

1 **Empowering anaerobic digestion of dairy cow manure with pretreatment and**
2 **post-treatment using vacuum stripping**

3 Mohammad A.H. Badsha ^{a,b}, Pubudu W. Arachchilage ^a, Tryg Lundquist ^b, Wendong Tao ^{a,*}

4 ^a Department of Environmental Resources Engineering, SUNY College of Environmental
5 Science and Forestry, 1 Forestry Drive, Syracuse, NY13210, USA

6 ^b Department of Civil and Environmental Engineering, California Polytechnic State University, 1
7 Grand Ave, San Luis Obispo, CA93407, USA

8 * Corresponding author: 1 Forestry Drive, Syracuse, NY13210, USA. E-mail: wtao@esf.edu

9 **Abstract**

10 Although dairy cow manure is an abundant feedstock of anaerobic digestion, pretreatment is
11 needed to increase biogas production. This study introduced the vacuum stripping and absorption
12 (VaSA) process for pretreatment of dairy cow manure, examined the efficacy of VaSA
13 pretreatment on anaerobic digestion, and applied VaSA to digester effluent for ammonia
14 recovery and pathogen reduction. Two 18-L mesophilic digesters were operated semi-
15 continuously with VaSA-treated and raw dairy manure in parallel with two control digesters fed
16 raw manure only. Pretreatment of dairy manure by VaSA for 2 h increased the dissolved fraction
17 of volatile solids by 44.8-45.5%. Consequently, the digesters receiving VaSA-pretreated and raw
18 manure produced 17% more biogas than the control digesters at the volatile solids loading rate of
19 1.8 g/L_{reactor}/d. The pretreatment also improved digestate dewaterability, with time-to-filter and
20 viscosity decreased by 8.5-14.5%. Post-treatment of digestate by VaSA reduced fecal coliform to

21 undetected. Ammonia mass transfer coefficients were similar in VaSA pretreatment of dairy
22 manure and post-treatment of manure digestate (0.21-0.29 1/h). Post-treatment allows more
23 digestate to be applied to nearby land at lower transportation costs and benefits recycling of
24 digestate due to pathogen reduction. Overall, this mini-pilot study proved coupling anaerobic
25 digestion and VaSA to be a profitable strategy to empower anaerobic digestion systems.

26 **Keywords:** Alkali treatment; ammonia recovery; anaerobic digestion; dairy manure; thermal
27 treatment; vacuum stripping

28 **1. Introduction**

29 Agricultural waste such as cow manure is an abundant, renewable bioresource for biogas
30 production [1,2]. At the end of 2023, more than 29% of the 21,179 concentrated animal feeding
31 operations in the U.S. had National Pollutant Discharge Elimination System (NPDES) coverage
32 [3]. These animal feeding operations are required to implement a nutrient management plan and
33 meet effluent limitations for both production and land application areas. Besides application of
34 the best available technologies for pollutant control, manure and manure digestate are typically
35 sprayed or injected to cropland at application rates below the agronomic nutrient needs. The land
36 needs for nutrients are field-specific, depending on soil testing for nitrogen and phosphorus,
37 crops to be planted or other land uses, the yield goals of crops or other uses, crop or pasture
38 nutrient requirements, timing, and other factors. Excess manure must be either transported offsite
39 or treated onsite. High transportation costs (more than \$1.24/m³/km), seasonal application, and
40 the potential liability of environmental impacts limit the feasibility of hauling manure for offsite
41 land application [4]. Anaerobic digestion has been adopted by concentrated animal feeding
42 operations to produce bioenergy in the form of biogas while stabilizing manure solids [2,5].

43 Although dairy cow manure is the second largest feedstock of anaerobic digestion in the U.S., it
44 contains poorly digestible lignocellulosic fibers (lignin, cellulose, and hemicellulose).

45 Lignocellulose accounts for 40-60% by weight of cow manure dry matter [6]. Cows digest the
46 easily-degradable part of the feed with rumen microbes, making the manure fibrous. Spent
47 bedding materials such as straws, sawdust, and composts are removed together with cow manure,
48 further increasing fiber content of liquid cow manure that is a mixture of as-excreted manure,
49 used bedding materials, and washing water. Pretreatment aims at freeing the lignin fraction by
50 breaking the covalent bonds between cellulose and hemicelluloses as well as converting
51 crystalline cellulose into more accessible cellulose [2,7].

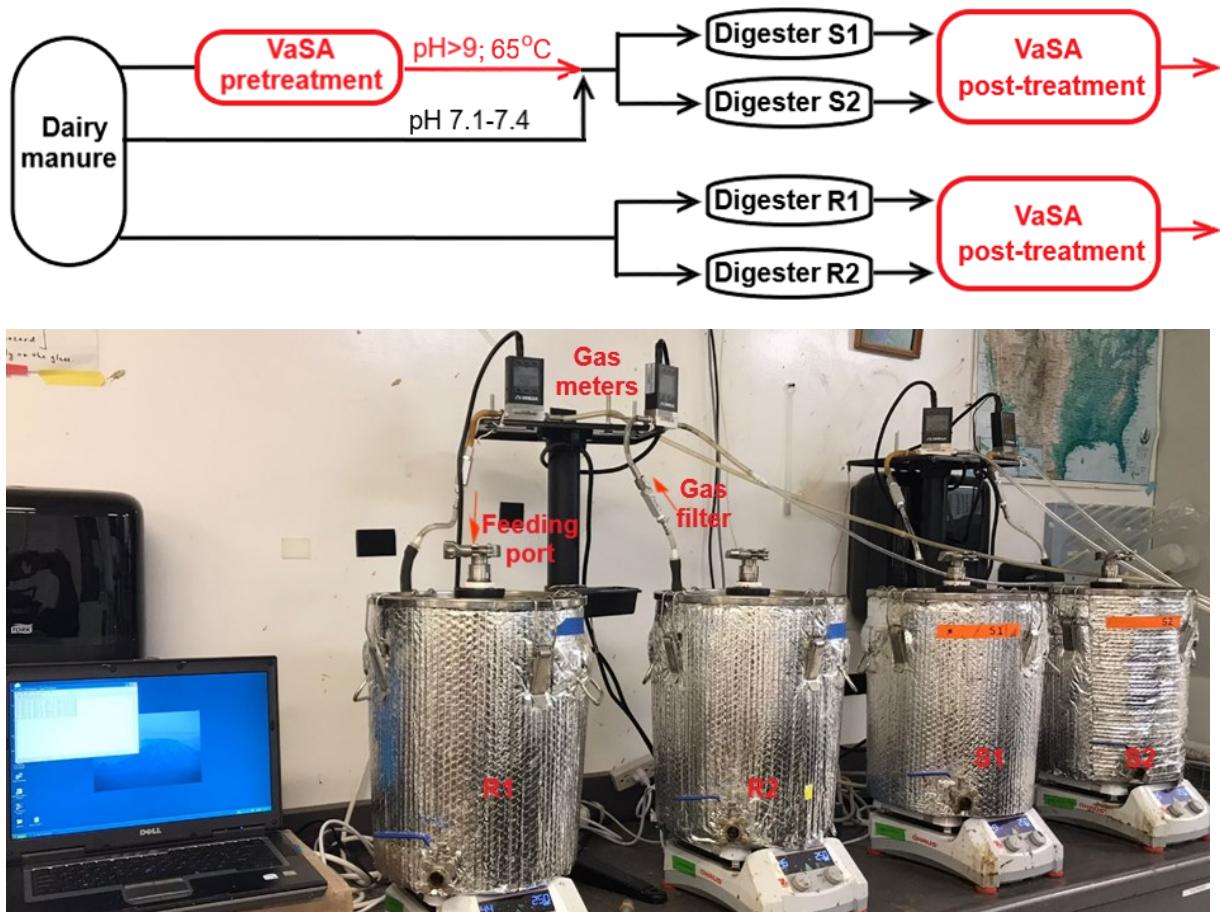
52 Various mechanical, thermal, chemical, and biological methods have been investigated for
53 pretreatment of dairy and beef cow manure [1,2,7]. However, most pretreatment methods were
54 estimated to have costs (up to \$155.4/m³ feedstock) higher than market values of the increased
55 methane production (\$0.00-3.51/m³ feedstock) although methane production was increased by
56 9.6-400% [8-10]. Innovations in pretreatment methods might contribute to the growth and
57 optimization of biogas production from agro-industrial wastes [1,11]. Low-temperature thermal
58 (<100 °C) and mild-alkali (<80 mg NaOH/g-TS; pH 8-12) pretreatments have been found
59 effective for municipal sludge [12-15]. Recently, Tao et al. [16] and Han et al. [17] found that
60 the vacuum stripping and absorption (VaSA) process could not only recover ammonia, but also
61 enhance solubilization of volatile solids in anaerobic digestate due to vacuum-assisted low-
62 temperature thermal treatment and mild-alkali treatment under the VaSA conditions. VaSA
63 raises wastewater pH to 9.0-9.5 and heats it to 65 °C at a vacuum pressure of 25-27 kPa, which
64 increases the fraction of free ammonia to more than 92% of total ammonia (aqueous ammonium
65 NH₄⁺ and gaseous free ammonia NH₃). The feed boils at this temperature (65 °C) due to the

