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Continuous Gesture Control of a Robot Arm:
Performance |s Robust to a Variety
of Hand-to-Robot Maps

Steafan E. Khan

Abstract—Objective: Despite advances in human-
machine-interface design, we lack the ability to give
people precise and fast control over high degree of
freedom (DOF) systems, like robotic limbs. Attempts
to improve control often focus on the static map that
links user input to device commands; hypothesizing
that the user’s skill acquisition can be improved by
finding an intuitive map. Here we investigate what map
features affect skill acquisition. Methods: Each of our
36 participants used one of three maps that translated
their 19-dimensional finger movement into the 5 robot
joints and used the robot to pick up and move objects.
The maps were each constructed to maximize a different
control principle to reveal what features are most critical
for user performance. 1) Principal Components Analysis to
maximize the linear capture of finger variance, 2) our novel
Egalitarian Principal Components Analysis to maximize
the equality of variance captured by each component and
3) a Nonlinear Autoencoder to achieve both high variance
capture and less biased variance allocation across latent
dimensions Resulis: Despite large differences in the
mapping structures there were no significant differences
in group performance. Conclusion: Participants’ natural
aptitude had a far greater effect on performance than the
map. Significance: Robot-user interfaces are becoming
increasingly common and require new designs to make
them easier to operate. Here we show that optimizing
the map may not be the appropriate target to improve
operator skill. Therefore, further efforts should focus on
other aspects of the robot-user-interface such as feedback
or learning environment.

Index Terms—Assistive robotic manipulator, human-
machine interface, machine learning, teleoperation.

[. INTRODUCTION

APID advancements in robotics have produced systems
R with many degrees of freedom (DOF) [1], [2], but these
sophisticated robots demand new high-dimensional interfaces
that let users engage with all the available DOFs at once, moving
beyond the common single-input-single-output strategies that
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are currently in use [1], [3]. One possibility is to use an abstract
map in which the user’s inputs have greater dimensionality than
the number of DOFs of the robot, i.e., a surjective map [4], [5].
The surjective map transforms the user’s high-dimensional input
into a lower-dimensional representation (equal in dimension to
the number of DOFs of the robot) that is used for control [4],
[5]. Surjective maps are attractive because the user input can
be almost any high-dimensional signal the user can produce
reliably (e.g., electromyographic activity, neural electrical ac-
tivity, or body kinematics [4], [6], [7]) and the control can be
straightforwardly calibrated to the abilities of an individual user.

Building a surjective user-to-device map that optimizes con-
trol performance is a common topic in the motor control lit-
erature [6], [8], [9], [10], [11], [12], although development
has focused mainly on low-DOF devices (e.g., 2-D control
of computer cursors, or powered wheelchairs [10], [12]) to
understand basic principles of learning or to prototype designs
in simpler environments. These studies typically rely on linear
dimensionality reduction techniques like Principal Components
Analysis (PCA) to create the surjective maps [4], [10], [11],
[13]. PCA is used to identify a subspace within the user’s high
dimensional input space which captures most of the variance of
their natural voluntary movements. The motivating hypothesis is
that capturing a large amount of the user’s natural input variance
is important for control, but it is unclear if this hypothesis
extends to control of high-DOF robots where investigations are
more limited [14], [15]. In fact, the limited success that PCA
maps have had in high-DOF contexts [14], [15] has recently
led investigators to hypothesize that PCA may not be suitable
for high DOF control because the way it allocates variance in
the user’s calibration data set is extremely biased toward a small
subset of all available device DOFs [16]. To achieve both a more
uniform distribution of variance across device DOFs and a high
total variance captured investigators have begun using nonlinear
dimensionality reduction algorithms such as autoencoders [16],
[17], [18], [19]. Although it was shown in a small sample that it
is possible to control a high-DOF device [16], it remains unclear
how much a nonlinear map can improve user control over linear
methods, if at all.

Our goal here is to determine 1) to what degree can par-
ticipants using a nonlinear autoencoder map outperform those
using a simpler PCA map in high-DOF robot control, and 2)
to understand if any differences in performance are attributable
to PCA’s biased variance allocation. This addresses both the
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above hypotheses that 1) the increased representational power
of nonlinear maps will improve high DOF device control over
linear maps and 2) biased input variance allocation along the
DOFs impairs controllability.

To test these hypotheses, we compare the performance of
healthy human participants operating a 5 DOF robot arm and
gripper using different surjective maps between their hand finger
joints and the robot joints. We utilize the participant’s finger
joints because they are a readily available source of high dimen-
sional signal over which the user has precise control. We create
the surjective maps using a Nonlinear Autoencoder (NLAE),
Principal Components Analysis (PCA), or our novel Egalitarian
Principal Components Analysis (EPCA). EPCA is a linear di-
mensionality reduction algorithm that trades off variance capture
for equal variance distribution. Unlike PCA, which distributes
variance in a rank-ordered fashion, EPCA distributes variance
uniformly (removing the bias) but at the expense of the total
variance captured. By comparing the performance of partici-
pants in the NLAE group to the performance of participants in
the two linear groups (EPCA and PCA) we identify what (if
any) performance gains result from using the nonlinear map.
By comparing the performance of participants in the PCA and
EPCA groups we identify whether the biased variance allocation
hypothesis is true. If biased variance allocation is detrimental to
robot control, then we would expect participants using EPCA
maps to outperform those using PCA maps, but if total variance
captured is more important then we would expect the reverse. A
preliminary version of this work has been reported [20].

