e1 ∧ [C1] ∧ ω′).

Basis elements of the quotient are of the form εF ⊗ (e1 ∧ ω′) or εF ⊗ (e1 ∧ [C1] ∧ ω′).

Meanwhile, for F , e1 is no longer a basis arc, and rather than adding a new basis circle

elsewhere around one of the remaining boundary components of F , we can take [C1] as a

basis circle for F . Define a bijection of basis elements sending

εF ⊗ (e1 ∧ ω′)↔ εF ⊗ ω′



ACTIONS OF BOTH E AND F 29

and

εF ⊗ (e1 ∧ [C1] ∧ ω′)↔ εF ⊗ ([C1] ∧ ω′).

Because δ and π are each one more for F than they are for F , this bijection gives an

isomorphism of Q-graded super abelian groups.

The intertwining property for the remaining actions of E follows as above. For the re-

maining actions of F , the only potentially problematic case is if C /∈ {C1, C2} is in the same

component of F as C1 but is not a basis circle. The expansion of [C] in terms of basis circles

has a term ±[C1], so

(12) FC(εF ⊗ (e1 ∧ ω′)) = (−1)π(F )+1εF ⊗ (e1 ∧ (±[C1]) ∧ ω′) + · · ·

where the remaining terms are not divisible by [C1]. For F , because we included [C1] as a

basis circle, it follows that the expansion of [C] in terms of basis circles is the same as it was

for F . We get

FC(εF ⊗ ω′) = (−1)π(F )εF ⊗ ((±[C1]) ∧ ω′) + · · ·

where the remaining terms are the same as in (12) with e1 removed and with εF replaced

by εF , and the two instances of ± represent the same sign. Because π(F ) = π(F ) + 1, the

intertwining property holds.

Case 1-3: neither C1 nor C2 is alone. If either the component of F containing C1 or the

component of F containing C2 is disjoint from S−, then the gluing changes the quantities

relevant for δ as follows:

• h decreases by 1.

• The number of no-S− non-closed components decreases by 1.

• The number of S+ circles decreases by 2.

The resulting change in δ is +1 as above, so π also changes by 1. On the other hand, if

both the component of F containing C1 and the component of F containing C2 intersect S−

nontrivially, then h is unchanged because we lose a basis arc and gain a basis circle; the only

change in quantities relevant for δ is that the number of S+ circles decreases by 2. Thus, δ

changes by +1 and π changes by 1.

When choosing bases, we can ensure that C1 and C2 are basis circles, that Ci is incident

with a unique arc ei for i ∈ {1, 2}, and that e1 points from the surface into C1 while e2 points

from C2 into the surface. With respect to divisibility by e1 and e2, there are four types of

basis elements for Z+
δ,π(F ), on which E1 and E2 act as follows:

• E1(εF ⊗ ω′) = 0,

• E1(εF ⊗ (e1 ∧ ω′)) = (−1)π(F )εF ⊗ ω′,

• E1(εF ⊗ (e2 ∧ ω′)) = 0,

• E1(εF ⊗ (e1 ∧ e2 ∧ ω′)) = (−1)π(F )e2 ∧ ω′

and

• E2(εF ⊗ ω′) = 0,

• E2(εF ⊗ (e1 ∧ ω′)) = 0,
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• E2(εF ⊗ (e2 ∧ ω′)) = (−1)π(F )+1εF ⊗ ω′,

• E2(εF ⊗ (e1 ∧ e2 ∧ ω′)) = (−1)π(F )+2e1 ∧ ω′.

In the quotient by im(E1 + E2), we see that εF ⊗ ω′ = 0 and

εF ⊗ (e2 ∧ ω′) = −εF ⊗ (e1 ∧ ω′).

Basis elements for the quotient are of the form εF ⊗ (e1 ∧ ω′) or εF ⊗ (e1 ∧ e2 ∧ ω′). With

respect to divisibility by [C1] and [C2], there are four types of these elements, on which F1

and F2 act as follows:

• F1(εF ⊗ ω′) = (−1)π(F )εF ⊗ ([C1] ∧ ω′),

• F1(εF ⊗ ([C1] ∧ ω′)) = 0,

• F1(εF ⊗ ([C2] ∧ ω′)) = (−1)π(F )εF ⊗ ([C1] ∧ [C2] ∧ ω′),

• F1(εF ⊗ ([C1] ∧ [C2] ∧ ω′)) = 0

and

• F2(εF ⊗ ω′) = (−1)π(F )εF ⊗ ([C2] ∧ ω′),

• F2(εF ⊗ ([C1] ∧ ω′)) = (−1)π(F )+1εF ⊗ ([C1] ∧ [C2] ∧ ω′),

• F2(εF ⊗ ([C2] ∧ ω′)) = 0,

• F2(εF ⊗ ([C1] ∧ [C2] ∧ ω′)) = 0.

