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ABSTRACT

The light absorption properties of brown carbon (BrC), which are linked to molecular
chromophores, may play a significant role in the Earth’s energy budget. While nitroaromatic
compounds have been identified as strong chromophores in wildfire-driven BrC, other types of
chromophores remain to be investigated. As an electron-withdrawing group ubiquitous in the
atmosphere, we characterized carbonyl chromophores in BrC samples from the nighttime
oxidation of furan and pyrrole derivatives, which are important but understudied precursors of
secondary organic aerosols (SOA) primarily found in wildfire emissions. Various carbonyl
chromophores were characterized and quantified in BrC samples, and their ultraviolet-visible (UV-
Vis) spectra were simulated using time-dependent density functional theory (TD-DFT). Our
findings suggest that chromophores with carbonyls bonded to nitrogen (i.e., imides and amides)
derived from N-containing heterocyclic precursors substantially contribute to BrC light absorption.
The quantified N-containing carbonyl chromophores contributed to over 40% of the total light
absorption at wavelengths below 350 nm and above 430 nm in pyrrole BrC. The contributions of
chromophores to total light absorption differed significantly by wavelength, highlighting their
divergent importance in different wavelength ranges. Overall, our findings highlight the
significance of carbonyl chromophores in secondary BrC and underscore the need for further

investigation.

KEYWORDS
furan and pyrrole derivatives, secondary organic aerosols, imides and amides, light absorption

contribution, wavelength dependency
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Synopsis
Atmospheric carbonyls are formed by the oxidation of various volatile organic compounds (VOCs),
and they have the potential to be important chromophores in secondary brown carbon, especially

those from nighttime oxidation of N-containing heterocyclic VOC precursors.
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INTRODUCTION

Atmospheric brown carbon (BrC) is an important contributor to global warming, with a
+0.10-0.55 W m™ direct radiative effect!"* (~20-24% contribution) on the top-of-atmosphere direct
radiative forcing.* > The contribution of BrC absorption is enhanced at higher altitudes® and varies
by both daily and seasonal cycles,’ especially due to changes in air pollution and cloud coverage.”
§ Conversely, the light absorption of BrC may also indirectly reduce the global coverage of clouds
and decrease their cooling effects.” The spatial and temporal variations of BrC light absorption,
and consequently their impacts, are strongly related to the changes in chemical composition.® '°
However, parameterization pertinent to BrC constituents remains underdeveloped in climate

models,!! hindering accurate evaluations of BrC optical properties and climate change prediction.'?

13

Accurate representations of BrC’s effects on climate change require a comprehensive
process-level understanding of the formation and evolution of molecular chromophores, which
play a key role in regulating the light absorption properties of BrC. Nitroaromatic chromophores,
also known as nitrated aromatic compounds, have been recognized as significant contributors to
BrC light absorption. For example, Li et al. and Frka et al. reported that nitroaromatic

1415 while

chromophores may contribute to ~17-31% light absorption of BrC at 365-370 nm,
Bluvshtein et al. and Lin et al. indicated an even higher ratio (i.e., 50-80%) at wavelengths above
350 nm in biomass burning events.'® !” Although nitroaromatic chromophores may not account
for a large fraction of aerosol mass, their contribution to BrC light absorption at 365 nm can be
~2-10 times that of their mass contribution in BrC samples.!* !> 18 1 Among a variety of
nitroaromatic chromophores, nitrophenols and nitrocatechols have been identified as two major

19, 20

groups of nitroaromatic chromophores in ambient aerosols, and they have been widely
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investigated to characterize the BrC formation and evolution due to photooxidation or
photolysis.?!2¢

While nitroaromatic chromophores have been identified as potential tracers of BrC in
atmospheric processing due to their significant role in the light absorption of BrC at 365 nm,?’ the
contributors to the BrC absorption spectra in the near ultraviolet (UV) range below 365 nm have
not been fully deconvoluted. In contrast to the >50% contribution of light absorption above 350
nm, nitroaromatic chromophores only accounted for ~20% of light absorption at 300 nm in
biomass burning events, according to studies reported by Bluvshtein et al. and Lin et al.'!7 The
wavelength-dependent contributions to BrC light absorption suggest the critical role of other types
of chromophores in UV absorption. Since the light absorption of BrC chromophores is induced by
electronic transitions, similar to nitroaromatics, which have strongly electron-withdrawing nitro
groups attached to the aromatic rings, unsaturated organic compounds or conjugated systems
coupled with other types of electron-withdrawing groups such as carbonyls could also be
chromophore candidates.!® 2® For instance, the simplest unsaturated carbonyl compound (i.e.,
acrolein) can absorb sunlight above 290 nm.**° From field studies, it has been reported that

31.32 and significant

carbonyls may contribute to a large mass fraction of biomass burning aerosols
light absorption in the BrC.!%**3* The molecular absorptivity of numerous carbonyl compounds
observed in ambient aerosols is comparable to the absorptivity of nitroaromatic chromophores at
290-350 nm.* Therefore, it is essential to characterize carbonyl chromophores and constrain their
roles in BrC light absorption.

