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Abstract

Light-absorbing secondary organic aerosols (SOA), also known as secondary brown carbon (BrC),
are major components of wildfire smoke that can have a significant impact on the climate system,;
however, how environmental factors such as relative humidity (RH) influence their formation is
not fully understood, especially for heterocyclic SOA precursors. We conducted chamber
experiments to investigate secondary BrC formation from the nighttime oxidation of furan and
pyrrole, two primary heterocyclic SOA precursors in wildfires, in the presence of pre-existing
particles at RH <20% and ~50%. Our findings revealed that increasing RH significantly affected
the size distribution dynamics of both SOAs, with pyrrole SOA showing a stronger potential to
generate ultrafine particles via intensive nucleation processes. Higher RH led to increased mass
fractions of oxygenated compounds in both SOAs, suggesting enhanced gas-phase and/or
multiphase oxidation under humid conditions. Moreover, higher RH reduced the mass absorption
coefficients of both BrC, contrasting with those from homocyclic precursors, due to the formation
of non-absorbing high-molecular-weight oxygenated compounds and the decreasing mass
fractions of molecular chromophores. Overall, our findings demonstrate the unique RH
dependence of secondary BrC formation from heterocyclic precursors, which may critically

modulate the radiative effects of wildfire smoke on climate change.

KEYWORDS
furan and pyrrole, secondary organic aerosols, size distribution dynamics, oxygenated compounds,

molecular chromophores
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Synopsis
Relative humidity modulates the size distribution dynamics, chemical composition, and optical
properties of secondary brown carbon derived from the nighttime oxidation of furans and pyrroles,

which may in turn influence their radiative effects on climate.
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Introduction

Light-absorbing aerosols from wildfires can affect the climate system by directly heating
the atmosphere and indirectly altering the aerosol-boundary-layer-monsoon interactions.!” Over
the last few decades, climate change has increased the intensity and frequency of wildfires,*®
releasing a massive amount of volatile organic compounds (VOCs) and aerosols into the
atmosphere.”” However, the impact of unabated wildfire emissions is highly uncertain due to the
less-constrained radiative effects of wildfire smoke, which are influenced by the composition of
smoke aerosols. The major component of smoke aerosols is organics (>95%),'* ! contributing to
~45-86% of the total aerosol light absorption.'? A large fraction of smoke organics (~30—56%)
accounts for secondary organic aerosols (SOA),"* in which the light-absorbing component is
known as secondary brown carbon (BrC). Thus, secondary BrC plays a critical role in moderating
the climate impacts of wildfire smoke.

The formation of secondary BrC can be sensitive to the smoke environments.!* 1> In
particular, relative humidity (RH) is a well-known environmental factor that may alter SOA
composition and secondary BrC light absorption. Extensive research has revealed that changes in
RH can influence SOA formation by altering the gas-phase chemistry, gas-to-particle partitioning
of oxidation products, phase states of aerosols, reactive uptake of radicals, and heterogeneous
reactions of aerosol-phase constituents.!®?” Prior studies also reported that higher RH increased
the mass absorption coefficients (MAC) of secondary BrC derived from homocyclic aromatic
precursors.?®3? The increased MAC was associated with changes in molecular chromophores as
RH increased, which may alter the wavelength dependence of MAC profiles.*° On the other hand,

1

higher RH decreased the MAC of secondary BrC derived from a-pinene,?! suggesting that the

effect of RH on MAC may differ depending on the type of VOC:s. It is noted that a rise in RH may
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result in increased liquid water content in wildfire aerosols, where water-soluble organics can
contribute to a large portion (e.g., ~45% at 405 nm) of BrC light absorption.*? Despite the extensive
investigations, the effect of RH on secondary BrC formation remains inconclusive.

Heterocyclic VOCs are the second largest sources of wildfire SOA precursors, and they

are more reactive compared to homocyclic VOCs (e.g., phenolics) due to their hetero atoms.*> 3

3437 which account

Common heterocyclic VOCs released by wildfire include furans and pyrroles,
for ~30% of nitrate radical (NO3) loss via nighttime chemistry in wildfire plumes.*® Furans have
greater emission factors but may generate less-absorbing BrC from nighttime chemistry, whereas
pyrroles exhibit the opposite behavior.?> 3¢ 3% 40 Secondary BrC formation from the nighttime
chemistry of furans and pyrroles has been widely studied under RH conditions below 20%, !4 13-
1 a typical level in dry wildfire smokes (e.g., the Williams Fire smoke*?) or dry fire areas (e.g.,

western United States* 44

and Africa in dry seasons*: %°). In addition, there have been frequent
observations of humid wildfire smoke worldwide, particularly those at RH ~50%, in the past two
decades due to climate change.*”* A prior study of secondary BrC from indole, which contains a
pyrrole ring in its structure, highlighted that the effects of RH on the light absorption properties of
secondary BrC from heterocyclic VOCs were complicated and greatly unconstrained.’® Hence,
there was still a significant lack of process-level understanding regarding the secondary BrC
formation from heterocyclic VOCs at various levels of RH.

