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Continuous Gesture Control of a Robot Arm:
Performance Is Robust to a Variety

of Hand-to-Robot Maps
Steafan E. Khan and Zachary C. Danziger

Abstract—Objective: Despite advances in human-
machine-interface design, we lack the ability to give
people precise and fast control over high degree of
freedom (DOF) systems, like robotic limbs. Attempts
to improve control often focus on the static map that
links user input to device commands; hypothesizing
that the user’s skill acquisition can be improved by
finding an intuitive map. Here we investigate what map
features affect skill acquisition. Methods: Each of our
36 participants used one of three maps that translated
their 19-dimensional finger movement into the 5 robot
joints and used the robot to pick up and move objects.
The maps were each constructed to maximize a different
control principle to reveal what features are most critical
for user performance. 1) Principal Components Analysis to
maximize the linear capture of finger variance, 2) our novel
Egalitarian Principal Components Analysis to maximize
the equality of variance captured by each component and
3) a Nonlinear Autoencoder to achieve both high variance
capture and less biased variance allocation across latent
dimensions Results: Despite large differences in the
mapping structures there were no significant differences
in group performance. Conclusion: Participants’ natural
aptitude had a far greater effect on performance than the
map. Significance: Robot-user interfaces are becoming
increasingly common and require new designs to make
them easier to operate. Here we show that optimizing
the map may not be the appropriate target to improve
operator skill. Therefore, further efforts should focus on
other aspects of the robot-user-interface such as feedback
or learning environment.

Index Terms—Assistive robotic manipulator, human-
machine interface, machine learning, teleoperation.

I. INTRODUCTION

R
APID advancements in robotics have produced systems

with many degrees of freedom (DOF) [1], [2], but these

sophisticated robots demand new high-dimensional interfaces

that let users engage with all the available DOFs at once, moving

beyond the common single-input-single-output strategies that
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are currently in use [1], [3]. One possibility is to use an abstract

map in which the user’s inputs have greater dimensionality than

the number of DOFs of the robot, i.e., a surjective map [4], [5].

The surjective map transforms the user’s high-dimensional input

into a lower-dimensional representation (equal in dimension to

the number of DOFs of the robot) that is used for control [4],

[5]. Surjective maps are attractive because the user input can

be almost any high-dimensional signal the user can produce

reliably (e.g., electromyographic activity, neural electrical ac-

tivity, or body kinematics [4], [6], [7]) and the control can be

straightforwardly calibrated to the abilities of an individual user.

Building a surjective user-to-device map that optimizes con-

trol performance is a common topic in the motor control lit-

erature [6], [8], [9], [10], [11], [12], although development

has focused mainly on low-DOF devices (e.g., 2-D control

of computer cursors, or powered wheelchairs [10], [12]) to

understand basic principles of learning or to prototype designs

in simpler environments. These studies typically rely on linear

dimensionality reduction techniques like Principal Components

Analysis (PCA) to create the surjective maps [4], [10], [11],

[13]. PCA is used to identify a subspace within the user’s high

dimensional input space which captures most of the variance of

their natural voluntary movements. The motivating hypothesis is

that capturing a large amount of the user’s natural input variance

is important for control, but it is unclear if this hypothesis

extends to control of high-DOF robots where investigations are

more limited [14], [15]. In fact, the limited success that PCA

maps have had in high-DOF contexts [14], [15] has recently

led investigators to hypothesize that PCA may not be suitable

for high DOF control because the way it allocates variance in

the user’s calibration data set is extremely biased toward a small

subset of all available device DOFs [16]. To achieve both a more

uniform distribution of variance across device DOFs and a high

total variance captured investigators have begun using nonlinear

dimensionality reduction algorithms such as autoencoders [16],

[17], [18], [19]. Although it was shown in a small sample that it

is possible to control a high-DOF device [16], it remains unclear

how much a nonlinear map can improve user control over linear

methods, if at all.

Our goal here is to determine 1) to what degree can par-

ticipants using a nonlinear autoencoder map outperform those

using a simpler PCA map in high-DOF robot control, and 2)

to understand if any differences in performance are attributable

to PCA’s biased variance allocation. This addresses both the
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above hypotheses that 1) the increased representational power

of nonlinear maps will improve high DOF device control over

linear maps and 2) biased input variance allocation along the

DOFs impairs controllability.

To test these hypotheses, we compare the performance of

healthy human participants operating a 5 DOF robot arm and

gripper using different surjective maps between their hand finger

joints and the robot joints. We utilize the participant’s finger

joints because they are a readily available source of high dimen-

sional signal over which the user has precise control. We create

the surjective maps using a Nonlinear Autoencoder (NLAE),

Principal Components Analysis (PCA), or our novel Egalitarian

Principal Components Analysis (EPCA). EPCA is a linear di-

mensionality reduction algorithm that trades off variance capture

for equal variance distribution. Unlike PCA, which distributes

variance in a rank-ordered fashion, EPCA distributes variance

uniformly (removing the bias) but at the expense of the total

variance captured. By comparing the performance of partici-

pants in the NLAE group to the performance of participants in

the two linear groups (EPCA and PCA) we identify what (if

any) performance gains result from using the nonlinear map.

