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ABSTRACT. We relate the Fukaya category of the symmetric power of a genus zero surface to deformed cat-
egory O of a cyclic hypertoric variety by establishing an isomorphism between algebras defined by Ozsvath—
Szabé in Heegaard-Floer theory and Braden—Licata—Proudfoot—Webster in hypertoric geometry. The proof
extends work of Karp—Williams on sign variation and the combinatorics of the m = 1 amplituhedron. We
then use the algebras associated to cyclic arrangements to construct categorical actions of gl(1]1), and gen-
eralize our isomorphism to give a conjectural algebraic description of the Fukaya category of a complexified
hyperplane complement.

1. INTRODUCTION

This article establishes a relationship between structures appearing in geometric representation theory
and in Heegaard Floer theory. We relate (deformed) category O for a hypertoric variety and the Fukaya
category of the symmetric power of a genus-zero surface. The first main result of this paper establishes an
isomorphism between the endomorphism algebra of a projective generator for hypertoric category O and
the homology of the corresponding dg-endomorphism algebra of a generator of the Fukaya category of the
symmetric power of a genus-zero surface (see Theorem 1.1).

The proof of the isomorphism makes heavy use of the geometry of the m = 1 amplituhedron [AHT14]
appearing in theoretical physics to compute scattering amplitudes. Karp and Williams gave a cell decomposi-
tion of the m = 1 amplituhedron using images of a collection of distinguished cells of the totally nonnegative
Grassmannian, which provides an identification of the amplituhedron with the bounded faces of a cyclic
hyperplane arrangement [KW19]. The extension of this description to the hypertoric setting in Section 3
plays a key role in establishing the proof of Theorem 1.1. This places “cyclic” hypertoric varieties in natural
juxtaposition to amplituhedra, somewhat analogous to the more classical relationships in positive geometry,
such as between toric varieties and polytopes. From another perspective, the resulting description of the
Fukaya category of symmetric powers also gives rise to a conjectural description of Fukaya categories for
more general hyperplane arrangement complements (see Conjecture 1.2).

Another consequence of the cyclic hypertoric varieties/symmetric products relationship is that it estab-
lishes the cyclic hypertoric varieties as a geometric framework for the categorified representation theory
of gl(1|1), analogous to Nakajima quiver varieties in the representation theory of semisimple Lie algebras.
Indeed, a categorified gl(1|1) action for the relevant Heegaard Floer algebras was constructed in [LM21],
compatibly with the more general categorified actions of [MR20]. In Section 5, we define this action indep-
dently in the language of hypertoric varieties and cyclic arrangements. The operators which give rise to the
gl(1|1) actions arise functorially from operations of deletion and restrictions for the underlying hyperplane
arrangements (see, in particular, Propositions 5.8 and 5.10 and Corollary 5.9). Unlike with semisimple Lie
algebras and their connections to quiver varieties, geometric objects admitting actions by superalgebras have
thus far been relatively elusive (see, for example, [FL15]), and there is further work to do here.
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In the remainder of this introduction we give a more detailed outline of the contents of the paper.

1.1. Bordered Floer homology and the representation theory of gl(1|1). Work of Auroux [Aurl0]
connects the wrapped Fukaya categories of symmetric products of surfaces with bordered Floer homol-
ogy [LOT18], the extended TQFT approach to Heegaard Floer homology. When the surface is a multiply-
punctured disc, the results of [LP20, MMW20b] together with those of [Aur10] imply that the Fukaya category
for a certain sutured structure on the surface (determining stops for the wrapping) is described by an algebra
used recently by Ozsvath—Szabé for very fast knot Floer homology (HFK) computations in their theory of
bordered HFK [0Sz18, OSz19c¢]. In [LM21], the first and third authors used the algebras of Ozsvath—Szabé
to construct categorical representations of gl(1]1) (see also [Man19], [EPV19], and [Tial6, Tial4] for closely
related work). Thus, in addition to being basic ingredients to Heegaard Floer homology, the Ozsvath—Szabd
algebras are also basic objects in gl(1|1) representation theory.

The connection between Ozsvath—Szabé algebras and hypertoric geometry arises because symmetric prod-
ucts of the punctured plane Sym”*(C — {z1,...,2,}) are isomorphic to complexified hyperplane complements
Xy of cyclic arrangements. This observation connects Fukaya categories of complexified cyclic hyperplane
complements to algebras appearing in Floer theory.

1.2. Hypertoric varieties. In the last decade, hypertoric varieties! have appeared prominently in inves-
tigations of symplectic duality, a mathematical incarnation of 3d mirror symmetry from physics [IS96], in
part because the mirror dual of a hypertoric variety is also hypertoric. This makes hypertoric varieties useful
as testing grounds for more general 3d mirror symmetry expectations. One such expectation, which comes
from the work of the second author with Braden, Proudfoot and Webster [BLPW16, BLPW10, BLPW12], is
a relationship between symplectic duality and Koszul duality. This expectation has been established in the
case of hypertoric varieties, as the hypertoric categories O associated to symplectic dual hypertoric varieties
are Koszul dual.

Let V be a “polarized” arrangement of real affine hyperplanes in real Euclidean space. This combinatorial
data defines a hypertoric variety My, with suitable extra structure. The hypertoric category O associated
to My is described by a finite-dimensional Koszul algebra B(V) conjecturally arising as the endomorphism
algebra of a canonical Lagrangian in a Fukaya category of the hypertoric variety My,. There is a “uni-
versal deformation” B(V) of the Koszul algebra B(V), which is related to the algebra B(V) much the way
torus-equivariant cohomology is related to ordinary cohomology. It is tempting to speculate that the uni-
versal deformation E(V) governs a “torus-equivariant Fukaya category” of a hypertoric variety, but it seems
challenging to make this precise.

The hypertoric variety and the complexified complement X)), are related via a moment map for a torus
action. Thus it seems reasonable to expect that a Fukaya category of the complexified complement Xy, is also
governed by an algebra related to B(V). In the case of cyclic arrangements, we prove this by establishing
the following, which we prove in Section 4.

Theorem 1.1. [c¢f. Theorem 4.9, Corollary 4.10, Theorem 4.13] The universal deformation E(V) associated
to a cyclic hyperplane arrangement is isomorphic to the Ozsvdth—Szabd algebra associated to a symmetric
product of a multiply-punctured disc.

This implies that the partially wrapped Fukaya category, where the partial wrapping at infinity is specified
as in Remark 4.4, is described by the algebras B (V) associated to cyclic arrangements via the isomorphism
Symlc (C—{z1,...,2,}) with Xy. This observation suggests a more general conjecture, relating the algebras
B (V) to Fukaya categories of more general hyperplane arrangements.

IThese varieties are also commonly referred to elsewhere in the literature as toric hyperkahler manifolds or toric hyperkahler
varieties.
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Conjecture 1.2. The algebra B (V) is quasi-isomorphic to the endomorphism algebra of a canonical gener-
ating Lagrangian in a wrapped Fukaya category of X),, where we take full wrapping around the hyperplanes
of the arrangement and an appropriate partial wrapping at infinity.

Theorem 1.1 proves Conjecture 1.2 for cyclic arrangements. Further evidence of this conjecture is provided
by the homological smoothness of the algebras E(V) established in a companion paper [LLM21], as one
expects that the wrapped Fukaya categories of complexified hyperplane complements are equivalent to (dg
or A,-) module categories of homologically smooth algebras.

1.3. Deletion, restriction, and gl(1|1) actions. There are natural operations of deletion and restriction on
hyperplane arrangements. In Section 2.4, we show that certain correspondences connected with deletion and
restriction give rise to bimodules over the algebras B (V), connecting hyperplane arrangements for different
k. In Section 3.8, we show that deletion and (sign-modified) restriction operations respect the classes of
left /right cyclic polarized arrangements; in Section 5 we show that in the left cyclic case they give rise to
categorical actions of a variant of U,(gl(1]1)).

In [LM21], a related action of U,(gl(1|1)) was defined on the Ozsvath-Szabé algebras. We show in
Section 5.3 that the isomorphism from Theorem 1.1 intertwines these categorical actions. The factorization
of the bimodule F as a tensor product of a deletion and a restriction bimodule is visible on the Heegaard
Floer side too, at least conjecturally; we discuss this in Appendix A. We expect these deletion/restriction
bimodules for general polarized arrangements may be part of a larger functorial invariant of complexified
hyperplane complements, a subject we hope to revisit later.

1.4. The combinatorics of cyclic arrangements. The basic example of an arrangement for which The-
orem 1.1 applies are those built from Vandermonde matrices, which are related to symmetric powers of
the multiply punctured plane by the fundamental theorem of algebra. The more general class of “cyclic”
arrangements of interest in this paper are defined by using partial flags in the positive Grassmannian. We
show that this definition for generalized cyclic arrangements agrees with a more standard one based on affine
oriented matroids (see e.g. [Zie93]), a result which may be of independent interest; in particular, the cyclic
arrangements are also a natural class from the point of view of matroid theory.

For Theorem 1.1 we are especially interested in cyclicity for polarized arrangements, which from the hyper-
toric perspective amounts to equipping the hypertoric varieties with the structure necessary for symplectic
duality. In hyperplane terms, a polarization turns an arrangement into a linear programming problem, and
symplectic duality corresponds to the usual duality for linear programs, referred to here as Gale duality.
This duality is not visible given just the hyperplane arrangement; the polarization enables the duality to
exist,.

We define left cyclicity and right cyclicity for polarized arrangements based on the positive Grassmannian
and prove variants of Theorem 1.1 for both left cyclic and right cyclic polarized arrangements. We also define
a notion of equivalence for polarized arrangements based on oriented matroid programs, such that hypertoric
varieties and algebras B (V) are unchanged under equivalence. We show that the left cyclic and the right cyclic
polarized arrangements each form equivalence classes of polarized arrangements. Furthermore, we formulate
a “positive Gale duality” in linear programming, by modifying the usual Gale duality in such a way that it
preserves positivity by exchanging left and right cyclic polarized arrangements (see Section 3). The proof
extends the sign-variation techniques of Karp—Williams and uses our more matroid-based characterizations
of left and right cyclicity.

1.5. Applications. The connection between Fukaya categories of symmetric products and convolution alge-

bras associated to cyclic arrangements is interesting in both directions. Theorem 1.1 implies several interest-

ing facts about these algebras. For example, it follows from Theorem 1.1 that the center of Ozsvath—Szabd’s
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algebra is isomorphic to the torus-equivariant cohomology of the associated hypertoric variety, and the en-
domorphism algebras of projective modules over Ozsvath—Szabd’s algebra are isomorphic to the equivariant
cohomologies of toric varieties; see Corollary 4.14.

In the companion paper [LLM21] we prove that for general arrangements, the universal deformations
E(V) are affine highest weight categories, a notion recently introduced by Kleshchev [Klel5] in order to
extend ideas from finite-dimensional quasi-hereditary theory to infinite-dimensional settings. This is used to
establish the homological smoothness of the algebras E(V) In the cyclic case, Theorem 1.1, together with
[LLM21], therefore gives the following.

Corollary 1.3. The wrapped Fukaya categories of Sym” (C—{z1,...,2n}) are affine highest weight categories.

As discussed in [LLM21], this corollary gives insight into bordered Floer constructions related to higher
tensor products (see [MR20]). The affine quasi-hereditary structure of B (V) includes as part of the structure
a family of standard modules over Ozsvath—Szabd’s algebras categorifying the standard tensor-product basis
of V®™. Another categorification [Man20] of this standard basis comes from a bordered Floer “strands
algebra” that, unlike Ozsvdath—Szabd’s algebras, arises as a higher tensor product in the sense of [MR20].
We show in [LLM21] that the homology of this tensor-product algebra can be interpreted as the sum of Ext
groups between standard modules, and we give a reasonable Heegaard Floer framework for relating the A,
multiplications on each side.

On the geometric representation theory front, the results in this article give a geometric construction of
canonical bases for V®", wherein each canonical basis element corresponds to an irreducible component of
the relative core of the hypertoric variety 9ty,.

1.6. Positive geometries, hypertoric varieties, and amplituhedra. Amplituhedron geometry, intro-
duced by Arkani-Hamed and Trnka, arises in physics as a tool to understand scattering amplitudes in gauge
theories; these amplitudes exhibit symmetries and recursion relations in both realistic situations (e.g. gluon
scattering in particle colliders) and in cases of theoretical interest (e.g. planar N/ = 4 super Yang Mills).
The m = 1 amplituhedron is the one which appears directly in our work also; in particular, we show that
amplituhedron is a moment-map image of the core of the cyclic hypertoric variety My,. The more general
amplituhedra A, i, are all examples of “positive geometry” [AHBL17]. The crucial object needed for
deriving physics from amplituhedra—needed to define the positive geometry coming from amplituhedra—is
a top-degree differential form, which one integrates to get scattering amplitudes. For k& = 1 amplituhedra,
which are cyclic polytopes, the amplituhedron form is a moment-map pushforward of a natural form on a
toric variety having the cyclic polytope as its moment polytope. It is an open problem to find analogous
descriptions of other amplituhedra, that is, to describe their natural form as a pushforward of a form coming
from some other positive geometry. Our results suggests the relevance of hypertoric varieties to this problem.

1.7. Outline of paper. We briefly summarize the contents of this paper. In Section 2 we review the theory
of hypertoric varieties, including their connection with polarized arrangements V. We review two algebras
A(V) and B(V) naturally associated to a polarized arrangement. Subsection 2.4 introduces bimodules for
these algebras associated with the hyperplane operations of deletion and restriction. Section 3 focuses on
cyclic hyperplane arrangements; we begin by extending the work of [KW19] by developing the theory of
(left/right) cyclic polarized arrangements in terms of subspaces in the positive Grassmannian. We intro-
duce left/right cyclic arrangements in Subsection 3.3 and formulate a positive variant of Gale duality that
exchanges left and right cyclic arrangements in Subsection 3.7. In Subsection 3.5 we review the connection
between the complexified complement of a cyclic arrangement and symmetric products of the punctured
plane. Subsection 3.8 shows that the deletion and sign-modified restriction operations for polarized arrange-
ments preserve left /right cyclic arrangements. In Section 4 we establish the connection between hypertoric

convolution algebras associated to cyclic polarized arrangements and Ozsvath—Szabd algebras appearing in
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the theory of bordered Heegaard Floer homology, proving Theorem 1.1. As a consequence, we show in Sub-
section 4.4 that the center of the Ozsvath—Szabd algebra is isomorphic to the torus equivariant cohomology
of the hypertoric variety 9y, of a (left/right) cyclic polarized arrangement. Finally, Section 5 connects the
bimodules arising from deletion and restriction of cyclic polarized arrangements with an action of a variant
of quantum gl(1|1) as bimodules over Ozsvath—Szabé algebras. In Appendix A we also discuss a Heegaard
Floer interpretation of the factorization of these bimodules as the composition of deletion and restriction
bimodules.
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2. HYPERTORIC VARIETIES AND ALGEBRAS

2.1. Hyperplane arrangements and hypertoric varieties.

2.1.1. Hyperplane arrangements. We use linear-algebraic data to specify real affine hyperplane arrangements,
which we refer to as arrangements, following the general framework used in [BLPW10].

Definition 2.1. An arrangement of n hyperplanes in k-space is a pair V = (V,7) where V' C R" is a linear
subspace of dimension k and 7 is an element of R"™/V'; we require that an element of R™ representing 7 has
at least n — k nonzero entries®’. We say that V = (V,n) is rational if V arises (uniquely) from a subspace
Vo € Q" and 7 arises (uniquely) from an element 7g € Q" /Vp.

The intersections of V' with the coordinate hyperplanes of R™ give an honest affine hyperplane arrangement
in the real vector space V' which we will denote Hy, (however, some hyperplanes of the arrangement might
be empty). If V' is presented as the column span of an n x k matrix A, we can use the columns of the matrix
as a basis for V to identify V (and thus its affine translate V + n) with R¥; if w € R™ represents 7, then
under this identification, the hyperplanes of the arrangement take the form

k
Hi: xER"|wi+Zaijxj:O 3 ISZSTL
j=1
for x = (21,...,73) € R*. The positive half-spaces of R induce a co-orientation on Hy, using which we

can associate a region of the arrangement (possibly empty) to each length-n sequence « of signs in {4, —}:
given o = (ay,...,a,) and a matrix A presenting V' as above, the corresponding region A, C V + 7 is the
set of points = such that

k
o wri—E ajr; | =0
j=1

for 1 < i < n. In what follows we sometimes write a(i) = a; to denote the i*" term of the sequence a. If A,
is nonempty, « is called a feasible sign sequence. We let F = F (V) denote the set of feasible sign sequences
for V, and we let K = K(V) C F(V) denote the set of feasible sign sequences « such that A, is compact.
We define equivalence of arrangements by saying that 1V ~ )V’ if they have the same affine oriented
matroid as discussed in [BLVST99, Chapter 4.5; if V and V' are equivalent, it follows that F(V) = F(V’)
and K(V) = K(V'). Concretely, if we let ¢ be the unique linear functional on V + () such that ¢(V) = 0 and
¢(n) = 1, and define ¢’ similarly for (V',7), then (V,n) ~ (V',n) if and only if the Pliicker coordinates of
the (k + 1)-dimensional subspaces (id, ¢)(V + (n)) and (id, ¢')(V’ + (1')) of R"*! have the same (projective)

2The condition on nonzero elements representing 7 is sometimes omitted, in which case (V, ) satisfying this condition is called
simple or regular.
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signs. If (A,w) and (A’,w’) represent (V,n) and (V',n) as above, then (V,n) ~ (V' ') if and only if the
column spans of the matrices

A ‘ w
01

have Pliicker coordinates of the same (projective) signs.