In this study, we characterized carbonyl chromophores in secondary organic aerosols (SOA)

from the nighttime oxidation of a series of unsaturated heterocyclic volatile organic compounds

(VOCs), including pyrrole, 1-methylpyrrole (1-MP), 2-methylpyrrole (2-MP), furan, and furfural,
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that have been widely observed in biomass burning events,*¢-

and may account for ~30% of the
initial nitrate radical (NO;) reactivity in wildfire-driven nighttime chemistry.** Recently, these
VOCs were reported as potentially important precursors for secondary BrC formation during

41-44 in which several carbonyl chromophores were observed.* Multi-

nighttime oxidation,
instrumental characterization along with theoretical calculations of ultraviolet-visible (UV-Vis)
spectra were employed here to elucidate the structures of carbonyl chromophores and their spectral
light absorptivity. This study focuses on the light absorption contribution of carbonyl
chromophores in pyrrole SOA and 2-MP SOA; because nitroaromatic chromophores have been
identified as critical contributors to BrC light absorption in these systems, they can serve as a
benchmark for comparisons.*? Characterizing BrC chromophores at the molecular level can

contribute to a deeper process-level understanding of the formation and evolution of secondary

BrC light absorption in changing environments.

METHODS

Experimental setup. Experiments were performed in a 10 m® Teflon FEP chamber at room
temperature (20-25 °C) and low relative humidity (RH< 20%) in the dark. Details of the
experimental setup and SOA properties, including number and size distribution, aerosol effective
density, and mass fraction of organics, were introduced in our previous studies.*> ** In brief, 450
ppb NO> and 1500 ppb O3 (initial [NO2]/[O3] = 0.3) were first injected into the chamber and
allowed to react for one hour, producing ~22 ppb nitrate radicals (NO3).** To investigate the effects
of NO; radical levels on the light absorption contributions of BrC chromophores, additional
experiments were carried out with 150 ppb NO; and 1500 ppb Os (initial [NO2]/[O3] = 0.1),

producing ~8 ppb NO3.** The concentrations of NO> and O3 were monitored by a NOx analyzer
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(Teledyne Instruments) and an O3 analyzer (Advanced Pollution Instrumentation, Inc.),
respectively. Our previous studies indicated that the nighttime oxidation of pyrroles and furans
under both conditions was predominantly initiated by NOs radicals.** ** After the one-hour
reaction between O3 and NO; to produce NOj radicals, one of the studied heterocyclic VOCs was
first vaporized in a heated jar and then injected into the chamber with ~15 lIpm of nitrogen gas.
The target concentration of VOCs in the chamber was ~200 ppb. After the mass concentration
reached a plateau, the generated SOA particles were collected on polytetrafluoroethylene (PTFE)
membrane filters (46.2 mm, 2.0 um, Tisch Scientific) for one hour with a flowrate of 16.7 Ipm;
each filter collected the aerosols from 1 m* of chamber air and served for subsequent offline
analysis. Although chamber experiments have some limitations in simulating the real atmosphere
(e.g., size-dependent particulate wall loss rate (Fig. S1) that may affect the chromophore
quantification),®® the controlled chamber conditions can systematically facilitate the
characterization of carbonyl chromophores and the evaluation of their roles in secondary BrC.