By comparing the performance of participants in the PCA and

EPCA groups we identify whether the biased variance allocation

hypothesis is true. If biased variance allocation is detrimental to

robot control, then we would expect participants using EPCA

maps to outperform those using PCA maps, but if total variance

captured is more important then we would expect the reverse. A

preliminary version of this work has been reported [20].

II. METHODS

A. Experiment Setup

Participants wore a CyberGlove on their dominant hand. The

CyberGlove captured the motion of their fingers and thumb

via 19 resistive sensors. The 19-D vector of sensor values was

mapped to the angles of the 5 revolute joints of the robotic arm

(Interbotix WidowX250 5DOF) using 1 of 3 surjective mapping

algorithms: a nonlinear autoencoder neural network, principal

components analysis, or our novel egalitarian principal compo-

nents analysis. Commands were issued to the robot continuously

at a rate of ∼ 10 Hz.

Each surjective mapping algorithm mapped the 19-D vector

of sensor values to a 5-D latent representation in which each

element of the 5-D vector was used to specify the angle of one

of the robot’s revolute joints. To ensure the joint angle commands

generated were within the allowed ranges of motion of the robot

joints, each element of the 5-D vector was normalized to the

interval (0, 1) and thus specified the joint angle command as a

fraction of the robot joint’s range of motion, plus a bias of the

minimum allowed joint position.

In the formal expression in Fig. 1, Mgroup represents the

surjective mapping algorithm (described further below), Ji,i
represents the range of motion of the ith robot joint,Si represents

the ith sensor value, and φi represents the minimum joint posi-

tion of the ith robot joint. Participants were informed that their

hands would be mapped to commands for the robot but were

not told how the mapping would be performed or what robot

variables they would be controlling.

Fig. 1. Hand-to-robot map. Participants continuously controlled the
robot configuration using the motion of their fingers and thumb. In
each of our test groups the participant’s hand was transformed into a
robot command via a different surjective map Mgroup. Participants in
all groups performed the same object pick-up-and-place task using the
arm. ∗ Denotes the robot joint range of motion normalization, which is
the same across all groups.

The robot gripper was also controlled by the user, but not via

the surjective map M. Unlike the continuous arm joint angles,

the gripper was commanded between only an open or closed

state. Users toggled the gripper state by holding the robot still

for 2 seconds.

Additionally, user commands were automatically checked to

prevent the robot from colliding with the workspace table. Any

command predicted to result in a collision was re-issued such

that continuous operation was uninterrupted and stopped short

of the surface. The robot commands were generated using the

MATLAB (Mathworks) software and were sent to the ROS

(Robotics Operating System) software which communicated

with the physical robot [21].

B. Generation of the Surjective Maps

Calibration Data: For all groups, participants generated a

calibration dataset to fit their map (M∗group) using the same

protocol. The calibration set was obtained by having participants

wiggle their fingers and thumb continuously for 30 seconds

while the CyberGlove recorded their motions at approximately

∼10 Hz. This resulted in a calibration set of ∼300 hand postures

that captured the user’s natural posture tendencies and range of

motion.

PCA Map: The surjective map for participants in the PCA

group consisted of linearly projecting the participant’s hand

postures to a 5-dimensional latent space. The linear projection

matrix, A, was created by solving the optimization problem

posed in (1) by diagonalizing the data covariance matrix using

PCA. X represents a 300 by 19 mean-centered matrix of sensor

values from the calibration, the matrix norm is the Frobenius

norm, and W is a 19 by 19 matrix of principal components. The

first 5 PCs were used to form a 5 by 19 projection matrix A as

depicted in (2).

W = argminW
(∣∣∣∣XT

−WWTXT
∣∣∣∣) (1)
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A =

⎡
⎢⎣
W11 W21 . . . W19,1

...
... . . .

...

W15 W25 . . . W19,5

⎤
⎥⎦ (2)

The 5-D latent representation is therefore computed as the

following:

MPCA (s) = As (3)

where A is the 5 by 19 projection matrix shown in (2), and s is

the 19-D vector of sensor inputs.

EPCA Map: The surjective map for participants in the EPCA

group was created by numerically solving the optimization

problem posed in (4), which trades off reconstruction error

in the calibration data (1st term) against the variability in the

variance explained of the bases (2nd term). The optimization

was performed under the constraint that the basis vectors of W

have unit magnitude, which ensured that the EPCA algorithm

did not rescale PCs to achieve an equal distribution of variance

but rather solved for a completely different subspace. Here, X

represents a 300 by 19 mean centered matrix of sensor values

and W is a 5 by 19 projection matrix.

W = argminW

⎛
⎝∣∣∣∣XT

−W+WXT
∣∣∣∣

+ c

√√√√
(

r∑

i = 1

(Vii −
1

r
tr (V ))

2
)⎞
⎠ (4)

where,V = 1
n−1

(WXT )(WXT )
T

, r= 5 is the dimensionality

of the latent space, n = 300, is the number of observations,

and c = 10, is an empirically chosen constant. + denotes the

Moore-Penrose pseudoinverse.