Il. METHODS
A. Experiment Setup

Participants wore a CyberGlove on their dominant hand. The
CyberGlove captured the motion of their fingers and thumb
via 19 resistive sensors. The 19-D vector of sensor values was
mapped to the angles of the 5 revolute joints of the robotic arm
(Interbotix WidowX250 SDOF) using 1 of 3 surjective mapping
algorithms: a nonlinear autoencoder neural network, principal
components analysis, or our novel egalitarian principal compo-
nents analysis. Commands were issued to the robot continuously
at a rate of ~ 10 Hz.

Each surjective mapping algorithm mapped the 19-D vector
of sensor values to a 5-D latent representation in which each
element of the 5-D vector was used to specify the angle of one
of the robot’s revolute joints. To ensure the joint angle commands
generated were within the allowed ranges of motion of the robot
joints, each element of the 5-D vector was normalized to the
interval (0, 1) and thus specified the joint angle command as a
fraction of the robot joint’s range of motion, plus a bias of the
minimum allowed joint position.

In the formal expression in Fig. 1, Mg,y represents the
surjective mapping algorithm (described further below), J; ;
represents the range of motion of the 7, robot joint, .S; represents
the 4, sensor value, and ¢; represents the minimum joint posi-
tion of the 7, robot joint. Participants were informed that their
hands would be mapped to commands for the robot but were
not told how the mapping would be performed or what robot
variables they would be controlling.
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Fig. 1. Hand-to-robot map. Participants continuously controlled the

robot configuration using the motion of their fingers and thumb. In
each of our test groups the participant’s hand was transformed into a
robot command via a different surjective map Mg;.oup. Participants in
all groups performed the same object pick-up-and-place task using the
arm. x Denotes the robot joint range of motion normalization, which is
the same across all groups.

The robot gripper was also controlled by the user, but not via
the surjective map M. Unlike the continuous arm joint angles,
the gripper was commanded between only an open or closed
state. Users toggled the gripper state by holding the robot still
for 2 seconds.

Additionally, user commands were automatically checked to
prevent the robot from colliding with the workspace table. Any
command predicted to result in a collision was re-issued such
that continuous operation was uninterrupted and stopped short
of the surface. The robot commands were generated using the
MATLAB (Mathworks) software and were sent to the ROS
(Robotics Operating System) software which communicated
with the physical robot [21].

B. Generation of the Surjective Maps

Calibration Data: For all groups, participants generated a
calibration dataset to fit their map (M*g,oup) Using the same
protocol. The calibration set was obtained by having participants
wiggle their fingers and thumb continuously for 30 seconds
while the CyberGlove recorded their motions at approximately
~10 Hz. This resulted in a calibration set of ~300 hand postures
that captured the user’s natural posture tendencies and range of
motion.

PCA Map: The surjective map for participants in the PCA
group consisted of linearly projecting the participant’s hand
postures to a 5-dimensional latent space. The linear projection
matrix, A, was created by solving the optimization problem
posed in (1) by diagonalizing the data covariance matrix using
PCA. X represents a 300 by 19 mean-centered matrix of sensor
values from the calibration, the matrix norm is the Frobenius
norm, and W is a 19 by 19 matrix of principal components. The
first 5 PCs were used to form a 5 by 19 projection matrix A as
depicted in (2).

W = argminy, (HXT—WWTXTH) (1)
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The 5-D latent representation is therefore computed as the
following:

MPCA (s) = As (3)

where A is the 5 by 19 projection matrix shown in (2), and s is
the 19-D vector of sensor inputs.

EPCA Map: The surjective map for participants in the EPCA
group was created by numerically solving the optimization
problem posed in (4), which trades off reconstruction error
in the calibration data (1st term) against the variability in the
variance explained of the bases (2nd term). The optimization
was performed under the constraint that the basis vectors of W
have unit magnitude, which ensured that the EPCA algorithm
did not rescale PCs to achieve an equal distribution of variance
but rather solved for a completely different subspace. Here, X
represents a 300 by 19 mean centered matrix of sensor values
and W is a 5 by 19 projection matrix.

W = argminy | || X7 - WHwXx"||

b (Z (Vi - itr<V>>2> @

i=1
where, V = - (WXT) (WXT)T ,r=>5is the dimensionality
of the latent space, n = 300, is the number of observations,
and ¢ = 10, is an empirically chosen constant. 4+ denotes the
Moore-Penrose pseudoinverse.