In this study, chamber experiments were conducted to investigate the effects of RH on the
secondary BrC formation from the nighttime oxidation of furan and pyrrole, the backbone
compounds of furans and pyrroles. For comparison, RH was controlled at <20% and ~50% to

simulate dry and humid environments, respectively, while pre-existing particles were introduced

in both RH so that the chamber conditions would be closer to the ambient atmosphere. The effects
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of RH on particulate size distribution dynamics, SOA composition, BrC light absorption properties,
and molecular chromophores were examined to better understand how RH-related
physicochemical processing modulates the secondary BrC formation from furan and pyrrole and
their implications in the atmosphere. These results will provide more accurate representations of

wildfire-associated secondary BrC and aid in assessing their climate impacts.

Methods

Chamber Experiments. All the experiments were carried out in a 10 m> Teflon fluorinated
ethylene propylene (FEP) film chamber at room temperature (20—25 °C) under dark conditions.
The room temperature was much lower than the temperature of wildfires but comparable to the

temperature of ambient atmosphere,*’ *% 3!

where furan and pyrrole released from wildfires were
observed in field studies.** 3’ Temperature and RH were monitored by a RH-USB sensor (Omega
Engineering, Inc.) attached to the chamber. A constant output atomizer (TSI 3076) was used to
produce pre-existing particles using a 10 mM ammonium sulfate ((NH4)2SO4, Acros Organics,
99%, extra pure) solution. The pre-existing particles had a mass concentration and the central
diameter of ~50 pug m™ and ~50 nm, respectively, to simulate the background particles in wildfire
smoke.>>>* Given that higher RH can introduce liquid water or increase the amount of liquid water

content in wildfire aerosols,* 3

we generated dry pre-existing particles at RH <20% and wet
aqueous pre-existing particles at RH ~50%. Because our humid condition was between the
efflorescence RH and deliquescence RH of ammonium sulfate,> dry seed particles were produced

by passing through a silica-gel filled diffusion dryer, whereas wet aqueous seed particles were

produced without the dryer.®® Chamber experiments without pre-existing particles were also



115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

performed at both RH levels. These experiments serve as a benchmark for detailed discussions on
the potential mechanisms involved in SOA formation.

This study used furan (TCI America, >99%) and pyrrole (TCI America, >99%) as model
compounds of heterocyclic VOCs. Each experiment involved only one VOC, in which ~200 ppbv
of furan or pyrrole was injected into the chamber using ~15 Ipm of zero air. The concentration of
VOCs was determined based on previous studies to ensure appropriate SOA mass concentrations
for online and offline analyses.'* !> 404! After 20 minutes of mixing, a mixture of NO and O3
(molar concentration ratio ~3:2) was injected into the chamber, wherein N2Os was generated and
then decomposed to NO; radicals. O3 was generated by an O3 generator (A2Z Ozone 3G LAB)
with pure oxygen (flow rate of 0.2 Ipm), while NO; was directly injected from a NO: cylinder
(4789 ppm, Airgas) with a flow rate of 0.5 Ipm. Similar to prior studies of SOA formation under
humid conditions,?® 2! the NO>—O3 ratio ensured that NO3 primarily drove the oxidation of pyrrole
and furan in our chamber. The NO>—O3 mixture was first reacted in a glass vessel (total flow rate
of 0.7 Ipm and residence time of 206 s) before the chamber injection. The concentration of N>Os
produced in the glassware was estimated by modeling the reactions between NO> and O3, and the
initial concentration ratio of N>Os to furan (or pyrrole) was approximately 2:1. While it was
possible that O3 residue was also introduced into the chamber along with N2Os, the reaction rate
constants (k) at room temperature and atmospheric pressure for “furan/pyrrole + NO3” (kfuran+n03
= 1.4 x 102 cm® molecule™ s kpyrroetnos = 4.9 x 10711 cm® molecule™ s!) are ~6 orders of
magnitude higher than those of “furan/pyrrole + O3 (kfiranto3 = 2.4 x 10® cm® molecule™ s7!;
kpyrroter03 = 1.6 x 10717 cm? molecule™ s7).575? Therefore, the oxidation of pyrrole and furan in our