66 reduced pressure (25-27 kPa) instead of the normal boiling point (100 °C at 101.3 kPa). At
67 boiling, free ammonia is efficiently stripped out of the feed and solids solubilization is enhanced.
68 Stripped ammonia is absorbed to a sulfuric acid solution, forming ammonium sulfate as a
69 marketable fertilizer. Our hypothesis was that liquid dairy cow manure could be pretreated by
70 VaSA not only to recover ammonia, but also to enhance solids solubilization by the vacuum-
71 assisted low-temperature thermal and mild-alkali treatments of lignocellulosic biomass in dairy
72 manure. When VaSA-treated manure is fed to anaerobic digesters, the heat applied for VaSA is
73 recycled, thus making VaSA a net-zero-energy pretreatment measure. The NaOH added to raise
74 pH for VaSA mitigates digestate acidification. Compared with anaerobic digestion of manure
75 without pretreatment, digestion of manure pretreated by VaSA can yield more biogas or have a
76 shorter hydraulic retention time as solids solubilization is enhanced by VaSA pretreatment.

77 Digested dairy manure is often spread on agricultural land as a liquid fertilizer or separated into
78 solids for animal bedding and liquid for further treatment or land application [4,18]. However,
79 land application rates of dairy manure digestate are often limited by the high content of total
80 nitrogen (3.4-5.7 g/L), especially the bioavailable ammonia-N at 1.4-4.2 g/L [18-21]. To avoid
81 the high transportation costs for hauling excessive manure digestate to distant crop fields,
82 ammonia needs to be removed or recovered from manure digestate. VaSA has been found to be
83 efficient in recovering ammonia from liquid dairy manure, pig slurry, and dairy manure digestate
84 [19-22]. Upon ammonia recovery, more manure digestate could be applied to a given area of
85 local land while meeting the agronomic application rates.

86 Land application of manure digestate and recycling of manure solids as cow beddings can lead to
87 the spread of pathogens [23]. The vacuum-assisted alkali/thermal treatment in VaSA is capable
88 of thermal inactivation of pathogens [16]. Pathogen reduction promotes unrestricted land

89 application of manure digestate and utilization of the separated solids as cow bedding materials.
90 Pathogen reduction in animal manure and manure digestate has not been reported for ammonia
91 recovery processes.


92 This study delved into the capacity and kinetics of ammonia recovery and the synergistic effects
93 of VaSA on biogas production and digestate recycling through pretreatment of dairy cow manure
94 and post-treatment of manure digestate. Both the VaSA system and anaerobic digesters were
95 functional prototypes. The mini-pilot tests were designed to simulate practical application
96 situations. Unlike earlier studies on ammonia recovery from animal manure and manure
97 digestate using VaSA [19-21], the present study investigated the simultaneous effects of vacuum
98 stripping on both ammonia recovery and treatment of manure solids. It was the first effort to
99 comprehensively investigate the efficacy of coupling anaerobic digestion with VaSA
100 pretreatment of digester influent and post-treatment of digester effluent. It demonstrated an
101 integrative approach to empower anaerobic digestion systems for biogas production and
102 digestate recycling.

103 **2. Materials and Methods**

104 **2.1. Semi-continuous anaerobic digestion of dairy manure**

105 As shown in [Figure 1](#), two complete-mix anaerobic digesters were operated semi-continuously
106 with VaSA-treated and raw dairy cow manure at 1:1 mass ratio of volatile solids (VS), called
107 digesters with pretreatment hereinafter, in parallel with two control digesters fed raw dairy
108 manure only, called digesters without pretreatment. The digesters were built with 27-L stainless
109 steel cylindrical tanks (inner diameter 30.5 cm; height 36.8 cm) sitting on Guardian 5000

110 hotplate stirrers (Ohaus, Melrose, MA). The tanks were sealed air-tight by silicone gaskets in the
111 lids. The side walls of the digesters were wrapped with double reflective insulation sheets to
112 minimize heat loss. Based on trial runs for complete mixing and uniform temperature of
113 digestate, the effective volume was set at 18 L. Temperature was targeted at 36 °C for mesophilic
114 digestion, which is in the predominant temperature range of full-scale heated anaerobic digestion
115 systems. Each digester had a 4-cm octagonal magnetic stir bar for magnetic mixing. The tri-
116 clamp inlets at the center of the lids allowed easy feeding and air-tight closing. There was a ball
117 valve (2.5 cm diameter) at the bottom of each digester for discharge.

118 **Figure 1.** Coupling vacuum stripping and absorption (VaSA) with mesophilic anaerobic digesters fed a
119 mixture of raw manure and VaSA-pretreated manure at 1:1 VS mass ratio (S1 and S2) in parallel with
120 digesters fed with 100% raw manure (R1 and R2).

121 Cow manure contains fermentative bacteria and methane-producing archaea, making it an
122 inoculum well-suited for the startup of anaerobic digesters [2]. Each digester was inoculated with
123 18 L of dairy cow manure slurry collected from California Polytechnic State University's
124 manure lagoon at San Luis Obispo, California (Figure A.1). Large objects like wood chips and
125 corn grains were screened out with a #10 mesh (2 mm opening). Heavy particles like sand were
126 removed from the inoculum by 30-min gravity settling. Table 1 presents the characteristics of the
127 inoculum. The inoculum was continuously stirred and heated gradually to approximately 36 °C
128 in the digesters. The target temperature and mixing intensity were maintained for 4 days to allow
129 for microbial acclimatization.

130 The digesters were fed daily with dairy cow manure slurry at organic loading rate (OLR) of 1 g-
131 VS/L_{reactor}/d in the initial 21 d (startup) and 1.3 g-VS/L/d on Days 22-69 (Period 1) and with
132 liquid dairy manure at 1.8 g-VS/L/d on Days 70-135 (Period 2). Hydraulic retention time was
133 maintained at 26 d by discharging and feeding daily in the same amounts (692.3 g each digester).
134 VS loading rate and hydraulic retention time were kept the same for the digesters with and
135 without pretreatment by adding small amounts of drinking water when feeding. VaSA
136 pretreatment commenced after 21 d of startup. The manure slurry and liquid manure were
137 collected once every 14-28 d from Cal Poly Dairy Farm (Figure A.1). Particles larger than 4.75
138 mm such as corn and large bedding materials were removed with a screen. A sample was
139 collected from each run of manure collection for characterization as presented in Table 1. Both
140 raw dairy manure and VaSA-pretreated manure were stored in capped buckets at 4 °C for daily
141 feeding. The combination of VaSA-treated manure and raw manure at 1:1 VS ratio was
142 estimated to have digester influent temperature slightly higher than the mesophilic digestion
143 temperature target of 36 °C and suitable pH in full-scale applications.

144 **Table 1.** Characteristics of inoculum and substrates for anaerobic digestion of dairy cow manure.

Parameter	Inoculum [^]	Substrate [^]		
		Manure slurry for Day 0-21 (startup)	Manure slurry for Day 22-69 (Period 1)	Liquid manure for Day 70-135 (Period 2)
pH	8.03	7.43	7.25	7.12 ± 0.15
Conductivity, mS/cm	-	6.10	7.76	8.27 ± 0.90
Alkalinity, g/L as CaCO ₃	3.17	4.30	5.28	6.98 ± 0.63
Total ammonia-N, mg/L	203	233	435	764 ± 84
Total solids, %	0.91	3.82	4.55	6.76 ± 1.1
Volatile solids, %	0.28	2.77	3.38	5.28 ± 1.1
Ash, % of dry matter (dm)	-	-	25.7	22.4 ± 2.9
Crude protein, % dm	-	-	19.2	13.9
Crude fat, % dm	-	-	4.33	4.20
Lignin, % dm	-	-	8.85	11.5
Cellulose, % dm	-	-	15.1	26.1
Hemicellulose, % dm	-	-	10.6	17.7
Non-fiber carbohydrate, % dm	-	-	16.4	5.2

145 [^]: single samples except the averages of 2 samples for physio-chemical parameters on Days 22-
 146 69 and average ± standard deviation of 3 samples for physio-chemical parameters on Days 70-
 147 135.