Thus, basis elements of the quotient by im(E1 +E2)+ im(F1 +F2) have one of the following

forms:

• εF ⊗ (e1 ∧ ω′),

• εF ⊗ (e1 ∧ e2 ∧ ω′),

• εF ⊗ (e1 ∧ [C1] ∧ ω′),

• εF ⊗ (e1 ∧ e2 ∧ [C1] ∧ ω′).

Meanwhile, in F we can take [C1] as a basis circle as usual, and the concatenation of e1
and e2 produces a new basis arc e. Make the identifications

• εF ⊗ (e1 ∧ ω′)↔ εF ⊗ ω′,

• εF ⊗ (e1 ∧ e2 ∧ ω′)↔ εF ⊗ (e ∧ ω′),

• εF ⊗ (e1 ∧ [C1] ∧ ω′)↔ εF ⊗ ([C1] ∧ ω′),

• εF ⊗ (e1 ∧ e2 ∧ [C1] ∧ ω′)↔ εF ⊗ (e ∧ [C1] ∧ ω′).

These identifications give an isomorphism of Q-graded super abelian groups. For the in-

tertwining property, actions of E corresponding to intervals or circles X /∈ {C1, C2} that

intersect neither e1 nor e2 are dealt with as above. If X contains an endpoint of e1, then we

have

• EX(εF ⊗ (e1 ∧ ω′)) = 0,

• EX(εF ⊗ (e1 ∧ e2 ∧ ω
′)) = (−1)π(F )+2εF ⊗ (e1 ∧ ω

′) (one extra minus sign comes from

removing −e1 and the other comes from replacing e2 with −e1),

• EX(εF ⊗ (e1 ∧ [C1] ∧ ω′)) = 0,

• EX(εF ⊗ (e1 ∧ e2 ∧ [C1] ∧ ω′)) = (−1)π(F )+2εF ⊗ (e1 ∧ [C1] ∧ ω′).

In F , X now contains an endpoint of e (which points from X into the surface), so
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• EX(εF ⊗ ω′) = 0,

• EX(εF ⊗ (e ∧ ω′)) = (−1)π(F )+1εF ⊗ ω′,

• EX(εF ⊗ ([C1] ∧ ω′)) = 0,

• EX(εF ⊗ (e ∧ [C1] ∧ ω′)) = (−1)π(F )+1εF ⊗ ([C1] ∧ ω′).

Because π(F ) = π(F ) + 1, our identifications intertwine the remaining actions of E.

For the remaining actions of F , the only case not entirely analogous to the ones above is

if C /∈ {C1, C2} is in the same component as C2 but is not a basis circle. The expansion of

[C] in terms of basis circles has a term ±[C2], so

FC(εF ⊗ (e1 ∧ ω′)) = (−1)π(F )+1εF ⊗ (e1 ∧ (∓[C1]) ∧ ω′) + · · ·

and

FC(εF ⊗ (e1 ∧ e2 ∧ ω′)) = (−1)π(F )+2εF ⊗ (e1 ∧ e2 ∧ (∓[C1]) ∧ ω′) + · · · .

The key observation is that in F , the circles C1 and C2 are oriented oppositely, so that

[C2] = −[C1] and the basis expansion of [C] in terms of basis circles has a term ∓[C1]. We

have

FC(εF ⊗ ω′) = (−1)π(F )εF ⊗ ((∓[C1]) ∧ ω′) + · · ·

and

FC(εF ⊗ (e ∧ ω′) = (−1)π(F )εF+1 ⊗ (e ∧ (∓[C1]) ∧ ω′) + · · · .

Thus, the formulas for FC in the F and F cases agree under our identification.

Case 2: C1 and C2 are on the same component of F .

Case 2-1: gluing C1 and C2 produces a closed component of F . Assume that the

component of F containing C1 and C2 is otherwise disjoint from both S+ and S−, so that

gluing C1 and C2 produces a closed component of F . The quantities relevant for δ change

as follows:

• h increases by 1 (in terms of bases for H1(F, S+), a basis arc turned into a basis circle

and we added another basis circle).