chamber was mostly driven by NOs-initiated oxidation.
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The injection of the NO,—O3 mixture marked the start of experiments. The duration of each
experiment was ~2.2 hours, during which the SOA mass concentration reached a plateau.
Following this plateau, the generated SOA samples were collected on polytetrafluoroethylene
membrane filters (PTFE, 46.2 mm, 2.0 um, Tisch Scientific) for subsequent offline analysis. The
collection flowrate was 20 Ipm, and the collection time was 1.5 hours; each filter collected the
aerosols from 1.8 m? of chamber air. The experimental procedure was similar to the those reported
in prior studies of high-RH chamber experiments.?% 2! It has been noted that the chamber wall loss
of particles may be potentially different at different RH. However, in this study, the first-order
size-dependent particulate wall loss rates were comparable at both RH levels (Figure SI).
Although vapor wall loss of oxidized products can be increased by higher RH, our data showed an
increased trend of mass fractions of oxygenated composition in particle phase (Figure S2). Such
evidence indicates that the chamber interference at higher RH did not significantly hinder the
formation of highly oxidized products in SOA.?° Experiments of each environmental condition
were repeated for three times (n=3) to confirm the reproducibility of observed phenomena and
determine the uncertainties (standard deviations) of reported values.

Particulate Size Distribution and Compositional Analysis. The number concentration and size
distribution of SOA were measured throughout the duration of the experiments by a scanning
electrical mobility spectrometer (SEMS, Brechtel Manufacturing Inc.) in the diameter range of
10—800 nm with 140 bins. The bulk composition and the in situ molecular composition were
characterized by a mini-aerosol mass spectrometer coupled with a compact time-of-flight mass
spectrometer (MAMS, Aerodyne Research Inc.)® and an iodide-adduct time-of-flight chemical ion
mass spectrometer coupled with the filter inlet for gases and aerosols system (FIGAERO-ToF-

CIMS, Aerodyne Research Inc.),®! respectively. Attenuated total reflectance Fourier-transform
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infrared spectrometer (ATR-FTIR, Thermo Nicolet iS50) was used to characterize the functional
group fingerprints. The measured IR spectra were deconvoluted using Igor Pro 7 (WaveMetrics,
Lake Oswego, OR, USA), in which the wavenumbers of identified peaks were determined. Gas
chromatography-electron ionization mass spectrometry (GC/EI-MS, Agilent Technologies 6890N
GC System and 5975 inert XL Mass Selective Detector) and liquid chromatography coupled with
an electrospray ionization source and a quadruple-time-of-flight mass spectrometer (LC-ESI-Q-
ToFMS, Agilent Technologies 1260 Infinity II and 6545 Q-ToF LC/MS) were used to analyze the
molecular composition of SOA samples. Details of the instrumental setup have been published
elsewhere.*> #! Particulate effective density, organic mass fraction in aerosols, and SOA mass
concentration in the chamber were calculated based on the methods described in our previous study
(Table S1).4°

The mass fractions of molecular chromophores were semi-quantified using surrogate
standards analyzed by LC-ESI-Q-TOFMS or GC/EI-MS. Molecular chromophores in furan BrC
were mainly carbonyls, while in pyrrole BrC accounted for both carbonyls and nitroaromatics.'>
H Therefore, we used maleic acid (C4H404), maleimide (C4H3NO), and nitropyrroles (CsHaN2O»,
including 2-nitropyrrole and 3-nitropyrrole) as surrogate standards for estimating chromophores in
furan BrC, carbonyl chromophores in pyrrole BrC, and nitroaromatic chromophores in pyrrole
BrC, respectively. C4HsO4 was quantified by LC-ESI-Q-TOFMS, while C4H3NO> and C4HaN20:
were quantified by GC/EI-MS with their authentic chemical standards. The mass fractions of other
molecular chromophores were estimated by eq 1.