Mgpca(s) = Ws 5)

Nonlinear Autoencoder Neural Network (NLAE): The sur-
jective map for participants in the NLAE group was created by
training an autoencoder neural network on the calibration dataset
[22]. The initialization of the network weights was obtained by
training the autoencoder network using example CyberGlove
data consisting of ~1700 hand postures collected across 6
individuals prior to the study (who did not participate in the
study). The calibration dataset was partitioned into 70% training,
15% testing, and 15% validation datasets. The network was
trained via Levenberg-Marquardt backpropagation until either
the magnitude of the mean-squared-error gradient was less than
1E-7, or 1000 training iterations were performed.

The network architecture is the following:

Encoder:

layer, = tanh (wys + by) 6)
layery = wy layer, + by @)
Decoder:

Output = tanh(ws layer, + bs) (8)

Fig. 2.
the object (middle) and the participant’s hand in the CyberGlove (left).

Experiment Setup. The 5 DOF robotic arm and gripper (right)

where, wjand b; correspond to the network weights and biases
for the jth network layer. The surjective mapping is shown below
in (9).

Mnyrag (S) = Encoder (s) ©)

C. Normalization

The output of Mg,oup(s) for all groups was normalized to
the interval (0,1) using the following normalization function:

Z (5) - (Mgroup (S) - Lmin) @ (Lmax - Lmin) (10)

where s is the vector of sensor values, Mg, is the surjec-
tive mapping algorithm, L, is the 5-D vector maximum of
M group(X) (X being the calibration data), L,y is the 5-D vec-
tor minimum of Mo, (X) and @ denotes Hadamard element
by element vector division. Z(s) is denoted as * in Fig. 1; where
M}, oup Tepresents Z (Mgroup(s)).

group

D. Protocol

Thirty-six healthy adults (aged 18-55) provided written in-
formed consent to procedures approved by the Institutional
Review Board at Florida International University. Participants
were randomly assigned to one of 3 groups (n = 12/group),
which differed in terms of the surjective mapping that they used
for control. Prior to beginning the robot control task (below)
participants completed the Purdue Pegboard test which is used
to measure manual dexterity [23]. Groups were gender balanced
and participant ages were on average 25 £ 6 years.

Participants were seated 3 feet away from a tabletop 5-DOF
robotic arm and gripper which they controlled with their finger
movements for approximately two hours. They were seated
outside of the robot workspace and observed the motion of
the robot from the left-hand side of the robot arm. Participants
wore a CyberGlove 3 data glove on their dominant hand. We
recorded 19 joint angles from the fingers, thumb, and palm arc
and used these signals to control the configuration of the robot
arm Fig. 2. The participant’s task was to pick up cylindrical
objects (0.5 cm diameter by 21 cm height) placed throughout
the robot’s workspace (45 unique object positions) and move
them to a target bin (5-inch diameter) located on the near side of
the table. The objects were supported by a spring which allowed
the robot to bump into them without knocking them over. If
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the object was pushed outside of the robot workspace or was
dropped, the trial ended.

Subjects were placed into one of three groups, each controlled
the robot by using a different surjective mapping between their
finger joint angles and the robot configuration: PCA, EPCA, or
NLAE.

Task: All groups performed the same two tasks: a S-minute
exploration task, and a 90-minute testing task. The exploration
task consisted of unguided control of the robot during which
participants explored how their hand postures related to the
motion of the robot. The testing task consisted of 5 epochs
of 9 trials each, during which participants would attempt to
pick up the object and deposit it into the target bin. All trials
started from the same nominal robot configuration and lasted
a maximum of 2 minutes. Between epochs there was a rest
period of approximately 2 minutes. Participants were told that
they would be evaluated based on how many trial stages they
completed per trial, where stages were defined as: object touch,
object grasp, object lift, and object place (into the target bucket).

E. Data Analysis

To assess the total hand variance captured by each of the
maps we computed the Variance Accounted For (VAF) depicted
in (11).

(1)

B B var(X — )/(\)
SRR

where X is the 300 by 19 matrix of sensor values used to calibrate
the mappings and X is the reconstruction of the calibration
data from its 5-D latent representation. The reconstruction of
the sensor data for the NLAE group was performed by passing
the 5-D latent representation through layer 3 of the network. The
reconstruction for the PCA and EPCA group was obtained by
algebraically solving (3) and (5) for s. A VAF of 100% would
indicate that the inverse mapping could perfectly reconstruct the
calibration sensor data from its 5-D latent representation.

Our primary outcome measure was trial score. During each
trial participants were awarded one point for every trial stage
they completed; where stages were defined as: touching the
object with the robot end effector, grasping the object with
the robot gripper, lifting the object, and placing the object into the
target. The score measure was computed as the sum of points a
participant earned throughout a trial. This measure was selected
prior to the start of data collection.

4
Score = E points;
i=1

(12)

The performance measure in (12) was formulated to capture
our intuitions about what a successful trial consisted of (i.e.,
passing through each natural stage of the reach should count
as increasingly successful), however, many variations on that
expression may also meet those requirements. To ensure that
the specific formulation for computing “score” we chose was
not itself the main factor in determining our statistical outcomes,
we tested numerous variants. Additional measures we examined

to characterize the learning outcomes and robot control post hoc
were:

® Nonlinear Progressive Score Measures: Variants of (12),
in which more points are awarded for later trial stages.