• The number of no-S− non-closed components decreases by 1.

• The number of closed components increases by 1.

• The number of S+ circles decreases by 2.

The resulting change in δ is

(−A)− (A) + (2A− 1)− 2(−1/2) = 0

so π is also unchanged.

When choosing bases, we can ensure that C1 is a basis circle and that the only basis arc

intersecting C1 or C2 is an arc e pointing out of C2 and into C1. We have

• E1(εF ⊗ (e ∧ [C1] ∧ ω′)) = (−1)π(F )εF ⊗ ([C1] ∧ ω′),

• E1(εF ⊗ (e ∧ ω′)) = (−1)π(F )εF ⊗ ω′,

• E1(εF ⊗ ([C1] ∧ ω′)) = 0,

• E1(εF ⊗ ω′) = 0
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and

• E2(εF ⊗ (e ∧ [C1] ∧ ω′)) = (−1)π(F )+1εF ⊗ ([C1] ∧ ω′),

• E2(εF ⊗ (e ∧ ω′)) = (−1)π(F )+1εF ⊗ ω′,

• E2(εF ⊗ ([C1] ∧ ω′)) = 0,

• E2(εF ⊗ ω′) = 0.

Thus, E1 + E2 = 0. For i ∈ {1, 2} we also have

• F1(εF ⊗ (e ∧ [C1] ∧ ω′)) = 0,

• F1(εF ⊗ (e ∧ ω′)) = (−1)π(F )+1εF ⊗ (e ∧ [C1] ∧ ω′),

• F1(εF ⊗ ([C1] ∧ ω′)) = 0,

• F1(εF ⊗ ω′) = (−1)π(F )εF ⊗ ([C1] ∧ ω′)

and

• F2(εF ⊗ (e ∧ [C1] ∧ ω′)) = 0,

• F2(εF ⊗ (e ∧ ω′)) = (−1)π(F )+2εF ⊗ (e ∧ [C1] ∧ ω′),

• F2(εF ⊗ ([C1] ∧ ω′)) = 0,

• F2(εF ⊗ ω′) = (−1)π(F )+1εF ⊗ ([C1] ∧ ω′)

so F1 + F2 is also the zero map.

Meanwhile, in F , the arc e closes up to become a basis circle τ and we can retain [C1] as

a basis circle. Make the identifications

• εF ⊗ (e ∧ [C1] ∧ ω′)↔ εF ⊗ (τ ∧ [C1] ∧ ω′),

• εF ⊗ (e ∧ ω′)↔ εF ⊗ (τ ∧ ω′),

• εF ⊗ ([C1] ∧ ω′)↔ εF ⊗ ([C1] ∧ ω′),

• εF ⊗ ω′ ↔ εF ⊗ ω′.

These identifications give an isomorphism of Q-graded super abelian groups, and there are

no complications with the intertwining property.

Case 2-2: the component of F containing C1 and C2 contains no other components

of S+ but has at least one S− circle. The quantities relevant for δ change as follows:

• h increases by 1 (in terms of bases for H1(F, S+), a basis arc turned into a basis circle

and we added another basis circle).

• The number of no-S+ non-closed components increases by 1.

• The number of S+ circles decreases by 2.

The resulting change in δ is

(−A) + (A− 1)− 2(−1/2) = 0,

so π is also unchanged.

When choosing bases, we can ensure that both C1 and C2 are basis circles and that the

only basis arc intersecting C1 or C2 is an arc e pointing out of C2 and into C1. When

computing E1 and E2, we do not care about divisibility by [Ci]; we have

• E1(εF ⊗ (e ∧ ω′)) = (−1)π(F )εF ⊗ ω′,

• E1(εF ⊗ ω′) = 0
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and

• E2(εF ⊗ (e ∧ ω′)) = (−1)π(F )+1εF ⊗ ω′,

• E2(εF ⊗ ω′) = 0

Thus, E1 + E2 is the zero map.

Similarly, when computing F1 and F2, we do not care about divisibility by e; we have

• F1(εF ⊗ ([C1] ∧ [C2] ∧ ω′)) = 0,

• F1(εF ⊗ ([C1] ∧ ω′)) = 0,

• F1(εF ⊗ ([C2] ∧ ω′)) = (−1)π(F )εF ⊗ ([C1] ∧ [C2] ∧ ω′),

• F1(εF ⊗ ω′) = (−1)π(F )εF ⊗ ([C1] ∧ ω′)

and

• F2(εF ⊗ ([C1] ∧ [C2] ∧ ω′)) = 0,

• F2(εF ⊗ ([C1] ∧ ω′)) = (−1)π(F )+1εF ⊗ ([C1] ∧ [C2] ∧ ω′),

• F2(εF ⊗ ([C2] ∧ ω′)) = 0,

• F2(εF ⊗ ω′) = (−1)π(F )εF ⊗ ([C2] ∧ ω′).