Cchromophore Mchromophore

MFchromophore = MFsurrogate M
Csurrogate surrogate

AchromophoreMchromophore
Rp . : (1)

= MFsurrogate 1 Y,
SuTTOgate SuTTOgate
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MF chromophore 15 the mass fraction of the characterized molecular chromophore in SOA
samples; MFsurrogate 18 the mass fraction of the surrogate standard in SOA samples; cerromophore and
Csurrogate are the molar concentrations of the characterized chromophores and the surrogate standard
in the SOA samples (mol L™); Mcaromophore and Msurrogare are the molar masses of the characterized
chromophores and the surrogate standard in the SOA samples (g mol™); Aciromophore and Asurrogate
are the peak areas of parent ions of the characterized chromophores and the surrogate standard in
their extracted ion chromatograms (EICs) measured by LC-ESI-Q-TOFMS. While the response
factor (Rr) of molecular chromophores may exhibit certain variations compared to surrogate
standards,!® semi-quantification can still offer approximate mass fractions to elucidate their
changes under different RH conditions.

Light Absorption Properties. The ultraviolet and visible (UV—vis) absorbance of SOA samples
was measured by a UV—vis spectrophotometer (Beckman DU-640) in the range of 290-700 nm,
with the reference wavelength at 700 nm. All of the SOA samples were extracted with acetonitrile
(ACN), an aprotic polar solvent that is suitable for analyzing carbonyl-rich secondary BrC
samples.*’ It should be noted that due to solvent selectivity, ACN may not completely extract the
furan SOA and pyrrole SOA constituents from filters (i.e., extraction efficiency < 100%).'* The

MAC profiles of SOA samples are calculated by eq 2.

A(2) —A(700)
bXCp

MAC(X) = In10 x )

A(7) is the wavelength (1)-dependent absorbance, b is the light path length (i.e., 1 cm), and C,,
is the mass concentration of SOA. Since C,, was calculated by the total on-filter SOA mass (online-
monitored SOA mass concentration X air volume in filter collection) over the volume of ACN
solution and given the chance that some BrC components were not completely extracted with ACN,

this study estimated the lower-bound limit of BrC MAC. Since SOA formation at each

10
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environmental condition was repeated three times, the average and standard deviation of MAC at
each wavelength can be calculated by three replicates of SOA samples. The relative error (i.e.,
standard deviation over the average value) of the MAC value at each wavelength was ~15%, as
estimated by 3 repeated experiments. The wavelength dependency of MAC(4) was also

investigated by fitting the absorption Angstrom exponent (AAE), as defined by eq 3.

_ InMAC)-InMAC(Ag) _ _ In[MAC(Q)/MAC(Ag)]

AAE = In - In 4o In(2/20) ®)

Here, 19 represents the reference wavelength. The fitted AAE would be equal to the slope
of the linear regression of In/MAC(4)/MAC(Ly)] versus —In(i/2g9) with a zero intercept. Since our

previous studies reported that AAE can be different in the UV (290-400 nm) and visible (400-600

nm) ranges,'* 341

we set Ap as 400 nm for fitting the AAE. However, since the AAE shown in our
data can largely vary along with 4, we also derive the wavelength-dependent AAE in eq 4.

_dlnMAC() _ A dMAC) _ A MAC(+AL) - MAC(A-AD) @
dlnl MAC(A) di MAC(D 2 A1

AAE(}) =

The stepwise wavelength (44) was set as 3 nm. A4E(4) was sketched by a stepwise scan to
portray a more detailed wavelength dependency of MAC, while the fitted AAE values reflected
the overall trend. These two representations of AAE can complementarily highlight the distinction
of MAC profiles at different RH.

Computational Methods. Time-dependent density functional theory was employed to estimate
the theoretical UV—vis spectra of molecular chromophores. All the computations were conducted
using the Gaussian 16 program (revision C. 01).%> Geometrical optimization and the computation
of line-center wavelengths and oscillator strengths were performed by the B3LYP functional®* %
with the 6-311++G(d,p) basis set,% as suggested in previous studies.!* %7 The ACN environment
1.68

was simulated by the integral equation formalism extension of the polarizable continuum mode

The theoretical UV—Vis spectra were generated by the GaussView 6 program. The validation of

11
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our theoretical calculations was previously discussed in detail with similar BrC chromophores.®’

Cartesian coordinates for all the molecular structures are summarized in Table S2.

