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A B S T R A C T

Recently, there is a growing interest in material extrusion to print thermoset resins to manufacture large
format and high-performance parts. However, the fidelity and mechanical integrity of the printed parts are
limited by challenges such as uncontrolled spreading of individual beads (filament/droplet) after deposition
and during cure. There is a considerable lack of experimental and theoretical studies on the spreading of
reactive beads on solid substrates. In this work, we studied the simultaneous spreading and photo-curing
of the photopolymerizable thermoset beads via experiment and numerical simulations. We used a novel
experimental setup to track the spreading of droplets and filaments during photopolymerization and validate
a moving mesh computational fluid dynamics (CFD) model. The CFD model was used to develop an approach
(predictive model) to accurately predict the final spreading coefficient of cured resin beads without the need for
full numerical simulations. The predictive model combines the generalized theory of a Newtonian spreading
filament with a characteristic viscosity 𝜇𝑎𝑣𝑒 and time to gelation, 𝜏𝑔𝑒𝑙. Interestingly, 𝜇𝑎𝑣𝑒 is shown to be a
material parameter that does not depend on processing conditions, but only on the material’s chemorheology.
The predictive model is tested against a wide range of chemorheology and cure kinetic parameters and found to
be in excellent agreement with the full numerical CFD simulations. This work will be very useful in estimating
the final shape of beads during the material extrusion printing process, as well as a model to successfully
parameterize extrusion-based 3D printers to control the shape of printed beads a-priori.
1. Introduction

Direct-Ink-Writing (DIW) is a state-of-art 3D material extrusion
printing process that has high material compatibility, operational flex-
ibility, low cost, ease of use, and the ability to print on non-planner
substrates [1–4]. DIW involves the use of liquid inks, typically ther-
mosetting resins, which gel/vitrify after deposition via a given reaction
kinetics [1]. The method involves deposition of individual beads, either
in the form of continuous filaments or discrete droplets, in a line-
by-line, layer-by-layer fashion to create a complex three-dimensional
part [1,3]. In addition to resin properties, the overall structure and
mechanical properties of DIW printed parts are highly dependent on
the shape and overlap of adjacent beads [1]. One major issue with
DIW is that the uncontrolled spreading of the deposited beads before
solidification make it difficult (if not impossible) to accurately vectorize
3D drawings such that part dimensions are precisely controlled in the
printer [5,6]. Such lack of control leads to parts with poor fidelity,
imensional accuracy, and large inter-structure voids which diminish
he mechanical integrity of the printed part [5,6]. Avoiding these
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issues, typically requires enormous resources via trial-and-error param-
eterization per resin, per printer. In this work, we develop a robust
scaling approach and predictive model to estimate bead spreading of
reactive resins for the purpose of DIW printer parameterization.

The spreading of beads in DIW is a complex process with several
driving/resistive forces and time-dependent material parameters, such
as rheology, caused by the polymerization reaction, i.e. the viscosity of
the resin increases with polymerization [1,7–11]. The complexity and
importance of time dependent material parameters on the spreading
physics depends on the relative rates of spreading and reaction kinet-
ics. Depending on the thermoset chemistry and reaction scheme, the
polymerization reaction can be fast or slow compared to the spreading
physics [7,8]. Spreading physics are a competition between driving and
resistive forces. When a droplet/filament touches the substrate, the gra-
dient in curvature (i.e. Laplace pressure) and gravity drive spreading,
while fluid inertia and viscous dissipation resist spreading [12–14].
The balance between these forces dictates the rate of spreading and
its timescale, 𝜏𝑠.

The amount of the resin spreading depends on the reaction rate,
i.e. kinetic timescale 𝜏𝑘, compared to the spreading timescale, 𝜏𝑠 [7].
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For example, slow-curing resin systems, such as silicone at room tem-
perature, will significantly spread before reaching gelation, since 𝜏𝑘 ≫
𝑠 at room temperature. Note that thermoset resins are typically New-
onian fluids until they reach gelation, where they become viscoelastic
olids. Thus, systems such as silicone at room temperature would
ollow a Newtonian spreading (i.e. constant viscosity) up to a steady
tate shape long before the reaction forms a viscoelastic network. The
ynamic and steady state shape of such reacting systems can be readily
redicted using a generalized spreading theory. More specifically, we
howed that the shape of the bead can be predicted using master
preading curves via a viscous timescale defined as 𝜏𝜇 = 𝜇𝑅0∕𝜎
t a given Bond number, Bo, and steady advancing contact angle,
𝑠 [15,16]. On the other hand, some resins, e.g. methacrylates, epoxies,
olyurethane, etc., have much faster reaction kinetics such that 𝜏𝑘 ≈ 𝜏𝑠.
n such systems, the shape of the bead is a complicated function of time
nd processing parameters. In another special case, where 𝜏𝑘 ≪ 𝜏𝑠, the
ead is frozen at the time of deposition and the shape of the bead simply
epends on the deposition physics. However, due to the fast rates of
preading, this limit is almost never achieved in practice.
The more interesting case is when 𝜏𝑘 ≈ 𝜏𝑠, i.e. when both spreading