MEPCA (s) = Ws (5)

Nonlinear Autoencoder Neural Network (NLAE): The sur-

jective map for participants in the NLAE group was created by

training an autoencoder neural network on the calibration dataset

[22]. The initialization of the network weights was obtained by

training the autoencoder network using example CyberGlove

data consisting of ∼1700 hand postures collected across 6

individuals prior to the study (who did not participate in the

study). The calibration dataset was partitioned into 70% training,

15% testing, and 15% validation datasets. The network was

trained via Levenberg-Marquardt backpropagation until either

the magnitude of the mean-squared-error gradient was less than

1E-7, or 1000 training iterations were performed.

The network architecture is the following:

Encoder:

layer1 = tanh (w1s+ b1) (6)

layer2 = w2 layer1 + b2 (7)

Decoder:

Output = tanh(w3 layer2 + b3) (8)

Fig. 2. Experiment Setup. The 5 DOF robotic arm and gripper (right)
the object (middle) and the participant’s hand in the CyberGlove (left).

where, wjand bj correspond to the network weights and biases

for the jth network layer. The surjective mapping is shown below

in (9).

MNLAE (S) = Encoder (s) (9)

C. Normalization

The output of Mgroup(s) for all groups was normalized to

the interval (0,1) using the following normalization function:

Z (s) = (Mgroup (s)− Lmin)� (Lmax − Lmin) (10)

where s is the vector of sensor values, Mgroup is the surjec-

tive mapping algorithm, Lmax is the 5-D vector maximum of

Mgroup(X) (X being the calibration data), Lmin is the 5-D vec-

tor minimum of Mgroup(X) and � denotes Hadamard element

by element vector division. Z(s) is denoted as ∗ in Fig. 1; where

M ∗
group represents Z(Mgroup(s)).

D. Protocol

Thirty-six healthy adults (aged 18–55) provided written in-

formed consent to procedures approved by the Institutional

Review Board at Florida International University. Participants

were randomly assigned to one of 3 groups (n = 12/group),

which differed in terms of the surjective mapping that they used

for control. Prior to beginning the robot control task (below)

participants completed the Purdue Pegboard test which is used

to measure manual dexterity [23]. Groups were gender balanced

and participant ages were on average 25± 6 years.

Participants were seated 3 feet away from a tabletop 5-DOF

robotic arm and gripper which they controlled with their finger

movements for approximately two hours. They were seated

outside of the robot workspace and observed the motion of

the robot from the left-hand side of the robot arm. Participants

wore a CyberGlove 3 data glove on their dominant hand. We

recorded 19 joint angles from the fingers, thumb, and palm arc

and used these signals to control the configuration of the robot

arm Fig. 2. The participant’s task was to pick up cylindrical

objects (0.5 cm diameter by 21 cm height) placed throughout

the robot’s workspace (45 unique object positions) and move

them to a target bin (5-inch diameter) located on the near side of

the table. The objects were supported by a spring which allowed

the robot to bump into them without knocking them over. If
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the object was pushed outside of the robot workspace or was

dropped, the trial ended.

Subjects were placed into one of three groups, each controlled

the robot by using a different surjective mapping between their

finger joint angles and the robot configuration: PCA, EPCA, or

NLAE.

Task: All groups performed the same two tasks: a 5-minute

exploration task, and a 90-minute testing task. The exploration

task consisted of unguided control of the robot during which

participants explored how their hand postures related to the

motion of the robot. The testing task consisted of 5 epochs

of 9 trials each, during which participants would attempt to

pick up the object and deposit it into the target bin. All trials

started from the same nominal robot configuration and lasted

a maximum of 2 minutes. Between epochs there was a rest

period of approximately 2 minutes. Participants were told that

they would be evaluated based on how many trial stages they

completed per trial, where stages were defined as: object touch,

object grasp, object lift, and object place (into the target bucket).

E. Data Analysis

To assess the total hand variance captured by each of the

maps we computed the Variance Accounted For (VAF) depicted

in (11).

V AF =

(
1−

var(X − X̂)

var (X)

)
(11)

where X is the 300 by 19 matrix of sensor values used to calibrate

the mappings and X̂ is the reconstruction of the calibration

data from its 5-D latent representation. The reconstruction of

the sensor data for the NLAE group was performed by passing

the 5-D latent representation through layer 3 of the network. The

reconstruction for the PCA and EPCA group was obtained by

algebraically solving (3) and (5) for s. A VAF of 100% would

indicate that the inverse mapping could perfectly reconstruct the

calibration sensor data from its 5-D latent representation.

Our primary outcome measure was trial score. During each

trial participants were awarded one point for every trial stage

they completed; where stages were defined as: touching the

object with the robot end effector, grasping the object with

the robot gripper, lifting the object, and placing the object into the

target. The score measure was computed as the sum of points a

participant earned throughout a trial. This measure was selected

prior to the start of data collection.