Compositional analysis. The compositional analysis was conducted using a suite of
complementary analytical instruments. A liquid chromatography coupled with a diode array
detector, an electrospray ionization source (negative ion mode), and a quadruple-time-of-flight
tandem mass spectrometer (LC-DAD-ESI(-)-Q-TOFMS, Agilent Technologies 1260 Infinity II,
and 6545 Q-TOF LC/MS) was used to identify light-absorbing carbonyl products and to
characterize their molecular structures. The gradient elution for the changing LC mobile phase
composition over time is shown in Fig. S2A. A gas chromatography-electron ionization mass
spectrometry (GC/EI-MS, Agilent Technologies 6890N GC System, and 5975 inert XL Mass
Selective Detector) was also used to complementarily identify carbonyl products. An iodide-

adduct time-of-flight chemical ion mass spectrometry coupled with the Filter Inlet for Gases and
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AEROsols system (FIGAERO-ToF-CIMS, Aerodyne Research Inc.)* and an ion mobility
spectrometry time-of-flight mass spectrometer (IMS-TOF, Tofwerk Inc.) were used to characterize
SOA composition in real time and offline, respectively. All the characterization methods were the
same as those in our prior studies.*> ** Detailed instrumental setups and operational parameters
have been described previously.*? 43 47-49

N-containing carbonyl chromophores were characterized by LC-DAD-ESI-Q-TOFMS and
GC/EI-MS, and their mass contributions were estimated semi-quantitatively using maleimide
(C4H3NO») as a surrogate standard. The mass ratio of the characterized N-containing carbonyl
chromophores (MR arbonyt) (Eq. (1)), and the mass ratio of maleimide (MR nateimidze) in SOA samples
from pyrrole and its derivatives had been previously determined by GC/EI-MS using a similar

approach.*?

CcarbonylMcarbonyl — MR R AcarbonylMcarbonyl
- maleimide\F
A

(1)

MRcarbonyl = MRyaieimide

maleimideMmaleimide maleimideMmaleimide

Here, ccarbonyi and Cmateimide are the molar concentrations of the characterized carbonyl
chromophores and maleimide in the extracted SOA samples (mol L™); Mcarbony and Miaeimize are
the molar masses of the characterized carbonyl chromophores and maleimide in the extracted SOA
samples (g mol™); Acarbonyr and Amateimize are the peak areas of parent ions of the characterized
carbonyl chromophores and maleimide in their extracted ion chromatograms (EICs) measured by
LC-DAD-ESI-Q-TOFMS. Although response factors (Rr) of the characterized N-containing
carbonyl chromophores may differ slightly from the surrogate standard (Fig. S2B), semi-
quantification can provide approximate mass ratios and still support comparisons of the

representation of various N-containing carbonyl chromophores in SOA samples.
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Light absorption measurements. The absorbance of SOA samples (290-700 nm) was measured
by a UV-Vis spectrophotometer (Beckman DU-640). The SOA mass on each filter sample varied
within 10-350 pg, depending on the type of VOCs. Each filter sample was extracted with 22 mL
of acetonitrile (ACN), which has been shown to be a suitable solvent for the analysis of secondary
BrC due to its chemical stability (aprotic) and solubility for polar compounds.* It is noted that
ACN may not completely extract the SOA constituents from filters (Table S1), so the BrC light
absorption estimated in this study is the lower limit. The contribution of BrC carbonyl marker
compounds (i.e., maleimide and phthalic anhydride)* to the total light absorption of SOA samples
(4bsC), which can vary greatly with wavelength (1), is estimated by Eq. (2).

_ Abschro (/1)
AbsC (/1) = m (2)

Absgrc(4) 1s the total light absorbance of the BrC samples, directly measured by the UV-
Vis spectrophotometer, while Absciro(4) 1s the light absorbance of the investigated BrC
chromophores, calculated by the Beer-Lambert law (Eq. (3)).

Mchro

Abschro(l) = Echro (/1) X M
chro

X b 3)

gchro(4,) is the molecular absorptivity of the investigated BrC chromophores (L mol! cm™),
which has been reported in our previous work;* me, is the mass concentration of molecular
chromophores in the SOA solution samples (ng pL™"); Mcuo is the molar mass of the molecular
chromophores (g mol™!); and b is the instrumental light path (i.e., 1 cm).
Computations of theoretical UV-Vis spectra. The time-dependent density functional theory
(TD-DFT) was used to simulate the wavelength-dependent light absorptivity of the characterized
carbonyl products, for which no authentic standards were available. The Gaussian 16 program

(revision C. 01)>° was used for all computations, with the B3LYP functional®" > and the 6-

10
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311++G(d,p) basis set>® as suggested in previous studies.>* >> The ACN solvent environment was
simulated by the integral equation formalism extension of the polarizable continuum model
(IEFPCM).*¢ The GaussView 6 program was used to generate the theoretical UV-Vis spectra. All

the Cartesian coordinates for geometrical structures were summarized in Table S2.