nd curing are happening simultaneously. However, modeling this case
equires accurate chemorheological and kinetic models [8]. The rate
f change of chemical conversion (𝛼) depends on the type of poly-
erization reaction, e.g., autocatalytic, and the rate of mass transfer.
or example, autocatalytic reaction models such as that of Kamal
t al. [17] take into account power-law curing behavior at early time,
nd diffusion-limited mass transfer at later times. For resins that do not
ndergo autocatalyzation, the reaction rate is traditionally described by
single 𝑛th order model [18]. The relationship between viscosity and
hemical conversion (a.k.a chemorheological model) typically relies on
xperimental data [19,20]. For the most part, chemorheological models
re phenomenological and are determined by measuring the change
f viscosity with conversion. For thermoresponsive resins, this is also
easured as a function of temperature [20], and temperature effects
re modeled by either Arrhenius or Williams–Landel–Ferry (WLF) equa-
ions [21]. For photo-cure resin systems, the viscosity predominately
epends on power density and the effect of reaction latent heat on
he viscosity is usually ignored. The effect of 𝛼 on viscosity is typically
odeled using an exponential function [19], or a power-law function,
.g. the modified Castro-Macosko model [20].
There are only a few examples of spreading models for reactive

eads found in the literature [7,8,22,23], where all of them are focusing
n the droplets and the spreading of filaments has not received any
ttention. For example, Yu et al. [23] numerically investigated the
preading and thermal curing behavior of a silicone droplet on a heated
ubstrate using a volume of fluid (VOF) approach. The authors compare
heir model to steady state shapes of experimental droplets, which
hows relatively good agreement. However, this result is expected
ince the authors use a static contact angle model at the three phase
ontact line. Unfortunately, the authors did not compare their model
o dynamic data, which is necessary to determine if the physics are
ccurately predicting the evolution of spreading with time. There are
wo important assumptions in this model that limit the applicability
nd generalizability of the results: (1) a static contact angle was used
o model the three phase contact line, and (2) their chemorheologi-
al model was limited to a viscosity versus time fit to experimental
ata with no general kinetic rate equation [23]. Similarly, Sivasankar
t al. [7] used a moving mesh with constant contact angle to describe
he three phase contact line dynamics, but did use a chemorheological
odel to account for explicit cure kinetics. However, the authors do not
ompare their dynamic droplet spreading model with any experimental
ata of a curing droplet, and therefore it is difficult to ascertain whether
he model can accurately predict dynamic droplet shapes. We have
ecently shown, along with others, that the dynamic contact angle
DCA) boundary condition is necessary to accurately predict dynamic
2

preading, but not necessary to predict steady state shapes [8,16]. Thus,
Table 1
Measured and previously reported properties of DA-2 resin formulation [24].
Property DA-2 Tenacious

Viscosity, 𝜇 [Pa s] 440 ± 50 410 ± 23
Surface tension, 𝜎 [mN/m] 35.1 31.8
Density, 𝜌 [kg/m3] 1105 1130
Static contact angle, 𝜃𝑠 [deg.] 19.6 ± 1.4 12.3 ± 0.3
Depth of penetration (@405 nm), 𝐷𝑃 [μm] 550 ± 55 380 ± 55
Critical energy (@405 nm), 𝐸𝐶 [mJ/cm2] 5.6 ± 0.5 [–]

for chemorheological conditions where the viscosity is changing on the
timescale of spreading, a dynamic contact angle must be employed.
For example, Xie et al. [8] used a Phase-Field approach accounting for
cure kinetics and the dynamic contact angle boundary condition. The
authors demonstrated the model against experimental data of thermally
cured silicone droplet. However, the agreement between model and
experiment was not sufficient enough for accurate prediction of the
dynamic and final droplet shape. This was most likely due to the
poor agreement between the chemorheological model and experimental
data. In general, the literature is focusing on the reactive droplets where
does not appear to be any generalized solution or model to predict the
spreading physics of a reactive resin.

In this work, we develop a general spreading model for photo-
curable droplets and filaments using experimental analysis and nu-
merical simulation. The model is used to develop a predictive scaling
approach to estimate the final shape of droplets and filaments when
𝜏𝑠 ≈ 𝜏𝑘. There are several differences that distinguish this work from
the literature, namely, this work is interested in the spreading of
cylindrical filaments for application in DIW printing, and focuses on
a generalized solution to predict the spreading physics of a reactive
resin. The organization of the paper is as follows. We first characterize
the photo-cure kinetics and chemorheology of two different model
resins. We then experimentally quantify the simultaneous spreading
and curing of both filaments and droplets at different operating condi-
tions. This data is compared to a full numerical model considering the
dynamic spreading of photocurable droplets and filaments for model
validation and demonstration of predictability. The model is validated
using experimental cases where spreading and curing occur on similar
timescales, i.e. 𝜏𝑠 ≈ 𝜏𝑘. Finally, we develop a predictive model to
estimate the final shape of reactive beads without the use of fluid spe-
cific simulations. The results of our study offer avenues to successfully
control the shape of printed beads via a-priori parameterization of the
printing parameters.