® Success Rate: The total number of successful trials com-
pleted per epoch by participants.

® Smoothness Index: Number of peaks in the robot end
effector speed profile during reaches to objects. A peak
is a speed greater than 20% of the maximum robot end
effector speed of each trajectory [16].

® Normalized Path Length: The path length of the robot end
effector trajectory during reaches to objects normalized by
the straight-line distance between the starting position of
the end effector and the target object [16].

® Contact time: The time taken to successfully reach the
object and touch it with the robot end effector, where failed
trials are set to the maximum of 120 seconds.

® Normalized Joint Variance: Variance of the motion of each
robot joint normalized by the total motion variance of all
robot joints.

® Planarity: The percentage of hand posture variance cap-
tured by the first 5 Principal Components in each exper-
iment trial. Where the PCs are obtained by performing
PCA on the trial data (not the calibration data) [11].

® Hand Variance: The total variance of all 19 dimensions of
the user’s input during an experiment trial.

To investigate whether the type of surjective mapping had an
effect on learning we performed a two-way repeated measures
ANOVA on our primary outcome measure score, in which the
within participants factor was epoch and the between partici-
pants factor was group. We used Shapiro-Wilk’s test to verify the
normality assumption and Mauchly’s test to verify the sphericity
assumption. Where sphericity was violated, we applied the
Greenhouse-Geisser correction.

To characterize changes in participant’s control of the robot
across time we compared the Success Rate, Contact Time, Nor-
malized Path Length, and Smoothness Index during the first and
last experiment epochs using rANOVAs. To identify differences
in control characteristics between groups we performed one-
way ANOVAs on the Success Rate, Contact Time, Normalized
Path Length, Smoothness Index, and Normalized Joint Variance
during the last experiment epoch.

The significance level was set at v = 0.05 and post hoc
comparisons were performed using a Bonferroni corrected sig-
nificance (o = 0.025 for the rANOVAs). Where normality was
violated we examined the Kurtosis and Skewness of the data and
found the distributions were approximately normal [24], [25].

Additionally, to compare the effect of group with the effect
of initial participant aptitude we performed a Hierarchical Re-
gression in which we regressed baseline participant performance
(cumulative sum of trial scores during the first epoch) and group
against acquired proficiency (cumulative sum of trial scores
during epochs 2-5); and subsequently regressed only baseline
performance against acquired proficiency without the group
predictor. Correlations were assessed using the Correlation Co-
efficient in MATLAB. All group comparisons were performed
in the SPSS statistics software.
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Fig. 3. Comparison of the calibration variance captured and distri-
bution of calibration variance across latent dimensions by each map.
(a) Variance Accounted For by each latent dimension of the maps for
every experiment participant. The PCA map (middle) had the greatest
variance accounted for by its first latent dimension with steeply declining
variance accounted for by the subsequent dimensions. The EPCA map
(right) had the same variance accounted for by each of its latent dimen-
sions. The NLAE map (left) had a random amount of variance captured
by each latent dimension. (b) The total variance accounted for by each
of the maps. The NLAE (left) has the greatest VAF, followed closely by
PCA (middle), and far exceeded the VAF by EPCA (right).

[ll. RESULTS

We constructed 3 surjective maps between the hand and
robot, each maximizing a different control principle to reveal
what features of the map affected operator skill acquisition. We
selected 1) Principal Components Analysis (PCA) to maximize
the linear capture of finger variance, 2) our novel Egalitarian
Principal Components Analysis (EPCA) to maximize the equal-
ity of variance captured by each latent dimension of the map,
and 3) a Nonlinear Autoencoder (NLAE) to both maximize the
ability to represent the user’s full range of finger movements and
achieve a more equitable distribution of variance across latent
dimensions than PCA.

A. Representation of Calibration Data

The NLAE captured the greatest amount of variance in the
calibration data. On average, it captured 92% of the user’s
calibration hand variance with 5 latent dimensions; compared to
88% for PCA and 47% for EPCA (Fig. 3(b)). By construction,
the mappings also differed in how they distributed the user’s
calibration hand variance across their latent dimensions. The
NLAE distributes user variance randomly across its code units
while PCA distributes variance in a rank-ordered fashion across
its basis vectors and EPCA distributes variance uniformly across
its basis vectors (Fig. 3(a)).

B. Task Performance

Our primary goal was to identify how the map features af-
fected user skill acquisition at a functional robot control task.
By construction, each group’s map differed significantly with
respect to the calibration variance captured, and their distribution
of the calibration variance across latent dimensions (Fig. 3).
However, despite the stark differences between the maps, we

identified no significant performance difference between groups.
A two-way repeated measures ANOVA performed on scores
(averaged over each epoch) yielded no significant interaction
effect of group and epoch on score (F(4, 8) = 22.121, p =
0.72, Partial Eta Squared = 0.04). Our a priori power was
estimated as 0.93 for a medium effect size of F = 0.25 for
our two-way repeated measures ANOVA, meaning, if there was
a substantial effect of the map on participant skill it is very
likely that we would have detected it. We found no significant
main effect of the group via a one-way ANOVA performed
on the average points earned by each participant (F (2, 33) =
2.81, p = 0.073, Eta Squared = 0.15). There was a significant
effect of epoch on participant scores (F(4, 132) = 22.12) p <
0.01; partial eta squared = 0.40), indicating that participants
were able to improve at the task with practice regardless of
the map. Repeating this analysis after substituting ‘score’ with
other nonlinear progressive score measures did not change our
findings.