)

A"w’
01

2.1.2. Hypertoric varieties. Below we follow [Pro04] with some minor expositional changes. Let (V,n) be
rational. Let t" = (C™)* with coordinate basis {c1,...,e,}. Let t¢ = V+ C 7, the complex perpendicular
to V (t? has complex dimension d := n—k), and let t* = t" /t?. We have full integer lattices t = (Z")* C t",
td =t1Nt2 C t?, and t§ = 2/t C t*. There is an exact sequence of abelian Lie algebras

0=t S st 50
which exponentiates to an exact sequence of tori
1T 5T - TF > 1.

The torus T = (C*)™ acts by coordinate-wise multiplication on C", and we regard T as acting on C" via
the inclusion of T into T™. This, in turn, gives rise to a hamiltonian action of 7% on the cotangent bundle

T*(C") via t(z,y) = (tx,t"'y). The action of the maximal compact subtorus T of T is hyperhamiltonian
with hyperkéhler moment map given by

p(z,y) & pe(, y) = <Lﬁ% <; D (il - Iyi2)5i> o (Z(wiyi)&)) € (tg)" @ ()" = (R"/V) @ (C"/Vc).

A %

The hypertoric variety associated to V is defined to be

My = My, = (g (1) N g (0)) /T
one can also define 9y, as an algebraic symplectic quotient. These varieties (also called toric hyperkéahler
manifolds or toric hyperkéhler varieties) were introduced in the smooth case by Goto [Got92], unifying
examples studied in [EH79, GH78, Cal79], and in the singular case by Bielawski and Dancer [BD0O0].

It follows from our assumptions in Definition 2.1 that 9y, is an algebraic symplectic orbifold of complex
dimension 2k; it is smooth if and only if VNZ" is a unimodular lattice. There is a residual hyperhamiltonian
action of the compact torus T]{g on 91y, which can be extended to a hamiltonian action of the complex torus
T*. We consider a variant of the hyperkéhler moment map for the 7% action defined by

_ _ 1
fig ([, y]) & ic([z,y]) == (2 > (@il = lwil)es, Z(@-yﬁa) eV+n o
i i
By taking appropriate linear combinations of fig and the real and imaginary parts of fic, one can also
construct variants of the moment map which take values in the complexification (V 4 n)c of V + .
Equivalent rational arrangements give rise to isomorphic hypertoric varieties, respecting the additional
structure described below.

2.1.3. Additional structure. The hypertoric variety 9t = 9y, makes sense even when 7 does not satisfy the
simplicity condition of Definition 2.1; in particular, we can consider My = My o, and for general 7 there is
a canonical morphism v : 9t — 9y that is a resolution of singularities when 9t is smooth. The action of
S:=C* on T*(C") by S(x, y) = (s71a,s71y) gives actions on 9 and My such that v is equivariant; we have
s-w = s%w where w is the symplectic form on M. The S action on C[My] gives My the structure of an affine
cone; it has nonnegative weights with zero weight space consisting of constant functions. Thus, when 901 is
smooth, M <> My is a conical symplectic resolution in the sense of [BPW16]. In general, the map 91 2 amy
with the S actions is invariant under equivalences of rational arrangements V.
The subvariety
izt (0) = {[z,y] € M : z;y; = 0 for all i}
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is called the extended core of 9. The irreducible components of the extended core of 9 are X, for a € F,
where
Xo ={[z,y] € M:y; =0 when a(i) = + and x; = 0 when «a(i) = —}.

The varieties X, can also be defined as toric varieties using the Cox construction; see [BLPW10, Section
4.2]. The image of X, under fig is A, C V + 7. If we add to fig any complex linear combination of the real
and imaginary parts of fic, the image of X, under this new map is still A, CV +n C (V +7n)c.

The core of My, is the union of X, for o € K; it can also be defined as v~*(0) where 0 € 90 is the cone
point.

2.2. Polarizations.

2.2.1. Definitions. We now consider polarized arrangements, in which an affine hyperplane arrangement is
equipped with an objective function as in linear programming. We recall the basic definitions here and refer
to [BLPW10] and [BLPW12, Section 5] for further details.

Definition 2.2. A polarized arrangement of n hyperplanes in k-space is a triple V = (V,n,£) where (V,n)
is an arrangement as in Definition 2.1 and ¢ is an element of V* = (R™)*/V+ such that each element of
(R™)* representing £ has at least k nonzero entries. We say that (V,n, &) is rational if (V,n) is rational and
£eVg =(QM) /vy

If V' is presented as the column span of an n x k matrix A as above, then in the basis of columns, ¢ is
expressed as a 1 x k matrix. Thus we can specify the polarized arrangement (V,7,£) (non-uniquely) as a

single matrix:
A ‘ w
zT ‘ x |7

where A has size n x k, w has size n x 1, z has size k x 1 with 27 its transpose, and the bottom-right entry *
is left unspecified. From this data, (V,n) is defined as above, and ¢ is defined to have matrix « with respect
to the columns of A. If we define a strong polarized arrangement to be a polarized arrangement (V,n,¢)
equipped with a lift of £ to £ € (V + (n))*, then we can specify a strong polarized arrangement by a matrix
of the above form in which * has been replaced by a real number c.

V=col(A)

(V,n,€)

A strong polarized arrangement gives an affine hyperplane arrangement in the affine space V + n with a
well-defined objective function &; from this data we can extract an oriented matroid program as in [BLVS*99,
Chapter 10]. For strong polarized arrangements, we say that (V,n,&) ~ (V. 7/, £) if they have the same ori-
ented matroid program. Concretely, if (V,7n,£&) and (V', 7/, ¢’) are represented by (A, w, z,¢) and (A", w’, 2, c)

as above, then (V,n,&) ~ (V',7/, &) if and only if the column spans of the matrices

A |w AW
2 e |, @]
0|1 0 1

have Pliicker coordinates of the same (projective) signs. For ordinary polarized arrangements, we say that
(V,n, &) ~ (V' 0/, &) if they have strong lifts that are equivalent.

Given a polarized arrangement V = (V,n,§), we say o € {4, —}" is bounded if the affine-linear functional
€ on V + 1 is bounded above on A, for some (equivalently, any) strong lift £ of £&. We let B = B(V) be the
set of @ € {+, —}" that are bounded; we have K C B where F = F(V) and K = K(V) are defined from (V,7)
as in Section 2.1.1. We let P = F N B denote the set of bounded feasible regions. The subsets (F, K, B, P) of
{+, —}"™ are preserved under equivalence of polarized arrangements.

2.2.2. Polarizations and hypertoric varieties. Assume that V = (V,n,£) is rational and that ¢ € t£. Expo-

nentiating the map C —§> t*, we get a homomorphism T := C* — T* and thus a hamiltonian action of T on

M = My,,,. This action commutes with the action of S and has finite fixed point set T, and it is preserved
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under equivalences of polarized arrangements. We will write 9y, = My,  when we want to consider My,
equipped with this additional T action (together with 9y, v, and the actions of S).
For M = My, ¢, the relative core M of M is the set of p € M such that Tlitmot - p exists; it is the union
St—

of the toric varieties X, for the bounded feasible regions o € P. The relative core contains the core and is
contained in the extended core (see [BLPW10, Section 4.2]).

2.2.3. Dualities. A central feature of linear programming is the existence of a duality on linear programs,
referred to as Gale duality in [BLPW10].

Definition 2.3. If V = (V,7,§) is a polarized arrangement, its Gale dual is the polarized arrangement
Vo= (V=€ —n).

Gale duality squares to the identity and preserves rationality and equivalence of polarized arrangements.
A sequence a € {+,—}" is feasible for V if and only if it is bounded for V¥ (and vice-versa). That is,
B=FY, F=BY and P =P".

Remark 2.4. As discussed in [BLPW16], conical symplectic resolutions with T actions as above admit a
duality known as symplectic duality, a mathematical incarnation of 3d mirror symmetry. Gale dual (rational)
polarized arrangements give symplectically dual hypertoric varieties.

The Pliicker coordinates of V and V* are indexed by the same set of (Z) = (n’_L k) elements, but they do not
agree in general. However, for a subspace V', we can obtain a related subspace alt(V') by mapping V' through
the automorphism of R™ that flips the sign of all even-index coordinates; note that alt(V+) = (alt(V))*.
It is a standard result that the Pliicker coordinates of V' and alt V+ do agree; thus, when discussing cyclic
arrangements in Section 3 below, it will be useful to consider alt-variants of Gale duality for polarized
arrangements. Correspondingly, we define

alt(V,n,€) := (alt(V), alt(n), alt(§))

where alt(n) and alt(£) are obtained from any representatives of  and £ by flipping the signs of all even-index
coordinates.

Finally, we define the polarization reversal of V = (V,n,£) to be p(V) := (V,n, —&); geometrically, polar-
ization reversal precomposes the action of T with the automorphism ¢t — ¢t~! of T. The polarization reversal
operation will be important in Section 3.7.

2.2.4. Partial orders. Let V be a polarized arrangement. Let B denote the set of k-element subsets x of
I={1,...,n} such that
%:ﬂm#ﬂ
iex

Equivalently, B is the set of bases of the matroid associated to V. There is a bijection u: B — P sending x to
the unique sign sequence s such that £ obtains its maximum on A, at the point Hy. We write x5 = u=(8)
for the subset associated to a sign sequence 3. The covector ¢ induces a partial order® < on B = P.

Write x¢ for the complement in I of the subset x. Let BY denote the set of bases of V¥, i.e. (n—k) element
subsets of I. Then x +— x¢ defines a bijection from B — BY. The bijection p": BY — PV is compatible with
the equality P = PV, so that p(x) = p¥(x¢) [BLPW10, Lemma 2.9].

2.3. Convolution algebras. This section introduces finite-dimensional Koszul algebras A()V) and B(V)
associated to arrangements, and universal flat graded deformations A(V) and B(V) of them. With the
exception of the deletion and restriction bimodules of Section 2.4.2; which have not been explicitly discussed

3This partial order is the transitive closure of the relation =<, where x < x’ if |x Nx'| = |x| =1 =k — 1 and £(Hx) < &(Hy).
The first condition ensures that Hx and Hy/ lie on the same one dimensional flat, so that & cannot take the same value at these
two points.
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elsewhere, almost all of the material in this section is taken directly from the original sources [BLPW10,
BLPW12, BLP"11].

2.3.1. Definitions and basic properties. We now recall the algebras associated to a polarized arrangement
V = (V,n,€). Related algebras can be defined for unpolarized arrangements (V,n), although these do not
play an explicit role in [BLPW10, BLP11]. We will start with the polarized case, where the algebras satisfy
interesting duality relationships, and then discuss the necessary modifications in the unpolarized case. Recall
the notation F, B, P, K for feasible, bounded, bounded feasible, and compact feasible sign sequences of V
from Section 2.2.1.

2.3.2. The A algebras. For sign sequences «, 8 € {£}", we write
a < f <= « and f differ in exactly one entry.

If a, 8 € F this means that A, and Ag are related by crossing a single hyperplane H;, in which case we
write 5 = o.

Define a quiver @ = Q(V) whose vertex set is F and arrows p(c, 8) from « to 8 and p(8, ) from 8 to « if
and only if a <+ 8. Let P(Q) be the path algebra of this quiver over Z; P(Q) has a distinguished idempotent
eq for all « € F.

Definition 2.5 (Definition 3.1 and Remark 3.1 of [BLPW10]). The Z-algebra A()) is defined to be P(Q)®y,
Z[t1,...,ty] modulo the two-sided ideal generated by the following relations:

Al : e, for all @ € F\ B, that is those feasible « that are not bounded,
A2 : p(a, B)p(B,7) — p(a, 0)p(d, ) for all distinct «, 3,7v,0 € F with a > 8 < v+ § © «,
A3 : p(a, B,a) — tie, for all a, f € F with a +» § via a sign change in coordinate 1.
We give E(V) a grading by setting deg(p(a,8)) = 1 and deg(t;) = 2. We can refine this grading to a
multi-grading by Z{eq,...,e,) by letting
e deg(p(a, B)) = ¢; if a — 8 changes a sign in position 1,
o deg(t;) = 2e;;
we recover the single grading by sending e; to 1 for all 2. While ZX(V) is a Z-algebra a priori, we can view it
as a Z[ty, ..., t,]-algebra.

Over R (or Q given a rational arrangement), the infinite-dimensional algebra E(V) can be viewed as the
universal graded flat deformation in the sense of [BLPT11] of a finite-dimensional quasi-hereditary Koszul
algebra A(V); see [BLPW10, Remark 4.5]. We briefly recall the definition of A()) below.

We have Rt1,...,t,] = Sym((R"™)*), with the isomorphism identifying ¢; with the i-th coordinate function
on R™. We can then identify V* with (R™)*/V+L. Tt follows that Sym(V*) is the quotient of R[t1,...,t,] by
the ideal generated by all linear combinations of ¢4, .. ., t, whose coefficient vectors annihilate V'; equivalently,
we have Sym(V*) = % The algebra A(V) is defined similarly to A()V), except that we take a quotient
of P(Q) ®gr Sym(V*) instead of P(Q) ®z Z[t1,...,t,]. Only the single Z grading descends to a grading on
A(V). It follows from [BLP*11, Theorem 8.7] that

Sym(V:) L A(V) I A(V)

is a graded flat deformation that is universal in the sense of [BLPT11, Remark 4.2], where j includes an
element of Sym(V+) into R[ty,...,t,] and then multiplies by 1 € A(V), while 7 is the natural quotient map
from A(V) to A(V).

2.3.3. The B algebras. For S = {i1,...,im} C {1,...n}, let ug := u;, ---u;, € Zlug,...,uy], and let
Hg C V + n denote the intersection of the hyperplanes corresponding to elements of S. For «, 5 € P, set
~ Zluy, ..., up)

Rog = - .
p (us: S C{l,...,n} with A, NAgN Hg =0)
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Let fap € ]Suaﬁ be the element corresponding to 1 € Z[uy,...,u,]. For a,8,v € P, let S(afy) = {i €
{1,...,n} : a(i) = v(i) # B(i)}, where a(i), 5(i),y(i) denote the i*" sign of «, 3,7 respectively.

Definition 2.6. The Z-algebra B(V) is defined to be B(V) := D. ser ﬁa:ﬁ with multiplication given by

fa,8 fary = Us(apy) fay

and extended bilinearly over Z[uy, . .., uy]. The algebra B(V) admits a single grading by setting deg( fap) =
do.3, where do g is the number of sign changes required to turn « into 8, and deg(u;) = 2. We can refine to
a multi-grading by Z{e, ..., e,) by letting deg(fu,g) :=€;, + -+ +¢;,, if 8 is obtained from « by changing
the signs in positions 41, . .., i,;,. We define the multi-degree of u; to be 2e;; we recover the single grading by
sending e; to 1 for all i. We can view B(V) as an algebra over Z[u1, ..., uy).

To define the finite-dimensional version B(V) over R (or Q if V is rational), write R[uq, ..., u,] = Sym(R"™)
by identifying u; with the i*" coordinate function on (R™)*. The inclusion of V into R™ gives us a ring
homomorphism from Sym(V') into Rfug,...,u,] and thus into the quotient Rﬂiﬁ. For o, B € P we set

Ra,B = REB ®Sym(V) R7
where the action of Sym(V’) on R has all elements of V' acting as zero, so that R,z can be viewed as a
further quotient of R§5 by (ciu1 + -+ cpup @ (c1,...,¢n) € V). We define B(V) using R,p in place of R,g

in the definition of B (V); the multi-grading does not make sense on B(V) but the single grading does. By
[BLP*11, Theorem 8.7],

(2.1) Sym(V) L B(V) 5 B(V)

is a universal graded flat deformation.