Score =

4∑

i = 1

pointsi (12)

The performance measure in (12) was formulated to capture

our intuitions about what a successful trial consisted of (i.e.,

passing through each natural stage of the reach should count

as increasingly successful), however, many variations on that

expression may also meet those requirements. To ensure that

the specific formulation for computing “score” we chose was

not itself the main factor in determining our statistical outcomes,

we tested numerous variants. Additional measures we examined

to characterize the learning outcomes and robot control post hoc

were:
� Nonlinear Progressive Score Measures: Variants of (12),

in which more points are awarded for later trial stages.
� Success Rate: The total number of successful trials com-

pleted per epoch by participants.
� Smoothness Index: Number of peaks in the robot end

effector speed profile during reaches to objects. A peak

is a speed greater than 20% of the maximum robot end

effector speed of each trajectory [16].
� Normalized Path Length: The path length of the robot end

effector trajectory during reaches to objects normalized by

the straight-line distance between the starting position of

the end effector and the target object [16].
� Contact time: The time taken to successfully reach the

object and touch it with the robot end effector, where failed

trials are set to the maximum of 120 seconds.
� Normalized Joint Variance: Variance of the motion of each

robot joint normalized by the total motion variance of all

robot joints.
� Planarity: The percentage of hand posture variance cap-

tured by the first 5 Principal Components in each exper-

iment trial. Where the PCs are obtained by performing

PCA on the trial data (not the calibration data) [11].
� Hand Variance: The total variance of all 19 dimensions of

the user’s input during an experiment trial.

To investigate whether the type of surjective mapping had an

effect on learning we performed a two-way repeated measures

ANOVA on our primary outcome measure score, in which the

within participants factor was epoch and the between partici-

pants factor was group. We used Shapiro-Wilk’s test to verify the

normality assumption and Mauchly’s test to verify the sphericity

assumption. Where sphericity was violated, we applied the

Greenhouse-Geisser correction.

To characterize changes in participant’s control of the robot

across time we compared the Success Rate, Contact Time, Nor-

malized Path Length, and Smoothness Index during the first and

last experiment epochs using rANOVAs. To identify differences

in control characteristics between groups we performed one-

way ANOVAs on the Success Rate, Contact Time, Normalized

Path Length, Smoothness Index, and Normalized Joint Variance

during the last experiment epoch.

The significance level was set at α = 0.05 and post hoc

comparisons were performed using a Bonferroni corrected sig-

nificance (α = 0.025 for the rANOVAs). Where normality was

violated we examined the Kurtosis and Skewness of the data and

found the distributions were approximately normal [24], [25].

Additionally, to compare the effect of group with the effect

of initial participant aptitude we performed a Hierarchical Re-

gression in which we regressed baseline participant performance

(cumulative sum of trial scores during the first epoch) and group

against acquired proficiency (cumulative sum of trial scores

during epochs 2-5); and subsequently regressed only baseline

performance against acquired proficiency without the group

predictor. Correlations were assessed using the Correlation Co-

efficient in MATLAB. All group comparisons were performed

in the SPSS statistics software.
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Fig. 3. Comparison of the calibration variance captured and distri-
bution of calibration variance across latent dimensions by each map.
(a) Variance Accounted For by each latent dimension of the maps for
every experiment participant. The PCA map (middle) had the greatest
variance accounted for by its first latent dimension with steeply declining
variance accounted for by the subsequent dimensions. The EPCA map
(right) had the same variance accounted for by each of its latent dimen-
sions. The NLAE map (left) had a random amount of variance captured
by each latent dimension. (b) The total variance accounted for by each
of the maps. The NLAE (left) has the greatest VAF, followed closely by
PCA (middle), and far exceeded the VAF by EPCA (right).

III. RESULTS

We constructed 3 surjective maps between the hand and

robot, each maximizing a different control principle to reveal

what features of the map affected operator skill acquisition. We

selected 1) Principal Components Analysis (PCA) to maximize

the linear capture of finger variance, 2) our novel Egalitarian

Principal Components Analysis (EPCA) to maximize the equal-

ity of variance captured by each latent dimension of the map,

and 3) a Nonlinear Autoencoder (NLAE) to both maximize the

ability to represent the user’s full range of finger movements and

achieve a more equitable distribution of variance across latent

dimensions than PCA.

A. Representation of Calibration Data

The NLAE captured the greatest amount of variance in the

calibration data. On average, it captured 92% of the user’s

calibration hand variance with 5 latent dimensions; compared to

88% for PCA and 47% for EPCA (Fig. 3(b)). By construction,

the mappings also differed in how they distributed the user’s

calibration hand variance across their latent dimensions. The

NLAE distributes user variance randomly across its code units

while PCA distributes variance in a rank-ordered fashion across

its basis vectors and EPCA distributes variance uniformly across

its basis vectors (Fig. 3(a)).

B. Task Performance

Our primary goal was to identify how the map features af-

fected user skill acquisition at a functional robot control task.

By construction, each group’s map differed significantly with

respect to the calibration variance captured, and their distribution

of the calibration variance across latent dimensions (Fig. 3).

However, despite the stark differences between the maps, we

identified no significant performance difference between groups.