2. Materials and methods

2.1. Resin properties

Two well characterized photopolymerizable resins, i.e., DA-2 and
Tenacious, were used for all experiments. DA-2 is composed of Bisphe-
nol A glycerolate dimethacrylate (Bis-GMA 37.5 wt.%), ethoxylated
bisphenol A dimethacrylate (Bis-EMA 37.5 wt.%), and 1,6-hexanediol
dimethacrylate (HDDMA 25 wt.%) [24]. 0.7 wt.% phenylbis(2,4,6-
trimethylbenzoyl)phosphine oxide (PPO, or bisacylphosphine
oxides, BAPO) was dissolved into the DA-2 resin for use as a photoini-
tiator, purchased from MilliporeSigma (St. Louis, MO, USA). Tenacious
is a commercial resin which is a mixture of Bisphenol A ethoxylate
diacrylate and urethane acrylate and was purchased from Siraya tech
(San Gabriel, CA, USA). Physical properties of photo-curable DA-2 and
Tenacious resins are presented in Table 1:

2.2. Cure kinetics and chemorheology

The cure kinetics of DA-2 was previously measured using a real
time photo-infrared technique operating in ATR mode (Nicolet™ 6700
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Fig. 1. A schematic of the experimental set-up used to quantify the deposition and spreading of filaments and droplets.
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Table 2
Best-fit kinetic parameters for Eq. (1).
Parameters 𝛼𝑢 𝑛 𝑘 𝜔

DA-2 0.74 4.4 0.3 0.71
Tenacious 1.06 2.71 0.05 0.71

FT-IR Spectrometer, Thermo Fisher Scientific, Waltham, MA, USA) and
fit to a general multi-order reaction kinetic, Eq. (1) [25]. The photo-
cure reaction kinetic of Tenacious was also measured using the same
technique and fitted by Eq. (1). See Supplementary Information S1 for
details of measurements, Fig. S1.

𝛼 = 𝛼𝑢 −
[

𝛼(1−𝑛)𝑢 − (1 − 𝑛)𝑘𝑃𝜔(𝑡 − 𝑡𝑜𝑖)
]

1
1−𝑛 , (1)

where 𝑡 is the irradiation time, 𝑡𝑜𝑖 is the oxygen inhibition time, 𝑃 is
the light power density in mW/cm2, 𝑎𝑢, 𝜔, 𝑘, and 𝑛 are best fit model
parameters given in Table 2. Note that 𝑡𝑜𝑖 = 𝐸𝑜𝑖∕𝑃 , where oxygen
inhibition energy, 𝐸𝑜𝑖 = 4.61 and 2 mJ/cm2, for DA-2 and Tenacious
respectively.

The light power density, 𝑃 , exponentially decays through the resins
and in the light direction (z-axis). Using the Beer–Lambert law, 𝑃 (𝑧)
can be calculated (Eq. (2)).

𝑃 = 𝑃0𝑒𝑥𝑝(−𝑧∕𝐷𝑝). (2)

Chemorheology was measured using the DHR-3 Rheometer (Wa-
ters™/TA Instrument) equipped with photo-cure accessory. The sample
was irradiated using 405 nm light through transparent parallel plates
with a gap height of 150 μm to initiate the polymerization reaction
while measuring the viscosity. The power density was measured at the
surface of the parallel plates using a radiometer (ILT2400, International
Light Technologies, Peabody, MA, USA). The viscosity as a function of
time was measured using a shear rate of 1 1/s at different UV light
power densities.

2.3. Quantification of bead spreading

We developed an in-situ device to measure the simultaneous spread-
ing and curing of test resins in the form of droplet and continuous
filament onto microscope glass slides (AmScope™). This set up includes
a modified Delta Wasp 2040 Clay Printer to deposit the beads, a custom
45◦ flat mirror platform under the glass slide to reflect the bottom side
of the beads, a mid-speed camera (HAYEAR, HY-2307, 2 M pixels with
pixel size of 1.43×1.43 μm and 60 fps) with microscope zoom lens, and
a precise syringe pump (HARVARD Apparatus, PHD 2000). A 405 nm
3

lamp was used to irradiate the droplet and filament as shown in Fig. 1.
The power density of the lamp was measured using the radiometer
described above. The power density, 𝑃0, of the lamp and initial size of
the bead, 𝑅0, were the only experimental variables. The power density
ranged from 0.1 to 2 mW/cm2 and was adjusted by the distance of
the light source from the substrate. For droplets, 𝑅0 was controlled
via the needle diameter (25 and 27 Gauge needles with OD = 0.51
and 0.40 mm, respectively). For filaments, 𝑅0 was controlled by the
ratio of infill flow rate (𝑄 = 45 mL/min) and nozzle velocity (𝑉𝑁 ≈ 70
mm/s) using a mass balance, i.e. 𝑅0 = (𝑄∕𝜋𝑉𝑁 )0.5 [15]. Prior to each
experiment, a new glass slide was washed with Isopropanol (VWR, CAS
No. 67-63-0) and subsequently rinsed using DI water (18.2 MΩ⋅ cm
EMD Millipore Corporation). Each experiment was repeated at least 3
times to ensure reproducibility and the average values and standard
deviation were reported. The basal radius, 𝑅(𝑡), was measured from
underneath the spreading bead via the camera and was analyzed using
a custom Matlab script.