Remark 2.7. We could alternatively define B (V) using rings Eag for all bounded (but possibly infeasible)
sign sequences «; let B denote the set of such sequences, so that P = FNB. The rest of the definition would
be unchanged, since Eag would be zero if « or 8 is infeasible (the ideal in the quotient defining Eag would
contain 1 = ug). The product still makes sense without modification and agrees with the product on B V);
note that if a, v are feasible but [ is infeasible, then

AaﬂAWﬂHS(ag,y) CAaﬂAb)ﬁAw = 0.

Theorem 2.8 (Theorem 4.14 and Corollary 4.15 [BLPW10]). For a polarized arrangement V, we have
graded algebra isomorphisms B(V) = A(VY) and B(V) = A(VY).

As a consequence, we have the following description of E(V)

Proposition 2.9. For a polarized arrangement V = (V,1,£), let Q be the quiver with vertices e, given by
a € B and arrows p(a, B) from a to 8 when o <> 8. The algebra B(V) is P(Q) ®z Z[ua, . . ., u,] modulo the
two-sided ideal generated by the following relations:

B1 : e, if a € B\ F, that is a bounded and infeasible,
B2 : pla, B)p(B,7v) — p(a, §)p(d,7) for all distinct bounded «, 3,7, with a <> <> 7+ § < «,
B3 : pla, B,a) — useq for all bounded o, § with « <> B via a sign change in coordinate i.

The gradings on E(V) defined above match the ones defined as for /T(V)

The natural operations on (V,7,£) on arrangements interact with the finite-dimensional algebras A and
B (see [BLPW10]).
e Gale duality of arrangements becomes Koszul duality of algebras A(V) = A(VY), B(V) =< B(VY).
e Polarization reversal of (V, 7, ) gives Ringel duality of algebras. B B
e Applying alt to (V,7,£) induces isomorphisms of algebras (this also holds for A and B).
10



2.3.4. Geometric aspects. As discussed in [BLPT11, Section 8|, in the rational case B()) has an interpre-
tation as a convolution algebra whose underlying vector space is the direct sum of cohomology spaces of
Xap 1= Xo N Xg, where a and 3 are bounded feasible sign vectors, equipped with a convolution product:

BW)= @ H(Xag)[~das).

a,BET

The algebra B (V) has a similar interpretation as a convolution algebra built from equivariant cohomology
spaces: we have
BYV) = P Hiw(Xap)[—dagl-
a,BET
As an upshot of the geometric definitions of B(V) (resp. B(V)), one can identify the center of these
convolution algebras with the equivariant (resp. ordinary) cohomology of the associated hypertoric variety
(see [BLP*11, Theorem 8.3 & Proposition 8.5]):

Z(B(V)) = H*(My) and Z(B(V)) = Hix (My).

The graded flat deformation (2.1) comes from forgetting the equivariant structure and Sym(V) = Hx(pt).

It is expected that the convolution algebra B(V) is an endomorphism algebra of the relative core in
an appropriately defined Fukaya category of My, see e.g. [BLPW10, Remark 4.12]. The results of this
paper suggest the following Fukaya interpretation for the universal deformations B (V) directly in terms of
hyperplane data.

Conjecture 2.10. For a polarized arrangement )V (not necessarily rational), the algebra B (V) is the ho-
mology of the endomorphism algebra of the interiors of regions A, for o € P in a suitably defined wrapped
Fukaya category of the complement of Hy C (V + n)c.

Theorems 4.9 and 4.13 establish this conjecture when V is left or right cyclic as defined in Section 3; in
this case we describe the stops for the wrapping in more detail in Section 4.4 below.

When V is rational, A, is the image under jig (plus any linear combination of Re(fic), Im(fic)) of the
relative-core toric Lagrangian X, C 9y. This observation, together with the geometric interpretations
of the centers of B(V) and B()V), makes it tempting to speculate further that B(V) admits an alternative
interpretation in terms of some sort of algebraically-equivariant Fukaya category of 9t),. Thus we speculate
that the algebra B (V) arises as an endomorphism algebra in two ways—in the Fukaya category of the
complexified hyperplane complement Xy, and in some equivariant Fukaya category of a hypertoric variety
My.

We will not go further into Fukaya categories here; however, we can consider Grothendieck groups associ-
ated to B(V) and E(V), which given the Fukaya interpretations should be related to the middle cohomology
of My,. In fact, by [BLPW12] we have

Ko(B(V)—mod)c = HF"(9My: C)

when 9y, is smooth, where classes [P,] of indecomposable projectives over B(V) correspond to classes [X,]
in cohomology.

2.3.5. Unpolarized case. Absent a polarization and given only (V,7), one can define variants B’, B’ of the
algebras B, B whose idempotents correspond to feasible o such that A,, is compact (rather than just bounded
above with respect to &, which has not been chosen here). Defining analogues of the A algebras in this setting
is more complicated, and will not be discussed here. It will be convenient for us to define

E/(‘/a n) = (Z ea) E(Vmaﬁ) (Z ea)

aelk ael
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for any choice of polarization ¢ on (V,7), and similarly for B’(V,n). Using the definition of B and B from
Definition 2.6, it is clear that E'(V, n) and B’(V,n) admit definitions requiring no choice of &, and are thus
independent of the choice of £. The idempotents e, such that A, # () is compact are precisely those for
which the indecomposable projective module B(V)e, is also injective.

2.4. Deletion and restriction.

2.4.1. Operations on (V,n) and (V,n,&). Two of the most natural operations one can perform on hyperplane
arrangements are deletion of a hyperplane and restriction to a hyperplane; we briefly discuss how to view
these operations as acting on (V, 7). Below, suppose (V,7n) is an arrangement.

For restriction, let 1 < ¢ < n and consider the inclusion ¢; : R*~' — R™ of the i*" coordinate hyperplane.
Assume that V +¢(R"!) = R" (i.e. that V is not contained in the i*" coordinate hyperplane of R™). Define
the restriction of (V,n) to the i" hyperplane to be

(Vi) = (7' (V), i ()
(note that ¢; induces an isomorphism from R"~1/V?% to R"/V). The restriction is an arrangement of n — 1
hyperplanes in k — 1-space, naturally identified with the restriction of Hy to its i*" hyperplane.

Now, let 1 <4 < n and consider the coordinate projection 7; : R® — R"~! that omits the i*"* coordinate.
Assume that V does not contain the i** coordinate axis of R™. The deletion of the it* hyperplane is defined
by

(Vi mi) == (mi(V), mi(m))
(note that 7; induces a map from R™/V to R"~!/V;). The deletion is an arrangement of n — 1 hyperplanes in
k-space, naturally identified with the deletion of the i*"* hyperplane from #y. One can check that restriction
and deletion preserve rationality of arrangements.

We now discuss the polarized case.

e (Restriction) The restriction of V = (V,n,€) to the it" hyperplane is defined by V' := (V' i, &),
where (V% n?) is the restriction of (V,n) as before, and &° = £|y.

e (Deletion) The deletion of the i*" hyperplane from V = (V, 7, &) is defined as V; := (V;,n;, &), where
(Vi,m;) is the deletion as before, and &; = £ o 7%‘_1’ where 7 is the isomorphism V = V.

Deletion and restriction are exchanged by Gale duality; if V = (V,n,£) is a polarized arrangement, then
the restriction of V to its i*" hyperplane H; is defined if and only if the deletion of the i** hyperplane H,” of
VV is defined, and in this case we have (V*)V = (VV); (see [BLPW10, Lemma 2.6]).

2.4.2. Homomorphisms and bimodules for deletion and restriction. The deformed algebras E(V) and E(V)
interact well with deletion and restriction. Namely, to a pair of arrangements related by deletion or re-
striction, there is an associated (non-unital) algebra homomorphism that maps distinguished idempotents to
distinguished idempotents. Interestingly, these homomorphisms are only defined for the infinite-dimensional
algebras A(V) and B(V), not for their finite-dimensional Koszul quotients A(V) and B(V).

Definition 2.11. Let V = (V,7,&) be a polarized arrangement of n hyperplanes in k-space such that the
restriction V* of V to the i** hyperplane is well-defined, and choose a sign s € {4+, —}. Define an algebra
homomorphism
restig(V, s): AV — A(V)

by sending

® e, — €, (a) Where (; s() is o with sign s inserted in position 4,

e p(a,B) = p(eis(a), Li,s(ﬁ)),

o t; —t; for j <iandt;—t;q forj >
Note that if « is feasible, then ¢; s(c) is feasible for s € {4, —} (although it may be unbounded even if

« is bounded; in this case, €, (o) = 0). One can check that the relations defining E(V) are sent to zero
12



under this homomorphism. The homomorphism is compatible with the map between multi-grading groups
Z{ey, ... en—1) = Zeq,...,e,) sending e; to e; for j < ¢ and sending e; to e,y for j > i. It preserves the
single grading.

We can obtain a B version of the homomorphism rest%(v, s) using Gale duality
B(Vi) = A((V)Y) = A((VY)").
We define B N N
del? (V,s) : BV;) — B(V)
to be the homomorphism restig(Vv, s) under the above identifications.

For deletion and %(V) (equivalently by duality, restriction and B(V)), we will consider two closely related

homomorphisms del(V, s) and del/*(V, s); the second of these was particularly motivated by the Heegaard
diagram considerations of Appendix A.

Definition 2.12. Let V = (V,7,£) be as above such that the deletion V; of the i*" hyperplane of V is
well-defined, and choose a sign s € {+, —}. Define an algebra homomorphism

delf (V,5) : A(V) — A(Vy)

by sending

® e, > €, (a) Where p; () is o with sign s removed from position 4, if the it" sign of « is s, and

€p; o(a) = 0 otherwise,

L4 p(av B) = p(pi,s(a)7 Pi,s(ﬁ))»

o tj—=t; for j <i,t;+— 0, and t; — t;_; for j > i.
One can check that this homomorphism is well-defined. It is compatible with the map between multi-grading
groups Z{ey, ..., e,y — Z{eq, ..., e,_1) sending e;j to e for j < i, sending e; to zero, and sending e; to e;_
for j > i. It preserves the single grading.

As above, define
resti»B»(V, s): B(V) — B(VY)
using the identifications of B(V) ‘with A(VY) and of B(V?) with A((VV),).
For the homomorphism (del’)#(V, s), it is convenient to define (rest’)%(])7 s) first.

Definition 2.13. Let V = (V,7,&) be as above such that the restriction V¢ to the i*" hyperplane of V is
well-defined, and choose a sign s € {+, —}. Let

BW = > el| BV Y e
aa(i)=s aza(i)=s
Define an algebra homomorphism
(rest’)5(V,5) : B*(V) = B(V')
by sending
® e, epi,s(a)’

® Jas = Joiu(@)pis():
® Uj > Uy for j <, u; — 1, anduj}—>uj_1 for j > 1.

One can check that this map sends the ideals defining Eag on the left to the ideals defining Epivs(a) pis(B)
on the right (this would not be true if we tried to define the homomorphism on the full algebra B(V)) and
that it respects the products on each side, so it defines an algebra homomorphism. It is compatible with
the map between multi-grading groups Z{e,...,e,) — Z{e1,...,e,—1) sending e; to e; for j < i, sending
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e; to zero, and sending e; to e;_; for j > i. However, it does not preserve the single grading (note that
deg(u;) = 2 while deg(1) = 0). Define

(del)A(V, ) A°(V) — A(Vy)
using the identifications of A*(V) with B*(VY) and of A(V;) with B((V")?), where

We have:
® Ca 7 €p, (a)
* p(a, B) = p(pis(a), pi,s(B)),
o tj—=t; for j <i,t;+—1,and t; — t;_; for j >i.
From the above homomorphisms, one can define bimodules over the algebras in question by starting with
the identity bimodule over the domain and inducing the left action via the homomorphism. Tensor products
with these bimodules on the left send projectives to projectives.

2.4.3. Compositions. Suppose we are given (V, 7, &) arising as the i*" deletion of another polarized arrange-
ment (V',1',¢'). Define a third polarized arrangement (V" 7" ¢"”) as the i*" restriction of (V',7/,¢’), as-
suming this makes sense. For any s',s” € {+, —}, we can consider the composite homomorphism
~ rest>- (V" s")  ~ delA V') o~
A(V//) A A(V/) el (V',s") A(V)
If s’ # s” this is zero; if ' = s”, then the resulting homomorphism is independent of s’ = s”. For the B
algebras, if ¢’, s” € {4+, —} we have the composite

~ B (V) ~ rest (V’,s")
BV) delZ V), BV B

BO").

with the same properties. In terms of hyperplanes in V' + 7, one can think of the B homomorphism as being
determined by adding an additional hyperplane, then restricting to it. If one composes two such addition-
restriction homomorphisms, the result is the same as adding both hyperplanes first, then restricting to their
intersection; if the intersection is empty, the composite of the two addition-restriction homomorphisms is
Zero.

One can obtain the same composite homomorphism using the variants (del/)lg (V',s") and (res’c’)%(V'7 s').
Note that in the above compositions, restig(V' '’ s") has image contained in the non-unital subalgebra As %

on which (del’)g (V', ') is defined. Similarly, del? (V, s') has image contained in the non-unital subalgebra
B?(V') on which (rest’ )%(V’ ,8"") is defined. Composing using these variant homomorphisms, one can check
that we get the same composite homomorphism as above. This composite preserves both the single grading

and the multi-grading by Z{ey, ..., e,).

3. CYCLIC ARRANGEMENTS

3.1. Definitions.

3.1.1. Clyclic arrangements. We let Gr,i% denote the positive Grassmannian consisting of positive (i.e. totally
positive) k-dimensional subspaces of R™, i.e. the set of subspaces whose Pliicker coordinates are all nonzero
and have the same sign. An element in Gr,i?l can be represented as the column span of an n X k matrix with
strictly positive maximal minors.

Definition 3.1 (cf. [Sha79, Zie93, RA99, FRA01, KW19]). An arrangement (V,n) is called cyclic if:
o VeGry),

o V+(n e Gr,?_elyn, and
14



e 1) is positively oriented with respect to V', which means that the first coordinate of the orthogonal
projection of some, or equivalently every, representative w € R™ of n onto V- is positive.

Theorem 3.2 (Theorem 6.16 of [KW19]). Let (V,n) be a cyclic arrangement. The map from the affine
k-dimensional space V 41 to the projectivization of the linear k+ 1-dimensional space W :=V +(n) sending
v+ to [v+ ] restricts to a homeomorphism from the union of the compact regions of Hv,y), a subset of
V +mn, to the m =1 “B-amplituhedron” B,, j,1(W) C P(W).

Karp-Williams also show that given an explicit n x (k + 1) matrix Z7 representing (V,7) as above, the
map from P(W) to Gry 41 sending X to Z(X*) restricts to a homeomorphism from B,, ;. 1 (W) to the m = 1
amplituhedron A, 1 1(Z) as defined by Arkani-Hamed and Trnka [AHT14] (in fact, they show an analogous
result for general m).

3.1.2. Left and right cyclic polarized arrangements. We propose that there are two natural analogues of the
definition of cyclicity in the world of polarized arrangements; below, we define “left cyclic” and “right cyclic”
polarized arrangements.

Definition 3.3. Let V = (V,n,£) be a polarized arrangement. We say that V is left cyclic if:

e V+(ne Grl?—s?l,w

e (£,id)(V) € Gryl 4y, and

e 7 is positively oriented with respect to V.
where (£,1d) is the linear map from V to R™*! whose first coordinate is given by the linear functional ¢ on
V. Similarly, we say that V is right cyclic if:

e V+(n)e Gr,?_ELn,

o (id, (—1)%¢) (V) € Gr% ,, and

e 1) is positively oriented with respect to V.

The conditions (&,id)(V) € Gr,i%_H and (id, (=1)k&) (V) € Gri?LH both imply that V' € Gr,i?l, so if
(V,n,€) is left or right cyclic then (V,7n) is cyclic. In Section 3.7 we will show that left and right cyclicity

are related by the combination of Gale duality, alt, and polarization reversal.
3.2. Background results.

3.2.1. Sign variation. The results of Karp—Williams make extensive use of an explicit identification of the
compact nonempty regions A, for a cyclic arrangement (V,n) as those for which « has “sign variation”
k, i.e. the signs in « change from 4+ to — or — to + exactly k times when reading from left to right (or
from right to left). We review some properties of sign variation and cyclic arrangements here; we note that
sign variation also plays a crucial role in Arkani-Hamed-Thomas—Trnka’s “binary code” reformulation of
higher-m amplituhedra in terms of the m = 1 amplituhedron [AHTT18].