A two-way repeated measures ANOVA performed on scores

(averaged over each epoch) yielded no significant interaction

effect of group and epoch on score (F(4, 8) = 22.121, p =
0.72, Partial Eta Squared = 0.04). Our a priori power was

estimated as 0.93 for a medium effect size of F = 0.25 for

our two-way repeated measures ANOVA, meaning, if there was

a substantial effect of the map on participant skill it is very

likely that we would have detected it. We found no significant

main effect of the group via a one-way ANOVA performed

on the average points earned by each participant (F (2, 33) =
2.81, p = 0.073, Eta Squared = 0.15). There was a significant

effect of epoch on participant scores (F(4, 132) = 22.12) p <

0.01; partial eta squared = 0.40), indicating that participants

were able to improve at the task with practice regardless of

the map. Repeating this analysis after substituting ‘score’ with

other nonlinear progressive score measures did not change our

findings.

To test whether participant’s manual dexterity impacted their

performance at the task we computed the Correlation Coefficient

between participant’s Purdue Pegboard Test Scores and their

total points earned during the robot control. We found no signifi-

cant correlation between dexterity and performance (R = -0.08,

p = 0.66), indicating that manual dexterity did not influence

participant’s ability to learn the task (One NLAE participant

was omitted from the correlation analysis due to an error in their

Purdue Pegboard Test data collection).

Successfully completing all task stages proved to be difficult

for the majority of participants. However, there were a few

participants in each group that excelled at the task. Throughout

the experiment participants in all groups were able to improve

significantly in terms of their ability to successfully complete

all task stages. Comparing the first and last epochs there was

a main effect of practice on Success Rate for all groups (F(1,

11) = 10.39, p = 0.008); F(1, 11) = 9.37, p = 0.011; F(1,

11) = 13.28, p = 0.004 NLAE, PCA, and EPCA respectively).

Additionally, we found no significant difference in Success Rate

between groups during the last epoch (F(2, 33)= 1.76, p= 0.19,

Partial Eta Squared = 0.10).

Throughout the experiment participants in all groups signif-

icantly reduced the time required to reach to and touch each of

the objects (F(1, 11) = 18.851, p = 0.001; F(1, 11) = 21.359,

p < 0.001; F(1, 11) = 11.764, p = 0.006); for NLAE, PCA,

and EPCA respectively) (Fig. 9). Comparing group average

contact times in the 5th (last) epoch we found a statistically

significant difference between the groups (F(2, 33) = 4.89, p =
0.01, Partial Eta Squared= 0.23). Post hoc analysis using a Bon-

ferroni corrected alpha revealed the PCA group was significantly

different from the EPCA group (p= 0.01) with regards to contact

time.

The participant task performance results (Figs. 4 and 5) indi-

cated that participant’s initial aptitude may be more predictive

of acquired proficiency than the mapping they used. To compare

the predictive power of initial aptitude to the predictive power of

the group on participant skill acquisition we performed a Hier-

archical Regression. We first regressed initial aptitude (partici-

pant’s points earned in the first testing epoch) and group against
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Fig. 4. Comparison of each group‘s performance at the robot control
task. Within each group participant scores for each trial were averaged.
The group averages were then smoothed (using a moving average filter
over the 10 preceding trials) and plotted. Error bounds depict standard
error. The large inter-participant variability dominates any small differ-
ence in performance between groups.

Fig. 5. There is no difference in participant’s ability to complete all
task stages between groups. Box plots depict individual participant’s
percentage of successful trials per experiment epoch.

Fig. 6. Initial aptitude is highly predictive of acquired proficiency. Scat-
ter plot depicts the participants‘ cumulative sum of trial scores in the first
experiment epoch versus the cumulative sum of trial scores throughout
the remainder of the experiment.

acquired proficiency (participant’s total points earned in epochs

2–5) and found a strong correlation R2 = 0.40 and a significant

R2change(R2change = 0.40, F (3, 32) = 6.99, p < 0.01).
Then we removed the group from our predictors and regressed

only initial aptitude against acquired proficiency (Fig. 6).

Without the group predictor we again identified a strong

correlation R2 = 0.34 and found a nonsignificant change

TABLE I
SPSS OUTPUT FROM THE HIERARCHICAL REGRESSION

Fig. 7. Average group performance on each experiment trial plotted
against the average planarity of participant hand motions on each trial.
On average participants earned more points when they increased the
planarity (variance captured by a 5-D linear latent space) of their inputs.
Color depicts the trial number.

in R2 (R2change = −0.06, F (2, 32) = 1.53, p = 0.23).
These results (depicted below in Table I) show that participant’s

initial aptitude is highly predictive of acquired proficiency while

the map participants were provided has no predictive power with

regards to participants‘ acquired skill.