RESULTS AND DISCUSSIONS

Distribution of chromophores in the LC-DAD heatmaps. The LC-DAD heatmaps provide a
snapshot of BrC chromophore distributions for all the SOA samples (Fig. 1 and Figs. S3-5), where
the hotspots illustrate the retention time (RT) and wavelengths of light absorption. Fig. 1 shows
the LC-DAD heatmap of pyrrole SOA, which is divided into two panels, corresponding to the RT
ranges of 0-2 min and 2-21 min, respectively (Fig. 1A-B).

Compositional analysis revealed that the major hotspots detected at RT of 1.6-1.7 min may
be attributed to mono-nitrogen chromophores (Fig. 1C), while those detected at RT of 8.7-12.3
min may be ascribed to the di-nitrogen and tri-nitrogen chromophores (Fig. 1D). Notably, the
analytes at RT of 1.6-1.7 min were comprised of many mono-nitrogen compounds, while only two
products were shown at RT of 8.7-12.3 min. The mono-nitrogen chromophores (Fig. 1A) in pyrrole
SOA collectively acquired much stronger light absorption compared to di-nitrogen and tri-nitrogen
chromophores (Fig. 1B), which indicated the potential importance of the mono-nitrogen
chromophores in BrC light absorption. The strong light absorption corresponding to mono-
nitrogen chromophores is also observed in I-MP SOA (Fig. S3) and 2-MP SOA (Fig. S4), wherein
the mono-nitrogen chromophores led to much higher or similar absorption intensities compared to
those of the di-nitrogen and tri-nitrogen chromophores. In a recent study, we found di-nitrogen

and tri-nitrogen chromophores in pyrrole SOA and 2-MP SOA as nitro- and dinitro-substituted

11
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chromophores.*? This finding suggested that the mono-nitrogen chromophores would lack nitro
groups, and their nitrogen may be inherited from the pyrrole backbones, as evidenced by the
structural characterization in the following section. However, in contrast to electron-withdrawing
groups such as nitro groups, the nitrogen atom on the pyrrole backbone cannot attract electron
density toward itself and thus the light absorption of the mono-nitrogen chromophores is mostly
due to the non-nitrogen electron-withdrawing groups in the molecule. Furthermore, our previous
study of furan SOA revealed that nitrogen-free products were the predominant contributors to the
major LC-DAD hotspots,** whereas the major hotspots in furfural SOA can be attributed to both
nitrogen-containing and nitrogen-free products (Fig. S5). Despite this, all the LC-DAD heatmaps
indicate the importance of different types of electron-withdrawing groups in BrC light absorption.
Analysis of functional groups with attenuated total reflectance Fourier-transform infrared (ATR-
FTIR) spectroscopy conducted in our previous study suggested that chromophores with carbonyl
groups may account for a significant portion of the light absorption of SOA samples from

nighttime oxidation of heterocyclic VOCs.*

12
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Figure 1. LC-DAD heatmaps of pyrrole SOA: (A) 0-2 min, and (B) 2-21 min, followed by the
mass spectra corresponding to the major hotspots, respectively (C-D). The light absorption of
chromophores was normalized to the highest value of the whole LC-DAD heatmap, with each
panel having its own color scale for a clear representation of chromophore distribution. With LC
mobile phase changing (Fig. S2A), the separated hotspots in two unique RT zones represent

distinct chromophores with different polarities.

Even though nitroaromatic chromophores have been identified as important contributors
to BrC light absorption in pyrrole SOA and 2-MP SOA,*"*? the LC-DAD heatmaps (Fig. 1A-B
and Fig. S3A-B) disclosed that mono-nitrogen chromophores could account for the majority of the

light absorption. This is because nitroaromatic chromophores and mono-nitrogen chromophores

13
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have absorption peaks at different wavelength ranges and, as a result, have wavelength-dependent

light absorption contributions, which will be discussed further in the following sections.