Definition 3.4. For a € {+,—,0}", let var(a) denote the number of sign changes in « as above, ignoring
any zeroes. Let var(«) denote the maximum value of var(a’) over all o/ € {+,—}" obtained from « by
replacing each zero with either plus or minus (different zeroes may be replaced with different signs).

Proposition 3.5 (Proposition 6.14, Definition 5.1 of [KW19)]). If (V,n) is cyclic, a sign sequence « represents
a (nonempty) compact region of (V,n) if and only if var(o) = k and « starts with a plus (equivalently,
var(a) = k and o ends with (—1)F). It represents a noncompact region of (V,n) if and only if var(a) < k.

If z is a vector in R™, we can define var(z) and var(z) by taking « to be the signs of the coordinates of z.

Lemma 3.6. Forz € R"\{0}, we have var(alt(z)) = n—1—var(z), or equivalently var(alt(z)) = n—1—var(z).
Also, V is positive if and only if alt(VL) is positive.

Proof. This is [KW19, Lemma 3.3], following [Hil90, GK41, Hoc75, And8&7]. |
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Lemma 3.7. For (V,n) withV € Gr,io and V+(n) € Gri_ﬂlm, if u := projy . (n), then var(u) = var(u) = k.

n

Proof. This is a consequence of [KW19, Theorem 3.4], which follows [GK41] (see also [KW19, Definition
6.6)). O

Lemma 3.8. Let A be a totally positive m x n matriz and let v € R™. We have var(Av) < var(v); if equality
holds, then the signs of the first (and thus last) nonzero entries of Av and v are equal.

Proof. This is stated in the proof of [KW19, Proposition 6.8], following [Sch30, GK41]%. |

3.2.2. Sign variation for polarized arrangements. If (V,n) is a cyclic arrangement, then all deletions and
restrictions from Section 2.4 are defined for (V,n). We can thus obtain new arrangements by deleting
the first and last hyperplanes of (V,7); remembering the deleted hyperplanes as polarizations gives us two
polarized arrangements (V/,n',¢’) and (V" 7", £").

Definition 3.9. Given cyclic (V,7n), set (V',1/,&') to be the deleted arrangement (Vi,n;), with £ the
unique linear functional on V' = V'’ whose level sets on the affine space V +n = V’ 4 1/ are parallel to the
deleted hyperplane H; and which is increasing in the positive normal direction to Hy. We define (V" n" £")
similarly, with (V" 7") = (V,,m,) and & increasing in (—1)* times the positive normal direction to H,,.

Remark 3.10. In contrast to Section 2.4, here we start with an unpolarized arrangement and obtain a
polarized arrangement after deletion. The unpolarized part of this polarized arrangement, though, comes
from Section 2.4.

Let V' = (V/, 7/, &) and V' = (V" ”,€”). One can check that these polarized arrangements are left and
right cyclic respectively, and that all left and right cyclic arrangements arise in this manner. Reversing the
perspective, given (V,n, &) left cyclic, we will write (V!,n!) for an (arbitrary) choice of cyclic arrangement
(V! nh) producing (V,n,£) as its polarized arrangement (V' 7/, ¢'). Similarly, we write (V",1") for a choice
of cyclic arrangement producing a given right cyclic polarized arrangement (V, 7, &).

In fact, the bounded feasible regions of a left cyclic polarized arrangement (V, 7, ) naturally correspond
to the (nonempty) compact regions of (V!,n') (an analogous statement holds in the right cyclic case). To see
this, first note that by Proposition 3.5, the sign sequence of any nonempty compact region of (V!,n!) starts
with a plus, so it suffices to determine when +« is nonempty and compact for sign sequences a € {+, —}".

Lemma 3.11. The following statements hold for a sign sequence o € {4, —}".
o Ay, is empty if and only if A, is empty (i.e. « is infeasible), in which case « is bounded.
o Ay, is nonempty and compact if and only if A, is nonempty and bounded (i.e. « is bounded feasible).
o A, is noncompact if and only if A, is nonempty and unbounded (i.e. « is feasible but unbounded).

Proof. We have A, C A,, soif A, is empty then so is A;,. Conversely, if A, is nonempty, then either
var(a) < k—1, or var(a) = k and « starts with a plus by Proposition 3.5. In either case, we have var(+a) < k
and +a starts with a plus, so A, is nonempty by Proposition 3.5.

If A, is nonempty and compact then A, is nonempty by above. The affine functional £ on A, is
bounded above on A,, C A, by compactness. Since the hyperplane H; C V! + 7' is a level set of ¢ and
& is larger on the positive side of H; than on the negative side, we see that £ is also bounded above on
A_, C A, so € is bounded above on A, = Ay, UA_,.

Conversely, suppose A, is nonempty and £ is bounded above on A,. By above, A, is nonempty; if A,
is noncompact, then it contains some semi-infinite ray p. Without loss of generality we may take p to be in
the interior of A,, which must then contain an open cone C(p) of semi-infinite rays centered around p. By

4n the literature this result appears with the restriction m > n. In general, we can add rows to A so it has more rows
than columns and remains totally positive; let A’ denote the resulting matrix. We have var(Av) < var(A’v) < var(v). If
var(Av) = var(v), then the first nonzero entries of A’v and v have the same sign. If Av = 0, then var(v) = 0, so v = 0; it follows
that the first nonzero entries of v and Av have the same sign.
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construction, A, is contained between level sets of ¢ acting on V' 4 7, so p must be parallel to H;. Since
¢ is constant on p, & must be unbounded above on some rays in the cone C(p) C A,, a contradiction. The
final item of the lemma follows from the first two items. ([

For a € {+, —}", let var;(a) := var(+a).

Corollary 3.12. A sign sequence o € {4, —}™ is feasible for the left cyclic arrangement (V,n,§) if and only
if var;(«) < k and is bounded if and only if var;(a) > k.

Proof. By Lemma 3.11, « is feasible if and only if A, is nonempty, which by Proposition 3.5 happens if
and only if var(4+«) < k. Similarly, « is bounded if and only if A, is compact, which happens if and only
if var(+a) > k. O

We give the corresponding statements in the right cyclic case without proof; let (V,n, &) be a right cyclic
polarized arrangement.

Lemma 3.13. The following statements hold for a sign sequence a € {+, —}":
o A,y is empty if and only if A, is empty (i.e. « is infeasible), in which case o is bounded.
o Ay _1)y» is nonempty and compact if and only if A, is nonempty and bounded (i.e. « is bounded
feasible).
o Ay —1y» 18 noncompact if and only if A, is nonempty and unbounded (i.e. « is feasible but un-
bounded).

For a € {+,—}", let var,(a) := var(a(—1)¥).

Corollary 3.14. A sign sequence o € {4, —}" is feasible for the right cyclic arrangement (V,n,&) if and
only if var,.(a) < k and is bounded if and only if var,(«) > k.

3.2.3. Consequences for hypertoric varieties and algebras. For cyclic arrangements and left or right cyclic
polarized arrangements, the above results give us a nice parametrization of the Lagrangians X, C 91, and
int(A,) C (V 4+ n)c \ Hy appearing in Section 2.3.4, for « € P as well as « € K. When V is left cyclic,
relative core components of 9y, are those X, with var;(«) = k, and similarly for right cyclic V. The core
components of My, are those X, with a(1) = + and var(a) = k.

Correspondingly, we can use the above results to describe the algebra B (V) more explicitly in the case of
interest; we first discuss the case where V is left cyclic. Let @) be the quiver whose vertices are sign sequences
a € {+, —}" with var;(«) > k, with arrows p(a, §) from « to 8 and p(8, ) from 8 to « whenever o +» .

Corollary 3.15. IfV is left cyclic, the Z-algebra B(V) can be naturally identified with P(Q) ®zLu, ..., U]
modulo the two-sided ideal generated by the following relations:
Al : eq for all o with var;(«) > k,
A2 : p(a, B)p(B,7) — pla, 0)p(d,7) for all distinct o, 8,7, with var; > k and a <> B> v+ § < «a,
A3 : p(a, B,a) — ue, for all o, B with var; > k and a < (.

The right cyclic case has a similar description with var; replaced by var, everywhere.

3.3. Cyclic arrangements as an equivalence class. The following alternative characterization of cyclic
arrangements will be useful.

Proposition 3.16. Given (V,n), let ¢ € (V + (n))* be the unique functional with (V) =0 and ¢(n) = 1.
The arrangement (V,n) is cyclic if and only if (¢,id)(V + (n)) € Gr,?ﬂl)nH.

Proof. We first claim that given either of the conditions in the statement, we have V' € Gr,igl and V+ (n) €

Gr,?_?lm. This is immediate if (V,7n) is left cyclic. Assuming that (¢,1d)(V + (n)) € Gr§£1’n+1, represent

V as the column span of a matrix A’, and represent 7 by a vector w’ € R™. Then (¢,id)(V + (n)) is the
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110
column span of [—,‘71 , so the maximal minors of this matrix all have the same sign. It follows that the
w

maximal minors of A" and of [ w’ ‘ A’ ] all have the same sign, so V € Gr,i?z and V+(n) € Gri?—s?l,n' It thus
suffices to show that 7 is positively oriented with respect to V if and only if (¢,id)(V + (n)) € Gr;f_ElJH_I7
assuming that V € Gry,, and V + (n) € Gr;}; ,, and we will make these assumptions below.

If A is a matrix with p columns, we will write A for A with its columns permuted by the longest permutation
in the symmetric group &,. We let 7 label the rows and j label the columns of a given matrix, so that an
expression like (—1)@1 means “A with its 4t column multiplied by (—1)7 for 1 < j < k,” and similarly for
expressions like (—1)7A.

Since V' € Gr,i?” there exists a unique totally positive matrix A of size (n — k) x k such that V is the
I
(_1)j+k A
size k (note that all maximal minors of the above block matrix are positive). There exists a unique vector

column span of the matrix (see [Pos06, Lemma 3.9]), where Ij is the identity matrix of

0
w’ € R"* such that [ ] represents 77 € R"/V; then

w/
0| 1 1 0
V + (n) = colspan b , and (¢,id)(V + (n)) = colspan | 0 Iy,
w’ ‘ (—1)tFA :
w' | (—=1)7+FA
Since V + (n) € Gr,i_ELH, there exists a unique vector w € {w’, —w'} such that the minors of the matrix
1
0 ‘ I .. . . 0
1) ‘ S are all positive. It follows that the maximal minors of 0 I are
“ (—DFw | (~1)*FA

all positive, so that [ A ‘ w ] is a totally positive matrix. Writing w’ = (—1)‘w for some ¢ defined modulo
2, we want to show that 7 is positively oriented with respect to V' if and only if £ = k£ modulo 2.

To do so, let u be the orthogonal projection of n onto V. Since u is equivalent to l( 10) 7 ] modulo
—1) w
V', we can write
R A
S (DR | (-1)7FRA | | 2
for some z € R*. Expanding out this product of block matrices, we get [Z] where
v
2k
1 —Rk—-1 21
v = [ (—1)fw ‘ (=1)itFA } 21 =[4 ‘ w ] : , writing z = | !
(—1)k=1z 2k
(~1) (-~
By Lemma 3.8, we have
2k
—Zk—1
var(v) < var
(—1)F 1z
(—DF(=1)*
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Now, we have var(u) = var(u) = k by Lemma 3.7. The first coordinate u; of w is equal to z;. If this
coordinate were zero, we would not have var(u) = var(u), so either u; = z; > 0 (if 5 is positively oriented
with respect to V') or u; = 21 < 0 (if 7 is negatively oriented with respect to V). We want to show that

up = z1 > 0 if and only if ¢ =k mod 2.

Assume one of the above two statements holds without the other; we will derive a contradiction. It follows
that (—1)*='z; and (—1)*(—1)*~* have the same sign, so

2k

2k
TR —Zk—1
var = var _ =: var (2)
(—1)F 1z ket
( 1>k(_1)/—k (=D 'z
and we get
(3.1) var(v) < var(z') < var (') = k—1—var(z).
Since u = |— , we have k = var(u) < var(z) + var(v) + 1 < var(z) + (k — 1 — var(z)) + 1 = k. The
v

inequalities in (3.1) must therefore be equalities, so that var(v) = var(z’).

By Lemma 3.8, the first nonzero entries of v and 2z’ must have the same sign, and since the vectors have
the same value of var, their last nonzero entries must also have the same sign. The last entry v,,_j of u is
nonzero (otherwise var(u) # var(u) as before), so the sign of v,,_j, is the sign of (=1)¥71z; = (—=1)F1u;.
This contradicts var(u) = k, proving the proposition.

|

Corollary 3.17. Given (V,n), let ¢ be defined as in Proposition 3.16. The arrangement (V,n) is cyclic if
and only if (id, (=1)*¢)(V + (n)) € Gy -

Proof. By Proposition 3.16, it suffices to show that (¢,1d)(V+(n)) € Grl?—ELnH if and only if (id, (—1)*¢)(V+
(m) € Grfﬂl’nﬂ. Picking a matrix A’ and a vector w’ representing V and ) respectively, (¢,id)(V + (n))

0 (—D)Fw' | A
w' | A 1 0
not involving the top row of the first matrix are (—1)¥*+1) = 1 times the maximal minors not involving
the bottom row of the second matrix. The maximal minors involving the top row of the first matrix are
(—1)’“2““ = 1 times the maximal minors involving the bottom row of the second matrix. Since the column
span of the second matrix is (id, (—1)*¢)(V + (n)) € Gr,?_ELHH, the corollary follows. O

Comparing this matrix with , the maximal minors

is the column span of l

Corollary 3.18. For a given (n,k), the cyclic arrangements (V,n) form an equivalence class of arrange-
ments.

Proof. Tt follows from Proposition 3.16 that an arrangement (V,n), with V' the column span of A’ and 7

1 011
A/ w/ ?

0 or equivalently of
w/ A/ ’
] not involving the bottom

represented by w’, is cyclic if and only if the maximal minors of

!/ !/

0|1

row all have one sign and the maximal minors involving the bottom row all have (—1)* times this sign. Such

all have the same sign. This holds if and only if the maximal minors of

arrangements (V,7) constitute an equivalence class. O
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Corollary 3.19. Given a polarized arrangement (V,n,§), let ¢ be defined as in Proposition 3.16. Then
(V,n,€) is left cyclic if and only (id, (=1)*¢)(V + (n)) € Grl?—?LnH and (£,id)(V) € Gr,i?lH. Similarly,
(V,n,€) is right cyclic if and only (¢,id)(V + (1)) € Grp{y 4 and (id, (=1)FE)(V) € G-

Proof. By definition, (V,n,£) is left cyclic if and only if (V,n) is cyclic and (£,id)(V) € Gr,i%_H; by Corol-
lary 3.17, this holds if and only if (id, (—1)¥¢)(V + (n)) € Grr,i?l’n+1 and (§,id)(V) € Gr,iglﬂ. The argument
in the right cyclic case is similar, using Proposition 3.16. (Il

Corollary 3.20. Given a polarized arrangement (V,n,£), let ¢ be defined as in Proposition 3.16. Then
(V,n,€) is left cyclic if and only if there exists a strong lift & of & such that (€,id, (—=1)*¢)(V + (n)) €
Gr,ffl’nw, Similarly, (V,n,€) is right cyclic if and only if there ewists a strong lift & of &€ such that

(&, id, (=1)*)(V + (n)) € Gy yo-

Proof. We will give a proof in the left cyclic case; the right cyclic case is similar. If a strong lift £ exists
as described, let A’,w’ be representatives for V,7, and let [ (2/)7 ‘ ¢ | be the matrix for ¢ in the columns

()" c
of [ A ‘ (=1)*¥w’ ]. The maximal minors of A" | (=1)*w’ | all have the same sign; it follows from
0 1

Corollary 3.19 that (V,n, &) is left cyclic.

Conversely, assume (V,n, £) is left cyclic (with A’,w’, 2’ chosen as above), and consider the above matrix
with c¢ left unspecified. By assumption, maximal minors involving the bottom row all have the same sign,
and maximal minors not involving the top row all have the same sign (the signs must thus agree in these two
cases). Each of the finitely many maximal minors involving the top row, but not the bottom, can be written
as (—1)*c times a maximal minor of A’ (all of which have the same sign), plus terms that are independent
of ¢. Thus, for ¢ >> 0 or ¢ << 0, we can ensure that these minors have the same sign as the rest of the
minors of this matrix, so a strong lift £ exists as specified in the statement. (|

Corollary 3.21. For a given (n, k), the left cyclic and the right cyclic polarized arrangements (V,n,&) form
equivalence classes of polarized arrangements.