Thus, in the quotient by im(F1 + F2), we have εF ⊗ ([C1] ∧ [C2] ∧ ω′) = 0 and

εF ⊗ ([C2] ∧ ω′) = −εF ⊗ ([C1] ∧ ω′).

Basis elements for the quotient are of the form εF ⊗ ω′, εF ⊗ ([C1] ∧ ω′), εF ⊗ (e ∧ ω′), and

ε(F )⊗ (e ∧ [C1] ∧ ω′).

Meanwhile, in F , the basis arc e closes up to become a basis circle τ , and we can retain

[C1] = −[C2] as a basis circle. Make the identifications

• εF ⊗ ω′ ↔ εF ⊗ ω′,

• εF ⊗ ([C1] ∧ ω′)↔ εF ⊗ ([C1] ∧ ω′),

• εF ⊗ (e ∧ ω′)↔ εF ⊗ (τ ∧ ω′),

• εF ⊗ (e ∧ [C1] ∧ ω′)↔ εF ⊗ (τ ∧ [C1] ∧ ω′);

we get an isomorphism ofQ-graded super abelian groups and again there are no complications

with the intertwining property.

Case 2-3: the component of F containing C1 and C2 contains at least one other

component of S+. The quantities relevant for δ change as follows:

• The number of S+ circles decreases by 2.

Note that h is unchanged because, in terms of bases for H1(F, S+), two basis arcs combined

to form a basis circle (−1 to h) but we also added another basis circle (+1 to h). The

resulting change in δ is +1, so π also changes by 1.

When choosing bases, we can ensure that both C1 and C2 are basis circles, that Ci is

incident with a unique basis arc ei for i ∈ {1, 2}, and that e1 points from the surface into C1

while e2 points from C2 into the surface.

When computing E1 and E2, we do not care about divisibility by [C1] or [C2]; we have

• E1(εF ⊗ (e1 ∧ e2 ∧ ω′)) = (−1)π(F )εF ⊗ (e2 ∧ ω′),

• E1(εF ⊗ (e1 ∧ ω′)) = (−1)π(F )εF ⊗ ω′,
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• E1(εF ⊗ (e2 ∧ ω′)) = 0,

• E1(εF ⊗ ω′) = 0

and

• E2(εF ⊗ (e1 ∧ e2 ∧ ω′)) = (−1)π(F )+2εF ⊗ (e1 ∧ ω′),

• E2(εF ⊗ (e1 ∧ ω′)) = 0,

• E2(εF ⊗ (e2 ∧ ω′)) = (−1)π(F )+1εF ⊗ ω′,

• E2(εF ⊗ ω′) = 0.

In the quotient by im(E1 + E2), we thus have εF ⊗ ω′ = 0 and

εF ⊗ (e2 ∧ ω′) = −εF ⊗ (e1 ∧ ω′).

Basis elements for the quotient are of the form εF ⊗ (e1 ∧ e2 ∧ ω′) and εF ⊗ (e1 ∧ ω′).

When computing F1 and F2, we do not care about divisibility by e1 or e2; we have

• F1(εF ⊗ ([C1] ∧ [C2] ∧ ω′)) = 0,

• F1(εF ⊗ ([C1] ∧ ω′)) = 0,

• F1(εF ⊗ ([C2] ∧ ω′)) = (−1)π(F )εF ⊗ ([C1] ∧ [C2] ∧ ω′),

• F1(εF ⊗ ω′) = (−1)π(F )εF ⊗ ([C1] ∧ ω′)

and

• F2(εF ⊗ ([C1] ∧ [C2] ∧ ω′)) = 0,

• F2(εF ⊗ ([C1] ∧ ω′)) = (−1)π(F )+1εF ⊗ ([C1] ∧ [C2] ∧ ω′),

• F2(εF ⊗ ([C2] ∧ ω′)) = 0,

• F2(εF ⊗ ω′) = (−1)π(F )εF ⊗ ([C2] ∧ ω′).