148 The digestate discharged daily from each digester was measured immediately for temperature,
 149 pH, and conductivity. Samples were collected weekly for determination of VS, total solids (TS),
 150 alkalinity, and total ammonia-nitrogen (TAN = NH₄⁺-N + NH₃-N) using the methods described

151 hereinafter in Section 2.4. Kinematic viscosity and time-to-filter (TTF) were measured twice a
152 week from 26 d (one hydraulic retention time) after changing OLR. Biogas flowrate,
153 temperature, and pressure were recorded every 5 min with FMA-1617A mass flow meters
154 (Omega Engineering, Inc., Norwalk, CT). To reduce moisture from the biogas, air filters were
155 interposed in the tubes connecting the gas flow meters and the digesters (Figure 1). The biogas
156 flow rates recorded as mass flow rates at 25 °C were used to calculate daily biogas production
157 rate at standard temperature (0 °C) and pressure (101.3 kPa). One-way analysis of variance
158 (ANOVA) was conducted to assess the disparity in biogas production rate, pH, TAN, TTF, and
159 viscosity between the means of the digesters with and without pretreatment. When the *P*-value
160 was below 0.05, a difference in the means of a parameter was considered significant.

161 **2.2. Pretreatment of dairy manure by vacuum stripping**

162 A functional VaSA prototype (Figure A.2) was used to pretreat dairy manure. VaSA has been
163 optimized to strip ammonia out of dairy manure digestate at the feed depth of 15 cm and pH
164 above 9 [21]. For each batch, 11.67 L of dairy manure were loaded to the vacuum stripper after
165 raising pH to 9.2-9.4 with a 50% NaOH solution. A demister on the stripper refluxes water vapor
166 by surface air cooling. The stripped ammonia gas is sucked by vacuum to an acid solution in the
167 gas absorption column. The absorption solution (300 mL) added to the gas absorption column for
168 the first batch was made of 39 g of concentrated H₂SO₄ and deionized water. The absorption
169 solution was reused upon adding 30-40 g of H₂SO₄ sufficient to react with the NH₃ stripped out
170 of each batch. A 2-L glass flask was installed between the absorption column and vacuum pump
171 to trap remaining water vapor by surface air cooling. Because of the low ammonia concentration
172 (Table 1), the prototype was operated for only 2 h of vacuum stripping in each batch at
173 temperature 65 °C and pressure 25.1-26.5 kPa.

174 Conductivity, pH, and concentrations of TAN, TS, VS, and dissolved volatile solids (DVS) were
175 determined for the dairy manure samples collected before and after pH elevation as well as upon
176 0.5, 1, and 2 h of vacuum stripping, using the methods described in Section 2.4. The time series
177 data of DVS/VS ratio were used to evaluate the kinetics of VaSA pretreatment on solids
178 solubilization. Final volumes of the feed and absorption solution in each batch operation were
179 measured with a graduated cylinder. The initial and final TAN concentrations in the absorption
180 solution were determined in each batch. The volume and TAN concentration of the condensate in
181 the flask trap were also measured.

182 **2.3. Post-treatment of manure digestate by vacuum stripping**

183 When more than 12 L of digestate were accumulated from daily discharges, a batch of VaSA
184 was run. There were 5 batches monitored in Period 1 and 2 batches in Period 2. The operating
185 conditions and parameters were the same as for pretreatment described in Section 2.2, except that
186 each batch operation lasted for 4-5 h because of the higher TAN concentrations in the manure
187 digestate. There were fewer batches monitored in Period 2 as TAN and VS concentrations of
188 digestate were stable.

189 To examine pathogen reduction through VaSA, digestate samples (100 mL) were collected
190 before pH elevation and after 3.5 and 5 h of vacuum stripping during two runs of batch operation
191 in Period 2, one batch with the effluent of the digesters without pretreatment and the other with
192 the effluent from the digesters with pretreatment. The samples were delivered at a temperature
193 below 10 °C within 1 h to a local certified laboratory for determination of fecal coliform bacteria
194 as described in Section 2.4.

195 It was suspected that volatile organic compounds (VOCs) would be generated by fragmentation

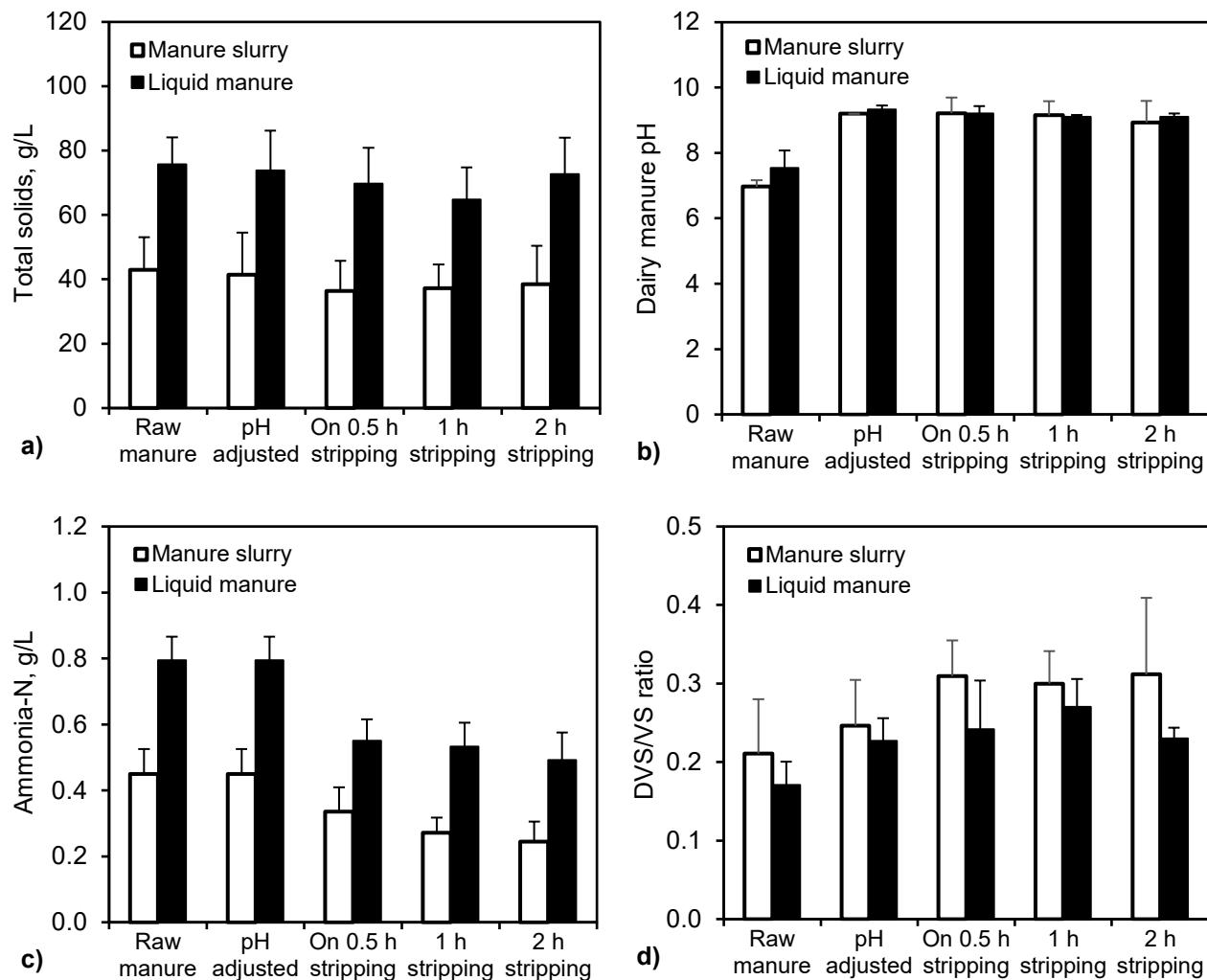
196 of lignocellulosic and microbial biomass in the vacuum stripping process and co-stripped out of
197 digestate. The U.S. Environmental Protection Agency has classified some VOCs as hazardous air
198 pollutants. To investigate the generation and transport of VOCs, samples (125 mL each) were
199 taken from manure digestate before pH elevation, digestate after 5 h of vacuum stripping, initial
200 absorption solution, and final absorption solution in the same two runs of batch operation as for
201 fecal coliform examination. Upon centrifugation and glass microfiber filtration (pore size 5 and
202 1.5 μm), 100 mL of filtrate samples were collected for determination of purgeable VOCs. The
203 absorption solution samples were also filtered through glass microfiber filters (pore size 1.5 μm)
204 for VOC determination.