To test whether participant’s manual dexterity impacted their
performance at the task we computed the Correlation Coefficient
between participant’s Purdue Pegboard Test Scores and their
total points earned during the robot control. We found no signifi-
cant correlation between dexterity and performance (R = -0.08,
p = 0.66), indicating that manual dexterity did not influence
participant’s ability to learn the task (One NLAE participant
was omitted from the correlation analysis due to an error in their
Purdue Pegboard Test data collection).

Successfully completing all task stages proved to be difficult
for the majority of participants. However, there were a few
participants in each group that excelled at the task. Throughout
the experiment participants in all groups were able to improve
significantly in terms of their ability to successfully complete
all task stages. Comparing the first and last epochs there was
a main effect of practice on Success Rate for all groups (F(1,
11) = 10.39, p = 0.008); F(1, 11) = 9.37, p = 0.011; F(1,
11) = 13.28, p = 0.004 NLAE, PCA, and EPCA respectively).
Additionally, we found no significant difference in Success Rate
between groups during the last epoch (F(2,33) = 1.76,p =0.19,
Partial Eta Squared = 0.10).

Throughout the experiment participants in all groups signif-
icantly reduced the time required to reach to and touch each of
the objects (F(1, 11) = 18.851, p = 0.001; F(1, 11) = 21.359,
p < 0.001; F(1, 11) = 11.764, p = 0.006); for NLAE, PCA,
and EPCA respectively) (Fig. 9). Comparing group average
contact times in the 5th (last) epoch we found a statistically
significant difference between the groups (F(2, 33) =4.89,p =
0.01, Partial Eta Squared = 0.23). Post hoc analysis using a Bon-
ferroni corrected alpha revealed the PCA group was significantly
different from the EPCA group (p = 0.01) with regards to contact
time.

The participant task performance results (Figs. 4 and 5) indi-
cated that participant’s initial aptitude may be more predictive
of acquired proficiency than the mapping they used. To compare
the predictive power of initial aptitude to the predictive power of
the group on participant skill acquisition we performed a Hier-
archical Regression. We first regressed initial aptitude (partici-
pant’s points earned in the first testing epoch) and group against
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Fig. 4. Comparison of each group’s performance at the robot control df2 32 32
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The group averages were then smoothed (using a moving average filter
over the 10 preceding trials) and plotted. Error bounds depict standard
error. The large inter-participant variability dominates any small differ-
ence in performance between groups.
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Fig. 5. There is no difference in participant’s ability to complete all
task stages between groups. Box plots depict individual participant’s
percentage of successful trials per experiment epoch.
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Fig. 6. Initial aptitude is highly predictive of acquired proficiency. Scat-
ter plot depicts the participants' cumulative sum of trial scores in the first
experiment epoch versus the cumulative sum of trial scores throughout
the remainder of the experiment.

acquired proficiency (participant’s total points earned in epochs
2-5) and found a strong correlation R? = 0.40 and a significant
R2change(R?change = 0.40, F (3, 32) = 6.99,p < 0.01).
Then we removed the group from our predictors and regressed
only initial aptitude against acquired proficiency (Fig. 6).
Without the group predictor we again identified a strong
correlation R? = 0.34 and found a nonsignificant change

a. Predictors: (Constant), EPCA, PCA, Baseline Performance
b. Predictors: (Constant), Baseline Performance

The nonsignificant F change for model 2 indicates that group has no
predictive power with regard to participant’s acquired skill.
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Fig. 7. Average group performance on each experiment trial plotted
against the average planarity of participant hand motions on each trial.
On average participants earned more points when they increased the
planarity (variance captured by a 5-D linear latent space) of their inputs.
Color depicts the trial number.

in R? (R?change = —0.06, F (2, 32) = 1.53, p = 0.23).
These results (depicted below in Table I) show that participant’s
initial aptitude is highly predictive of acquired proficiency while
the map participants were provided has no predictive power with
regards to participants‘ acquired skill.