Proof. Tt follows from Corollary 3.20 that (V,n,&) is left cyclic if and only if it has a strong lift (V,n,&),
with V' the column span of A’, n represented by w’, and ¢ having matrix [ ()T ‘ c } in the columns
@7 e
of [ A/ ‘ (=1)kw’ |, such that the maximal minors of A" | (=1)*w’ | all have the same sign. This
0 1
condition on the signs of maximal minors is equivalent to a condition on the signs of maximal minors of
AW
the matrix | (2/)7 | ¢ | that specifies an equivalence class of strong polarized arrangements, and thus an
0 1
equivalence class of polarized arrangements.

O

3.4. Vandermonde arrangements. Let z; < --- < 2z, € R C C and let V' be the column span of the
Vandermonde matrix

1 21 N Z]f_l

1 29 e 2571
(3.2)

1 Zn e ZZ_I

Let 1 be the element of R™/V represented by w := (—=1)*(2F,...,2%); then (V,7) is an arrangement. If all

the z; are rational then (V,n) is rational; one can check that (V,n) is cyclic using Section 3.3 or the proof of
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[KW19, Proposition 6.8]. If we write vy, ..., vy for the columns of the above matrix and identify V + n with
R* by sending (ay,...,ax) € R¥ to ajvy +---+apvp +w € V +1n, then the i** hyperplane of the arrangement
has equation
a1+ agzi + -+ apzF T 4 (—z)F = 0.
It follows from Section 3.3 that all cyclic arrangements are equivalent to ones arising from this Vander-
monde construction in the sense defined above, and that given n and k they are all equivalent to each other
(i.e. the choice of z; does not matter up to equivalence).

We now give a polarized analogue of this construction. Given points zp < 21 < --- < z, in R C C,
we define a left cyclic polarized arrangement (V,n,£) with (V,n) obtained from zi,...,z, as above. We
let ¢ be the linear functional on V' whose matrix in the columns of the above Vandermonde matrix is
1z - 2571]. One can check that (V,n,&) is left cyclic. Similarly, given 2z < -++ < 2z, < zp41 In
R C C, we define a right cyclic polarized arrangement (V,n,€) where (V,n) are defined as above and £ has
matrix (—1)F [1 Zn4l o szlﬂ Again, all left and right cyclic polarized arrangements are equivalent

to Vandermonde ones, which (given n, k, and a choice of left versus right) are all equivalent to each other.
3.5. Symmetric powers.

3.5.1. Cyclic arrangements and Symk (C). Besides their relationship to amplituhedra, cyclic arrangements
are also special in that their complexified complements X), are symmetric products of the punctured plane,
as we explain below. While much of the material in this section is standard, we give a detailed exposition
due to its conceptual importance in understanding our results.

Proposition 3.22. When (V,n) is the Vandermonde arrangement of n points z; < -+- < zp, in R C C from
Section 3.4, the map from C* to Sym®(C) sending (ai,...,a,) to the multi-set of roots of the polynomial
f(z) = (=2)* +apz*"1 +-- -+ agz + ay restricts to a bijection from the complezified complement of (V,n) (a
subset of (V +1n)c = (R¥)c = C*) to Sym*(C\ {z1,...,2a}).

Proof. We can identify Sym” (C) with the space of degree k complex polynomials in a single variable z, with
leading term (—z)* for reasons we will see below, by sending a polynomial to its (unordered) multi-set of
roots. The subset Sym”(C \ {z1,...,2,}) of Sym”(C) gets identified with those polynomials that do not
vanish at z1,...,2,. On the other hand, the same set of degree k complex polynomials can be identified with
C* by sending a polynomial f(z) = (—2)F + ar2*~1 + -+ 4+ aaz + a; to its vector of coefficients. Under this
identification, the polynomials f vanishing at z; correspond to the coefficient vectors (a1, ..., ay) satisfying

the equation
(—z)F +apf™ 4 Fagz +a; =0,
the complexified equation for the " hyperplane of the Vandermonde arrangement (V,n). Thus, the
complexified complement of (V,7) is identified with polynomials not vanishing at any z;, and thus with
Sym"®(C\ {z1,...,2n}).

O

For any cyclic arrangement (V,n), an equivalence of (V,n) with the Vandermonde arrangement for z; <
.-+ < 2, gives an identification of the complement of the complexification of (V,7) with Sym*(C\{z1,..., 2, }).

3.5.2. Distinguished Lagrangians. Recall from Section 2.3.4 that for an arrangement (V,7), the complexified
complement of (V,7) has a distinguished family of noncompact Lagrangians given by the interiors of the
compact regions of (V,n), and that given a polarization (V, 7, £), we get a larger family consisting of interiors
of bounded feasible regions. When (V,n) is cyclic (resp. (V,n,§) is left or right cyclic), we can view the
interiors of compact (resp. bounded feasible) regions as Lagrangians in Sym®(C\ {z1,...,2,}).

Proposition 3.23. For cyclic (V,n), the Lagrangians in Symk((C\{zl, ..y Zn}) given by interiors of compact

regions of (V,n) are the symmetric products of unordered k-tuples of the straight-line Lagrangians connecting

zi to ziy1 for 1 < i < n—1. For left cyclic (V,n,€), the Lagrangians in Sym”(C \ {z1,...,2,}) given
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FIGURE 1. Left: n lines and n + 1 regions between them. Right: a set of 3 dots in the
regions {0,1,4} C {0,...,6}.

by interiors of bounded feasible regions are the same as above, except that one includes the straight-line
Lagrangian between —co and z1 in R C C. For right cyclic (V,n,£), one includes the straight-line Lagrangian
between z, and +oo instead.

Proof. Let (V,n) be cyclic and let a € K; by Proposition 3.5, we have var(a) = k and « starts with a
plus. We can view points in the interior of A, as polynomials f(z) = (—2)* 4+ apz* ' + --- + a2z + ay,
with real coefficients, such that «(i)f(z;) > 0 for all i. Such polynomials f have k sign changes on the
real axis because var(a) = k, so they have k real roots. More precisely, if o changes sign after index i; for
1 <iy; <--- <ip <n, then f has a root between z;; and z;,,1 for 1 < j < k. It follows that the multi-set
of roots of f lies in the symmetric product of straight lines from z;; to z;;41 inside Sym”(C\ {z1,...,2n})
for 1 <j<k.

Conversely, assume f(z) = (—2)* + axz"*1 + -+ + a2z + a1 for arbitrary complex coefficients a;, with
f(z;) # 0 for all 4, and that the multi-set of roots of f lies in the symmetric product of straight lines from
zi; to 2,41 for some 1 < iy < -+ <4 < n. For 1 < i < n, let a(i) denote the sign of f(z;); then
(a,...,ar) € A, and we have var(a) = k. Furthermore, f(z1) = (r1 — 2z1) -+ (rg — 21) > 0 since each root
r; is greater than z;, so the first sign of a is a plus. Thus, a € K.

Now let (V;n,€) be left cyclic and let « € P; by Corollary 3.12, we have var;(«) = k. For a point in
the interior of A, viewed as a polynomial f as above, if « starts with a plus then the above argument
goes through and f is in a symmetric product of finite-length straight lines. If « starts with a minus, then
var;(a) = k — 1, so there exist 1 < i; < -+ < i1 < n such that f has a root between zi; and z;, 41 for
1 < j <k — 1. Furthermore, since lim,_,_.cr f(2) = +00 but f(21) < 0, f must have a root on the real
axis to the left of z;. Thus, the multi-set of roots of f lies in a member of the extended family of symmetric-
product Lagrangians in Sym” (C\{z1,...,2n}) from the statement. Conversely, if the multi-set of roots of
f lies in one of these Lagrangians, then f has real coefficients and the region A, containing (a1, ...,ax)
satisfies var;(«) = k; we thereby have o € P.

Finally, let (V,n,&) be right cyclic and let @ € P; we have var,.(«) = k. We consider two cases depending
on whether the last sign of « is +-(—1)¥; if it is (—1)*, then var(a) = var,(a) = k and the argument proceeds
as usual. If the last sign of a is —(—1), note that lim, ,o.cr f(2) = (—1)F; the argument proceeds as
before. |

3.6. Dots in regions and partial orders.

3.6.1. Sign sequences and dots in regions. We introduce an alternate combinatorial description of bounded
feasible sign sequences « in the left and right cyclic cases, closely mirroring the structure of the straight-line
Lagrangians in Proposition 3.23. Let Vj(n, k) denote the set of k-element subsets of {0,...,n — 1} and let
Vi (n, k) denote the set of k-element subsets of {1,...,n}. Following Ozsvath-Szabd (see Section 4 below),
we draw elements of Vj(n, k) as sets of k dots in the regions {0,...,n — 1} on the left of Figure 1; see the
right of Figure 1 for an example. Elements of V,.(n, k) are drawn similarly as sets of k dots in the regions
{1,...,n} on the left of Figure 1.

Definition 3.24.

(i.) Let V be a left cyclic polarized arrangement so that P is the set of & € {+, —}" with var;(a) = k.
There is a bijection k;: P — Vj(n, k) given by sending o € P to x, C {0,...,n — 1} with i € x, if
there is a change after sign ¢+ 1 in the sequence +a; the inverse sends x € Vj(n, k) to ax, defined from
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+ax by starting with a + (“step zero”) and writing n signs to the right, introducing a sign change at
step ¢ if and only if i — 1 € x.

(ii.) Let V be a right cyclic polarized arrangement so that P is the set of a € {+, —}" with var,(a) = k.
There is a bijection k,: P — V,.(n,k) sending a to x, C {1,...,n} defined by i € x, if there is a
change after sign 7 in the sequence a(—1)¥; the inverse sends x € V,.(n, k) to ax, defined from a,(—1)*
by starting with (—1)* as the rightmost entry (“step zero”) and writing n signs from right to left,
introducing a sign change at step ¢ if and only if n —i 4+ 1 € x.

Let V'(n, k) denote the set of k-element subsets of {1,...,n — 1}; we have V'(n,k) C Vi(n, k), V,.(n, k).
The above constructions give a bijection between V’(n, k) and the set of o € K for a cyclic arrangement. In
all cases (cyclic, left cyclic, and right cyclic), Proposition 3.23 identifies the interior-of-region Lagrangian for
a given « with the symmetric-product Lagrangian for x,,.

3.6.2. The partial order for cyclic arrangements. Let zg < z1 < -+ < z, € R C C, and let (V,n,£) be the
associated left cyclic Vandermonde arrangement from Section 3.1.2. We have a partial order on the set P
of bounded feasible sign sequences for (V,n,&) from Section 2.2.4. Identifying P with the set Vi(n, k) of
k-element subsets of {0,...,n — 1} from Section 3.6.1, viewed as sets of dots in regions, we also have the
lexicographic partial order on V;(n, k) generated by the relations x < y when y is obtained from x by moving
a dot one step to the right.

Proposition 3.25. For a left cyclic Vandermonde arrangement, the partial order on P induced by & agrees
with the order induced from the lexicographic order on Vi(n,k) from the bijection k;: P — Vi(n, k).

Proof. Let a € P, and identify V with R* using the columns of the Vandermonde matrix from (3.2). The
points (ai,...,ax) € R* lying in the region A, are those satisfying the inequalities

a(i) (—z:)F + apzl ™"+ + aszi + a1) > 0.
On the other hand, we can view (ay,...,ay) as a degree-k polynomial fo, ., (2) = (—2)F +apz"" 1+ +
asz+a; of one variable z, and this identification is a bijection between R* and the set of real-coefficient degree-
k polynomials in z with leading term (—z)*. Under this identification, A, is the set of such polynomials f
such that (%) f(z;) > 0 for all 4, i.e. that either f(z;) = 0 or the sign of f(z;) is «; for all i. The interior of
A, is the set of f such that f(z;) is nonzero and has the same sign as «; for all . Note that if f is in the
interior of A, then since var(a) = k, all roots of f are real and lie in the regions between the z; coming
from the element x of Vj(n, k) corresponding to « (see Figure 1). Thus, if x = {i1 < --- < iy}, then we can
write f(z) = (r1 — z) -+ (1, — z) where

e if 51 =0, then ry < z7;

o if i; #0, then z;; <7; < z2i,41.

Now, up to an additive constant that does not depend on f, the value of £ at f is the evaluation f(z).
Taking the constant to be zero, the maximum value attained by & on A, is the supremum of f(z) over all
f in the interior of A,. By the above, we have f(z9) = (r1 — 20) -+ (rx — z0). This quantity approaches its
supremum (over the interior of A,) as r; — 2;; for all j, so the supremum is (z;, — 2o) - - - (i, — 20). Thus,
for o +» B (corresponding to x,y such that y is obtained from x by moving a dot one step), we have a <
if and only if y is obtained from x by increasing the value of i; by one for some j (i.e. moving a dot of x
one step to the right), and the proposition follows.

O

An analogous result holds in the right cyclic case with the following modifications. We start with z; <
- < zp < Zpy1. For f in the interior of A, we have f(z) = (r1 — 2) -+ (rx — z) where
o if i = n, then ry > z,;
o if i; # n, then z;, <7; < 211
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(analogously to above, we let o correspond to x = {i1 < -+ < 45} C {1,...,n}). The value of £ at f
is (—1)*f(2,41) up to an additive constant; the supremum of this value over f in the interior of A, is
(zn41— 2iy) * (Zn41 — 2i,, ). We conclude that for « <+ 8 corresponding to x,y C {1,...,n}, we have a <
if and only if y is obtained from x by moving a dot one step to the left.

The proof of Proposition 3.25 also lets us conclude that our bijections P < Vj(n, k) from Section 3.6.1
and P < B from Section 2.2.4 are related straightforwardly.

Corollary 3.26. If (V,n,§) is the left cyclic Vandermonde arrangement associated to zg < z1 < -++ < zp, €
R C C and we have o € P, then the element x € B associated to « in Definition 3.24 is obtained from the
element x € Vi(n, k) associated to o in Section 2.2.4 by adding one to each i € x.

Proof. By definition, x is the set of indices of the k hyperplanes at whose (unique) intersection point the
functional £ takes its maximum value on A,. By the proof of Proposition 3.25, the point of A, maximizing
the value of £ corresponds to a polynomial f whose roots lie at the right endpoints of the regions containing
the dots of x. The hyperplane H; consists of those polynomials vanishing at z;, and the right endpoint of a
region labeled i € {0,...,n — 1} is i + 1. O

If (V,n,€) is a right cyclic Vandermonde arrangement, one can show similarly that the elements x € B
and x € V,.(n, k) associated to « agree as subsets of {1,...,n}.

Proposition 3.25 and Corollary 3.26 (resp. their right cyclic analogues) hold for general left cyclic (resp.
right cyclic) polarized arrangements, since their claims are preserved under equivalence and all left and right
cyclic polarized arrangements are equivalent to Vandermonde ones.

3.7. Cyclicity and Gale duality. For a polarized arrangement (V,7,&), its Gale dual is (V*, —¢,—n),
so its alt Gale dual is (alt(V 1), —alt(£), —alt(n)). Thus, the polarization reversal of its alt Gale dual is
(alt(V4), — alt(€), alt(n)). Similarly, the alt Gale dual of its polarization reverse is (alt(V1), alt(£), — alt(n)).
Note that alt commutes with Gale duality and polarization reversal; the relevant question is the ordering of
Gale duality and polarization reversal.

Theorem 3.27. A polarized arrangement (V,n,£) is right cyclic if and only if the polarization reversal of
its alt Gale dual (alt(V1), — alt(€), alt(n)) is left cyclic.