2.4. Numerical modeling and simulation

The governing equations are the same presented in our previous
work on the spreading of Newtonian droplets [16] and filaments [15].
However, in this study we couple the governing equations with cure
kinetics and chemorheology. The Finite Element Method (FEM) model
parameters were kept similar as before and the equations were solved
using COMSOL multiphysics v.5.6. considering 2D-axisymmetric and
2D-symmetric frameworks for droplet and filament, respectively. The
model geometry and corresponding mesh grids are shown in Fig. S3.
We used the smallest mesh size criteria of 𝑅0∕30 to ensure the in-
dependence of the result to mesh grid spacing [15,16]. To keep the
uality of the mesh above 0.1, a dynamic remeshing constraint was
sed to rebuild the entire mesh domain during the simulation. For
ompleteness, the governing equations and boundary conditions are
resented below:
Governing equations
To determine the distribution of the pressure 𝑝 and velocity field (𝑢̄),

avier–Stokes (Eq. (3)) and continuity (Eq. (4)) were solved. However,
he viscosity of the fluid, 𝜇, is not constant and changes according
o the chemorheology of the resin (Eq. (9)), which in turn depends
n the cure kinetic (Eq. (1)). Furthermore, cure kinetic is an ODE
hich highly depends on the received light power density by the
esin (Eq. (2)). Therefore, Eq. (2),(1), and (9), were coupled with the
unsteady Navier–Stokes and continuity to fully model the process of
simultaneous spreading and curing.

𝜌
(

𝜕𝑢̄ + 𝑢̄ ⋅ ∇̄𝑢̄
)

= −∇̄𝑝 + 𝜇(𝛼)∇2𝑢̄ + 𝜌𝑔̄ (3)

𝜕𝑡
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∇ ⋅ 𝑢̄ = 0. (4)

Boundary conditions
At the bead–substrate interface, a Navier-slip boundary condition

with no penetration were used (Eqs. (5) and (6)), where 𝛽 is the slip
length equal to 1/5×mesh size. Note that the Navier-slip relaxes the
stress singularity at the interface, but does not significantly contribute
to the bulk motion of fluid, i.e., spreading is insensitive to the mag-
nitude of 𝛽 [16]. The tangential and normal stress balance was used
at the air–liquid interface (Eq. (7)) to track the position of the bead’s
free surface, 𝑆, over time. At the triple line, i.e., the bead–substrate–
air interface, an empirical dynamic contact angle model (Eq. (8)) was
pplied, which relates the dynamic contact angle to the contact line
elocity via capillary number, Ca. We have previously validated Eq. (8)
or both cylindrical filaments and spherical droplets [15,16].

𝜏𝑓 = 𝜇(𝛼) 𝑢̄
𝛽

(5)

𝑢̄ ⋅ 𝑛̄𝑤𝑎𝑙𝑙 = 0 (6)

𝑛̄ ⋅ ( ̄̄𝑇 𝐼 − ̄̄𝑇 𝐼𝐼 ) = 𝜎(∇̄ ⋅ 𝑛̄)𝑛̄ − ∇̄𝜎 (7)
𝑐𝑜𝑠(𝜃𝑠) − 𝑐𝑜𝑠(𝜃𝐷)

𝑐𝑜𝑠(𝜃𝑠) + 1
= 𝑡𝑎𝑛ℎ(𝐴Ca𝐵), (8)

here ̄̄𝑇 is the total stress, i.e., 𝑝 ̄̄𝐼− ̄̄𝜏, and the RHS of Eq. (7) represents
he force per unit area due to surface tension, 𝜎. 𝜃𝐷 is the dynamic
ontact angle. Ca = 𝜇ū∕𝜎 is the Capillary number. 𝐴 and 𝐵 are fitting
arameters equal to 7.32 and 0.702, respectively. More details are
iven in Ref. [16].

. Results and discussion

Since the numerical simulations are concerned primarily with the
hange in shape of the bead (droplet/filament) during spreading, the
esults will be discussed in terms of 𝑅(𝑡), the basal radius. It should be
noted that the final shape of non-curing bead is limited by the equi-
librium contact angle (balance of interfacial energies) [13]. However,
for a bead undergoing chemical reaction, the polymerization process
increases viscosity and ultimately arrests the shape at a contact angle
above or equal to the steady state contact angle. Recall that the degree
of spreading during the polymerization process depends on the balance
of timescales, i.e. 𝜏𝑠 to 𝜏𝑘. Two scenarios are considered: (i) a slow-
curing system, i.e. 𝜏𝑠 ≪ 𝜏𝑘, and (ii) a fast curing system, i.e. 𝜏𝑠 ≈ 𝜏𝑘.

3.1. Slow-curing systems with 𝜏𝑠 ≪ 𝜏𝑘

For the case of 𝜏𝑠 ≪ 𝜏𝑘, the curing process occurs after significant
spreading of the bead. In other words, the spreading process is essen-
tially governed by the initial properties of the printing material. For this
case, we previously modeled the spreading dynamics for both droplet
and filament considering a fluid with constant properties [15,16]. We
howed that at a given Bo and 𝜃𝑠, the scaled basal radius, referred
o as the spreading coefficient, 𝑅(𝑡)∕𝑅0, is a unique function of the
scaled spreading time, 𝑡∕𝜏𝜇 , where 𝜏𝜇 is the viscous timescale. Fig. 2
shows the spreading coefficient for droplets and filaments at 𝜃𝑠 = 20◦

corresponding to the spreading of DA-2 resin on glass slide (see Table 1)
at different Bo. Figure S4 also shows the master curves corresponding
to Tenacious-glass slide 𝜃𝑠 = 12◦. The dynamic shape of a spreading
bead, either droplet or filament, can be readily determined using these
master curves and properties of the fluid, i.e., density, viscosity and
its initial size. Similar master spreading curves at different 𝜃𝑠 for both
droplets and filaments can also be found in our previous works [15,16].