In the quotient by im(F1 + F2) we have εF ⊗ ([C1] ∧ [C2] ∧ ω′) = 0 and

εF ⊗ ([C2] ∧ ω′) = −εF ⊗ ([C1] ∧ ω′).

Thus, we have four types of basis element for the quotient by im(E1 + E2) + im(F1 + F2):

• εF ⊗ (e1 ∧ e2 ∧ ω′),

• εF ⊗ (e1 ∧ e2 ∧ [C1] ∧ ω′),

• εF ⊗ (e1 ∧ ω′),

• εF ⊗ (e1 ∧ [C1] ∧ ω′).

Meanwhile, for F , the arcs e1 and e2 combine into a basis circle τ and we can also retain

[C1] as a basis circle. Make the identifications

• εF ⊗ (e1 ∧ e2 ∧ ω′)↔ εF ⊗ (τ ∧ ω′),

• εF ⊗ (e1 ∧ e2 ∧ [C1] ∧ ω′)↔ εF ⊗ (τ ∧ [C1] ∧ ω′),

• εF ⊗ (e1 ∧ ω′)↔ εF ⊗ ω′,

• εF ⊗ (e1 ∧ [C1] ∧ ω′)↔ εF ⊗ ([C1] ∧ ω′);

we get an isomorphism of Q-graded super abelian groups.

For the intertwining property, we need to see what happens if C /∈ {C1, C2} is not a basis

circle but lives in the same component of F as C1 and C2. In this case, the expansion of [C]
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in terms of basis circles includes terms ±([C1] + [C2]) and the potentially problematic terms

for the intertwining property are:

• FC(εF ⊗ (e1 ∧ e2 ∧ ω′)) = (−1)π(F )+2εF ⊗ (e1 ∧ e2 ∧ ±([C1] + [C2]) ∧ ω′ + · · · ,

• FC(εF ⊗ (e1 ∧ e2 ∧ [C1] ∧ ω′)) = (−1)π(F )+2εF ⊗ (e1 ∧ e2 ∧ (±[C2]) ∧ [C1] ∧ ω′) + · · · ,

• FC(εF ⊗ (e1 ∧ ω′)) = (−1)π(F )+1εF ⊗ (e1 ∧ ±([C1] + [C2]) ∧ ω′ + · · · ,

• FC(εF ⊗ (e1 ∧ [C1] ∧ ω′)) = (−1)π(F )+1εF ⊗ (e1 ∧ (±[C2]) ∧ [C1] ∧ ω′) + · · · .

However, in the quotient
Z
P
δ,π(F )

im(E1+E2)+im(F1+F2)
, these terms are all zero. Meanwhile, in F , [C2]

becomes equal to −[C1] and thus ±([C1] + [C2]) vanishes from the basis expansion of [C], so

there are no analogues of the above terms when applying FC on ZP
δ,π(F ). The intertwining

property follows. □

3.3. Composing open-closed cobordisms. While Theorem 1.5 is phrased only over F2,

we will prove the following more general version.

Theorem 3.3. Let M1, M2, and M3 be objects of 2Cobext and let

M3
F ′

←−M2
F
←−M1

be morphisms in 2Cobext. For any A ∈ Q, we have

ZP
δA,F2

(F ′ ◦ F ) ∼= ZP
δA,F2

(F ′)⊗
A

F2
EF (M2)

ZP
δA,F2

(F )

as Q-graded bimodules over the Z-graded F2-algebras (A
F2
EF (M3), A

F2
EF (M1)). Furthermore, if

πj(F ) and πj(F
′) both make sense for some j ∈ {1/2, 1}, then πj(F

′ ◦ F ) also makes sense

and we have

ZP
δA,πj

(F ′ ◦ F ) ∼= ZP
δA,πj

(F ′)⊗AEF (M2) Z
P
δA,πj

(F )

as Q-graded bimodules over the Z-graded super rings (AEF (M3), AEF (M1)).

Proof. The claim about πj(F
′ ◦ F ) follows as in the beginning of the proof of Lemma 3.2.

Below we will assume that either we have j ∈ {1/2, 1} such that πj(F ) and πj(F
′) make

sense, or that we are working over F2; we will use the notation of the Z-version. Let δ = δA
and π = πj.