205 **2.4. Methods for sample analysis and testing**

206 Temperature, pH, electrical conductivity, and TAN concentration in the anaerobic digestion
207 samples were measured with a portable multimeter (Model HQ4300, Hach Company, Loveland,
208 Colorado) equipped with a conductivity probe (IntelliCAL CDC401), pH probe (IntelliCAL
209 PHC301), and ammonia selective electrode (IntelliCAL ISENH3181). The ammonia selective
210 electrode detects the change in electric potential due to NH_3 diffusion through a membrane into
211 its electrolyte upon conversion of sample NH_4^+ into NH_3 at pH greater than 11. Alkalinity was
212 determined by titration with 0.2 N H_2SO_4 solutions, following Standard Method 2530B [24]. TS
213 and VS concentrations were determined gravimetrically by drying at 103-105 °C and ignition at
214 550 °C, respectively, according to Standard Methods 2540B and 2540 E [24]. DVS concentration
215 was determined as VS in the filtrate upon centrifugation of digestate samples at $4000\times g$ for 10
216 min and vacuum filtration through glass microfiber filters (1.5 μm pore size), following Standard
217 Method 2540 [24]. The density of fecal coliform bacteria was determined as the most probable
218 number (MPN) using the 25-tube fermentation technique, following Standard Method 9221 E

219 [24]. Viscosity of digestate samples was measured with a Fungilab Cannon-Fenske S400
220 capillary glass viscometer following ASTM D445 and ASTM D446 methods for opaque
221 samples. Digestate TTF was determined using the small-volume Standard Method 2710H [24].

222 Biochemical composition of manure slurry and liquid manure samples were characterized by
223 Dairy One Forage Laboratory. It followed AOCS Standard Procedure Am 5-04 for determination
224 of crude fat upon diethyl ether extraction at 90 °C for 60 min using an ANKOM XT15 extractor.
225 Crude protein (including true protein and non-protein nitrogen) was determined by combustion
226 using a CN928 C/N determinator. Lignin, cellulose, and hemi-cellulose were determined by the
227 ANKOM Technology methods based on sequential extraction treatments with neutral detergent
228 fiber solution, acid detergent fiber solution, 72% H₂SO₄, and ashing.


229 Determination of purgeable VOCs in the samples from post-digestion VaSA treatment followed
230 U.S. EPA Method 524.2 with detailed procedures described by Tao et al. [16]. It used a TRACE
231 1310 GC/ISQ 7000 single quadrupole MS (Thermo Scientific, Austin, Texas) system equipped
232 with an automated purge-and-trap concentrator (Teledyne Tekmar Atomx XYZ). Calibration
233 standards (500, 80, and 8 ppb) were prepared with U.S. EPA 524.3 VOA MegaMix (Restek) and
234 ultrapure MilliQ water. 5 µL of EPA 524 Internal Standard/Surrogate Mix (Restek) was added to
235 each vial of samples and standards. Ultrapure water was analyzed periodically for quality
236 control.

237 **3. Results and Discussion**

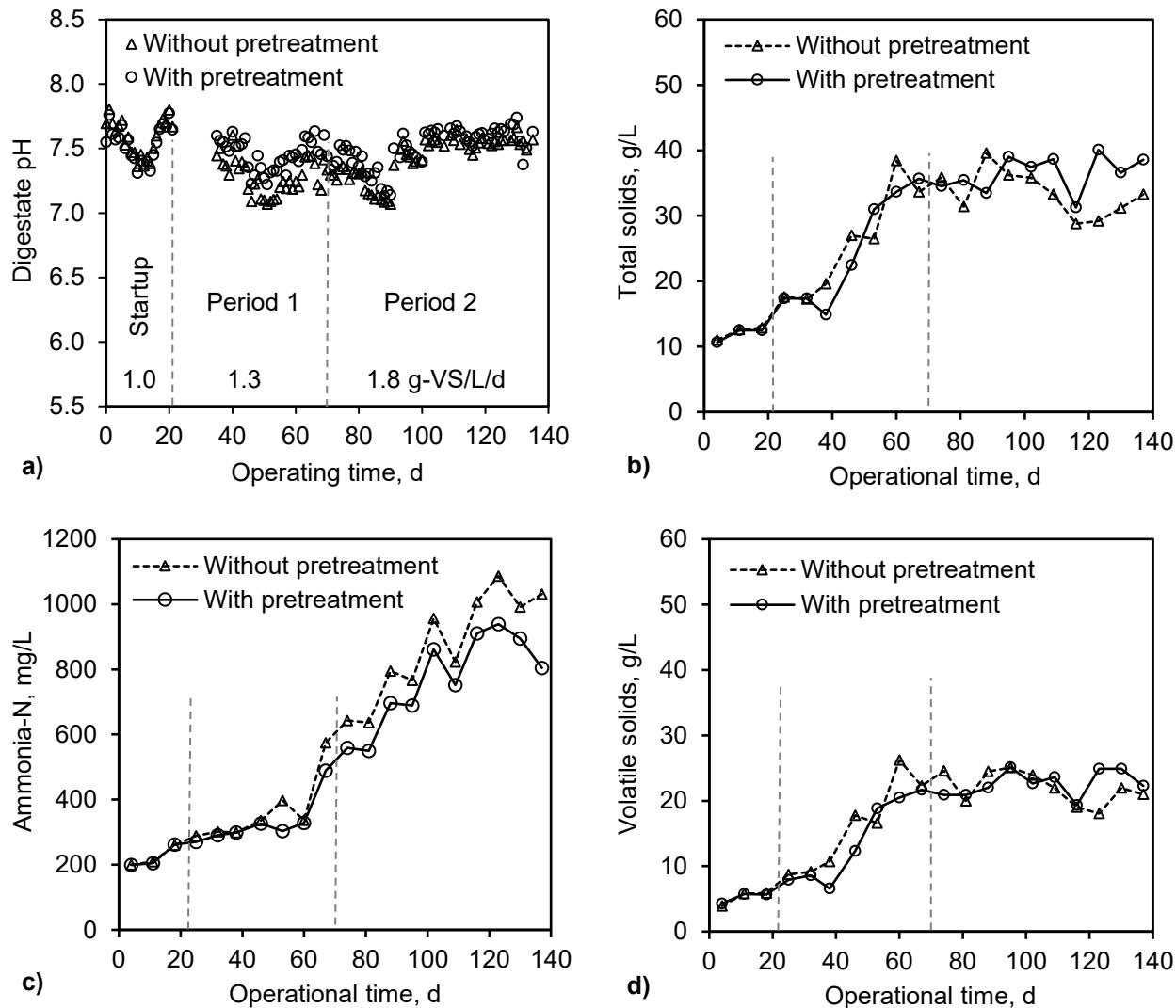
238 **3.1. Kinetics and capacity of solids solubilization and ammonia recovery in pretreatment**

239 There were 4 and 3 batches of 2-h VaSA pretreatment of manure slurry in Periods 1 and liquid

240 manure in Period 2, respectively. The average TS and TAN concentrations of liquid manure were
241 nearly two times those of manure slurry ([Figure 2a,c](#)). Before loading to the stripper, manure pH
242 was increased to 9.2-9.4 ([Figure 2b](#)), which resulted in 94-96% of ammonia in NH_3 that was
243 readily available for vacuum stripping. As alkali thermal pretreatment of volatile solids proceeds,
244 pH decreases due to release of organic acids [13]. Because dairy manure had high alkalinity
245 ([Table 1](#)), feed pH stayed around 9 over the 2 h of vacuum stripping ([Figure 2b](#)). Both the high
246 fraction of free ammonia and high enough pH ensured efficient stripping of ammonia ([Figure
2c](#)). Liquid-phase ammonia mass transfer coefficient (k_{La}) in the Lewis-Whitman kinetic model
248 [20] decreased from 0.29 1/h with low-TS manure slurry to 0.21 1/h with high-TS liquid manure.
249 The TAN removal efficiencies were 45.6% in 2-h pretreatment of manure slurry and 38.1% in
250 pretreatment of liquid manure, which were similar to 12-72% attained by 4-h steam stripping of
251 chicken manure at similar process pH (9.2-9.9) and temperature (75-85 °C) [25] and 32%
252 reported by Molinuevo-Salces et al. [26] for pilot-scale ammonia removal from swine manure by
253 7-d gas permeable membrane separation. The recent review by Yellezuome et al. [25] found that
254 the commercially applied air stripping processes removed 20-92% of ammonia in dairy, swine,
255 and chicken manure, varying with pH, temperature, air-to-water flow ratio, and hydraulic
256 residence time. It is noteworthy that the VaSA operating parameters and demister design for the
257 VaSA prototype had been optimized to minimize water loss from the feed and the loss of latent
258 heat. TS and VS concentrations were hence similar before and after the 2 h of vacuum stripping
259 ([Figure 2a](#)).

260 **Figure 2.** Variations of a) total solids concentration; b) pH value; c) total ammonia-N concentration; and d)
261 concentration ratio of dissolved volatile solids to total volatile solids in dairy manure over 2 h of
262 pretreatment by vacuum stripping. Bar = average of 4 batches for manure slurry and 3 batches for liquid
263 manure; Error bar = standard deviation.