3.2. Fast-curing systems with 𝜏𝑠 ≈ 𝜏𝑘

For the case of 𝜏𝑠 ∼ 𝜏𝑘, more common in DIW processes, there is
4

simultaneous spreading and curing of the bead that ultimately dictates
Fig. 2. Newtonian master curves for both droplet (dotted lines) and filament (solid
lines) at 𝜃𝑠 = 20◦. More details are given in Ref. [15,16].

the final bead shape. Polymerization increases the viscosity of the resin,
slowing down the spreading process. This results in smaller spread-
ing coefficients and larger apparent contact angles at long times [8].
Although polymerization also affects surface tension and density, the
changes are very small, i.e. less than 10 percent [24] and therefore
are ignored. The following sections are organized as follows. First
we characterize the chemorheology of the model resin for use in the
numerical model. Followed by experimental model validation using
curing spreading drops and filaments. Finally, we demonstrate a gen-
eral method of predicting final cured bead shape without the use of
fluid specific simulations.

3.2.1. Chemorheology model
The inset of Fig. 3 shows the chemorheology data for DA-2 resin

measured at average power densities of 𝑃𝑎𝑣𝑒 = 1, 2, and 4 mW/cm2.
See Supplementary Information S3 for the average power density cal-
culation. As power density increases, the viscosity increases faster
with time. The dependence on time can be eliminated by converting
time to 𝛼 using Eq. (1), such that a chemorheological master curve is
determined. Fig. 3 shows the chemorheological master curve for DA-2.
Several models exist in the literature to empirically fit chemorheolog-
ical data. For example, there are models based on gel point physics,
see Castro and Macosko [26], and exponential based models [19,27].
Note that both of these chemorheological models were implemented in
the spreading model development. We found that the gel point models
consistently under predicted the spreading of the interfaces. This seems
to be due to the fact that in these models the viscosity diverges at the
gel point, freezing the shape at early times. However, the experimental
data shows that the viscosity is a continuous function of conversion.
Therefore, the data was fit to an exponential chemorheological model,
reported in [19,27], given by

𝜇 = 𝜇0𝑒𝑥𝑝(𝛾 + 𝜅𝛼), (9)

where 𝜇0, 𝛾, and 𝜅 are fitting parameters. The chemorheological data
for Tenacious can be found in Fig. S2. Table 3 shows the best-fit values
of model parameter for both DA-2 and Tenacious test resins. Note that
𝛾 contains the activation energy of the viscous flow and is a function
of reaction temperature for thermally curable resins [19]. However, for
photocurable systems, the effect of temperature can be ignored and 𝛾

is almost constant. Therefore, 𝜇0 and 𝛾 are dependent parameters with
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Table 3
Best-fit chemorheological parameters for Eq. (9).
Parameters 𝜇0 𝛾 𝜅

DA-2 0.1 1.48 40
Tenacious 0.1 1.41 60

Fig. 3. Chemorheology of DA-2 resin under various irradiation intensities at 25 ◦C.
Inset: measured cure viscosity over time.

𝜇0𝑒𝑥𝑝(𝛾) = 0.44 and 0.41 Pa s, equal to the initial viscosity of the DA-2
and Tenacious, respectively. The best-fit model is shown via a solid line
in Fig. 3.

3.2.2. Numerical model validation
Experimental spreading data for DA-2 droplets and filaments at two

different light power densities are compared to numerical model pre-
dictions in Fig. 4. Similar model validation data for Tenacious droplet
is shown in Fig. S5. The results show good agreement between model
predictions and dynamic spreading and final shape with a maximum
calculated relative error < 10%. Thus, the numerical model presented
here incorporates all the necessary physics to accurately predict the
shape dynamics of curing beads. However, the model parameters are
very specific to the spreading fluid, and thus would require new param-
eterization and full numerical simulations for each system. Although
possible, this is quite experimentally and computationally expensive. In
the following section, we propose a simple general model to accurately
predict the spreading behavior of curing droplets/filaments without the
need for full numerical simulations.

3.2.3. Predictive model
Recall that the master curves in Fig. 2 allow for the prediction

of a droplet/filament shape at any time during the spreading process
of a non-curing Newtonian fluid. Unfortunately, such master curves
are not possible for curing systems as the shape depends strongly on
the reaction kinetics and transient viscosity. However, we discovered
that the spreading dynamics of a curing bead can be predicted using
Fig. 2 by considering a characteristic viscosity, 𝜇𝑎𝑣𝑒 and a timescale for
gelation, 𝜏𝑔𝑒𝑙. We postulate that the shape of the bead stops changing
at the gel point, i.e. 𝛼 = 𝛼𝑔𝑒𝑙. Therefore, the spreading time 𝑡𝑠, would
be equal to the gel time 𝜏𝑔𝑒𝑙 = 𝑓 (𝛼𝑔𝑒𝑙 , 𝑃 ), which is determined from the

1).
5

cure kinetic model for a given power density using Eq. (
Fig. 4. Experimental data (dots) vs simulation (lines) for both DA-2 droplet and
filament in terms of evolution of spreading coefficient over time at different light power
densities.