Results and Discussions

Size Distribution Dynamics of Furan SOA and Pyrrole SOA. Size distribution dynamics, which
encompasses the change in number and size distribution of particles over time, is the physical basis
of SOA formation and can be interconnected with gas-phase and/or multiphase chemistry.®® At
RH <20%, the particulate size of furan SOA gradually increased over time, but at RH ~50%, the
particulate size of furan SOA rapidly increased within 10 minutes when furan oxidation started
(Figure 1 A, B). However, the particle size distribution dynamics of pyrrole SOA were different.
If the response of pyrrole SOA to changes in RH is similar to that of furan SOA, then an even
broader size distribution of pyrrole SOA should be observed at higher RH, because distinct growth
in particulate size was observed at low RH (Figure 1C), which indicated the greater potential of
pyrrole oxidation products to contribute to particles with larger size. However, at higher RH, our
results unexpectedly showed a much narrower size distribution of pyrrole SOA (Figure 1D). The
central diameter of the particles was still ~50 nm, comparable to that of the pre-existing particles,
reflecting the limited particulate growth. Correspondingly, the particle number concentration at
RH ~50% was significantly higher than that at RH <20% (Figure 1 C, D), indicating an intensive
new particle formation (NPF) at RH ~50%. The rapid decrease of number concentration in Figure
1D may be attributed to the chamber wall loss and coagulation of particles. Although the intensive
NPF was observed at a specific environmental condition (i.e., RH ~50% with pre-existing

particles), our findings can be tightly related to wildfire smoke because RH ~50% and pre-existing

12
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particles are frequently observed in wildfire smoke.*’*’ All of these characteristics demonstrated

the differential RH responses of furan SOA and pyrrole SOA.

A Furan SOA (RH < 20%) %x10% B Furan SOA (RH ~ 50%) x10%
8.5
M Oxidant injection EEMN Oxidant injection 6.8
225 TS 205 6.0
F m
200 6.5 g 200 5.2 S
—_ T o~
E 151 i Eum s
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$ 125 % = 125 _
o 359 © 288
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Figure 1. Particle size distribution dynamics of (A) furan SOA at RH <20%; (B) furan SOA at RH

~50%; (C) pyrrole SOA at RH <20%; (D) pyrrole SOA at RH ~50%.

The intensive NPF of pyrrole SOA was unexpectedly associated with the pre-existing
particles, as revealed by our benchmark experiments. Without pre-existing particles, an increase
in RH broadened the size distribution of both SOAs when oxidation started (Figure S3). The size
distribution of pyrrole SOA at RH ~50% was much broader than that at RH <20% (Figure S3 C,
D), indicating that higher RH boosted particle growth accompanied by NPF so that the particulate

size was larger but the particulate number concentration was lower. This phenomenon reflected

13
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that higher RH without pre-existing particles was capable of facilitating the condensation of gas-
phase products and the coagulation of ultrafine particles when pyrrole SOA was formed. These
two processes would be promoted in the presence of pre-existing particles, which were expected
to become the condensation sink.”” However, intensive NPF was observed (Figure 1D), reflecting
the boosted nucleation process regardless of the pre-existing particles. It is noted that the potential
to form ultrafine particles via nucleation processes could be largely dependent on environmental
conditions. The intensive NPF shown in Figure 1D suggests that the nighttime oxidation of pyrrole
may have a stronger potential to induce nucleation in humid wildfire smoke. Although a thorough
mechanistic elucidation may require further measurements of the critical nuclei composition, the
unexpected NPF of pyrrole SOA can reflect that the nitrogen atom from the pyrrole backbone is
the key to inducing a stronger potential for nucleation, as compared to furan SOA (Figure 1 B, D).
The “furan-pyrrole” comparisons highlighted the importance of VOC-specified physicochemical
processing in wildfire-related SOA formation, which may influence the chemical composition.

Chemical Characterization of SOA Composition. To investigate the effects of RH on SOA
composition, chemical characterization was conducted using multiple complementary instruments
to determine the bulk and molecular compositions, as well as the molecular fingerprints. The bulk
composition of SOA showed that higher RH increased the mass fraction of CxHyO-" fragments
but decreased the mass fraction of CxHy" fragments in both SOAs (Figure 2 A, B). However, at
both RH conditions, the total mass fractions of nitrogen-containing fragments (i.e., CxHyN",
C<HyON", and CxHyO-iN") of either furan SOA or pyrrole SOA were roughly consistent (Figure
2 A, B). It is noted that reduced nitrogen compounds (e.g., imidazole-type compounds) may be
potentially generated from particle-phase reactions between organic products and the ammonium

cations in the pre-existing particles.”'”> Here, CoHoN*, CoH3N*, and C3H3N* (typical fragments of
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nitrogen-containing organic compounds other than organonitrates measured by mAMS?®) were

used to quantify the mass fractions of reduced nitrogen compounds (Table S3). At higher RH, the

mass fraction of CoH3N" was higher, but the mass fractions of C;HoN™ and CsH3sN™ were lower.