264 Through pretreatment of dairy manure by VaSA, the fraction of DVS in VS increased by 45.5%
265 in manure slurry and 44.8% in liquid manure (Figure 2d). DVS/VS ratio increased by 16.8-
266 32.9% upon elevation of pH to 9.2-9.4, further increased by 0.07-25.6% in the first 0.5 h of
267 vacuum stripping, and stabilized in 0.5-2 h of stripping, indicating that solids solubilization could
268 be attributed to both alkali treatment and vacuum-assisted thermal/alkali treatment. In contrast,
269 vacuum-assisted thermal/alkali treatment accounted for 70-91% of solids solubilization in sludge

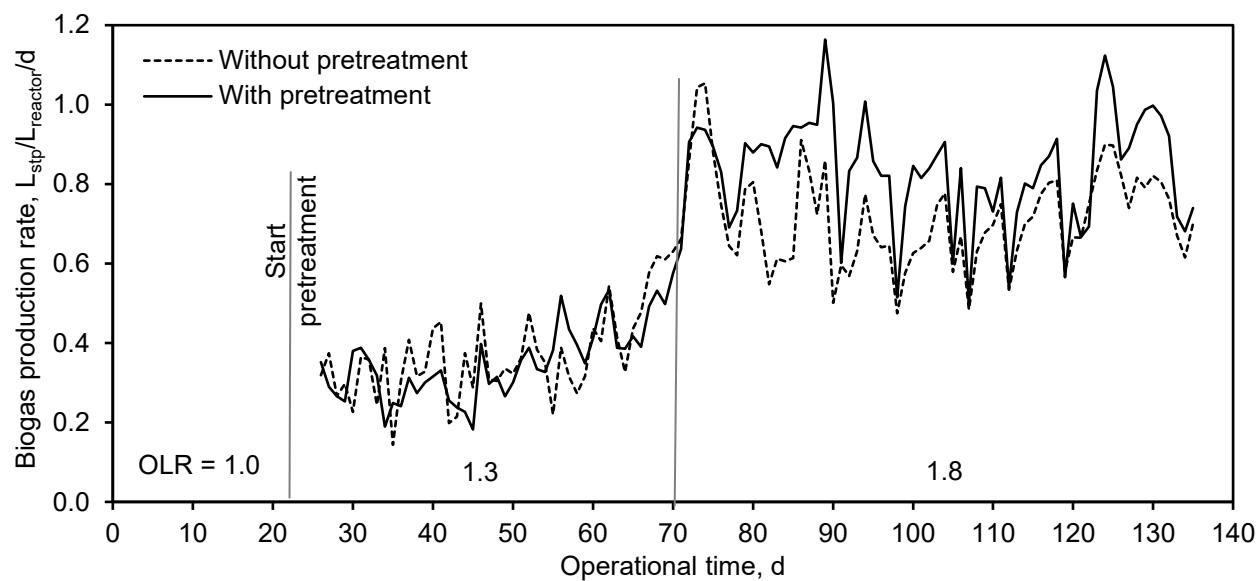

270 digestate and co-digested foodwaste and dairy manure [16,17]. This difference could be
271 attributed to the high fiber content of cow manure, which could be disintegrated and delignified
272 more effectively by alkali treatment than vacuum-assisted thermal treatment.

273 Thermal treatment accelerates dissolution of lipids and polysaccharides in loosely bound
274 extracellular polymeric substances, disintegration of tightly bound extracellular polymeric
275 substances, and rupture of cell walls [6,27]. It affects solubilization of microbial flocs in dairy
276 manure. Alkali cleaves the intra-lignin linkages as well as ester bonds in lignin-cellulose-
277 hemicellulose complexes [6,28], resulting in disintegration and depolymerization of
278 lignocellulosic biomass in dairy manure. The dosage of NaOH for pH elevation increased from
279 2.29 g/L for manure slurry to 3.78 g/L for liquid manure as manure alkalinity and VS
280 concentration increased from Period 1 to 2 (Table 1). Alkali treatment selectively removes lignin
281 and increases porosity and interstitial surface area [28]. Vacuum in VaSA poses greater pressure
282 gradient on extracellular polymeric substances, cell walls, and lignocellulosic biomass for deeper
283 penetration of NaOH and subsequently greater disintegration of cells and aggregates [16,17].

284 **3.2. Effect of pretreatment on anaerobic digestion and digestate dewaterability**

285 Because of the high alkalinity of dairy manure (Table 1), digestate pH was stable over time
286 (Figure 3a). Despite the statistically significant differences in pH value between the digesters
287 with and without pretreatment in Period 1 (ANOVA P -value <0.00) and Period 2 (P -value =
288 0.01), the average differences were very small, 7.45 ± 0.12 in digesters with pretreatment and
289 7.28 ± 0.14 in digesters without pretreatment in Period 1 as well as 7.50 ± 0.15 in digesters with
290 pretreatment and 7.42 ± 0.17 in digesters without pretreatment in Period 2. The slight effect of
291 VaSA pretreatment on digestate pH suggested that more VaSA-treated manure could be fed to

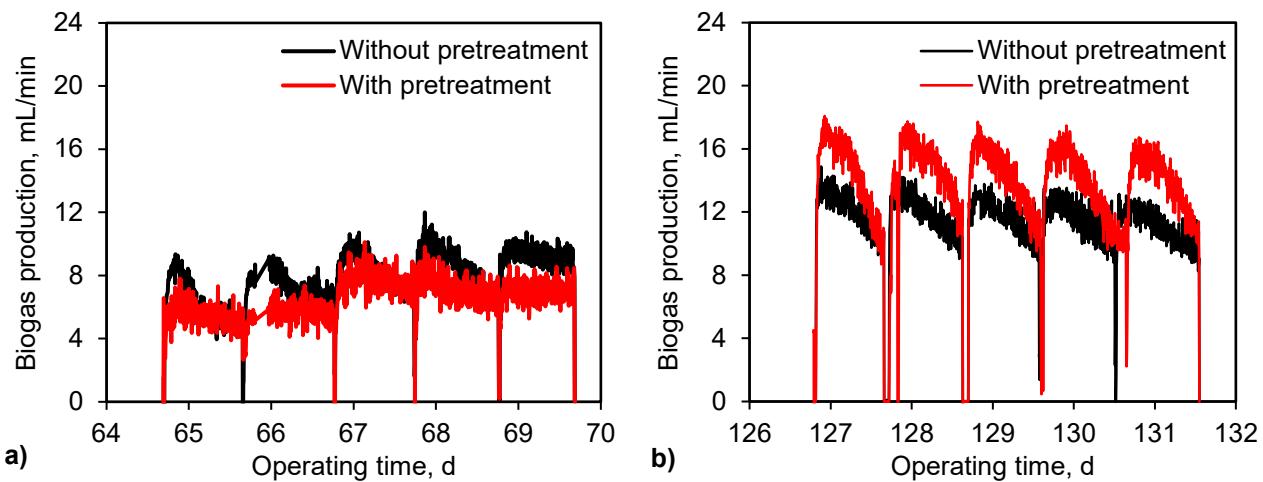
292 digesters without concern of alkaline pH.


293 **Figure 3.** Variations of a) pH value; b) total solids concentration; c) total ammonia-N concentration; and d)
294 volatile solids concentration in anaerobic digesters with and without pretreatment of manure slurry at
295 organic loading rate (OLR) of 1.3 g-VS/L_{reactor}/d in Period 1 and liquid manure at 1.8 g-VS/L_{reactor}/d in
296 Period 2.