Molecular characterization of carbonyl chromophores. In the current study, the molecular
composition of carbonyl chromophores was determined by complementary analytical
instrumentation, and their UV-Vis spectra were simulated using quantum chemical approaches
(Figs. 2 and 3). Following the identification of the molecular formula in Fig. 1C, we performed
tandem MS experiments to elucidate their structures. Here, C4H4NOy4', a deprotonated ion of
C4HsNOsy, is selected as an example. The LC-ESI-Q-ToFMS measurements showed a single peak
in the EIC of this ion as well as its fragmentation pattern (Fig. 2A), which can help derive the
tentative molecular structures and thus support the theoretical computation of UV-Vis spectra. The
IMS-TOF measurements also confirmed the presence of C4H4NO4 in ESI (-) and indicated two
major isomers for this ion (Fig. 2B). To rule out the potential interference from solvent and LC
electrospray ionization efficiency,*: * the presence of C4HsNO4 was supplementally verified by
in situ characterization with FIGAERO-ToF-CIMS (Fig. 2C). Plausible fragmentation pathways
were derived based on the tandem MS data (Fig. S6A), wherein C4HsNO4 can be characterized as
formyl carbonyl amino acetic acid and its imidic acid isomer. Both compounds are chain-structural
carbonyl chromophores, as confirmed by the theoretical computation of their UV-Vis spectra (Fig.
2D). Using the same approaches, the ring-retaining carbonyl chromophores in pyrrole SOA were
also characterized, including 2-hydroxy-2-pyrroline-4,5-dione (C4H3NO3), 5-hydroxy-2,3.,4-
pyrrolidinetrione (C4H3NOs), and 5-hydroxy-2,3-pyrrolidinedione (C4HsNOs3) (Figs. S7-10).
Similar to pyrrole, nighttime oxidation of furan can generate light-absorbing diones. As one of the

major products in furan SOA, C4H2O4 was characterized as 4-hydroxyfuran-2,3-dione and 5-

14
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hydroxyfuran-2,3-dione (Figs. 2E-G and Fig. S6B).** These products exhibit distinct UV-Vis
spectra with different central wavelengths and peak absorptivity (Fig. 2H).

Given that both LC-ESI-Q-TOFMS and IMS-TOF in this study could only detect
deprotonated ions (because of the nature and limitations of ESI(-)) and may not characterize all
carbonyls generated, GC/EI-MS was used to investigate more diverse carbonyl chromophores.
Previous GC/EI-MS analysis of secondary BrC samples revealed a number of light-absorbing
heterocyclic diones, including maleimide (from pyrrole and its derivatives), maleic anhydride, and
phthalic anhydride (from furan and furfural).* In the current study, N-methylmaleimide was
discovered by GC/EI-MS (RT =10.5 min) in 1-MP SOA samples (Fig. 3A). The presence of this
compound was confirmed by its authentic chemical standard (Fig. 3B) and also supported by the
tentative fragmentation pathways (Fig. S11A) as well as the in situ FIGAERO-ToF-CIMS
measurement (Fig. 3C). Also, the presence of 2-methyl-2-pyrroline-4,5-dione, an isomer of N-
methylmaleimide, in 2-MP SOA was confirmed by multi-instrumental measurements (Figs. 3E-G)
and the tentative fragmentation pathways (Fig. S11B). The calculated UV-Vis spectra showed that

both diones can contribute to light absorption above 290 nm (Figs. 3D and 3H).
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Figure 2. Characterization of carbonyl chromophores in pyrrole SOA and furan SOA: (A) EICs
and tandem mass spectra of C4HsNOy; (B) IMS-TOF drift grams of C4HsNOs; (C) FIGAERO-
ToF-CIMS peak fitting and thermograms of C4HsNO4; (D) theoretical UV-Vis spectra of isomers
of C4HsNOy; (E) EICs and tandem mass spectra of C4H204; (F) IMS-TOF drift grams of C4H20s4;
(G) FIGAERO-ToF-CIMS peak fitting and thermograms of CsH»04; (H) theoretical UV-Vis

spectra of C4H>O4 isomers.
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Figure 3. Characterization of carbonyl chromophores in 1-MP SOA and 2-MP SOA: (A) GC/EI-
MS characterization of CsHsNO: in 1-MP SOA; (B) EIC of m/z 111 from the N-methylmaleimide
chemical standard; (C) FIGAERO-ToF-CIMS peak fitting and thermograms of CsHsNO, in 1-MP
SOA; (D) theoretical UV-Vis spectrum of CsHsNO: in 1-MP SOA; (E) GC/EI-MS
characterization of CsHsNO; in 2-MP SOA; (F) IMS-TOF drift gram of CsHsNO> in 2-MP SOA;
(G) FIGAERO-ToF-CIMS peak fitting and thermograms of CsHsNO> in 2-MP SOA; (H)