As in [Man23, proof of Theorem 1.2], we can write ZP
δ,π(F

′)⊗AEF (M2) Z
P
δ,π(F ) as

(13)
ZP

δ,π(F
′)⊗Z Z

P
δ,π(F )

spanZ{(εF ′ ⊗ x)a⊗ (εF ⊗ y)− (εF ′ ⊗ x)⊗ a(εF ⊗ y)}

where, in the denominator, a is an arbitrary multiplicative generator

a = 1⊗ · · · ⊗ 1⊗ E ⊗ 1⊗ · · · ⊗ 1

or

a = 1⊗ · · · ⊗ 1⊗ F ⊗ 1⊗ · · · ⊗ 1

of AEF (M2), x is an arbitrary basis element of ∧∗H1(F
′, P ), and y is an arbitrary basis

element of ∧∗H1(F, P ).
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Let LeftAEF (M1)

[
ZP

δ,π(F
′)⊗Z Z

P
δ,π(F )

]
denote ZP

δ,π(F
′)⊗Z ZP

δ,π(F ) with the right action of

the supercommutative superalgebra AEF (M1) viewed as a left action; an element a acts on

the left by first passing to the right, which picks up a sign, and then acting from the right. If

we let (F ′⊔F )left denote F
′⊔F with all of its S+ boundary components viewed as outgoing,

then as Q-graded super abelian groups we have

LeftAEF (M1)

[
ZP

δ,π(F
′)⊗Z Z

P
δ,π(F )

]
∼= ZP

δ,π((F
′ ⊔ F )left)

via the map Φ sending

εF ′ ⊗ x⊗ εF ⊗ y 7→ (−1)|x|π(F )ε(F ′⊔F )left ⊗ (x ∧ y).

The isomorphism Φ is compatible with the left actions of AEF (M3); it is also compatible

with the left actions of F for incoming circles of F , and it relates the left actions of E for

incoming intervals or circles of F by a minus sign (the explanation of this minus sign is the

same as in [Man23, proof of Theorem 1.2]).

The map Φ sends (εF ′ ⊗ x)a⊗ (εF ⊗ y) to

(−1)(|x|+1)π(F )ε(F ′⊔F )left ⊗ (xa ∧ y)

where xa is still computed in ZP
δ,π(F

′). In terms of the left action •1 (coming from F ′) of

A(M2) on ZP
δ,π((F

′ ⊔ F )left), we can write this element as either

(−1)(|x|+1)π(F )+π(F ′)+π(F )+|x|a •1 ε(F ′⊔F )left ⊗ (x ∧ y)

= (−1)|x|π(F )+π(F ′)+|x|a •1 ε(F ′⊔F )left ⊗ (x ∧ y)

if a is an F generator or

− (−1)(|x|+1)π(F )+π(F ′)+π(F )+|x|a •1 ε(F ′⊔F )left ⊗ (x ∧ y)

= −(−1)|x|π(F )+π(F ′)+|x|a •1 ε(F ′⊔F )left ⊗ (x ∧ y)

if a is an E generator (the extra minus sign arises for the same reason that it does in the

proof of [Man23, Theorem 1.2]). Similarly, Φ sends

(εF ′ ⊗ x)⊗ a(εF ⊗ y) = (−1)π(F )(εF ′ ⊗ x)⊗ (εF ⊗ ay)

to

(−1)π(F )+|x|π(F )ε(F ′⊔F )left ⊗ (x ∧ ay)

where ay is still computed in ZP
δ,π(F ). In terms of the left action •2 (coming from F ) of

A(M2) on ZP
δ,π((F

′ ⊔ F )left), we can write this element as either

− (−1)π(F )+|x|π(F )+π(F ′)+π(F )+|x|a •2 ε(F ′⊔F )left ⊗ (x ∧ y)

= −(−1)|x|π(F )+π(F ′)+|x|a •2 ε(F ′⊔F )left ⊗ (x ∧ y)

if a is an F generator (the extra minus sign arises because the orientation of the circle added

by a in the F case is the opposite of the orientation of the circle added by a in the (F ′⊔F )left
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case) or

(−1)π(F )+|x|π(F )+π(F ′)+π(F )+|x|a •2 ε(F ′⊔F )left ⊗ (x ∧ y)

= (−1)|x|π(F )+π(F ′)+|x|a •2 ε(F ′⊔F )left ⊗ (x ∧ y)

if a is an E generator.