297 The steep increases in TS and VS concentrations over time in Period 1 (Figure 3b,d) indicated a
298 process of microbial biomass development in the digesters. The similar trends of VS increase in
299 digesters with and without pretreatment in Period 1 suggested no nutrient limitation to microbial
300 growth. Ammonia at concentrations below 200 mg/L serves as a nutrient for anaerobic biomass

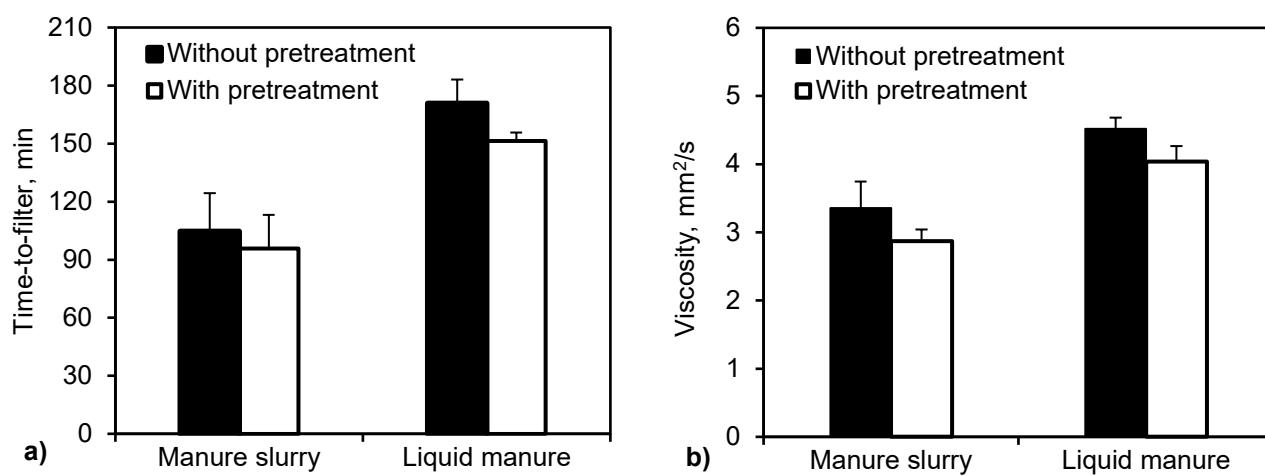
301 growth [29]. Although ammonia accumulated quickly in the digesters when OLR was increased
302 to 1.8 g-VS/L/d in Period 2 (Figure 3c), total ammonia and free ammonia concentrations did not
303 reach the level that may inhibit methanogens [29,30]. TAN concentration in the digesters with
304 pretreatment was lower, but the difference between the digesters with and without pretreatment
305 was statistically insignificant (P -value = 0.51 in Period 1 and 0.21 in Period 2) because of the
306 low TAN concentrations and correspondingly short vacuum stripping of dairy manure. This
307 insignificant difference in digestate TAN concentration could partially attributed to the increased
308 conversion of organic nitrogen to ammonia in the digesters with pretreatment where hydrolysis
309 and acidogenesis were accelerated by the VaSA-enhanced solids solubilization. Similarly, Han et
310 al. [17] found a small difference in TAN concentration between the digester with and without
311 ammonia recovery by VaSA.

312 Since microbial biomass developed in Period 1, biogas production rate increased slightly over
313 time (Figure 4). The difference in biogas production rate between the digesters with and without
314 pretreatment was insignificant in Period 1 (P -value = 0.37), possibly due to the developing
315 microbial biomass. Biogas production rate stabilized in Period 2 at 0.83 L/L_{reactor}/d in the
316 digesters with pretreatment and 0.71 L/L_{reactor}/d in the digesters without pretreatment, indicating
317 17% more biogas production due to pretreatment of one half the dairy manure loading. The
318 differences between the digesters with and without pretreatment were statistically significant in
319 Period 2 (P -value <0.001). Considering the non-inhibitory TAN concentrations, the increased
320 biogas production was attributed to the enhancement in solids solubilization by the vacuum-
321 assisted low-temperature thermal and mild-alkali treatments under the vacuum boiling
322 conditions. Besides the increased biogas production rate, pretreatment of dairy manure by VaSA
323 accelerated the overall digestion kinetics as evidenced by the greater jump of biogas production


324 rate soon after feeding each day and the steeper decline before next feeding in the digesters with
 325 pretreatment compared to the digesters without pretreatment (Figure 5), further confirming the
 326 enhanced solids solubilization that accelerated hydrolysis in the digesters. When digesters are
 327 discharged and fed continuously, a greater increase in overall biogas production rate would be
 328 achieved.

329 **Figure 4.** Variations of biogas production in anaerobic digesters with and without pretreatment of manure
 330 slurry at organic loading rate (OLR) of 1.3 g-VS/L_{reactor}/d and liquid manure at 1.8 g-VS/L_{reactor}/d.

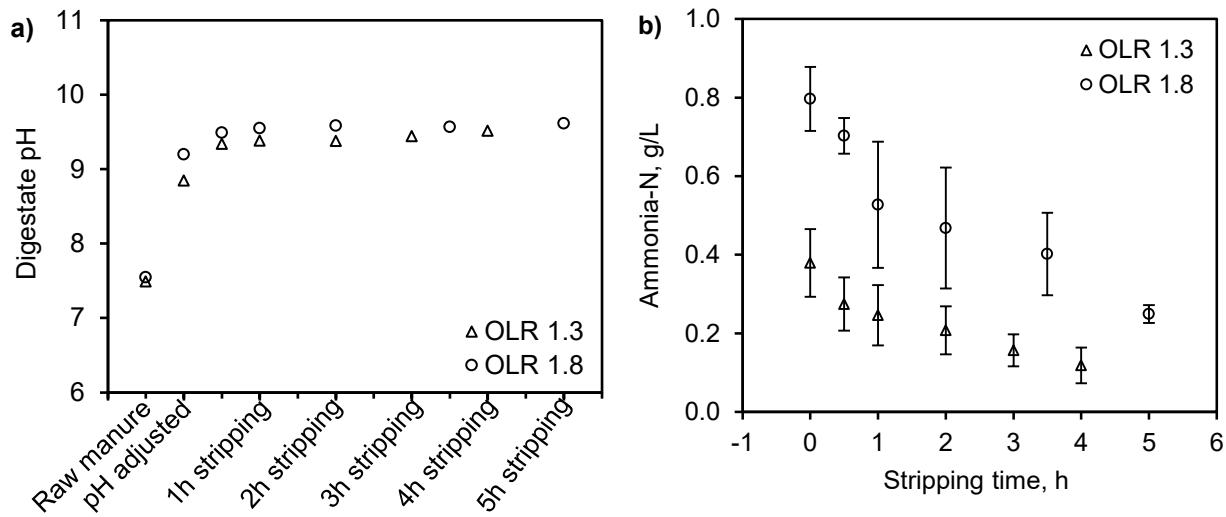
331 To fully utilize the benefits of VaSA pretreatment, it is likely that VaSA-treated alkaline dairy
 332 manure can be digested without mixing with untreated manure. The heat in the VaSA-treated
 333 substrate could be recycled to dairy manure through heat exchangers. A review by Chen et al. [6]
 334 has found that alkaline anaerobic digestion at pH 8.5 and higher is technically feasible and
 335 economically favorable for treating livestock manure. As the VaSA-treated dairy manure had a
 336 pH near 9, a complete-mix digester would have a pH well below 9 in the digestate although a
 337 plug-flow digester may suffer from pH inhibition to methanogenesis near the digester inlet.
 338 When all the digester influent is pretreated by VaSA, a 34% increase in biogas production is


339 anticipated. By comparison, a recent review [31] found that low-temperature thermal treatment
 340 of dairy, pig, and chicken manure would result in unevidenced to 65% increase in biogas
 341 production.

342 **Figure 5.** Representative variation of biogas flow measurements after daily feeding of the digesters with
 343 and without pretreatment of a) manure slurry at organic loading rate (OLR) of $1.3 \text{ g-VS/L}_{\text{reactor}}/\text{d}$; and b)
 344 liquid manure at $1.8 \text{ g-VS/L}_{\text{reactor}}/\text{d}$.

345 As Figure 6 shows, digestate TTF and viscosity were greater in Period 2 with liquid manure than
 346 Period 1 with manure slurry because of the higher OLR and substrate VS concentration in Period
 347 2. Compared with the digesters without pretreatment, the digesters with pretreatment had
 348 significantly smaller TTF and viscosity (P -value = 0.01-0.03) in Periods 1 and 2 except for the
 349 similar TTFs in Period 1 (P -value = 0.47). Pretreatment of manure slurry led to an 8.5% decrease
 350 in TTF and 14.5% decrease in viscosity in Period 1. The digesters with pretreatment of liquid
 351 manure in Period 2 had digestate TTF 11.4% and viscosity 10.6% smaller than those of the
 352 digesters without pretreatment. Smaller TTF and viscosity indicate improved dewaterability of
 353 digestate [24,32], thus saving costs to separate solids from liquid in digester effluent for further
 354 treatment and recycling. Similarly, Han et al. [17] reported that digestate TTF and viscosity were

355 reduced by vacuum stripping and recirculation of co-digested foodwaste and dairy manure. Both
 356 thermal treatment and alkali treatment are conditioning technologies to improve sludge
 357 dewaterability by disintegration of bioflocs and water releasing from ruptured cells [32]. Low-
 358 temperature thermal alkali treatment of sewage sludge and digested sludge improved
 359 dewaterability by 0-35% [13].



360 **Figure 6.** Improvement of digestate dewaterability due to VaSA pretreatment of dairy manure as
 361 indicated by a) shorter time-to-filter; and b) lower viscosity. Error bar = standard deviation.