theoretical UV-Vis spectrum of CsHsNO> in 2-MP SOA.
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Notably, N-containing carbonyl chromophores such as imides and amides are ubiquitous
in SOA samples from the N-containing heterocyclic VOC precursors (e.g., pyrrole and its
derivatives in this study). The lone pair electrons from the nitrogen atom in imides and amides can
conjugate with the unsaturated bonds (e.g., carbonyl groups), which facilitate the n-n" excitation
of delocalized electrons and hence support the formation of BrC chromophores. However,
different N-containing carbonyl chromophores may lead to different contributions to BrC light
absorption, depending on their mass ratio in SOA samples, spectral wavelengths, and absorptivity.
For example, C4HsNO4 and C4H3NO; have similar mass ratios in pyrrole SOA (3.37+0.11% and
2.86+0.57%, respectively) based on the semi-quantification, but the UV-Vis spectrum of C4HsNO4
only covers 290-350 nm (Fig. 2D), while the UV-Vis spectrum of C4H3NO3 can extend to 500 nm
(Fig. S7J). Although the UV-Vis spectra of C4H3NO; and C4H3NO4 cover a similar range of
wavelengths, the latter possesses a higher mass ratio (8.86+1.11%) and a lower absorptivity (Fig.
S7K). It is also noted that the presence of nitrogen may lead to a redshift of the spectral peaks (e.g.,
Fig. S7J and isomer 2 in Fig. 2H), suggesting the potentially important role of N-containing

carbonyl chromophores in modulating BrC light absorption.

Light absorption contribution of carbonyl and nitroaromatic chromophores. The light
absorption contributions of identified carbonyl and nitroaromatic chromophores can be estimated
by comparing their integrated LC-DAD absorbance within the corresponding RT ranges to the
overall LC-DAD absorbance, which are similar to those described in the literature.'® !” Although
the estimated light absorption contributions may not be rigorously accurate due to the incomplete

elution of chromophores that can strongly interact with the stationary phase of the LC column,!”

18



312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

this approach has successfully revealed the indispensable role of nitroaromatic chromophores in
BrC aerosols from biomass burning events.'® !7 Similarly, the relative importance of carbonyl
chromophores and nitroaromatic chromophores at different wavelengths can thus be evaluated by
this approach. Here, Cs carbonyls and Cs nitroaromatics in pyrrole SOA, which may
predominantly contribute to the major hotspots in the LC-DAD heatmaps (Fig. 1), were
categorized as two groups of chromophores, while other chromophores, which may comprise
oxidation products with higher molecular weights and high double bond equivalence (DBE) (Fig.
S12), were classified as “others.” It is noted that the C4 N-containing carbonyls (both ring-retaining
and ring-opening products) and C4 nitroaromatics are produced from the C4 backbone of pyrrole;
in other VOC systems, the carbon number of the lower-molecular-weight chromophores can be
different and dependent on the VOC precursors. The light absorption contribution of each group
of chromophores was visualized along with the wavelengths in both percentages (Fig. SI3A-B)
and mass absorption coefficient (MAC) profiles (Fig. 4). The latter was estimated by combining
Fig. S13 and the MAC profiles reported in our prior study.*?

Our results showed that, while Cs nitroaromatics account for the majority of light
absorption in the 350-430 nm range, C4 carbonyls contribute significantly more below 350 nm and
above 430 nm, accounting for over 40% of the total light absorption in both wavelength ranges
(Fig. 4A and Fig. S13A). The Cs nitroaromatics and Cs carbonyls in 2-MP SOA, which are
produced from the Cs backbone of 2-MP (Ref. 42 and Fig. 3H), revealed comparable tendencies
in the wavelength dependence of light absorption contribution (Fig. 4B and Fig. S13B). However,
in the visible range, the contribution of C4 carbonyls to light absorption was greater than the other
two categories in pyrrole SOA (Fig. 4A and Fig. S13A), whereas the contributions of the three

categories in 2-MP SOA were comparable (Fig. 4B and Fig. S13B). The quantitative differences
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between Fig. 4A and Fig. 4B (also between Fig. S13A and Fig. S13B) reveal the vital role of VOC
structures in regulating the relative contributions of carbonyl chromophores and nitroaromatic
chromophores to secondary BrC light absorption, which could be due to the interference of diverse
oxidation pathways (e.g., diverse pyrrolyl radical shifts).*?