However, the total mass fraction of these fragments was roughly constant at both RH, indicating

that the change in RH had a minor influence on the formation of reduced nitrogen. All these results

indicated that the compositional change at higher RH mainly accounted for the generation of

oxygenated products.

O
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Figure 2. Chemical characterizations of the SOA bulk composition at RH <20% and ~50%

conditions: (A) mass fractions of compositional fragments of furan SOA; (B) mass fractions of

compositional fragments of pyrrole SOA; (C) functional group fingerprints of furan SOA; (D)

functional group fingerprints of pyrrole SOA.
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Moreover, our ATR-FTIR measurements showed the difference in oxygenated functional
group fingerprints at different RH, including the hydroxyl group (O-H) stretching, the
carbon—-oxygen double bond (C=0) stretching, and the carbon—oxygen—carbon (C-O-C)
stretching (Figure 2). Functional groups were assigned to the wavenumbers based on previous IR
studies of SOA composition.’”® In furan SOA, the wavenumber of the C—O peak shifted while both
the number and wavenumbers of C=0 peaks changed. A new O—H peak at 3391 cm™! was observed,
but the C—O peak at 1193 cm™! disappeared at higher RH (Figure 2C). These results indicated that
the change in RH may greatly alter the oxygenated constituents in furan SOA. While in pyrrole
SOA, O—H and C=0 peaks were similar at both RH, while at higher RH two new C-O-C peaks
(1100 cm™ and 1184 cm™) were identified (Figure 2D). Since the C—O—-C structure cannot be
inherited from the pyrrole backbone, the new C—O—C peaks may be attributed to RH-modulated
gas-phase and/or multiphase oxidation on pyrrole SOA. The observed results of functional group
fingerprints from SOA formed at different RH levels reflected that higher RH could cause a shift
in the distribution of wavenumbers of oxygenated functional groups suggesting a considerable
change in the chemical composition of oxygenated compounds with RH.

The effect of RH on the oxygenated products was further investigated through the
molecular characterization of SOA samples. The average of the hydrogen-to-carbon (H/C) and the
oxygen-to-carbon (O/C) ratios (i.e., <H/C> and <O/C>), weighted by intensity from FIGAERO-
ToF-CIMS measurements, of both SOA constituents increased with higher RH (Table S4). This
suggests that higher RH levels can enhance the saturation and oxygenation levels of SOA
constituents (Figure 3). The increasing <H/C> ratio decreased the intensity-weighted average of
double bond equivalence (DBE) (i.e., <DBE>) (Figure 3). However, the nitrogen-to-carbon (N/C)

ratio (i.e., <N/C>) decreased at higher RH in pyrrole SOA constituents while kept constant in furan
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SOA constituents (Table S4), indicating that the formation of nitrogen-containing products in
pyrrole SOA characterized by FIGAERO-ToF-CIMS were more sensitive to RH change. In furan
SOA, the highest peaks at both RH conditions were attributed to C4H403, while the presence of its
oxygenated products C4H4O4 and C4H4Os was also observed (Figure 3A). It should be noted that
C4H40s5 was only observed at higher RH, which may account for the enhanced oxygenation of
furan SOA constituents. In pyrrole SOA, the formation of new oxygenated products with higher
H/C and O/C ratios (e.g., C4HgN20s, C4HsN30g) was observed (Figure 3B). The peak intensity
ratios of C4HsNO; to C4HsNO: increased significantly at higher RH, contributing to the higher
oxygenation level of pyrrole SOA constituents at higher RH. All of these findings not only
confirmed the formation of oxygenated products at higher RH, but also demonstrated a higher
saturation level of SOA constituents. The increased saturation and oxygenation levels at higher
RH could be attributed to multiple processes, such as gas-phase chemistry, reactive uptake of
radicals, aerosol-phase reactions, etc.!®?’ Because multiple physicochemical processes interplay
during SOA formation, further research is necessary to provide a more comprehensive
understanding of the influence of each individual process involved. The compositional change due

to these processes may further affect the secondary BrC light absorption properties.
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Figure 3. Molecular characterization of oxygenated products in (A) furan SOA and (B) pyrrole

SOA at RH <20% and ~50% conditions.