C. Analysis of Robot Control

To investigate the effect of the map’s distribution of partic-
ipant calibration hand variance on the participant’s reliance on
robot DOFs we computed the normalized robot joint variance
during the last experiment epoch (Fig. 10). One-way ANOVAs
performed on participants normalized robot joint variance iden-
tified no statistically significant difference between the groups
(F(2,33)=1.42,p =0.26, Eta Squared = 0.08; F(2, 33) =2.27,
p = 0.12, Eta Squared = 0.12; F(2, 33) = 0.38, p = 0.69, Eta
Squared = 0.02; F(2, 33) = 0.78, p = 0.47, Eta Squared = 0.05;
F(2, 33) = 0.41, p = 0.66, Eta Squared = 0.02; for joints 1-5
respectively). Comparing the distribution of robot joint variance
shown in Fig. 10 with the distribution of user’s calibration hand
variance shown in Fig. 3, we did not identify the same pattern
of variance distribution. The allocation of participant’s hand
variance across latent dimensions during calibration was not
predictive of participant’s reliance on robot DOFs during the
control task.
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Fig. 8. Average group performance on each experiment trial plotted
against average hand motion variance. Participants in the different
groups learned different strategies to adapt to the structure of their maps
but despite behavioral differences in user inputs, there are no differences

in task performance.
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Fig. 9. Distributions of the time participants took to reach to and touch
each object during the testing trials (averaged over epoch). Participants
in all groups learned to reach objects faster as the experiment pro-
gressed. Comparison of group performance in epoch 5 yielded a sig-
nificant difference between PCA and EPCA groups (removal of outliers
did not change results).

Throughout the experiment participants in the PCA group
increased the smoothness of their end effector trajectories (F(1,
10) = 11.60), p < 0.01, Partial Eta Squared = 0.54) (Fig. 11).
Participants in the NLAE and EPCA groups did not appear to
increase smoothness (F(1, 11) = 0.28, Partial Eta Squared =
0.025; F(1, 11) = 0.79, p = 0.39, Partial Eta Squared = 0.07
respectively). A comparison of the Smoothness Index of all
groups in the final testing epoch revealed a significant difference
between groups (F(2, 32) = 5.23, p = 0.01, Partial Eta Squared
= 0.25). Post hoc analysis using a Bonferroni corrected alpha
revealed a statistically significant difference between EPCA and
PCA (p = 0.01). One PCA subject was excluded from the
Smoothness Index analysis since their end effector velocity data
was not recorded.

Participant’s in the PCA group reduced the normalized path
length of their end effector trajectories (F(1, 10) = 13.90, p <
0.01, Partial Eta Squared = 0.58) (Fig. 12). The NLAE and
EPCA participants did not appear to reduce their normalized
path length (F(1, 11) = 0.06, p = 0.81, Partial Eta Squared <
0.01; F(1, 11) = 1.81, p = 0.21, Partial Eta Squared = 0.14,
respectively). A comparison of normalized path length in the
last epoch found no statistically significant difference between
any of the groups (F(2, 32) = 1.26, p = 0.30, Partial Eta Squared
= 0.07). One PCA subject was excluded from the normalized
path length analysis since their end effector trajectory data was
not recorded.

D. Learning Correlates

Despite the difficulty of the task, participants were able
to improve with practice, which raised the question of what
participants had learned to do to improve. To answer this
question, we searched for characteristics of the participants’
inputs that correlated with improved task performance. We found
a significant correlation between the average (5-dimensional)
planarity of participants’ hand postures and the average scores
earned on a trial across all groups (R = 0.78, p <0.01; R =
0.80, p<0.01 R = 0.82 p<0.01 for NLAE, PCA, and EPCA
respectively) (Fig. 7). This result indicated that improving at the
task required participants to learn to reduce the dimensionality
of their inputs.

Next, to further characterize how participants in each group
changed their inputs to improve at the task we examined the
average variance of the participants hand motions in each group
over each experiment trial (Fig. 8). Participants in the PCA group
did not significantly reduce the variance of their hand motions
(R=0.26, p = 0.08), while participants in the EPCA and NLAE
groups did (R =-0.53, p<0.01; R = -0.66, p<0.01; for NLAE
and EPCA respectively). Participants in the EPCA group may
reduce the variance of their hand inputs as they realize that much
of their hand motion has no impact on the robot control (due to
the low VAF of the EPCA map), while participants in the NLAE
group may reduce their hand variance because the nonlinearities
of the map can relate small changes in the input to very large
changes in robot commands. In both instances, the reduction in
hand variance may be explained by a desire to increase feedback
from hand motions.

The PCA group did not follow the same trend of hand variance
reduction (Fig. 8) observed in the NLAE and EPCA groups, but
did follow the trend of increasing planarity (Fig. 7). This result
suggests that users in the PCA group learned to confine their
finger articulation to a subspace of their full possible range of
motion while simultaneously increasing the amount of finger
motion within that subspace. PCA may differ from the other two
groups in this respect because it both captures a large amount of
calibration variance and is linear. Since the PCA bases capture a
large amount of variance they represent hand motions in which
many (if not all) of the user’s hand joint angles are changing
across a large range of motion. Therefore, to move throughout
the PCA subspace (and change their commands to the robot
joints) users have to make hand movements which have a large
amount of variance associated with them. It is possible that,
unlike in the NLAE and EPCA groups, users in the PCA group
cannot reduce total hand motion variance to increase feedback.