The relative impact of carbonyl chromophores on BrC light absorption is further evaluated
by the ratio of their absorption cross-section emission factors (EFabsc), which accounts not only
for the MAC:s but also the carbon emission factors of VOC precursors from burning sources and
the SOA yields.*! Details of the EFapsc calculations for pyrrole SOA and 2-MP SOA were
described previously.** Taking biomass burning of ponderosa pine forests, which is relevant to
wildfires in the western US and Canada,’’ as an example, Cs.s carbonyl chromophores may
contribute more to BrC light absorption below 350 nm and above 430 nm than Ca.s nitroaromatic
chromophores (Table S3). It is also noted that the light absorption of 1-MP SOA was mainly
attributed to mono-nitrogen Ca.s carbonyls and the “others” category instead of C4.s nitroaromatics
(Fig. 3D, Fig. S4, Fig. S14A, and Fig. S15A). As highlighted in our prior study,* the absence of
Ca-s nitroaromatics may account for the inhibited nitro-substitution by the methyl group on the
nitrogen atom of the 1-MP backbone, which reinforces the importance of VOC structures in the
light absorption contribution of carbonyl chromophores.

In addition, the heteroatoms in heterocyclic VOCs may greatly alter the oxidation pathways
and hence the light absorption contribution of carbonyl and nitroaromatic chromophores. For
example, formation of pyrrole-derived nitroaromatics is initiated by the H-abstraction on the
nitrogen heteroatom,** while formation of furan-derived carbonyls is related to the NOs3 addition
and subsequent NO; elimination mechanisms affected by the oxygen heteroatom.>® Our previous

research and the current findings suggest that the light absorption of furan SOA can be primarily
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attributed to Ca.s carbonyls and the “others™ category (Fig. S14B and Fig. S15B).**** Nonaromatic
nitro-substituted carbonyl chromophores, such as C4sH3NO7 in furan SOA,* may also contribute
to BrC light absorption. Similarly, light absorption of furfural SOA can be mainly attributed to the
carbonyl chromophores (Fig. S14C and Fig. S15C), which is likely related to the carbonyl
functional group in furfural. Collectively, these findings demonstrate the significance of carbonyl

chromophores in the light absorption of secondary BrC.

A Pyrrole SOA B 2-MP SOA

—— (s Carbonyls
—— (s Nitroaromatics
—— Others

—— (4 Carbonyls
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Figure 4. Light absorption contribution of chromophores to MAC profiles: (A) C4 carbonyls, Cs
nitroaromatics and other chromophores in pyrrole SOA; (B) Cs carbonyls, Cs nitroaromatics and

other chromophores in 2-MP SOA.
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Figure 5. Light absorption contributions of maleimide to (A) pyrrole SOA and (B) 1-MP SOA,
and phthalic anhydride to (C) furan SOA and (D) furfural SOA under low and high NO; levels.
The absorption contribution is estimated by the ratio of light absorption of molecular
chromophores calculated by the Beer-Lambert law and the total light absorption of BrC samples.
The shadow around the lines shows the standard deviation of absorption contribution at each

wavelength.

Furthermore, depending on the SOA systems, the light absorption contribution of
molecular carbonyl chromophores in secondary BrC may vary under different environmental
conditions. The NOs radical level has been reported as a critical environmental factor that affects
the secondary BrC formation of pyrroles and furans.*** As marker compounds of secondary BrC
from the nighttime oxidation of several unsaturated heterocyclic VOC precursors, maleimide and
phthalic anhydride were selected to investigate the influence of NO3 radical levels on their light
absorption contribution, and their molecular light absorptivity and mass ratio in various SOA
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samples have been experimentally measured in prior studies.** Our results indicated that the light
absorption contribution of maleimide in pyrrole SOA remained essentially constant as the NO3
radical level increased (Fig. 5A), whereas it increased significantly in 1-MP SOA as the nitrate
radical level increased (Fig. 5B). The light absorption contribution of phthalic anhydride exhibited
a divergent trend in furan SOA and in furfural SOA as the NO;3 radical level increased; specifically,
it reduced in furan SOA and enhanced in furfural SOA (Fig. 5C-D). The dependence of light
absorption contribution on the level of NOs radicals may be attributed to the alteration of chemical
kinetics and, consequently, the branching ratios of carbonyl chromophores production as the NOs3
concentrations change. The effects of VOC types on the contribution of molecular carbonyl
chromophores to light absorption should also be noted. Maleimide, for instance, may account for
~7% of light absorption at 290 nm in pyrrole SOA (Fig. 5A), but a much lower value in 1-MP
SOA (Fig. 5B). The observed discrepancy could be attributed to the methyl group on 1-MP, which
could hinder the formation of maleimide and alternatively generate other chromophores (e.g., N-
methylmaleimide in Fig. 3D). Thus, the role of carbonyl chromophores in secondary BrC is
significantly influenced by complex atmospheric conditions and VOC emissions.