Light Absorption Properties of Secondary BrC. The light absorption properties of secondary
BrC can be affected by SOA compositional changes. Our results showed that higher RH

significantly reduced the MAC profiles for both SOAs, wherein both SOAs can fall in the
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moderately absorptive BrC category at RH <20% and the weakly absorptive BrC category at RH
~50% (Figure 4).”7 As compared with SOA derived from other precursors under various oxidation
conditions, furan SOA was moderately absorbing at RH <20% and least absorbing at RH ~50%,
while pyrrole SOA was highly absorbing at RH <20% and less absorbing at RH ~50% (Table
S5).28. 30. 30. 78 These comparisons indicated that the effects of RH on light absorption can be
sensitive to SOA precursors and their explicit chemical formation pathways.

The reduction in MAC profiles at higher RH cannot be not attributed to the aqueous chemistry

between ammonium cations and SOA constituents,’> 780

as these reactions may actually enhance
the MAC (Text S1; Figures S4 and S5). Instead, the reduced MAC observed at higher RH may be
linked to enhanced formation of oxygenated products. Our results showed that non-absorbing
oxygenated compounds (i.e., those with DBE = 0) were detected only at RH ~50% (Figure S6).
Some of the non-absorbing compounds were the major constituents in SOA samples (Figure S7).
These molecules have higher molecular weights and possess at least 8 carbons and 10 oxygens.

Such high level of oxygenation only observed at higher RH suggested that higher RH may reduce

MAC mostly via enhancing gas-phase and/or multiphase oxidation of SOA constituents.
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BrC Samples RH
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Furan BrC

~50% 3.86 3.18 1.00 0.99

<20% 5.74 5.79 0.95 0.99
Pyrrole BrC

~50% 3.88 4.07 0.99 1.00

Figure 4. MAC profiles of (A) furan BrC and (B) pyrrole BrC at both RH <20% and ~50%

Table 1. Fitted AAE and R? in the linear regression of MAC in the UV (290—-400 nm) and visible

As illustrated by the AAE curves in the inset panels shown in Figure 4, the compositional

change of BrC chromophores was also reflected in the changed shape of MAC profiles. At both

RH conditions, the AAE curves of furan BrC were comparable, even though higher RH slightly
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increased the AAE in the UV range but slightly decreased in the visible range (Figure 4A). The
fitted AAE showed comparable values at RH <20% and ~50% in both UV and visible ranges
(Table 1). However, the AAE curves of pyrrole BrC exhibited significant differences at RH <20%
and ~50%; a twisting curve was shown at RH <20%, whereas a monotonously increased trend with
a small bend was shown at RH ~50% (Figure 4B). The fitted AAE values were smaller at RH ~50%
(Table 1), indicating that the overall wavelength dependency of MAC profiles of pyrrole BrC was
diminished by higher RH levels. Taken together, the reduced MAC profiles with altered
wavelength dependency point to a change in the composition of BrC chromophores.

Mass Fractions of BrC Chromophores in SOA. The mass fractions of molecular chromophores
observed at both RH can aid in understanding the effect of RH on the MAC profiles. Semi-
quantification was performed for molecular chromophores characterized in this study (Table S6).
Most of the characterized chromophores listed in Table S6 were also reported in our previous
studies of furan- and pyrrole-derived secondary BrC.!* 15341 While the mass fractions of some
less abundant chromophores (e.g., C4H3NO3) were similar at both RH, most of the characterized
chromophores showed lower mass fractions at higher RH. In Figure 5, two newly identified
compounds (CsHsNOg and C4H2N4Og) are presented as examples for detailed discussions.
CsHsNOg was characterized as 3-nitrophthalic acid (Figure S8A,C), whereas C4H2N4Os showed
two peaks (Figure 5B), which corresponded to 5,6-dinitro-4/H-1,2,4-oxadiazine-3-carbaldehyde
(Figure S8B,D) and 2,3.,4-trinitro-pyrrole (Figure S9). At higher RH, the mass-normalized
intensity in their extracted ion chromatograms (EICs) nearly disappeared (Figure 5). Since
molecular chromophores have different contributions to the MAC profiles at different
wavelengths,'” their decreased mass fractions can reduce the MAC in specific wavelength regions.