One obvious selection for the characteristic viscosity is the time
averaged viscosity during the curing process. A simple test of this
hypothesis is to determine the characteristic viscosity using Fig. 2 at
different power densities, since the time averaged viscosity would have
a strong dependence on the power density. We did full numerical
simulations of DA-2 filament spreading at different power densities
to determine the final basal radius, 𝑅𝐹 , and calculate 𝑅𝐹 ∕𝑅0. The
Newtonian master curves, Fig. 2, were used to determine the corre-
sponding scaled spreading time, i.e. 𝑡𝑠∕𝜏𝜇 , where 𝑡𝑠 = 𝜏𝑔𝑒𝑙 to achieve
𝐹 ∕𝑅0, and the characteristic viscosity was determined using 𝜇𝑎𝑣𝑒 =
𝑔𝑒𝑙𝜎∕𝑅0. Surprisingly, Fig. 5a shows that the 𝜇𝑎𝑣𝑒 is independent of the
ower density for all numerical experiments. This clearly shows that the
esulting characteristic viscosity is a material parameter, and therefore
oes not depend on processing conditions, e.g., power density. In other
ords, a time averaged viscosity is NOT appropriate to describe the
haracteristic viscosity, since the time average viscosity clearly depends
n the power density.
The lack of dependence of the characteristic viscosity on power

ensity suggests that the relationship between viscosity and conver-
ion dictates the spreading physics. In other words, how fast viscosity
hanges, i.e. 𝑑𝜇∕𝑑𝑡, compared to the rate of curing reaction, i.e. 𝑑𝛼∕𝑑𝑡,
overn the spreading, which is defined as 𝑑𝜇∕𝑑𝛼. We argue that the
arly conversion dependence of 𝜇 plays a larger role in the final shape,
s the shape of a bead changes predominately in the early stage of
preading. Therefore, considering the 𝑑𝜇

𝑑𝛼 = 𝑑𝜇
𝑑𝛼

|

|

|

|𝛼=𝛼0
and integrating

p to the gel point, we can have a new definition for characteristic
iscosity, called 𝜇𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐 , given by

𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐 = 𝜇𝑖 +
𝑑𝜇
𝑑𝛼

|

|

|

|𝛼=𝛼0
(𝛼𝑔𝑒𝑙 − 𝛼0), (10)

where 𝜇𝑖 is the initial viscosity of resin. See Supplementary Infor-
mation S6 for detailed calculations. Fig. 5b depicts the definition of
𝜇𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐 using the chemorheology model for DA-2. 𝜇𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐 is defined
as the intersection of a tangent line at small conversion and the verti-
cal line corresponding to the gelation point, 𝛼𝑔𝑒𝑙. Using this method,
𝜇 =3.08 Pa s for DA-2, which is shown as a solid line in Fig. 5a
𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐
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Fig. 5. (a) 𝜇𝑎𝑣𝑒 vs 𝜇𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐 for DA-2 filament spreading, (b) Calculation procedure of 𝜇𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐 using the chemorheological model, (c) Final spreading coefficient of the DA-2
filament predicted by numerical simulation vs. predictive model. Note, the initial size of the filament 𝑅0 = 0.34 mm was used in all simulations. We also assumed no oxygen
inhibition, i.e., 𝑡𝑜𝑖 = 0 for the data presented here.
r
𝜏
s
i
s
s
a
o
t
t
i
l
w
t
s

and showing excellent agreement with the numerically determined
𝜇𝑎𝑣𝑒.

With 𝜏𝑔𝑒𝑙, 𝜇𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐 , and Fig. 2 we have all the necessary infor-
ation to make predictions on the spreading shape of curing fila-
ents/droplets. The first step is to calculate the scaled spreading time

𝑔𝑒𝑙∕𝜏𝜇 , where 𝜏𝜇 = 𝜇𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐𝑅0∕𝜎. The second step is to calculate the
o = (𝛥𝜌𝑅2

0 𝑔)∕𝜎. The last step is to determine the 𝑅(𝜏𝑔𝑒𝑙∕𝜏𝜇)∕𝑅0 for the
iven Bo and 𝜃𝑠, which corresponds to the predicted final spreading co-
fficient. Fig. 5c shows the comparison of the predicted final spreading
oefficient for DA-2 filaments compared to full numerical simulations.
s observed, there is excellent agreement between the prediction and
he numerical simulation. The prediction always slightly overpredicts
he spreading shape by a maximum error less than 6%. Note that the
redictive model cannot be used to predict the shape at intermediate
imes, only the final shape at times longer than the gel time. However,
or DIW printing, we are only concerned with the final bead shape.
The same result was obtained for the prediction of the spreading

oefficient for DA-2 curing droplets considering a wide range of power
ensities, see Supplementary Information S7. Overall, the predictive
odel can be successfully used to estimate the final shape of both
uring droplets and filaments.
While the results above are only for a single chemorheological

arameter set, we tested a range of chemorheological model param-
ters to determine whether the 𝜇𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐 concept is generalizable. A
eries of 𝜇0s were chosen to drastically change the range of 𝜇𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐
ia Eq. (10). Note that a change in 𝜇0 results in a change of both
the intercept and the slope in Eq. (10). Fig. 6a shows the different
hemorheological models tested. Fig. 6b shows excellent agreement
etween the 𝜇𝑎𝑣𝑒 and the predicted 𝜇𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐 from Eq. (10), which
translates to excellent agreement between the full numerical final
spreading coefficient and the predicted final spreading coefficient.
Overall, the predictive model is able to capture the final spreading
coefficient for different Chemorheological models with a maximum
relative error of less than 4% for all cases. This model should prove very
useful in predicting the final shape of curing droplets and filaments in
the DIW printing process.