Overall, our results indicate the prevalence of carbonyl chromophores in SOA from the
nighttime oxidation of heterocyclic VOCs. The UV-Vis spectra of the characterized carbonyl
chromophores cover a wider range of wavelengths (i.e., ~290-500 nm) compared to the
nitroaromatic chromophores (i.e., ~290-400 nm) characterized in our previous studies,** >°
suggesting their distinct contributions to BrC light absorption at different wavelengths.
Comparison between isomers also highlights that the spectral light absorptivity of carbonyl
chromophores in secondary BrC can be governed by the structure of VOC precursors, which is

consistent with our previous research on nitroaromatic chromophores.** The structural dependence
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of UV-Vis spectra indicates the importance of structure-related information in the process-level
prediction of secondary BrC formation. Moreover, the characterized carbonyl chromophores and
their structural analogues, including heterocyclic diones and triones, have been widely observed
in SOA systems from other VOCs, for example, those generated by photooxidation of a variety of
aromatic hydrocarbons.’*®* Heterocyclic diones have also been widely observed in field
measurements of ambient aerosols from biomass burning plumes.*® % ¢ Although triones in
ambient aerosols were less reported,’® they have been suggested as possible contributors to BrC
generated from aqueous-phase reactions.®”- ®® The collective evidence demonstrates that carbonyl
chromophores are ubiquitous constituents in SOA and may play an active role in secondary BrC

formation.

ATMOSPHERIC IMPLICATIONS

Molecular chromophores are the key to BrC light absorption, connecting the microscopic
physicochemical processes in atmospheric aerosols with the macroscopic radiative budget in the
Earth system. The newly characterized chromophores enable a more detailed process-level
depiction of BrC formation, which is essential for improving the assessment of BrC’s impact in
the context of climate change. Our study shows that carbonyl chromophores can be important
constituents of secondary BrC from nighttime oxidation of heterocyclic VOCs, with wavelengths
ranging from UV to visible. While research on ambient aerosols in wildfires has suggested that
nitroaromatic chromophores, such as nitrophenols, nitrocatechols, nitroguaiacols, and
nitrosyringols, may predominately contribute to BrC light absorption in the visible range,'® 17 field
studies have also provided increasing evidence indicating that carbonyl chromophores could be

distinct contributors to BrC light absorption in the UV range.®® It is further noted that the carbonyl
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chromophores characterized in our studies are not only found in other SOA systems but are also
commonly observed in field studies.®® > Indeed, carbonyl compounds are ubiquitous in
atmospheric aerosols and have long been recognized as the key species in tropospheric chemistry’®
"I and the critical precursors of secondary BrC formation in the aerosol phase via NHs/amine-

7275 or forming charge transfer complexes with alcohols.”® 77 Our study can

driven reactions
complementarily provide a new perspective for evaluating the role of carbonyls in atmospheric
aerosols based on their intrinsic light absorption, for example, the initiation of photosensitization
which can facilitate aqueous SOA formation.”®%?

Furthermore, carbonyl chromophores produced by nighttime oxidation of N-containing
VOCs may represent a potentially important component in secondary BrC that was previously
unrecognized. Our study reveals that light-absorbing imides and amides can be critical
chromophores in the SOA of pyrrole and its derivatives. Given that biomass burning releases a
variety of N-containing heterocyclic VOC precursors,*’? the formation of N-containing carbonyl
chromophores could be a potentially significant contributor to the light absorption of secondary
BrC. Furthermore, as widely observed in field studies of wildfire emissions,** 3838 N_containing
carbonyl chromophores offer another pivot in addition to the nitroaromatic chromophores for a
more in-depth understanding of secondary BrC formation, particularly the wavelength-dependent
change of BrC light absorption as well as the diverse physicochemical processes. Although
nitroaromatic chromophores may likely possess stronger absorptivity compared to carbonyl

85,86 whereas the

chromophores, the former are largely related to anthropogenic emissions of NOx,
latter may be generated by more divergent atmospheric oxidation pathways, such as OH-driven

oxidation of VOCs.%* Broader sources of carbonyl chromophores may result in greater ubiquity in

the atmosphere under different environmental conditions, implying more extensive effects. Further
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research is needed to reveal the role of carbonyl chromophores in other BrC systems and to
estimate the radiative forcing from carbonyl chromophores. Overall, this study expands the current
understanding of chromophore formation and provides a molecular-level foundation as the basis
for further investigations into the effects of secondary BrC formation on the Earth’s energy budget

in the context of climate change.
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