Because the spectral absorption of 3-nitrophthalic acid only covers the UV range (Figure 5A), it
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contributes to the reduction of MAC of furan BrC in the UV range. The reduction of MAC in the
visible range may be attributed to the decreased mass fractions of other chromophores whose
spectra can extend to above 400 nm (e.g., C4H204)."> The spectral absorption of 5,6-dinitro-4H-
1,2,4-oxadiazine-3-carbaldehyde covers both UV and visible ranges (Figure 5B), with a spectral
shape similar to the MAC profile of pyrrole BrC at low RH (Figure 4B). More chromophores, such
as 2,3,4-trinitro-pyrrole (Figure S9A) and dinitro-pyrroles (C4H3N304),*! can also contribute to the
MAC profiles in the UV range. While it is possible that higher RH may potentially facilitate the
production of new molecular chromophores with a red shift of light absorption towards longer
wavelengths,*® our findings revealed that the decrease in mass fractions of various molecular
chromophores was mostly responsible for the altered wavelength dependency and lowered profiles
of the MAC. The evidence together demonstrates the important role of molecular chromophores
in bridging the change in environmental conditions to the light absorption properties of secondary

BrC.

>
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Figure 5. Characterization of molecular chromophores at RH <20% and ~50% conditions: (A)
CsHsNOg in furan SOA; (B) CsH2N4Og in pyrrole SOA. The mass-normalized intensity was
calculated by the EIC intensity over the estimated mass of SOA samples, with the maximum value
in each panel scaled to 1.0. The inset panels show the theoretical UV—vis spectra of molecular

chromophores.

Atmospheric Implications

This study provides evidence for the role of RH in modulating secondary BrC formation
from heterocyclic VOCs, a significant group of SOA precursors in wildfire smoke,** through
changes in size distribution dynamics, chemical composition, and light absorption properties. We
also highlight the necessity of understanding explicit physicochemical pathways for evaluating the
effects of RH on the climate impacts of wildfire smoke aerosols because multiple physicochemical
processes can interplay during SOA formation, which can in turn alter the secondary BrC chemical
composition and light absorption properties. The observations presented in this study demonstrate
the intercorrelation of aerosol size distribution, chemical composition, and light absorption
properties. Specifically, the increased saturation and oxygenation levels of SOA composition at
higher RH may promote the formation of non-absorbing oxygenated compounds, which can lead
to decreased MAC profiles. Such process-level knowledge can aid in better understanding the
effects of RH on BrC light absorption in wildfire smoke.

In contrast to secondary BrC derived from homocyclic VOCs (e.g., toluene), in which the
production of nitroaromatic chromophores can be enhanced by higher RH,?® 8- 82 our findings
indicate that higher RH can lead to decreased mass fractions of nitrogen-containing chromophores

(e.g., CsHsNOg¢ and C4H2N4Ogs) in furan- and pyrrole-derived BrC. Such a difference highlights
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the critical role of SOA precursors and the molecular characteristics of chromophores in the effects
of RH on secondary BrC formation. It should be noted that RH may exhibit a more complicated
influence on secondary BrC light absorption (e.g., the non-monotonic RH dependency of MAC>"
82 or have less significant effects if the nitrogen content of secondary BrC is limited.®? Given this
complexity, understanding the explicit physicochemical processes of SOA formation would be the
key to regulating secondary BrC formation. Our findings reveal that RH can greatly modulate the
explicit physicochemical processing of secondary BrC formation and further alter the BrC-related
radiative impacts of wildfire smoke. Therefore, this study highlights the importance of considering
RH as a critical environmental factor in more accurate assessments of the climate effects of
wildfire smoke aerosols.

Furthermore, this study can serve as a benchmark to help understand how the complex
atmospheric environment affects the climate impacts of smoke aerosols at the process level. Our
findings reveal that dry conditions can lead to strongly absorbing secondary BrC derived from the
nighttime oxidation of heterocyclic VOCs. This route may partially contribute to the strong BrC
light absorption in dry wildfire smoke, as evident from recent field studies.'*** More importantly,
the reduced light absorption and the enhanced oxygenated mass were not only found in the NOs-
driven secondary BrC formation, but also in the aging processes of biomass-burning aerosols.3* #
This common characteristic suggests that the processing-level understanding reported in this study
may be partially applicable to a wider range of physicochemical processes related to wildfire
smoke. In addition, while previous studies have highlighted the importance of low-volatility high-
molecular-weight (>400 Da) chromophores in optical properties of primary combustion BrC,””- 8-
88 this study and our prior work of furan SOA and pyrrole SOA suggest that nighttime oxidation

of heterocyclic VOCs may mainly contribute to BrC chromophores with low molecular weight
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(<400 Da) in wildfire smoke aerosols.'* !> 394! Further research is needed to incorporate our
findings into climate models to better estimate the RH influence on the radiative effects of wildfire
smoke. Overall, our study demonstrates that environmental conditions such as RH in wildfire
smoke can modulate secondary BrC formation and hence regulate the radiative impacts of

unabated wildfires in the context of climate change.
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