Proof. Given either condition we have V € Gr,i%, so there exists a unique totally positive matrix A of size
I
(n—k) x k such that V is the column span of the matrix [(1—);:_,6;{— . Let w € R"* be the unique vector
0 .
such that NEr represents 7 € R"/V. Let [(—1)727] be the matrix of ¢ in the columns of the matrix
—1)*w
representing V. Then
1 0 I
(¢,1d)(V + (n)) = colspan 0 Iy, , (id, (—=1)*€)(V)) = colspan | (—1)itkA
(—D)kw | (—=1)7+FA (—1)i+kgT

(71)i+k (Z)T

Note that V+ can be viewed as the column span of [ where ()7 denotes the transpose

—dn—k
(we are viewing elements of both R™ and (R™)* as column vectors). We can multiply column j by (—1)*+7 to
—_1)i+i( AT V-1 AT
view V1 as the column span of ( 1]2 ,7(114) . Thus, alt(V1) is the column span of DA ]
(_1) + Ik Ik
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Since [Ok] represents 1 € R™/V, we can take [O_lwl to represent alt(n). The matrix of

(=1)%w (=1)°
alt(n) as a linear functional on alt(V1), in the basis for alt(V1) given by columns of the above matrix, is
(1w
thus [ (—1)7~'w” |. We sce that (alt(n),id)(alt(V1)) is the column span of | (—1)7=1(A)T |.
In—k

1)l

The vector [(O in (R™)* represents £ € (R™)*/V+; indeed, dot products of this vector with the

I .
columns of [ k give the matrix | (—1)7zT ] for £ in this basis for V. It follows that the vector

lg] represents — alt(¢) € (R™)*/V+, so

(71)j*1A'T (71)717]{)3;

(id, (—1)"*@)(alt(V*) + (— alt(£))) = colspan Tk 0
0 1
By Corollary 3.19 and the above setup, (V,7,£) is right cyclic if and only if the maximal minors of
1 0 I
0 Iy, and of | (=1)7t*A | are all positive, while (alt(V1), — alt(€), alt(n)) is left cyclic
(=D)kw | (=1)7+FA (—1)i+kgT
(=1t (-1 AT | ()
if and only if the maximal minors of | (—=1)/~1(4)T | and S 0 are all positive.
Ly 0 1

It suffices to show that the column spans of the matrices for (V,n,£) are the alt perpendiculars of the
column spans of the matrices for (alt(V1), —alt(¢), alt(n)). Indeed, the perpendicular of (alt(n),id)(alt(VL)

-1 0 1 0

is the column span of 0 —1I , or equivalently of 0 (=1)7I, |, so its alt-
(=D)i7tw | (=1)t4 (—1)w | (=1)"H7A
1 0
perpendicular is the column span of 0 Iy, . Similarly, the perpendicular of (id, (—1)*¢&)(V)
(—1)kw | (=1)+kA
(_1)i+kAT (_1)i+kx (_1)i+ng (_1)i+n—k+1x

is the column span of —L_i 0 or equivalently of | (—=1)F=1[, 0 )

0 -1 0 (=)™

(1) TAT | (=) he
so the alt perpendicular of (id, (—1)%¢)(V) is the column span of I 0
0 1

O

Corollary 3.28. The algebras A(V) and B(V) for right cyclic polarized arrangements V are Koszul dual
to the Ringel duals of the algebras A(V') and B(V') respectively for left cyclic polarized arrangements V'.
Equivalently, A(V) is Ringel dual to B(V') and B(V) is Ringel dual to A()V").

Note that the combination of Koszul and Ringel duality is a familiar type of duality in the literature; see
e.g. [SVV14].

3.8. Deletions and restrictions of cyclic arrangements.
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Definition 3.29. Let V' = (V% 5%, £%) be obtained from V = (V,n,£) by restricting to the i*" hyperplane.

; oy i (i i i
The signed restriction Vg, = (Vign Tigns Seign

applying the automorphisms of R"~! and (R"~!)* represented by the diagonal matrix with j** entry 1 if
j < iand —1if j >i. We say that V!

sign

the same terminology in the unpolarized case, and refer to (Vsﬁgn, néign)

) of V is the polarized arrangement obtained from V¢ by

is obtained by signed-restricting V to the i*"* hyperplane. We use
as the signed restriction of (V,n).

Lemma 3.30. Let V = (V,n,£) be a left cyclic (resp. right cyclic) arrangement.

(i) Let V; = (Vi,m;, &) be obtained from V by deleting the it" hyperplane as in Section 2.4. Then V; is left
cyclic (resp. right cyclic).
(ii) Let Vi be the arrangement obtained by signed-restricting V to the it" hyperplane (see Definition 3.29).

sigp
Then V. is left cyclic (resp. right cyclic).

sign
Proof. The proof of part (i) is straightforward; we will prove part (ii). First assume V = (V,7,£) is left
cyclic; then the alt Gale dual of the polarization reversal of V (namely alt(p(V)Y) = (V+,alt(€), — alt(n)))
is right cyclic. The " restriction of the polarization reversal of V is the polarization reversal of the t"
restriction of V, i.e p(V)! = p(V?). The Gale dual of this is the i'" deletion of the Gale dual of the
polarization reversal of V, so that (p(V)?)Y = p(V*)Y = (p(V)V);. Thus, the alt Gale dual of the polarization
reversal of the i restriction of V is alt of the i*" deletion of the Gale dual of the polarization reversal of
V, ie. alt(p(Vh)Y) = alt((p(V)¥):). Alt of a deletion and deletion of an alt are related by a sign-change

automorphism as in the definition of the signed restriction, so

alt(p(Vign) ") = (alt(p(V)")):.
By part (i) and the above, the alt Gale dual alt(p(Vsiign)V) of the polarization reversal of the i'" signed
restriction of V is right cyclic, so the signed restriction V%__ of V in the statement of the lemma is left cyclic.
The case when V is right cyclic, rather than left cyclic, is similar. O

sign

Note that the algebras associated to V!

¢ sign )
ordered basis for V' and a representative in R*~! for 1/, so that we can view V' as a polarized arrangement
of n — 1 affine hyperplanes in R’“‘l. Define an ordered basis for Viign and representative for nl,, by sign-
changing the basis vectors for V* and the representative of n* as in Definition 3.29, so that we can also view
Viign @s a polarized arrangement of n — 1 affine hyperplanes in Rk=1. The above automorphism of R*~! and
(R*~1)*, sending V* to Vi,
J > i (coming from hyperplanes H; of the original arrangement V with j > ¢) while keeping the direction of
£% unchanged.

The analogous statements in the unpolarized case are also true.

are naturally isomorphic to those associated to V. Pick an

has the effect of reversing the co-orientation on the hyperplanes H; of V' for

Lemma 3.31. Let (V,n) be a cyclic arrangement.
(i) Let (Vi,m;) be obtained from (V,n) by deleting the i*" hyperplane. Then (V;,n;) is cyclic.
(ii) Let (Vi

i
sign?’ nsign)

be obtained by signed-restricting to the i*" hyperplane. Then (V.

i . .
signs nsign) is cyclic.

3.9. Examples.

3.9.1. k = 1. Choosing real numbers z; < -+ < z,, the k = 1 Vandermonde arrangement (V,7) associated
1 —Z1
to these numbers has V' given by the column span of |:| and 7 represented by - | . Identifying V +n
1 —Zn
with R! using this data, the hyperplane H; of the arrangement #y has equation x = z; with positive region
x > z;. Define & by choosing zy < z1, so that & has matrix [1] Define &, by choosing 2,41 > 2z, so that
&, has matrix [—1].
The arrangement Hy, C R! is shown in Figure 2 (left) for n = 4 and 2; = i for all i. The figure also shows

the regions A, for a € F, labeled by their sign sequences «. The middle picture of Figure 2 indicates the left
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FIGURE 2. A cyclic arrangement with left cyclic and right cyclic polarizations for n =4,k = 1.

cyclic polarization arising from the choice of zyg = 0 < z7; the regions A, for a € P are colored and labeled
by sets of dots in regions. The right picture of Figure 2 does the same for the right cyclic polarization arising
from the choice of z5 =5 > z4.

When V is a cyclic arrangement with k = 1, the hypertoric variety 21y, is isomorphic to the Milnor fiber
of the type A,,_; Kleinian singularity C?/Z,; this is the family of varieties studied by Gibbons-Hawking
[GHT78] in the context of gravitational instantons. These are also the varieties appearing in [KS02]. Moreover,
if we choose a left cyclic polarization of V, then Khovanov—Seidel’s Lagrangians in 9, are the relative core
Lagrangians X, for a« € P. The algebra B(V) in this case is isomorphic to the Khovanov—Seidel quiver
algebra A, _; (this is also true for right cyclic polarizations); the algebra A(V) is isomorphic to its Koszul
dual A!,_;. In [Man17], the algebra B(V) was presented as a quotient of Ozsvath-Szabd’s algebra Bj(n, 1)
(see Section 4 below); we will see that B;(n, 1) = B(V).

3.9.2. k=n—1. Let V be the column span of the matrix ' of size n x (n—1), and choose
1
11
1
any 7,& such that (V,n,¢) is left or right cyclic. The form of this matrix implies that the algebra B (V) is
isomorphic toA!,_;, the Koszul dual Khovanov-Seidel algebra (thus this is true for all left and right cyclic
arrangements for k = n—1). In the rational case, 9y, is isomorphic to T*CP"~!, which is studied by Calabi
[Cal79] in precursor work to the theory of hypertoric varieties.

The isomorphism B;(n,n — 1) = B(V) below presents A!, | as a quotient of B;(n,n — 1), in close analogy
to the k = 1 case studied in [Manl7]. It is interesting to compare with [LM21], which considers certain
finite-dimensional quotients of B;(n, k) that are related to category O. While the & = 1 quotient in [LM21]
is A,_1, the k = n — 1 quotient is not A!_, but instead a significantly more complicated algebra. Here,
unlike in [LM21], the cases k = 1 and k = n — 1 are equally simple.

Unlike for the finite-dimensional algebras, it is not true that B;(n,1) and B;(n,n — 1) are Koszul dual to
each other. Rather, as shown by Ozsvath—Szabé in [0Sz18], B;(n, k) is Koszul dual to an algebra formed from
Bi(n,n — k) (or the isomorphic algebra B,.(n,n — k)) by adding additional algebra generators C;, together
with a homological grading and a differential.

3.9.3. n =4,k = 2. Consider the (n = 4,k = 2) Vandermonde arrangement associated to 1 < 2 < 3 < 4,
1

where V' is the column span of

w N =

and 7 is represented by [1 4 9 16]. Define &; by letting zp = 0,

1 4
so that & has matrix [1 0] in the columns of V. Define &, by letting z5 = 5, so that & has matrix [1 5]
in the columns of V.

The arrangement Hy C (V 4+ n) = R? is shown in Figure 3 (left), with the regions A, for a € F. The
middle picture of Figure 3 indicates the left cyclic polarization &, and the right picture of Figure 3 does the
same for &.. In both cases, the regions A, for o € P are colored and labeled by sets of dots in regions.
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FicUrE 3. A cyclic arrangement with left cyclic and right cyclic polarizations for n = 4, k = 2.

4. OzZSVATH-SZABO ALGEBRAS AS HYPERTORIC CONVOLUTION ALGEBRAS

4.1. Definitions. We define the graded algebra B(n,k) from [OSz18] using the generators-and-relations
description from [MMW20a]. First we introduce some terminology. Let V(n,k) be the set of k-element
subsets x C {0,...,n}.

Definition 4.1. Let B(n, k) be the path algebra of the quiver with vertex set V(n, k) and arrows

o for 1 <i<mn, R;fromxtoyand L; fromy toxifxnN{i—1,i} ={i—1} andy = (x\ {i —1})U{i},
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e for 1 <i < n, U; from x to x for all x € V(n, k)

modulo the relations

(1) RU; =U;R;, L;U; = U, L;, U;U; = U;U;,

(2) R;L; =U;, L;R;, = U;,

(3) RiRj = RjRi, Lz‘LJ’ = LjLi, LiRj = R_]LZ (|Z — j‘ > 1),

(4) Ri_1R; =0, L;L;_1 =0,

(5) Uy =0if xN{i—1,i} = 0.
The relations are assumed to hold for any linear combination of quiver paths with the same starting and
ending vertices and labels R;, L;,U; as described; Iy denotes the trivial path at x € V(n, k). The elements
I, € B(n,k) give a complete set of orthogonal idempotents. We define a grading on B(n, k) by setting
deg(R;) = deg(L;) = 1 and deg(U;) = 2; we can refine to a multi-grading by Z{es,...,e,) by setting
deg(R;) = deg(L;) = e; and deg(U;) = 2e;. Our single and multiple gradings are two times the single and
multiple gradings defined in [OSz18].

Recall from Section 3.6.1 that we let Vj(n, k) denote the subset of V(n, k) consisting of k-element subsets

of {0,...,n—1}. Similarly, V,.(n, k) denotes the set of k-element subsets of {1,...,n}, and V'(n, k) denotes
the set of k-element subsets of {1,...,n — 1}.

Definition 4.2. Let Bi(n,k) = ©xxecvinrlx - B(n, k), Br(n,k) = ©xxrcv, (nr)lx - B(n,k)Ix, and
B’(n, k/’) = ®x,x’€V/(n,k)IX . B(n, k)Ix/.

To build the idempotents I into the structure, we can view all of the above algebras as categories (enriched
in graded abelian groups) whose objects are x € V(n, k), Vi(n, k), V.(n,k), or V'(n, k) as appropriate. We
refer to this definition of Ozsvath—Szabd’s algebras as the small-step quiver description; there is also a
“big-step” quiver description that is more transparently equivalent to Ozsvath—Szabd’s original definitions.

In [OSz18, Section 3.6], Ozsvath-Szabé define an anti-automorphism of B(n, k) that restricts to an anti-
automorphism of B;(n, k), B.(n, k) and B'(n, k) given as follows.

Definition 4.3. The anti-automorphism ¥og,: B(n, k) — B(n, k)°PP sends R; — L;, L; — R;, and U; — U;
in the small-step quiver description of B(n, k).

Remark 4.4. Ozsvath—Szabé introduced B(n, k) and its relatives in [0Sz18] as part of an algebraic theory
that can be used for very efficient computations of knot Floer homology (see also [0Sz19b, OSz19a, 0Sz20]).
Their theory is based on the ideas of bordered Floer homology; given a link (say in R?), it can be viewed as
computing a Heegaard Floer invariant of the link complement by writing the complement as a composition
of 3d cobordisms between planes C with various numbers of punctures z1,...,z,. By [LP20, Theorem
3.25] or [MMW20b, Corollary 9.10] plus the relationship between strands algebras and Fukaya categories
from [Aurl0, Proposition 11], Ozsvith-Szabd’s algebras are the homology of formal dg algebras built from
morphism spaces between the distinguished Lagrangians in Sym*(C \ {z1,...,2,}) of Section 3.5.2 in an
appropriately-defined partially wrapped Fukaya category of this symmetric product. Specifically, B;(n, k) is
the homology of the algebra of morphisms between the “left cyclic” Lagrangians from that section; similar
statements hold for B,.(n, k) and the “right cyclic” Lagrangians, B'(n, k) and the “core” Lagrangians, and
B(n, k) and the union of the left cyclic and right cyclic Lagrangians. In the left cyclic case, the stops for the
partial wrapping are the ones specified in [Aurl0] given (in the language of that paper) the decorated surface
(F, Z,a) shown in Figure 4 with F' a disk minus open neighborhoods of n interior points, Z a single point
in the outer boundary of F', and « the system of red arcs shown in Figure 4. The other cases are analogous.

4.2. Isomorphisms of algebras: left cyclic case. Let V = (V,7,£) be left cyclic. Note that in the quiver
defining B;(n, k), R; and L; arrows exist between vertices x and y if and only if ax ¢ «ay, where ax, oy
are the elements of P corresponding to x,y under the bijection k;: P — Vj(n, k) of Definition 3.24 (i). By
the quiver description of E(V)7 we mean its description as E(VV)7 i.e. we are using the small-step quiver
descriptions everywhere.
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FIGURE 4. The decorated surface (F, Z, a).

Definition 4.5. The homomorphism ® from B;(n, k) to B (V) is defined in terms of the quiver descriptions
of the algebras by sending

e vertices x to vertices /-@l_l(x) = Qi
Ri L;

® aITows X —» y, Y — X to arrows p(ax, ay), p(ay, ax),
U;

® arrows X — X to u;eq,, .

One can check that ® preserves multi-degrees.
Proposition 4.6. The map ® is well-defined.

Proof. We must check that the relations in Definition 4.1 are preserved under ®; we will use the relations
for E(V) from Corollary 3.15. The relations (1) hold after applying ® because the u; variables commute
with elements of P(Q) in the tensor product algebra P(Q) ®z Z[u1, ..., uy], even before imposing relations
on B(V). The relations (2) hold after applying ® by Corollary 3.15, item A3. The relations (3) hold after
applying ® by Corollary 3.15, item A2.

For the relations (4), suppose we have a composable pair of arrows x E) y B 4 in the quiver
description of By(n, k). We have 2 <i<mn—1and xN{i—2,i—1,i} = {i — 2}. Thus, the signs of ayx in
positions (i —1,4,i+1) are either (+, +, +) or (—, —, —); without loss of generality assume they are (4, +, +).
The signs of ay and «, in these positions are (—, 4+, +) and (—, —, +) respectively. Let § agree with « except
that 8 = (+, —, +) in these positions. We have var;(5) = k + 2, so eg = 0 by Corollary 3.15, item Al. Since
ax <> B and a, <> B, by Corollary 3.15, item A2 we have

O(R;—1)P(R;) = p(ox, ay)p(ayv az) = plax, B)p(B,az) = 0.

The relations L;L;_, are similar.