IV. DISCUSSIONS

In this human-machine interface (HMI) study, we imple-
mented 3 abstract surjective maps that transformed 19 joint
angles of the human hand into a command for the configuration
of a 5 DOF, physically embodied robotic arm. We constructed
our maps to investigate to what degree people using a nonlinear
autoencoder could outperform those using a simpler linear PCA
map for high-DOF robot control, and to identify if any perfor-
mance differences were attributable to PCA’s biased variance
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Fig. 10. Map distribution of calibration variance is not predictive of
participant’s reliance on robot joints. Box plots depict the percentage
of robot motion variance allocated onto each robot joint during the last
experiment epoch for each participant. One-way ANOVAs performed
on the group data for each robot joint yielded no significant difference
between groups (this result was unchanged by the removal of outliers).

allocation. The study’s main finding was that the map linking
hand joints to robot joints did not affect performance (Fig. 4).
This result runs contrary to the implicit (and often explicit)
hypothesis underlying a large body of HMI work, namely that
optimizing the user-to-device map is critical for users to become
proficient with high dimensional HMIs [9], [16], [26], [27], [28],
[29]. Instead, we find that subjects display a range of natural
aptitude, from skilled to non-functional, and that this range is
equivalent across the three very different maps (Figs. 5 and 6).
Our findings suggest that efforts to improve high dimensional,
robot HMISs should not focus on tuning and calibrating the static
user-to-device map, and instead focus on other areas such as
co-adaptation [12], [30] feedback [31], or learning environment
[32].

A. Effect of Map Structure on User Performance

Since PCA distributes variance in a rank-ordered fashion
along its basis vectors (Fig. 3(a)), the lowest variance principal
components are often attributed to noise. In the case of the
hand data collected in this study, on average PCs 4 and 5
accounted for only ~6% and ~4% of the user’s calibration
variance respectively. If these PCs represent calibration finger
articulations that were less natural or accessible to participants,
we might expect participants to be less able to control the
corresponding robot DOFs, ultimately leading to a bias toward
using the DOFs corresponding to the top PCs and an overall
degradation in robot controllability. Other investigators have
made similar speculations when constructing mappings from
body kinematics to high DOF devices (e.g., simulated robots
[16]).

To test this “PC control bias” hypothesis, we created the novel
Egalitarian Principal Components Analysis (EPCA), which
forces a similar allocation of variance among each of its basis
vectors (Fig. 3(a)). This eliminated the supposed problem of
low-variance-capture bases in PCA, at the expense of a reduction
in overall variance explained. If biased variance capture is a large
detriment to controllability we would expect the EPCA group to
perform better than PCA, on the other hand, if total calibration
variance explained is more important for controllability we
would expect the reverse.

Smoothness of End Effector Trajectories
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Fig. 11.  Box plots depict the normalized smoothness index of the robot
end effector velocity profile when reaching to objects (averaged over
each epoch). Participants in the PCA group reach along smoother trajec-
tories at the end of the experiment compared to the beginning. We found
a significant difference in the smoothness of end effector trajectories
between the PCA and EPCA groups in epoch 5 (removal of outliers
did not change this result). However, this difference disappeared after
normalizing the smoothness index by the reach duration, suggesting
that the smoothness of reach trajectories was not different between the
groups.

We found that there was no difference in performance between
the PCA and EPCA groups, suggesting that steeply declining
rank-ordered variance allocation among map bases does not
impede controllability. In other words, the PC control bias
hypothesis is false. Since, the task includes both positioning
and orienting the end effector of the robot, PCA users needed to
control all DOFs of the arm including the wrist DOFs (controlled
by the low variance PCs). Not only could users in the PCA group
learn to control the wrist DOFs, we further found that after
practice there was no difference in the allocation of variance
across the robot DOFs between any of the groups (Fig. 10.) This
result indicates that, although a bias in the control may initially
be present due to the imbalance in the distribution of variance
across PCs, through feedback users can readily adapt to this
aspect of the mapping.

The EPCA-PCA performance equivalence raises the pos-
sibility that both high total variance explained and unbiased
variance among bases are required for boosting task proficiency.
This tradeoff can be overcome by using the NLAE, which has
higher total calibration variance explained and lower variability
of variance explained among its latent dimensions than PCA.
But even the NLAE group did not outperform PCA (and was
possibly slightly worse). These results suggest that, for the class
of maps calibrated on a user’s unstructured exploration of their
articulation space, the structure of the map is unimportant for
robot controllability.

B. Robot End Effector Trajectories

Despite equivalent performance between groups, it is still
possible that differences in the maps led participants towards
different robot control strategies. To assess this possibility, we
characterized the robot end effector trajectories in terms of the
smoothness index and normalized path length (Figs 11 and
12). We found a significant difference in the Smoothness Index
between the PCA and EPCA groups at the end of practice. Since,
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Fig. 12. Box plots depict the normalized path length of the robot end
effector when reaching to each object (averaged over epoch). Partici-
pants in the PCA group reached along shorter trajectories at the end
of the experiment compared to the beginning. We found no difference
between groups in terms of normalized path length in epoch 5 (removal
of outliers did not change this result).

we did not also identify a difference between the NLAE group
and either the PCA or EPCA groups we concluded that the
observed difference in Smoothness Index likely resulted from
the slightly longer time that the EPCA participants took to
reach the objects in the final epoch. Normalizing Smoothness
Index by the contact time for each trial resulted in no significant
difference between any of the groups.