C. Analysis of Robot Control

To investigate the effect of the map’s distribution of partic-

ipant calibration hand variance on the participant’s reliance on

robot DOFs we computed the normalized robot joint variance

during the last experiment epoch (Fig. 10). One-way ANOVAs

performed on participants normalized robot joint variance iden-

tified no statistically significant difference between the groups

(F(2, 33) = 1.42, p = 0.26, Eta Squared = 0.08; F(2, 33) = 2.27,

p = 0.12, Eta Squared = 0.12; F(2, 33) = 0.38, p = 0.69, Eta

Squared = 0.02; F(2, 33) = 0.78, p = 0.47, Eta Squared = 0.05;

F(2, 33) = 0.41, p = 0.66, Eta Squared = 0.02; for joints 1–5

respectively). Comparing the distribution of robot joint variance

shown in Fig. 10 with the distribution of user’s calibration hand

variance shown in Fig. 3, we did not identify the same pattern

of variance distribution. The allocation of participant’s hand

variance across latent dimensions during calibration was not

predictive of participant’s reliance on robot DOFs during the

control task.
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Fig. 8. Average group performance on each experiment trial plotted
against average hand motion variance. Participants in the different
groups learned different strategies to adapt to the structure of their maps
but despite behavioral differences in user inputs, there are no differences
in task performance.

Fig. 9. Distributions of the time participants took to reach to and touch
each object during the testing trials (averaged over epoch). Participants
in all groups learned to reach objects faster as the experiment pro-
gressed. Comparison of group performance in epoch 5 yielded a sig-
nificant difference between PCA and EPCA groups (removal of outliers
did not change results).

Throughout the experiment participants in the PCA group

increased the smoothness of their end effector trajectories (F(1,

10) = 11.60), p < 0.01, Partial Eta Squared = 0.54) (Fig. 11).

Participants in the NLAE and EPCA groups did not appear to

increase smoothness (F(1, 11) = 0.28, Partial Eta Squared =
0.025; F(1, 11) = 0.79, p = 0.39, Partial Eta Squared = 0.07

respectively). A comparison of the Smoothness Index of all

groups in the final testing epoch revealed a significant difference

between groups (F(2, 32) = 5.23, p = 0.01, Partial Eta Squared

= 0.25). Post hoc analysis using a Bonferroni corrected alpha

revealed a statistically significant difference between EPCA and

PCA (p = 0.01). One PCA subject was excluded from the

Smoothness Index analysis since their end effector velocity data

was not recorded.

Participant’s in the PCA group reduced the normalized path

length of their end effector trajectories (F(1, 10) = 13.90, p <

0.01, Partial Eta Squared = 0.58) (Fig. 12). The NLAE and

EPCA participants did not appear to reduce their normalized

path length (F(1, 11) = 0.06, p = 0.81, Partial Eta Squared <

0.01; F(1, 11) = 1.81, p = 0.21, Partial Eta Squared = 0.14,

respectively). A comparison of normalized path length in the

last epoch found no statistically significant difference between

any of the groups (F(2, 32) = 1.26, p= 0.30, Partial Eta Squared

= 0.07). One PCA subject was excluded from the normalized

path length analysis since their end effector trajectory data was

not recorded.

D. Learning Correlates

Despite the difficulty of the task, participants were able

to improve with practice, which raised the question of what

participants had learned to do to improve. To answer this

question, we searched for characteristics of the participants’

inputs that correlated with improved task performance. We found

a significant correlation between the average (5-dimensional)

planarity of participants’ hand postures and the average scores

earned on a trial across all groups (R = 0.78, p <0.01; R =
0.80, p<0.01 R = 0.82 p<0.01 for NLAE, PCA, and EPCA

respectively) (Fig. 7). This result indicated that improving at the

task required participants to learn to reduce the dimensionality

of their inputs.

Next, to further characterize how participants in each group

changed their inputs to improve at the task we examined the

average variance of the participants‘ hand motions in each group

over each experiment trial (Fig. 8). Participants in the PCA group

did not significantly reduce the variance of their hand motions

(R = 0.26, p = 0.08), while participants in the EPCA and NLAE

groups did (R = -0.53, p<0.01; R = -0.66, p<0.01; for NLAE

and EPCA respectively). Participants in the EPCA group may

reduce the variance of their hand inputs as they realize that much

of their hand motion has no impact on the robot control (due to

the low VAF of the EPCA map), while participants in the NLAE

group may reduce their hand variance because the nonlinearities

of the map can relate small changes in the input to very large

changes in robot commands. In both instances, the reduction in

hand variance may be explained by a desire to increase feedback

from hand motions.

The PCA group did not follow the same trend of hand variance

reduction (Fig. 8) observed in the NLAE and EPCA groups, but

did follow the trend of increasing planarity (Fig. 7). This result

suggests that users in the PCA group learned to confine their

finger articulation to a subspace of their full possible range of

motion while simultaneously increasing the amount of finger

motion within that subspace. PCA may differ from the other two

groups in this respect because it both captures a large amount of

calibration variance and is linear. Since the PCA bases capture a

large amount of variance they represent hand motions in which

many (if not all) of the user’s hand joint angles are changing

across a large range of motion. Therefore, to move throughout

the PCA subspace (and change their commands to the robot

joints) users have to make hand movements which have a large

amount of variance associated with them. It is possible that,

unlike in the NLAE and EPCA groups, users in the PCA group

cannot reduce total hand motion variance to increase feedback.