For the relations (5), suppose that x N {i — 1,7} = 0. We have 1 < i < n; first assume 2 < ¢ < n — 1.
The signs of « in positions (i —1,4,7+ 1) are either (+, 4, +) or (—, —, —); without loss of generality assume
they are (4,+,+). Defining 8 to agree with « except in these positions where § = (4, —,4), we have
var;(8) = k + 2 and thus eg = 0 by Corollary 3.15, item Al. Since ax <> 3, by Corollary 3.15, item A3 we
have

(I)(UiIX) = UiCq, = p(amﬁ)p(ﬁaa>C) =0.

Now let ¢ = 1, so that x N {0,1} = (. The signs of « in positions (1,2) are (+,+). If we take g to
have signs (—,+) in positions (1,2), then var;(8) = k + 2 and we get ®(U1Ix) = 0 as before. Similarly, if
i = n, then xN {n — 1,n} = (). The sign of o in positions (n — 1,n) are either (+,+) or (—, —); without
loss of generality assume they are (+,4+). If we take 8 to have signs (+,—) in positions (n — 1,n), then
var;(8) =k + 1) and we get ®(U,Ix) = 0.

O

Definition 4.7. The homomorphism ¥ from E(V) to Bj(n, k) is defined in terms of the quiver descriptions
by sending
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o vertices « to vertices k(o) = X, if var;(a)) = k and to zero if var;(a) > k,

e arrows p(a, 8), p(8, @) to arrows x, ELN X3, X3 LN X, respectively if 3 = o' and 3 delays a sign
change compared to «, and the reverse if 8 advances a sign change compared to «,

e generators u; of Zluy, ..., uy] to elements ZxEVl(n,k) U1« of By(n, k).

One can check that W preserves multi-degrees.
Proposition 4.8. The map V is well-defined.

Proof. The map V¥ is well-defined as a map from P(Q)®zZ[uy, .. ., u,] to Bi(n, k) by item (1) of Definition 4.1.
We will check that W preserves the relations from Corollary 3.15. The relations Al hold by construction.

For the relations A2, if «, 8,7, ¢ all have var; = k then the relations follow from item (3) of Definition 4.1
(note that a, S, v, ¢ are required to be distinct). Without loss of generality, the only other case we need
to check is when «, 8, have var; = k while var;(d) > k. In this case, moving from « to § and then to vy
either delays a sign change and then delays it one step further, or advances a sign change and then advances
it one step further. The required relation ¥(p(«),p(8))¥(P(5), P(y)) = 0 then follows from item (4) of
Definition 4.1.

For the relations A3, if var;(«) = var;(8) = k then U(p(a, 8))¥(p(8, ) = ¥(u;eq) follows from item (2)
of Definition 4.1. On the other hand, if var;(«) = k and var; () > k, then changing « to 8 must change initial
signs (+, +), terminal signs (+,+) or (—, —), or length-three sign intervals (+,+,+) or (—, —, —) to initial
signs (—, 4), terminal signs (4, —) or (—, +), or length-three intervals (+, —, +) or (—, +, —) respectively. In
any of these cases, U preserves the relation of item A3 by item (5) of Definition 4.1.

O

Theorem 4.9. The maps ® and ¥ are inverse isomorphisms of (multi-graded) Z-algebras that intertwine
the anti-involution os. from Definition 4.3 with 1Y on B(V) coming from Rap + Rga.

Proof. One can check that these are isomorphisms when applied to quiver vertices or arrows on both sides. [

Corollary 4.10. If (V,n) is cyclic, the isomorphisms ®, U of Theorem 4.9 for any left cyclic polarization
¢ of (V,n) restrict to isomorphisms between B'(n,k) and the algebra B'(V,n) from Section 2.3.5. These
isomorphisms are independent of the choice of &.

Proof. Note that the isomorphisms ®, ¥V interchange Iy, and e,. The value of ® on any idempotent Iy,
with a € K, and on the elements R;, L;, u; between vertices x,,xg with a, 8 € K, are independent of &;
by choosing minimal-length paths between idempotents, any element of B (V,n) is a linear combination of
products of such elements. O

4.3. Isomorphisms of algebras: right cyclic case. Now let V = (V,n, &) be right cyclic. As before, in
the quiver defining B, (n, k), R; and L; arrows exist between vertices x and y if and only if ax < ay.

Definition 4.11. The homomorphism ® from B, (n, k) to B(V) is defined in terms of the quiver descriptions
of the algebras by sending

e vertices x to vertices k. 1(x) = ax,
R; L;

® aITows X — y, Y — X to arrows p(ax, ay), p(ay, ax),
U.

® arrows X — X to u;eq,, .

One can check that W preserves multi-degrees.

Definition 4.12. The homomorphism ¥ from E(Vv) to B,.(n, k) is defined in terms of the quiver descriptions
by sending
e vertices « to vertices k(o) = x4 if var,(a) = k and to zero if var,(a) > k,
e arrows p(a, ), p(f8,a) to arrows x, LN Xg, X3 RN xp respectively if 3 = o' and 8 delays a sign
change compared to «, and the reverse if 8 advances a sign change compared to «,
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e generators u; of Zluy, ..., uy] to elements ZxEVT(n,k) Ul of B.(n, k).

One can check that ¥ preserves multi-degrees.

Theorem 4.13. The maps ® and ® are well defined and inverse isomorphisms of (multi-graded) Z-algebras
that intertwine the anti-involution 1os. from Definition 4.3 with 1Y on B(V) coming from Rag + Rga.

The proof is similar to above.

4.4. The center of Ozsvath—Szabd’s algebras. Recall from Section 2.3.4 that for a rational polarized

arrangement ) we have Z(B(V)) = Hz.. (My; C). Explicitly,
Z(B(V)) = Sym(R"™)/(us | S C I such that H, NV, = 0).
From Theorem 4.9 and 4.13, we get similar statements for Ozsvath—Szabd’s algebras.

Corollary 4.14. The centers of both Bi(n,k) and Br(n, k) are
Z[Uy,. .., Uy
ZlSi1<"'<i]€+1Sn)7

Tgt1
where the element U; in this polynomial Ting corresponds to the sum of U; generators at all idempotents of
Bi(n, k) or B.(n,k).

One consequence is that the centers of B;(n, k) and B, (n, k) have the structure of localization algebras as
discussed in [BLP11].

Remark 4.15. Tt follows from the results in this paper and [BLPW12, Theorem 1.2(5)]that for a rational
polarized arrangement V with 90y, smooth, we have an isomorphism

Ko(B(V)) ®zjq.4-1 C = HZ"(9); C),

where ¢ acts by 1 on C. A priori, we cannot apply this result to left and right cyclic Vif 1 < k <n —1,
since My is not smooth in these cases. Note that we can interpret Ko(B;(n, k)) in terms of the cohomology
of symmetric products: let F be D? with open neighborhoods of n interior points removed, and let S, be
the union of the internal boundary components of F' with a closed interval on the outer boundary of F. The
cohomology group H*(Sym”(F), Sym* (S, );C) = AFH'(F, S, ; C) has a basis given by k-fold wedge products
of our n distinguished straight-line Lagrangians in F', so we can identify it with Ko(Bj(n, k)) ®z(4,4-1) C.

5. QUANTUM GROUP BIMODULES

Here we recall a categorified action of a variant of gl(1|1) as bimodules over B;(n, k), introduced in [LM21]
in the style of [Sar16] and equivalent to a particular case of the bimodules defined in [MR20]. We will explain
a bordered Floer perspective on the bimodules over B;(n, k), based on Heegaard diagrams, and connect them
to deletion and restriction bimodules. In particular, we will see that our factorization of the bimodule Fy
into deletion and restriction bimodules has a natural interpretation from the bordered Floer perspective.

5.1. Basic definitions. We first recall the bimodule [AM: F), =] F?5* over (B;(n, k), Bi(n, k + 1)) defined
in [LM21, Section 9]. Let e)/ denote the sum of all idempotents I for x € Vj(n, k) such that 0 ¢ x, and let
ey denote the sum of all idempotents I for x € Vj(n, k) such that 0 € x. For x € Vj(n, k) with 0 € x, let
x(V) denote x \ {0}.

Let P = Bi(n,k)e), a left module over B;(n, k). We will define a right action of By(n, k+1) on PyY; first,
define a surjective ring homomorphism

U e 1 Bi(n, k+ 1)epy — e Bi(n, ke
as follows. For x,y € Vi(n,k + 1) with 0 € xN'y, we have

Z[Ula ) Un]

(pg : G generating interval between x and y)’
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and similarly for I)Bi(n, k)L, where generating intervals are defined as in [LM21, Definition 2.11]
(following Ozsvath—Szabé [0Sz18]). The generating intervals pg between x and y are contained in the ideal
generated by the generating intervals between x¥ and yV, so we get a homomorphism of Z[U,...,U,]-
modules
IxBl(n, k+ ].)Iy — I Bl(n, k)va
by sending 1 — 1. Summing over x,y € Vj(n, k) with 0 € x Ny, we get a surjective homomorphism of
Z[|Uy,...,U,]-modules
U ep Bi(n, k+ 1)ep — e Bi(n, ke
Using Ozsvath—Szabd’s original definition of B;(n, k) in terms of these quotients of Z[Uy, . .., U,] as reviewed
e.g. in [LM21, Section 2.1], one can check that ¥’ is actually a ring homomorphism, i.e. it respects
multiplication. Given x,y,z € Vj(n,k+ 1) with 0 € xNz but 0 ¢ y, and b, b’ € B;(n,k + 1), one can check
that
U (LbIy b'L,) = 0.
We can now define a surjective ring homomorphism
B (n, k + 1)

Y k Vi
Bi(n,k+1)el Bi(n,k+1) — epBi(n, key,

by sending
0] — ‘I’/(e£+1bel/c\+1)~
By the above remarks, this map is well-defined; note that
ehr1bber 1 = eppaberiibieriy + enyiber Ve

and e@Hbe}gﬂb'eQH maps to zero under ¥’'. Precomposing with the quotient map, we get a surjective ring
homomorphism

Bi(n,k+ 1) — e/Bi(n, k)ey.,
which we can view as a non-unital homomorphism from B;(n,k + 1) to B;(n,k). On the multiplicative
generators of By(n, k + 1), this homomorphism sends

Ii — Lv) if 0 € x,
I, — 0if 0 ¢ x,
o x 1ty dx b v) Biy () v) Liy S(v) i
y and x == y map to x\¥) — y\¥) and x'V) = y\V) if 0 € xNy, and map to zero otherwise,

U,; U; . .
e x — x maps to x¥ — x" if 0 € x and zero otherwise.

Givenb € P C Bi(n,k) and b’ € Bi(n, k+1), right multiplying b by the image of b’ under this homomorphism
results in another element of P.

Definition 5.1. The bimodule F{* over (By(n, k), Bi(n,k + 1)) is the left B;(n, k)-module P}, with an
action of B;(n, k + 1) given by the above homomorphism followed by right multiplication.

One can alternatively define Fkosz by inducing the left action of the identity bimodule over Bj(n,k + 1)
by the above non-unital homomorphism. The multi-grading by Z(ey, ..., e,) on PY C Bi(n,k) is additive
with respect to right multiplication by B;(n, k 4 1) as well as with respect to left multiplication by B;(n, k),
so we can view Fj as a multi-graded bimodule over (B;j(n, k), B;(n,k 4+ 1)). As with the algebras, we can
collapse this Z" to a grading by Z.

For 0 < k < n, the Grothendieck groups (regarded as modules over C(gq)) of the compact derived categories
of singly-graded left B;(n, k)-modules are identified with the nonzero weight spaces of the U,(gl(1]1)) repre-
sentation V®" where V is the vector representation, see [LM21, Section 8.11]). Under this identification,
the action of F' € U,(gl(1]1)) on V®™ is induced by tensoring with the bimodule Fj above. In particular,
we have FFj 1 = 0, categorifying the gl(1]1) relation F? = 0.
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FIGURE 6. An element of the strands
algebra A(Z;).
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FIGURE 5. From left to right: arc dia-
grams Z;, Zr, Zta, and Z’ for n = 3.

Following [LM21], let E} = (E”)?5* be Hompg, (5, k) (Fi, Bi(n, k)), the left dual of Fy, which is a multi-
graded bimodule over (B;(n,k + 1), B;(n,k)). We can view E} as the identity bimodule over B;(n,k + 1)
with its right action induced by the above homomorphism from B;(n, k + 1) to B;(n, k).

Remark 5.2. We denote the dual bimodule E} rather than Ej because its singly graded version does not
categorify the action of the standard E € Uy(gl(1|1)) on V®™. Rather, E} categorifies the action of

EU = (q_l - q)EK7

whose action on V®" is dual to that of F' with respect to the bilinear form (—, —)y.

It was convenient in [LM21] to focus on B;(n, k), but one can define analogous bimodules over B,.(n, k) by
replacing 0 with n everywhere above. For the larger algebra B(n, k) with ("Zl) idempotents, one can define
two pairs of bimodules (one using 0 and the other using n). There are no such bimodules over the smaller

algebras B'(n, k) (see the next subsection).

5.2. Strands interpretation. Recall that the algebras B;(n, k), B.(n, k), B(n, k), and B'(n, k) have inter-
pretations as the homology of (formal) dg strands algebras A(Z, k) of the form appearing in bordered Floer
homology [LP20, MMW20b]. Here Z is an arc diagram as considered by Zarev [Zar11], except that instead
of matchings on a collection of oriented intervals, we allow matchings on a collection of oriented intervals
and circles. The arc diagrams Z;, Z,., Zg,1, and 2’ whose strands algebras have homology B;(n, k), B, (n, k),
B(n, k), and B'(n, k) respectively are shown in Figure 5. A representative element of the strands algebra
A(Z) = @}_yA(Z1, k) is shown in Figure 6; the combinatorics of these strands elements is explained in
[MMW?20b] in the case at hand, adapting the general prescriptions of [LOT18, Zar11].

The constructions of Rouquier and the third author in [MR20] equip A(Z) with differential bimodules E
and EV. In our specific setting, the differentials vanish, and the differential bimodules F and EV are closely
related the bimodules E” and F introduced in the previous subsection.

Representative elements of the bimodules E and EY over A(Z;) are shown in Figure 7a. The left and
right actions of elements of A(Z;) on such elements are defined by concatenation as usual. The j*" tensor
powers of E and EV in general admit similar descriptions using strands pictures in which j strands exit to
the top or bottom; in this case, there are no such valid pictures for j > 2 (see Figure 7b), so E and EV each
square to zero.

Remark 5.3. For more general Z the bimodules over A(Z) from [MR20] do not square to zero, but m!"
powers of the bimodules admit actions of the dg nilCoxeter algebra O, appearing in [DM14], causing the
homology of the second and all higher powers to vanish. The bimodules we consider in this page are an
especially simple case of this construction.
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(A) Representative elements of E (left) and E (right) (B) E? = 0 because there are no valid strands pic-

tures with two strands exiting the top of the distin-
guished rectangle.

FIGURE 7

FIGURE 8. Elements of A(Z;, k) ®p,(n,k) Fr on the left and the corresponding elements of
EVY on the right.

For the four arc diagrams in question, one can work with gradings that are simpler than in the general
case (see [MMW20b, Section 6]), and view E and EV as graded by Z(e1, ..., e,) in the unique way such that
the following proposition holds with respect to Z™ multi-gradings.

Proposition 5.4. There is a natural identification of A(Zy, k) ®p, (n,k) Fr with EY as dg (A(2;, k), Bi(n, k+
1))-bimodules, where the Tight action of By(n,k+1) on EV is restricted from the right action of A(Z;,k+1)
via the quasi-isomorphism By(n,k + 1) = A(Z;, k + 1) from [LP20, MMW20b], and similarly for the right
action of Bi(n, k) on A(Z, k).

Similarly, there is a natural identification of B} ®p,(nry A(Z21, k) with E as dg (Bi(n,k + 1), A(2,k))-
bimodules. Similar statements hold for the bimodules over B,.(n,k) and A(Z.,k), as well as for the bimodules
over B(n, k) and A(Ztan, k).

Proof. As a left Bj(n,k)-module, Fy is a direct sum of the indecomposable projective B;(n, k) modules
corresponding to elements x € Vi(n,k) with 0 ¢ x. Thus, A(Z;,k) ®p,(n,k) Fr is a direct sum of the
indecomposable projective A(Z;, k)-modules corresponding to the same elements x. We identify elements
of the summand for a given x with elements of £V as in Figure 8; this identification is an isomorphism of
dg left A(Z;, k)-modules. To see that the right actions of B;(n,k + 1) agree, it suffices to check that the
actions of the idempotents and of the multiplicative generators R;, L;, and U; of B;(n, k + 1) agree, which is
immediate. The other statements are analogous. O

It follows that the induction equivalences from D¢(B;(n, k)) to D(A(Z;, k)) and from D°(B;(n, k+1)) to
D¢(A(Z;,k + 1)) intertwine the functors Fy ® — and EY @ —.