Thus, we get an isomorphism between (13) and

(14) RightAEF (M1)

[
ZP

δ,π((F
′ ⊔ F )left))

span{a •1
(
ε(F⊔F ′)left ⊗ z

)
+ a •2

(
ε(F⊔F ′)left ⊗ z

)
}

]

where, in the denominator, a is an arbitrary multiplicative generator of AEF (M2) and z is

an arbitrary basis element of ZP
δ,π((F

′⊔F )left)). The isomorphism is compatible with the left

actions of AEF (M3); it is also compatible with the left actions of F for incoming circles of

F , and it relates the left actions of E for incoming intervals or circles of F by a minus sign.

The denominator is a sum of subspaces:

• im(E1 + E2) for each interval component of M2 with associated E-endomorphisms

E1, E2 of ZP
δ,π((F

′ ⊔ F )left)), and

• im(E1 + E2) + im(F1 + F2) for each circle component of M2 with associated E-

endomorphisms E1, E2 and F -endomorphisms F1, F2 of ZP
δ,π((F

′ ⊔ F )left)).

Taking the quotients one component of M2 at a time and applying Lemma 3.1 for interval

components and Lemma 3.2 for circle components, the quotient in (14) is isomorphic to

ZP
δ,π((F

′ ◦ F )left)

since (F ′ ◦ F )left is the surface obtained by doing all these gluings to (F ′ ⊔ F )left. It follows

that the right side of the isomorphism in the statement of the corollary is isomorphic to

RightAEF (M1)

[
ZP

δ,π((F
′ ◦ F )left)

]
,

compatibly with the left actions of AEF (M3) and the right actions of F generators of

AEF (M1) and relating the right actions of E generators of AEF (M1) by a minus sign. Equiv-

alently, it is isomorphic to

ZP
δ,π(F

′ ◦ F )

compatibly with the left action of AEF (M3) and the right action of AEF (M1) as desired. □

4. Degree and parity shifts

We explain here why we chose the formula (1) for δA. As in [Man23, Section 4], we will

postulate a general formula

δ = C1k1 + · · ·+ C9k9

for the grading shift associated to a sutured surface F , where

• k1 is the number of components

• k2 is the genus (sum over all components)

• k3 is the number of closed components
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• k4 is the number of non-closed components without S+

• k5 is the number of non-closed components without S−

• k6 is the number of S+ intervals

• k7 is the number of S+ circles

• k8 is the number of S− circles

• k9 is the number of boundary circles of F with both S+ and S−.

As in [Man23], δ is compatible with Lemma 3.1 (interval gluing) if and only if the following

system of equations is satisfied:

−C1 + C4 − 2C6 + C8 − 2C9 = 0 (Case 1-1)(15)

−C1 − 2C6 − C9 = 1 (Case 1-2 or 1-3, no S− circle created)(16)

−C1 − 2C6 + C8 − 2C9 = 1 (Cases 1-2 or 1-3, one S− circle created)(17)

−2C6 + C9 = 1 (Case 2-1a, no S− circle created)(18)

−2C6 + C8 = 1 (Case 2-1a, one S− circle created)(19)

−2C6 + 2C8 − C9 = 1 (Case 2-1a, two S− circles created)(20)

C4 − 2C6 + 2C8 − C9 = 0 (Case 2-1b)(21)

C2 − 2C6 − C9 = 1 (Case 2-2a, no S− circle created)(22)

C2 − 2C6 + C8 − 2C9 = 1 (Case 2-2a, one S− circle created)(23)

C2 + C4 − 2C6 + C8 − 2C9 = 0 (Case 2-2b)(24)

The general family of solutions is given by

(25) (−2C9, 2C9, C3, −1, C5, (C9 − 1)/2), C7, C9, C9)

for arbitrary values of C3, C5, C7, C9. Now, by examining the proof of Lemma 3.2, we see

that δ is compatible with circle gluing if and only if the following system of equations is

satisfied:

−C1 + C3 − 2C5 − 2C7 = 0 (Case 1-1a)(26)

−C1 + C4 − C5 − 2C7 = 0 (Case 1-1b)(27)

−C1 + C4 − 2C7 = 0 (Case 1-1c)(28)

−C1 − C5 − 2C7 = 1 (Case 1-2a)(29)

−C1 − C5 − 2C7 = 1 (Case 1-2b or 1-3, no S− near C1)(30)

−C1 − 2C7 = 1 (Case 1-2b or 1-3, S− near C1)(31)

C2 + C3 − C5 − 2C7 = 0 (Case 2-1)(32)

C2 + C4 − 2C7 = 0 (Case 2-2)(33)

C2 − 2C7 = 1 (Case 2-3).(34)
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From (27) and (28) we get C5 = 0. Substituting (25) into (26)–(34), we get:

2C9 + C3 − 2C7 = 0

2C9 − 1− 2C7 = 0

2C9 − 1− 2C7 = 0

2C9 − 2C7 = 1

2C9 − 2C7 = 1

2C9 − 2C7 = 1

2C9 + C3 − 2C7 = 0

2C9 − 1− 2C7 = 0

2C9 − 2C7 = 1.