362 3.3. Kinetics of ammonia recovery in post-treatment of dairy manure digestate

363 In the post-treatment of dairy manure digestate using the mini-pilot VaSA system, digestate pH
 364 was initially raised with NaOH to 8.9-9.2 on average. The NaOH dosages were 1.64 g/L in
 365 Period 1 and 2.39 g/L in Period 2, which were lower than those for raw dairy manure because of
 366 the higher pH values of manure digestate. After 0.5 h of vacuum stripping, pH increased to 9.4-
 367 9.6 due to fast co-stripping of CO₂ (Figure 7a). The digestate collected for VaSA tests had TAN
 368 concentrations of 297-520 mg/L in Period 1 and 716-878 mg/L in Period 2 (Figure 7b). The
 369 ammonia mass transfer coefficients (k_{La}) in vacuum stripping of dairy manure digestate, 0.27 1/h
 370 in Period 1 and 0.21 1/h in Period 2, were similar to that of dairy manure digestate (0.28 1/h)

371 stripped previously in a similar VaSA system at the same feed depth [21]. The ammonia mass
 372 transfer coefficients in vacuum stripping of manure digestate were also similar to those in
 373 pretreatment of dairy manure. The ammonia stripping efficiency in 5-h vacuum stripping of dairy
 374 manure digestate were 68% in Period 1 and 67% in Period 2, which were higher than 42%
 375 reported by Ukwuani and Tao [20] for 4-h vacuum stripping of dairy manure digestate using a
 376 similar VaSA system. A recent review by Pandey and Chen [33] found that 25.1-98.9% of
 377 ammonia in manure digestate was removed by the commercially applied air stripping process at
 378 raised pH (8.0-12.4) and different temperatures (15-80 °C).

379 **Figure 7.** a) Ammonia removal; and b) pH change over 4-5 h of vacuum stripping of manure digestate
 380 when digesters were operated at organic loading rate (OLR) of 1.3 g-VS/L/d and 1.8 g-VS/L/d. Error bar =
 381 standard deviation of 5 batches at OLR of 1.3 g-VS/L/d and difference of 2 batches at 1.8 g-VS/L/d.

382 It is noteworthy that more ammonia was absorbed into the acidic solutions (3.63 g/batch in
 383 Period 1 and 5.04 g/batch in Period 2) and trapped in condensate (0.52 g/batch in Period 1 and
 384 1.24 g/batch in Period 2) than the ammonia stripped (3.02 g/batch in Period 1 and 6.22 g/batch in
 385 Period 2). The greater mass of ammonia recovered than stripped, especially in Period 1 when
 386 digestate TAN concentrations were lower, was likely due to the presence of particulate inorganic

387 nitrogen compounds such as fine crystals of struvite ($\text{MgNH}_4\text{PO}_4 \cdot 6\text{H}_2\text{O}$) in manure digestate
388 [4,34,35]. The suspended struvite crystals were not dissolved when TAN concentration was
389 determined at pH above 11 using the ammonia selective electrode, whereas the struvite crystals
390 could be dissolved at the high temperature in vacuum stripping [36]. Tao et al. [16] also found a
391 greater ammonia recovery efficiency than ammonia stripping efficiency in pilot VaSA tests with
392 sludge digestate.

393 The ammonia mass transfer coefficients derived from the post-digestion VaSA tests can be used
394 to estimate the required hydraulic retention time or stripper size in design and operation of full-
395 scale VaSA systems having different ammonia concentrations of dairy manure digestate and
396 different ammonia reduction targets. The TAN concentrations in dairy manure digestate from
397 full-scale animal manure digesters vary in the range of 1.5-6.8 g/L [18,37,38]. In contrast,
398 ammonia inhibition to methanogenesis starts at TAN concentration of 0.9 g/L and reaches 50%
399 inhibition at TAN concentrations of 3.4-10 g/L [29]. Therefore, some anaerobic digesters are
400 operated under ammonia inhibitory conditions. Ammonia needs to be removed or recovered in a
401 return loop or if solids-separated digester effluent is recycled to dilute the high-solids scraped
402 manure before feeding digesters. Reduction of ammonia concentration in digesters also reduces
403 the potential to form the troubling struvite deposits in digestion and downstream treatment
404 facilities. When digester effluent is land applied, removal or recovery of ammonia in digester
405 effluent allows more digestate to be applied to nearby land, saving transportation costs.
406 Furthermore, ammonia recovery from manure digestate reduces downstream emission of
407 ammonia gas, which is a precursor of aerosol and greenhouse gas N_2O [23].

408 **3.4. Effects of alkali/thermal treatment on pathogen reduction and VOCs transport**

409 The density of fecal coliform bacteria was 170,000/100 mL in the dairy manure digestate sample
410 from the digesters without pretreatment and 35,000/100 mL in the sample from the digesters
411 with pretreatment of dairy manure. The difference in fecal coliform density indicated greater
412 pathogen reduction by VaSA pretreatment of liquid dairy manure. All the digestate samples
413 collected after 3.5 and 5 h of vacuum stripping had fecal coliform bacteria undetected (detection
414 limit = 2/100 mL), attaining more than 4.9 and 4.2 log pathogen inactivation in the digestate
415 samples from the digesters without and with pretreatment. As found by Tao et al. [16] in pilot
416 VaSA tests with sludge digestate, the efficient pathogen inactivation by vacuum stripping of
417 manure digestate could be attributed to its unique combination of three actions: low-temperature
418 thermal treatment, mild-alkali treatment, and enhancement of the two treatments by vacuum.

419 VOCs represent a group of organic compounds characterized by a boiling point below 260 °C
420 under normal atmospheric pressure. Purgeable VOCs were found to be at low concentrations in
421 the dairy manure digestate and after 5 h of vacuum stripping (Table 2). Most of the major VOCs
422 (>0.1 mg/L) were chlorinated and aromatic hydrocarbons. There were 15 VOCs identified in the
423 effluent of the digesters without pretreatment. All the VOCs maintained the same concentrations
424 after 5 h of vacuum stripping, except for one additional aromatic compound detected post-
425 stripping. In contrast, there were only 4 VOCs identified in the effluent of the digesters with
426 pretreatment while 24 VOCs were detected after 5 h of vacuum stripping of this digestate
427 sample. Nevertheless, the total concentration and total mass of all the detected VOCs in the
428 VaSA-treated samples were similar in the treated digestate samples from the digesters with and
429 without pretreatment.

430 **Table 2.** Major volatile organic compounds (VOCs) in digestate of liquid dairy manure and
 431 absorption solutions before and after vacuum stripping and absorption[^].

Parameter	Digesters without pretreatment		Digesters with pretreatment	
	Digestate	Absorption solution	Digestate	Absorption solution
Concentration of major VOCs, mg/L:				
Allyl chloride	1.032(1.032)	0.097(0.094)	0.122(0.134)	0.095(0.099)
1,1,2,3,4,4-hexachloro-1,3-butadiene		0.000(0.419)	(0.548)	0.173(0.422)
2-ethoxy-2-methylbutane			(0.132)	
1-methylethylbenzene			0.118(0.124)	0.117
1,1,1-trichloroethane	0.105(0.105)	0.103	(0.115)	0.107
Propylbenzene	0.114(0.114)	0.110(0.111)	(0.114)	0.113(0.113)
1-chlorobutane			(0.115)	
Chlorobenzene	0.107(0.107)	0.105(0.106)	(0.108)	0.107(0.107)
(E)-1,2-dichloroethylene	0.100(0.100)	0.092(0.094)	(0.105)	0.095(0.095)
(Z)-1,3-dichloro-1-propene	0.071(0.071)		(0.104)	
2,5-Octadecadiynoic acid, methyl ester				1.317(0.216)
Total number of VOCs	15(16)	10(7)	4(24)	14(10)
Total concentration of all VOCs, mg/L	2.104(2.155)	0.692(0.926)	0.329(2.543)	2.451(1.276)
Total mass of VOCs, mg/batch	24.55(22.63)	0.21(0.38)	3.84(28.73)	0.74(0.59)

432 [^]: values given as before (after) vacuum stripping; Major VOCs have a concentration >0.1 mg/L.