3.2.4. Effect of oxygen inhibition
The simulations and data analysis above does not consider the

effect of oxygen inhibition on the spreading physics. However, in
most of practical cases, especially for free radical photo-polymerization
mechanisms, there is a delay period with no polymerization due to
oxygen inhibition [25]. The oxygen inhibition time period, 𝜏𝑜𝑖, is a resin
property which depends on the amount of 𝑂2 in the resin system. For all
of the photo-cure resin systems, the 𝜏𝑜𝑖 is inversely proportional to the
power density. Higher power density increases the rate of the photo-
6

initiator free-radical reaction which results in faster consumption of
𝑂2 in the system. Fig. 7 shows schematic representation of a filament
spreading and its corresponding viscosity evolution in the presence of
oxygen inhibition. When the filament touches the substrate, it starts
to spread like a Newtonian resin as its properties are constant due
to the oxygen inhibition, see blue shadowed region in Fig. 7. After
𝑡 = 𝜏𝑜𝑖, the viscosity increases due to the polymerization reaction and
slows down the spreading, see red shadowed region in Fig. 7. In the
previous section, we showed that the shape of the filament in the
absence of oxygen inhibition (spreading with no delayed curing) can
be predicted using a constant viscosity, 𝜇𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐 (predictive model).
Now we modify the predictive model to incorporate the effect of oxygen
inhibition. As explained above, during the oxygen inhibition period,
the resin viscosity is constant and equal to its initial value. Therefore,
we can define two dimensionless times, one for the oxygen inhibition
regime and one for the curing regime. Since the spreading occurs
on a single master curve given Bo and 𝜃𝑠, then we expect that the
overall dimensionless spreading time to be a sum of these individual
contributions. More specifically, the dimensionless spreading time is
split into a contribution from the oxygen inhibition, 𝜏𝑜𝑖∕𝜏𝜇,𝑜𝑖, and a
contribution from the curing, (𝜏𝑔𝑒𝑙 − 𝜏𝑜𝑖)∕𝜏𝜇,𝑐𝑢𝑟𝑒, such that

𝑡
𝜏𝜇

=
𝜏𝑜𝑖
𝜏𝜇,𝑜𝑖

+
𝜏𝑔𝑒𝑙 − 𝜏𝑜𝑖
𝜏𝜇,𝑐𝑢𝑟𝑒

, (11)

where 𝜏𝜇,𝑜𝑖 = 𝜇0𝑅0∕𝜎 is the viscous timescale for the oxygen inhibition
regime, and 𝜏𝜇,𝑐𝑢𝑟𝑒 = 𝜇𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐𝑅0∕𝜎 is the viscous timescale for the
curing regime. Note that in chemorheological models with explicit
oxygen inhibition, the 𝜏𝑔𝑒𝑙 calculated includes 𝜏𝑜𝑖, which explains the
need for the 𝜏𝑔𝑒𝑙 − 𝜏𝑜𝑖 term.

Fig. 8 shows a comparison of the final spreading coefficient for
the numerical experiments compared to the predictions using the di-
mensionless time defined by Eq. (11) (black dotted line) for a wide
ange of oxygen inhibition times and cure times represented by a ratio,
𝑜𝑖∕𝜏𝜇,𝑐𝑢𝑟𝑒. The black curve shows excellent agreement with the final
preading coefficient demonstrating that Eq. (11) is capable of taking
nto account the cure and oxygen inhibition contributions to the overall
preading. Fig. 8 also shows the individual predictions of the final
hape for each regime: spreading due to oxygen inhibition only (blue)
nd spreading during cure only (red line). At low ratios, i.e. negligible
xygen inhibition, the red line prediction is in good agreement with
he filament shape, as discussed in the previous section. However,
he red line under-predicts the shape at high ratios when the oxygen
nhibition becomes dominant. Inversely, at high ratios, i.e. relatively
ong oxygen inhibition, the blue line prediction is in good agreement
ith the filament shape. For intermediate ratios, the sum of these
wo lines (black dashed line) predict the overall shape. These results
how that Eq. (11) can successfully predict the shape of a curing bead
in the presence of oxygen inhibition. In fact, Eq. (11) is the proper
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Fig. 6. (a) Chemorheological models with different 𝜇0 and constant 𝛾 = 1.48 and 𝜅 = 25, (b) 𝜇𝑎𝑣𝑒 vs 𝜇𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐 (black dots) and numerical simulation vs predictive model (blue
ots) corresponding to the chemorheological models. Note, numerical simulations were done at 𝑃 = 0.2 mW/cm2 and 𝑅0 = 0.34 mm. Other resin properties were the same as DA-2.
Fig. 7. Schematic representation of the effect of O2 inhibition on the spreading of a
uring bead.