5.3. Relationship with deletion and restriction. We now discuss the relationship between Fj and the
deletion and signed restriction bimodules of Section 2.4. Under the identification of B;(n, k) with B(V) for
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left cyclic V from Theorem 4.9, we will identify F; with a tensor product of a deletion bimodule with a
signed-restriction bimodule.

We first factorize Fy, abstractly and then identify the factors with deletion and signed restriction bimod-
ules. To define the abstract factors, note that by [MMW20a, Section 4.4], the Ozsvath—Szabé algebra B’ (n, k)
from Definition 4.2 admits a quiver description with the same generators R;, L;, and U; as for B(n, k) and
Bi(n, k), and the same relations except that when k = n — 1 where one additional relation Uy --- U, = 0 is
required for B'(n,n — 1).

Fix n and k; write Ra,..., Ry, Lo, ..., Ly,, and Uy,...,U,41 for the generators of B'(n+ 1,k + 1). For a
set x of integers, write x11 := {i £ 1 :4 € x}; define x_; similarly.

Definition 5.5. Let ¢ be the algebra homomorphism from B;(n, k+1) to B'(n+1,k+1) defined by sending,
for x C [0, —1], the idempotent I, to I, ,, and sending R;, L;, and U; to R;y1, Lit1, and Uj41 respectively.
Let m be the (non-unital) algebra homomorphism from B'(n + 1,k + 1) to Bi(n, k) sending I to I._ \{0}
when 1 is in x (Ix — 0 otherwise), sending R; and L; (3 <i <n)and U; (2 <i <n) to R;_1,L;—1, and
U;—1 respectively, sending Rz and L2 to zero, and sending U; at a vertex x to Ix_,\{o}-

Remark 5.6. To see that 7 is well-defined, note that while the relations LoU; = 0 and Uy Re = 0 for
B'(n+1,k+1) do not correspond to relations in the list for B;(n, k), 7 respects these relations anyway since
it sends Ry and Lo to zero. As with the rest’ and del’ homomorphisms in Section 2.4.2, 7 does not preserve
the single grading on the algebras. However, 7w o ¢ does preserve the single grading.

Definition 5.7. Let D be the induction on the left of the identity bimodule over B;(n,k + 1) by the
homomorphism ¢ from B;(n,k + 1) to B'(n+ 1,k + 1). Let R be the induction on the left of the identity
bimodule over B'(n + 1,k + 1) by the homomorphism 7 from B'(n + 1,k + 1) to Bi(n, k).

~

Since 7 o ¢ is the algebra homomorphism used to define Fy above, we have an identification Fj =
R ®pr(n+1,k+1) D.

Now let V = (V,n,€) be a left cyclic arrangement of n hyperplanes in (k + 1)-space. Choose a left
cyclic arrangement V= (17717, 2) of n + 1 hyperplanes in (k 4 1)-space whose first deletion is V, and let
V' = (V',5/,&) be the first restriction of V. Since we are looking at the restriction to the first hyperplane,
the sign change arising from replacing the restriction by the signed restriction is a global multiplication by
—1. Thus, by Lemma 3.30, item (ii), the signed restriction V" := (V' —n/, —£’) is a left cyclic arrangement
of n hyperplanes in k-space. ~

From Section 2.4, we have bimodules Del; := del? (V, +) and Rest/ := (rest’)%(v, +) over (B(V), B(V))
and (B(V"), E"’(]/})) respectively. Since Del; is defined using a homomorphism from B(V) to E(]/}) whose
image is contained in the idempotent-truncated subalgebra B+ (17) of B (17), we can view Del; as an induction
on the left of a bimodule Del{ over (B* (IA/)7 B(V)). Twisting Rest) by the algebra isomorphism arising
from the sign-change relationship between V' and V", we get a bimodule Rest/ over (B(V"), B¥(V)).

Now, since V, ﬁ, and V" are left cyclic, we have identifications

e B(V) = Bi(n, k+1),

o BH(V)=B'(n+1,k+1),

o B(V') = By(n, k).
We can thus view Del] as a bimodule over (B)(n + 1,k + 1), B;(n,k + 1)) and Rest] as a bimodule over
(Bi(n, k), Bj(n+1,k+1)).

Proposition 5.8. Under the above identifications, Del] and Rest] agree with D and R respectively.

Proof. The claim for Del] follows from comparing the definition of Del] (via the three items defining

rest%(% s) in Definition 2.11) with the definition of the map ¢ used to construct D. For Rest, we check

that the three items of Definition 2.13 do give a homomorphism that, under the identifications, annihilates
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I, whenever 1 ¢ x. Indeed, for such x, the sign sequence « corresponding to x starts with ++4. Thus, &
starts with ——, so

vary(@) = 1+ var(a) = 1 + var(a) = k + 2 > k,
and e is thereby zero in B(V") (compare with Remark 2.7). The claim for Rest} now follows by comparing
definitions as with the claim for Del; . O

Corollary 5.9. Under the above identifications, there is an isomorphism of (Bi(n, k), By(n,k+1)) bimodules
F, = ReStlll ®Bl(n+17k+1) Deli"

The same arguments can be used to deduce the following similar-looking factorization of F'y, into restriction
and deletion bimodules; while the bimodules involved in Proposition 5.10 may seem to be simpler than those
in Corollary 5.9, the informal considerations of Appendix A suggest that Corollary 5.9 may be more natural
from the Heegaard Floer perspective.

Proposition 5.10. Under the above identifications, there is an isomorphism of (By(n, k), Bi(n,k + 1)) bi-
modules
F) = Rest ®p,(nt1,6+1) Dely,

where we implicitly postcompose Resty with a sign-change automorphism similar to those used above.

APPENDIX A. CONJECTURAL HEEGAARD DIAGRAM INTERPRETATION

On general principles, the bimodules E and EY from [MR20] (related to E” and F as in Proposition 5.4)
should admit an alternate description as bimodules associated to (generalized) bordered sutured Heegaard
diagrams, reminiscent of the Heegaard diagrams for quantum-group bimodules in [EPV19, Figure 32]. Thus,
one might hope that these diagrams could help us better understand E” and F.

We cannot yet formulate precise theorems about relationships between {E,EY ,E” F} and bordered
Heegaard Floer invariants of the relevant Heegaard diagrams yet, because bordered invariants for these
Heegaard diagrams have not yet been constructed in the literature. Ideas from [OSz19a] should extend to
the situation at hand, but we explain in Section A.2 why our diagrams do not exactly fit in their framework
of “middle diagrams”. Thus, this section will be informal and will not contain rigorous statements or proofs.

We first review the type of bordered sutured Heegaard diagram we have in mind, generalizing Zarev’s
definitions from [Zarl1], before discussing the examples of interest.

A.1. Bordered sutured Heegaard diagrams. Recall from Section 5.2 that by a generalized arc diagram,
we mean an arc diagram as defined in [Zarll, Definition 2.1.1] except that some or all of the Z; may be
oriented circles rather than oriented intervals (the ordering on the Z; is also typically irrelevant except for
bookkeeping). We do not impose any degeneracy conditions a priori, although developing bordered sutured
Floer homology in the full generality of these diagrams is expected to be quite difficult.

In the introduction to [Zarll], Zarev writes about the DA bimodules @(K I') as if they are associated
directly to morphisms in his decorated sutured category SD, which are 3d cobordisms (unparametrized by
Heegaard diagrams) between 2d sutured surfaces (parametrized by arc diagrams). This is a common white lie
in Heegaard Floer homology; like the sutured Floer complexes they generalize, the bimodules B/Sﬁél(Y, )
are chain-level objects and depend on a parametrization of (Y,T') in terms of an appropriate Heegaard
diagram, along with additional analytic choices (only the homotopy type of the bimodule is an invariant of
(¥,T)).

In [Zarll, Chapter 4], Zarev explains the Heegaard diagram choices necessary to define the one-sided
bordered sutured modules B/SB(Y, I') and B/,571(Y, I') for bordered sutured manifolds (Y,TI") (these (Y,T')
can be viewed as morphisms to or from the empty set in SD). He encodes these choices in what he calls
a bordered sutured Heegaard diagram. In [Zarll, Chapter 8], where bimodules are discussed, Heegaard
diagrams are treated less formally, and it appears that no name is chosen for the type of Heegaard diagram
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FIGURE 9. Left: Extended middle diagram following Ozsvath—Szabd. Right: the corre-
sponding bordered sutured Heegaard diagram.

used to represent decorated sutured cobordisms in [Zarll, Chapter 8.4]. Examining the paragraphs below
[Zarll, Definition 8.4.2], the relevant type of diagram for a decorated sutured cobordism (Y,I') from a
sutured surface parametrized by Z; to a sutured surface parametrized by Z5 is a bordered sutured Heegaard
diagram for (Y,T') viewed as a bordered sutured manifold with boundary parametrized by Z; U Z5. Thus,
we will also refer to these diagrams for cobordisms as bordered sutured Heegaard diagrams.

We generalize Zarev’s definition of bordered sutured Heegaard diagrams in [Zarll, Definition 4.1.1] by
allowing Z to be a generalized arc diagram (i.e. to have closed circles as well as closed intervals). We also
do not impose homological linear independence in Zarev’s terms (his formulation does not correctly extend
to generalized diagrams). We treat cobordisms from the sutured surface of Z; to the sutured surface of Z,
as described in the above paragraph.

A.2. Ozsvath—Szabd’s middle diagrams. In [OSz19a, Sections 10 and 11], Ozsvath—Szabé assign DA
bimodules to a type of Heegaard diagram that they call a middle diagram, which are defined in turn using
the upper diagrams of [OSz19a, Section 2.1]. One can think of their middle diagrams as certain bordered
sutured Heegaard diagrams in which Z; and Z5 are instances of the generalized arc diagram Z’ of Figure 5
(compare with [0Sz19a, Figures 7-10], which we would rotate 90 degrees clockwise in the plane to match
our conventions).

Less obviously, it is appropriate to think of the extended middle diagrams appearing in [0Sz19a, Section
11.1] as bordered sutured Heegaard diagrams in which Z; and Z5 are instances of the generalized arc diagram
Zean of Figure 5. Compare [0Sz19a, Figure 44] with Figure 9, which shows how we would interpret extended
middle diagrams (since Ozsvath—Szabé require holomorphic curves to have zero multiplicity at the boundary
circles Z(l)‘ and Z‘l‘, the difference between the versions of the diagram with and without corners is not
visible by the holomorphic geometry input to these bimodules). One can also consider half-extended middle
diagrams having either Z(‘)‘ or Z‘l| but not both, with a similar translation to the bordered sutured language.

Below we will consider the DA bimodule of a Heegaard diagram related to the one shown on the right
of Figure 10 by a disk decomposition along the horizontal boundary (this type of decomposition is invisible
when defining DA bimodules from the diagrams). We can almost view the diagram on the right of Figure 10
as being associated to a half-extended middle diagram in the sense of Ozsvath—Szabd, as on the left of
Figure 10. However, this left diagram is not a valid half-extended middle diagram since it does not arise
from a middle diagram in the correct way. Thus, while the diagrams are very simple and we can count all
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FIGURE 10. Variant of the Heegaard diagram considered below, from Ozsvath-Szabd’s
perspective (left) and the bordered sutured perspective (right)

FIGURE 11. Heegaard diagram whose DA bimodule recovers the bimodule EY over A(Z;).

the disks that should contribute to their bimodules following the same heuristics that apply in [0Sz19a], we
cannot directly cite [0Sz19a] to turn these disk counts into a rigorous theorem.

A.3. The case of interest. When discussing bimodules from Heegaard diagrams in this section, we note
that based on the most literal extensions of the bordered sutured theory to this case, the Heegaard diagrams
would actually produce bimodules over the dg strands versions of the algebras A(Z;) [LP20, MMW20b], which
are formal with homology B;(n, k). Ozsvéath-Szabd’s methods skip the dg step and interpret holomorphic
disk counts directly in terms of algebras like B;(n, k); we follow their approach here.

Figure 11 shows the relevant bordered sutured Heegaard diagram for the bimodule EY over A(Z;) (here
we prefer Figure 11 for the factorization we consider below, although the diagram of Figure 10 has other
advantages). We expect EY should agree with the type DA bimodule that would be associated to this
Heegaard diagram in bordered sutured Floer homology. In part because bordered sutured Floer homology
has not been defined when arc diagrams have circles instead of just intervals, we do not prove this here
(as discussed above). However, in the special case of the bimodules E and EY from Proposition 5.4, it is
straightforward enough to verify that the disk counts that would typically be used to associate a type DA
bimodule to this type of Heegaard diagram make sense, giving a Heegaard-diagram interpretation of these
bimodules.

The Heegaard diagram of Figure 11 can be factored (up to stabilizations) into two pieces as in Figure 12.
Algebraically, this should mean that EV is homotopy equivalent to a box tensor product (as in bordered
Floer homology) of two DA bimodules corresponding to the two pieces.

In the diagram on the right of Figure 12, there is a Heegaard Floer generator (set of intersection points)
for each such generator of the identity Heegaard diagram for the incoming arc diagram. See Figure 13 for the
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FIGURE 12. Decomposing the Heegaard diagram of Figure 11.
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FIGURE 13. Identity Heegaard diagrams for the arc diagrams Z; (left) and Z’ (right).

relevant identity diagrams, which correspond to identity middle diagrams and half-extended middle diagrams
in Ozsvath—Szabd’s language and thus have well-defined DA bimodules which are identity bimodules (at least
as DD bimodules) by [0Sz19a, Proposition 13.2].

As with the identity diagram, for the diagram in question there should be no §} actions for i > 2 (i.e. there
should be no higher A, terms in the right action), and there should be no §1 actions (i.e. no differential).
Thus, the DA bimodule of this diagram should be an ordinary bimodule, projective on the left. If the
algebra acting on the right is By(n,k + 1), then the algebra acting on the left is B'(n + 1,k + 1), which
naturally contains B;(n,k + 1) as a subalgebra. For each basic idempotent of B;(n, k + 1), the DA bimodule
of the diagram (as a left module) would have an indecomposable projective summand corresponding to the
image of the idempotent in B'(n+ 1,k + 1). Thus, as a left module, the DA bimodule of the diagram would
agree with the induction on the left of the identity bimodule over B;(n,k + 1) by the inclusion map from
Bi(n,k+1) to B'(n+ 1,k + 1). The right action of B;(n,k + 1) on the DA bimodule of the diagram should
involve the same curve counts as in the identity Heegaard diagram over the input arc diagram, so we should
be able to identify the DA bimodule of the diagram with the induced identity bimodule (i.e. with D from
Definition 5.7) as bimodules over (B'(n+ 1,k + 1), B;(n, k + 1)).

Now, in the diagram on the left of Figure 12, there is a Heegaard Floer generator for each such generator
of the identity Heegaard diagram for the incoming arc diagram such that the top arc is unoccupied on the
input side of the generator. As before, there should be no &} actions or 4% actions. The input algebra
is B'(n + 1,k + 1) and the output algebra is Bj(n,k). For a Heegaard Floer generator of the diagram
corresponding to x € V'(n+ 1,k + 1) with 1 € x, let x’ := {i —1:4 > 1 € x}; the summand of the DA
bimodule coming from x would be the indecomposable projective B;(n, k)-module corresponding to x’. For
the right action, elements of the form R; or L; for 2 < i < n — 1, as well as U; for 2 < ¢ < n, should act
on the right by outputting generators of the same form on the left (assuming the left and right idempotents
of these elements contain 1; otherwise the elements act as zero, and in particular this implies that Ry and
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o 0

FIGURE 14. Domain for the right action of U;.

Lo act as zero). Interestingly, elements Uy at x € V'(n + 1,k + 1) such that 1 € x act on the right by
outputting 1 on the left; see Figure 14 for the domain of the relevant holomorphic disk. This domain is
basically identical to ones appearing in Ozsvath—Szabd’s theory, whose holomorphic geometry and resulting
algebra is known from [0Sz19a]. Briefly, this type of domain implies that a U variable acts on the right
with output determined by which parts of the output boundary are covered by the domain. In our case, the
domain stays away from the output boundary, so the algebraic output is 1. These considerations suggest
that the DA bimodule of the diagram, when defined, should agree with R from Definition 5.7. Thus, we
see a reflection of Corollary 5.9, but not of Proposition 5.10, on the Heegaard diagram side, motivating our
choice to focus on Corollary 5.9 rather than Proposition 5.10.
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