IV. DISCUSSIONS

In this human-machine interface (HMI) study, we imple-

mented 3 abstract surjective maps that transformed 19 joint

angles of the human hand into a command for the configuration

of a 5 DOF, physically embodied robotic arm. We constructed

our maps to investigate to what degree people using a nonlinear

autoencoder could outperform those using a simpler linear PCA

map for high-DOF robot control, and to identify if any perfor-

mance differences were attributable to PCA’s biased variance
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Fig. 10. Map distribution of calibration variance is not predictive of
participant’s reliance on robot joints. Box plots depict the percentage
of robot motion variance allocated onto each robot joint during the last
experiment epoch for each participant. One-way ANOVAs performed
on the group data for each robot joint yielded no significant difference
between groups (this result was unchanged by the removal of outliers).

allocation. The study’s main finding was that the map linking

hand joints to robot joints did not affect performance (Fig. 4).

This result runs contrary to the implicit (and often explicit)

hypothesis underlying a large body of HMI work, namely that

optimizing the user-to-device map is critical for users to become

proficient with high dimensional HMIs [9], [16], [26], [27], [28],

[29]. Instead, we find that subjects display a range of natural

aptitude, from skilled to non-functional, and that this range is

equivalent across the three very different maps (Figs. 5 and 6).

Our findings suggest that efforts to improve high dimensional,

robot HMIs should not focus on tuning and calibrating the static

user-to-device map, and instead focus on other areas such as

co-adaptation [12], [30] feedback [31], or learning environment

[32].

A. Effect of Map Structure on User Performance

Since PCA distributes variance in a rank-ordered fashion

along its basis vectors (Fig. 3(a)), the lowest variance principal

components are often attributed to noise. In the case of the

hand data collected in this study, on average PCs 4 and 5

accounted for only ∼6% and ∼4% of the user’s calibration

variance respectively. If these PCs represent calibration finger

articulations that were less natural or accessible to participants,

we might expect participants to be less able to control the

corresponding robot DOFs, ultimately leading to a bias toward

using the DOFs corresponding to the top PCs and an overall

degradation in robot controllability. Other investigators have

made similar speculations when constructing mappings from

body kinematics to high DOF devices (e.g., simulated robots

[16]).

To test this “PC control bias” hypothesis, we created the novel

Egalitarian Principal Components Analysis (EPCA), which

forces a similar allocation of variance among each of its basis

vectors (Fig. 3(a)). This eliminated the supposed problem of

low-variance-capture bases in PCA, at the expense of a reduction

in overall variance explained. If biased variance capture is a large

detriment to controllability we would expect the EPCA group to

perform better than PCA, on the other hand, if total calibration

variance explained is more important for controllability we

would expect the reverse.

Fig. 11. Box plots depict the normalized smoothness index of the robot
end effector velocity profile when reaching to objects (averaged over
each epoch). Participants in the PCA group reach along smoother trajec-
tories at the end of the experiment compared to the beginning. We found
a significant difference in the smoothness of end effector trajectories
between the PCA and EPCA groups in epoch 5 (removal of outliers
did not change this result). However, this difference disappeared after
normalizing the smoothness index by the reach duration, suggesting
that the smoothness of reach trajectories was not different between the
groups.

We found that there was no difference in performance between

the PCA and EPCA groups, suggesting that steeply declining

rank-ordered variance allocation among map bases does not

impede controllability. In other words, the PC control bias

hypothesis is false. Since, the task includes both positioning

and orienting the end effector of the robot, PCA users needed to

control all DOFs of the arm including the wrist DOFs (controlled

by the low variance PCs). Not only could users in the PCA group

learn to control the wrist DOFs, we further found that after

practice there was no difference in the allocation of variance

across the robot DOFs between any of the groups (Fig. 10.) This

result indicates that, although a bias in the control may initially

be present due to the imbalance in the distribution of variance

across PCs, through feedback users can readily adapt to this

aspect of the mapping.

The EPCA-PCA performance equivalence raises the pos-

sibility that both high total variance explained and unbiased

variance among bases are required for boosting task proficiency.

This tradeoff can be overcome by using the NLAE, which has

higher total calibration variance explained and lower variability

of variance explained among its latent dimensions than PCA.

But even the NLAE group did not outperform PCA (and was

possibly slightly worse). These results suggest that, for the class

of maps calibrated on a user’s unstructured exploration of their

articulation space, the structure of the map is unimportant for

robot controllability.

B. Robot End Effector Trajectories

Despite equivalent performance between groups, it is still

possible that differences in the maps led participants towards

different robot control strategies. To assess this possibility, we

characterized the robot end effector trajectories in terms of the

smoothness index and normalized path length (Figs 11 and

12). We found a significant difference in the Smoothness Index

between the PCA and EPCA groups at the end of practice. Since,
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Fig. 12. Box plots depict the normalized path length of the robot end
effector when reaching to each object (averaged over epoch). Partici-
pants in the PCA group reached along shorter trajectories at the end
of the experiment compared to the beginning. We found no difference
between groups in terms of normalized path length in epoch 5 (removal
of outliers did not change this result).

we did not also identify a difference between the NLAE group

and either the PCA or EPCA groups we concluded that the

observed difference in Smoothness Index likely resulted from

the slightly longer time that the EPCA participants took to

reach the objects in the final epoch. Normalizing Smoothness

Index by the contact time for each trial resulted in no significant

difference between any of the groups.