imensionless time to use for all chemorheological models since it
aptures all necessary physics.
To further validate our predictive model including oxygen inhibi-

ion, we used Eq. (11) to predict the experimentally measured final
hape of Tenacious resin droplets. The final spreading coefficients of
enacious were experimentally measured using a 0.96 mm droplet
nder UV illuminations of 0.14 and 0.26 mW/cm2. The experimental
ata is shown in Table 4.
The predictive model requires as an input the scaled overall spread-

ing time given by Eq. (11). 𝜇𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐 = 4.1 [Pa s], 𝜏𝜇,𝑜𝑖 = 0.012 [s], and
𝜏𝜇,𝑐𝑢𝑟𝑒 = 0.122 were calculated using Eq. (10), and material properties
listed in Table 1. 𝜏𝑜𝑖 and 𝜏𝑔𝑒𝑙 were determined from Eq. (1) using 𝛼𝑔𝑒𝑙 =
0.15. Given the scaled overall spreading time 𝑡∕𝜏𝜇 and Bo, the final
spreading coefficients 𝑅 ∕𝑅 were predicted using the corresponding
7

𝐹 0
Fig. 8. Prediction of final spreading coefficient using the modified predictive model to
include the effect of oxygen inhibition.

Newtonian master curves, see Fig. S4. Table 4 shows all calculated
parameters used to predict the spreading of Tenacious droplets for two
power densities, and a comparison of the predicted and experimentally
measured 𝑅𝐹 ∕𝑅0. It can be clearly seen that the predictive model shows
excellent agreement with the final spreading coefficient of tenacious
resin with relative error less than 5%. This additional experimental data
shows that the predictive model works for different photo-curing resins,
as well as different degrees of oxygen inhibition.

3.2.5. Practical uses of the predictive model
One of the practical aspects of this novel predictive model is the

ability of achieving a specific shape of the printed bead by controlling
process parameters of power density and 𝑅 . The predictive model
0
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Table 4
Calculated parameters used to estimate the spreading coefficient of Tenacious droplet
at different power densities along with experimental data measured at the reported
power densities. The experimental data represents the average of three experimental
points and their standard deviation.
𝑃 [mW/cm2] 𝜏𝑜𝑖 [s] 𝜏𝑔𝑒𝑙 [s] 𝑡∕𝜏𝜇 𝑅𝐹 ∕𝑅0 𝑅𝐹 ∕𝑅0 experimental

0.14 14.28 12.74 1253.15 2.51 2.55 ± 0.05
0.26 7.69 8.17 692.56 2.37 2.46 ± 0.08

described above relates the power density to the shape of the bead,
and therefore estimates the required power density to achieve a final
bead shape. Fig. 9 shows a flowchart detailing the method of calcu-
lating the power density required for a desired shape. Given a desired
scaled spreading coefficient 𝑅𝐹 ∕𝑅0, the Newtonian spreading master
urves are used to determine the value of 𝑡∕𝜏𝜇 required. The flowchart
requires as inputs the chemorheological and kinetic properties of the
resin, i.e. conversion versus time and viscosity versus conversion. These
relationships give 𝜇0, 𝜇𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐 using Eq. (10), and 𝜏𝑜𝑖 and 𝜏𝑔𝑒𝑙 as a
unction of power density. These values are then coupled with Eq. (11)
o determine the power density required to achieve the necessary
imensionless spreading time.

. Conclusion

This work presents the first numerical CFD model that captures the
ppropriate physics for the dynamic spreading of resin beads (droplets
nd filaments) during photo-polymerization. The numerical model was
alidated using experimental results and used to develop a simple
pproach to predicting the final shape (predictive model) of cured
eads using the general theory of Newtonian spreading. The predictive
odel does not require any computational fluid dynamics, but rather
ses Newtonian spreading master curves to accurately predict the final
8

hape of a curing bead using a characteristic viscosity 𝜇𝑎𝑣𝑒 and a
imescale for gelation, 𝜏𝑔𝑒𝑙. In other words, we showed that a curing
ead and a Newtonian bead with a constant viscosity of 𝜇𝑎𝑣𝑒 achieve
he same spreading coefficient when 𝑡 = 𝜏𝑔𝑒𝑙, where 𝜇𝑎𝑣𝑒 and 𝜏𝑔𝑒𝑙 are
etermined from a simple analysis of the fluid’s chemorheology and
ure kinetics, respectively. Moreover, the model is capable of predicting
he shape of curing beads with and without oxygen inhibition. The
pplicability of the predictive model was successfully tested against
range of chemorheological parameters and process parameters and
ound to be in excellent agreement with the full numerical simulations.
hese results and the predictive model approach will be an invaluable
ool for DIW 3D printing applications as a method of estimating the
hape of the beads deposited on the build platform. Furthermore, we
emonstrate how the model can be used to determine the appropri-
te process parameters to achieve a specific bead shape. This should
ignificantly reduce the trial-and-error approach and limit the printing
indow to a tractable, relevant space. In addition, we expect that this
odel can be incorporated into 3D printing vectorization software to
ake into account the final bead shape when determining the line width
nd the layer height of each deposited bead. The extension of these
oncepts to the spreading of thermally curable resin systems is the
ubject of ongoing research.
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