These equations hold if and only if C7 = C9 − 1/2 and C3 = −1. Letting C = C9, we arrive

at the general family

(−2C, 2C, −1, −1, 0, (C − 1)/2, C − 1/2, C, C)

of solutions to all the above equations together, so we can take

δ = −2Ck1 + 2Ck2 − k3 − k4 + ((C − 1)/2)k6 + (C − 1/2)k7 + Ck8 + Ck9.

We also have

h = −2k1 + 2k2 + 2k3 + k4 + k5 + k6 + k7 + k8 + k9,

so

Ch = −2Ck1 + 2Ck2 + 2Ck3 + Ck4 + Ck5 + Ck6 + Ck7 + Ck8 + Ck9.

We can thus rewrite δ as

δ = Ch+ (−2C − 1)k3 + (−C − 1)k4 + (−C)k5 + ((−C − 1)/2)k6 − (1/2)k7.

Letting A = −C, we get

(35) δ = −Ah+ (2A− 1)k3 + (A− 1)k4 + Ak5 + ((A− 1)/2)k6 − (1/2)k7

which recovers equation (1) for δA.

Proposition 4.1. There is no A ∈ C such that (35) is an integer for all sutured surfaces.

Proof. Evaluating (35) on a disk with boundary in S−, we get δ = A − 1, so A must be an

integer. Evaluating on a disk with boundary in S+ instead, we get δ = A− 1/2, so A cannot

be an integer. □
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[LOT21] R. Lipshitz, P. S. Ozsváth, and D. P. Thurston. A bordered HF− algebra for the torus, 2021.

arXiv:2108.12488.

[LP08] A. D. Lauda and H. Pfeiffer. Open-closed strings: two-dimensional extended TQFTs and Frobe-

nius algebras. Topology Appl., 155(7):623–666, 2008. arXiv:math/0510664.

[Man] A. Manion. Toward the Heegaard Floer homology of a point. In preparation.

[Man20] A. Manion. Trivalent vertices and bordered knot Floer homology in the standard basis, 2020.

arXiv:2012.07184.

[Man22] A. Manion. On the decategorification of some higher actions in Heegaard Floer homology, 2022.

arXiv:2203.00094.

[Man23] A. Manion. Surface gluing with signs in decategorified Heegaard Floer theory, 2023.

arXiv:2303.02889.

[Mik15] V. Mikhaylov. Analytic Torsion, 3d Mirror Symmetry And Supergroup Chern-Simons Theories,

2015. arXiv:1505.03130.

[MR20] A. Manion and R. Rouquier. Higher representations and cornered Heegaard Floer homology,

2020. arXiv:2009.09627.



ACTIONS OF BOTH E AND F 41

[PV16] I. Petkova and V. Vértesi. Combinatorial tangle Floer homology. Geom. Topol., 20(6):3219–

3332, 2016. arXiv:1410.2161.

[Tia16] Y. Tian. Categorification of Clifford algebras and Uq(sl(1|1)). J. Symplectic Geom., 14(2):541–

585, 2016.

[Zar10] R. Zarev. Joining and gluing sutured Floer homology, 2010. arXiv:1010.3496.

[Zar11] R. Zarev. Bordered Sutured Floer Homology. ProQuest LLC, Ann Arbor, MI, 2011. Thesis

(Ph.D.)–Columbia University. arXiv:0908.1106.

Department of Mathematics, North Carolina State University, 2108 SAS Hall, Raleigh,

NC 27695

Email address: ajmanion@ncsu.edu


	1. Introduction
	2. Algebra actions for intervals and circles
	2.1. Sutured surfaces and open-closed cobordisms
	2.2. Actions on larger state spaces
	2.3. Defining bases from collections of arcs and circles
	2.4. Tensor products
	2.5. Projectivity of the actions
	2.6. Relating the larger and smaller state spaces

	3. A gluing theorem for intervals and circles
	3.1. Interval gluing lemma
	3.2. Circle gluing lemma
	3.3. Composing open-closed cobordisms

	4. Degree and parity shifts
	References