We also did not identify any difference in normalized path

length between the groups in the last experiment epoch. Al-

though the normalized path length of our participants in the final

experiment epoch is quite large (on average, approximately 50

times the straight line distance between the end effector start

position and target), compared to results previously reported

[16]. We suspect that our participants may not exhibit the same

robot control characteristics as the literature because 1) we

distribute our objects throughout more workspace territory than

is typical in the literature, and 2) we compute end effector paths

based on the joint-space commands participants send and not

from measured end effector positions. Since participants can

generate commands faster than the robot can actuate them, the

actual trajectories of the robot end effector are shorter than the

computed trajectories. In the literature, the effect of time delay

may be less significant due to the use of simulated robots [16],

or velocity controls [8], [33], [34], [35], [36].

C. Determinants of Skill Acquisition

Although there was no difference in performance between our

groups there was enormous inter-participant variability which

suggested that individual participant aptitude may be the real de-

terminant of user skill acquisition. Our Hierarchical Regression

(Table I) demonstrated that an individual’s performance early in

the experiment was highly predictive of the scores they would

go on to accumulate throughout the experiment. Participants

that learned to advance to higher task stages earlier consistently

earned higher scores.

Since, identifying how participants learned to perform the

higher task stages may offer valuable insight into how to guide

learning, we performed an exploratory data analysis to deter-

mine whether there were common behaviors which participants

employed when successfully completing the task. We found

that regardless of the map all participants learned to reduce

the dimensionality (increase planarity) of their inputs when

controlling the robot (Fig. 7). This result agrees with previously

reported findings [11].

Additionally, despite there being no difference in robot control

strategy, utilizing our different maps did require users to learn

to generate different hand inputs. Participants in the NLAE and

EPCA groups learned to reduce the variance of their hand inputs

while participants in the PCA group did not. We suspect that

the reduction in hand variance was likely learned to increase

feedback from robot commands. Although participants learned

to generate different hand inputs to adapt to the different maps

this did not have a significant effect on the robot control.

D. Implications for Human-Machine Interfaces

A long-standing goal of the field of human-machine interfaces

has been to design biomimetic interfaces which provide humans

control of devices in the same manner that they naturally control

their own body parts [37]. Although the biomimetic approach

can reduce the learning burden of the human operator, previous

works have shown that after practice there is no difference in

the proficiency of control [28], [38], [39]. Furthermore, it may

not be possible to design biomimetic controls for devices which

are dissimilar from biological body parts [37]. Constraining our

interfaces to be biomimetic may place a fundamental limitation

on the kinds of devices we can control [37]. Our results provide

evidence that the focus of human-machine interface research

should change from optimizing the map to optimizing other

aspects of the interface, in particular those which have been

shown to have a profound impact on learning and control.

For physically embodied robots one notable example is the

time delay between the user’s issued commands and the robot’s

physical actuation of the command [2]. In our experiment,

participants issued commands to the robot at ∼10 Hz; however,

the robot can take ∼1 second to move to a new configuration

if it must traverse the maximum workspace distance. If a new

command is sent before the last has been achieved, the motion

of the robot is truncated, and it begins moving toward the new

commanded configuration. This means that if users move their

hands quickly and send very different robot commands, they

may receive less feedback on how their hand postures relate to

the robot configuration.

Another important finding of our work is that a person’s apti-

tude for the task is highly predictive of their acquired proficiency.

This result suggests that individual-specific interventions may

provide a way to improve the skill acquisition of people who

would otherwise struggle to operate the device. Adapting the

map during operation is an individual-specific intervention that

has been shown to facilitate learning in low-DOF HMIs [12],

[30], [40]. Future works should investigate the effect of map

adaptation on learning to control complex robots.

V. CONCLUSION

In the field of robotics, rapid advancements have created a

need for new control paradigms which can provide people with

continuous, precise, and fast control of high DOF systems. In
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this work, we demonstrated that this can be achieved using a

high-dimensional hand teleoperation scheme where users oper-

ate a physically embodied 5 DOF robot arm and gripper using the

motion of their hand joints. We utilized our robot control scheme

to investigate the effect of the structure of the hand-to-robot map

on the skill acquisition of the user. Since the human-machine

interface field has placed a large focus on the optimization of

the user-to-device map, we hypothesized that optimizing our

map structure, in terms of variance capture and distribution of

variance, would lead to improvements in control. However, after

comparing the performance of 3 groups of people controlling the

robot via different maps (each constructed to maximize different

variance characteristics) we found that this hypothesis was false.

We identified that learning is largely robust to the map structure

and our findings support a shift in focus of human-machine

interface research. Future efforts to improve human-machine

interfaces should focus on aspects of the interface other than

the user-to-device map such as time delay, feedback, learning

environment, or map adaptation.
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