We also did not identify any difference in normalized path
length between the groups in the last experiment epoch. Al-
though the normalized path length of our participants in the final
experiment epoch is quite large (on average, approximately 50
times the straight line distance between the end effector start
position and target), compared to results previously reported
[16]. We suspect that our participants may not exhibit the same
robot control characteristics as the literature because 1) we
distribute our objects throughout more workspace territory than
is typical in the literature, and 2) we compute end effector paths
based on the joint-space commands participants send and not
from measured end effector positions. Since participants can
generate commands faster than the robot can actuate them, the
actual trajectories of the robot end effector are shorter than the
computed trajectories. In the literature, the effect of time delay
may be less significant due to the use of simulated robots [16],
or velocity controls [8], [33], [34], [35], [36].

C. Determinants of Skill Acquisition

Although there was no difference in performance between our
groups there was enormous inter-participant variability which
suggested that individual participant aptitude may be the real de-
terminant of user skill acquisition. Our Hierarchical Regression
(Table I) demonstrated that an individual’s performance early in
the experiment was highly predictive of the scores they would
go on to accumulate throughout the experiment. Participants
that learned to advance to higher task stages earlier consistently
earned higher scores.

Since, identifying how participants learned to perform the
higher task stages may offer valuable insight into how to guide
learning, we performed an exploratory data analysis to deter-
mine whether there were common behaviors which participants

employed when successfully completing the task. We found
that regardless of the map all participants learned to reduce
the dimensionality (increase planarity) of their inputs when
controlling the robot (Fig. 7). This result agrees with previously
reported findings [11].

Additionally, despite there being no difference in robot control
strategy, utilizing our different maps did require users to learn
to generate different hand inputs. Participants in the NLAE and
EPCA groups learned to reduce the variance of their hand inputs
while participants in the PCA group did not. We suspect that
the reduction in hand variance was likely learned to increase
feedback from robot commands. Although participants learned
to generate different hand inputs to adapt to the different maps
this did not have a significant effect on the robot control.

D. Implications for Human-Machine Interfaces

Along-standing goal of the field of human-machine interfaces
has been to design biomimetic interfaces which provide humans
control of devices in the same manner that they naturally control
their own body parts [37]. Although the biomimetic approach
can reduce the learning burden of the human operator, previous
works have shown that after practice there is no difference in
the proficiency of control [28], [38], [39]. Furthermore, it may
not be possible to design biomimetic controls for devices which
are dissimilar from biological body parts [37]. Constraining our
interfaces to be biomimetic may place a fundamental limitation
on the kinds of devices we can control [37]. Our results provide
evidence that the focus of human-machine interface research
should change from optimizing the map to optimizing other
aspects of the interface, in particular those which have been
shown to have a profound impact on learning and control.

For physically embodied robots one notable example is the
time delay between the user’s issued commands and the robot’s
physical actuation of the command [2]. In our experiment,
participants issued commands to the robot at ~10 Hz; however,
the robot can take ~1 second to move to a new configuration
if it must traverse the maximum workspace distance. If a new
command is sent before the last has been achieved, the motion
of the robot is truncated, and it begins moving toward the new
commanded configuration. This means that if users move their
hands quickly and send very different robot commands, they
may receive less feedback on how their hand postures relate to
the robot configuration.

Another important finding of our work is that a person’s apti-
tude for the task is highly predictive of their acquired proficiency.
This result suggests that individual-specific interventions may
provide a way to improve the skill acquisition of people who
would otherwise struggle to operate the device. Adapting the
map during operation is an individual-specific intervention that
has been shown to facilitate learning in low-DOF HMIs [12],
[30], [40]. Future works should investigate the effect of map
adaptation on learning to control complex robots.

V. CONCLUSION

In the field of robotics, rapid advancements have created a
need for new control paradigms which can provide people with
continuous, precise, and fast control of high DOF systems. In
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this work, we demonstrated that this can be achieved using a
high-dimensional hand teleoperation scheme where users oper-
ate a physically embodied 5 DOF robot arm and gripper using the
motion of their hand joints. We utilized our robot control scheme
to investigate the effect of the structure of the hand-to-robot map
on the skill acquisition of the user. Since the human-machine
interface field has placed a large focus on the optimization of
the user-to-device map, we hypothesized that optimizing our
map structure, in terms of variance capture and distribution of
variance, would lead to improvements in control. However, after
comparing the performance of 3 groups of people controlling the
robot via different maps (each constructed to maximize different
variance characteristics) we found that this hypothesis was false.
We identified that learning is largely robust to the map structure
and our findings support a shift in focus of human-machine
interface research. Future efforts to improve human-machine
interfaces should focus on aspects of the interface other than
the user-to-device map such as time delay, feedback, learning
environment, or map adaptation.
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