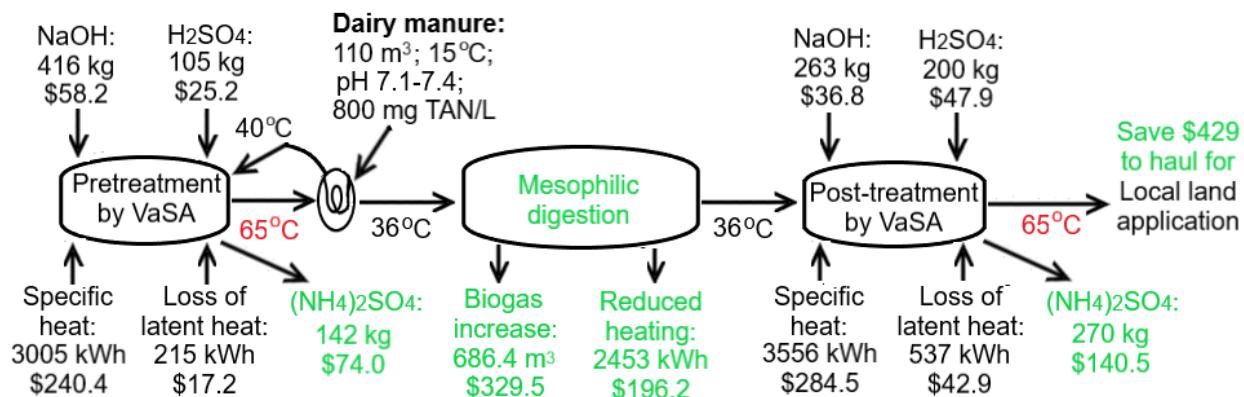
433 Because the absorption solutions had been reused for 3-4 batches of VaSA tests, the presence of
 434 VOCs in the absorption solutions was not related only to the transport in the monitored batches.
 435 There were fewer VOCs in the absorption solutions before vacuum stripping than after vacuum
 436 stripping, but the total concentration and mass were similarly low before and after each batch of

437 vacuum stripping. Overall, the minor changes in the total concentration and mass of all VOCs
438 before and after 5-h VaSA tests and the small amounts of VOCs in the absorption solutions
439 suggested little generation and transport of VOCs throughout the VaSA process. Tao et al. [16]
440 concluded similarly on the generation and transport of purgeable VOCs in the VaSA tests with
441 sludge digestate, although sludge digestate had more VOCs (13-27) detected and at greater total
442 concentrations (9.1-17.8 mg/L).

443 **3.5. Economic analysis and feasibility to integrate VaSA for dairy manure treatment**

444 Taking a medium-sized dairy farm with 1000 milking cows as an example, 110 m³/d of liquid
445 manure is generated based on a unit generation rate of 110 L/head/d [4]. Operating costs,
446 including materials and energy inputs, were estimated in Equations 1-4 for both pretreatment and
447 post-treatment based on the following assumptions and summarized in Figure 8:

448 • TAN concentration is 800 mg/L in liquid manure and manure digestate;
449 • Pretreatment by VaSA for 2 h decreases TAN concentration to 526 mg/L in liquid
450 manure and post-treatment for 5 h decreases TAN to 280 mg/L in manure digestate,
451 based on the ammonia mass transfer coefficient of 0.21/h estimated by this study;
452 • It is assumed that dairy manure has a temperature of 15 °C and 86% of the heating energy
453 input for VaSA pretreatment is reclaimed by heat exchangers to raise manure temperature
454 to 40 °C;
455 • Average price of electricity for industrial customers in the U.S. is \$0.08/kWh [39]; and
456 • The market price is \$0.24/kg of sulfuric acid and \$0.14/kg of caustic soda [40].


457
$$E_h = (65-T) \times h_v \times Q \times \rho_m / 3600 \quad (1)$$

458 $E_e = h_e \times f_e \times A \times \rho_m \times t / 3600$ (2)

459 $M_b = D_b \times Q$ (3)

460 $M_a = 3.5 \times \Delta TAN \times Q$ (4)

461 where E_h = energy required to raise the temperature of manure and digestate to vacuum boiling
 462 point (65 °C), kWh/d; E_e = loss of latent heat of evaporation due to water efflux, kWh/d; T =
 463 temperature of manure out of heat exchangers (40 °C) and digestate temperature (36 °C); h_v =
 464 specific heat of manure at measured TS concentration of 75 g/L (3.97 kJ/kg/°C) and digestate at
 465 TS concentration of 49 g/L (4.05 kJ/kg/°C) [41]; h_e = latent heat of evaporation (0.310 MJ/kg) at
 466 the demister temperature and pressure [16]; f_e = water vapor efflux out of stripper = 1.7 L/m²/h
 467 [16]; A = total surface area of feed in strippers (733 m² at the design flow rate) at the optimum
 468 feed depth of 15 cm [21]; Q = manure flow rate, m³/d; ρ_m = density of manure (991 kg/m³); t =
 469 hydraulic retention time of strippers for pretreatment (2 h) and post-treatment (5 h); M_a , M_b =
 470 consumption of sulfuric acid and caustic soda, kg/d; D_b = NaOH dosage to increase pH to greater
 471 than 9 in liquid manure (3.78 g/L) and manure digestate (2.39 g/L) as measured in this study;
 472 ΔTAN = decrease of TAN concentration, g/L; 3.5 = stoichiometric mass ratio of H₂SO₄ to NH₃-
 473 N in the acid absorption reaction; and 3600 = conversion factor from second to hour.

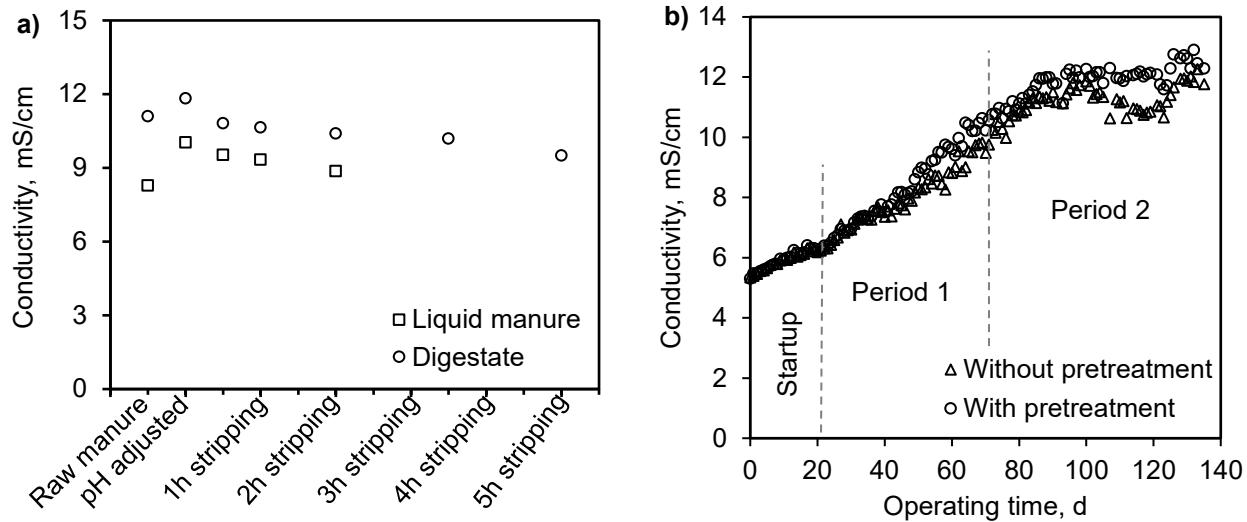
475 **Figure 8.** Daily costs and benefits for equipping anaerobic digestion with VaSA for pretreatment of dairy
 476 manure at 110 m³/d and post-treatment of manure digestate.

477 The revenues from coupling anaerobic digestion with VaSA as presented in Figure 8 include
478 wholesale of recovered ammonium sulfate crystals, increased biogas production, eliminated
479 digester heating due to pretreatment of manure by VaSA, and saved cost to haul manure for land
480 application. The energy saved from eliminated heating of digester influent could be estimated in
481 Equation 1. The revenues from selling ammonium sulfate and increased biogas production were
482 estimated in Equations 5 and 6 with the following assumptions:

483 • The recovered $(\text{NH}_4)_2\text{SO}_4$ fertilizer is sold at \$521/ton [16,42];
484 • Biogas production rate increases by 34% from 0.71 L/L_{reactor}/d to 0.95 L/L_{reactor}/d when
485 linearly extending from 50% pretreatment in this study to 100% pretreatment at solids
486 residence time of 26 d;
487 • The selling price of biogas is \$0.48/m³ [6]; and
488 • The cost to haul manure for land application is reduced from more than \$6.6/m³ for more
489 than 12 km of hauling to \$2.7/m³ within 8 km [43].

490
$$M_c = 4.7 \times \Delta \text{TAN} \times Q \quad (5)$$

491
$$V_g = \Delta Y \times Q \times \theta \quad (6)$$


492 where M_c = production of $(\text{NH}_4)_2\text{SO}_4$ fertilizer, kg/d; 4.7 = stoichiometric mass ratio of
493 $(\text{NH}_4)_2\text{SO}_4$ to TAN in the acid absorption reaction; V_g = increased biogas production, m³/d; ΔY =
494 increment of biogas production rate, L/L_{reactor}/d; θ = solids residence time in digesters, d; and
495 ΔTAN and Q the same as in Equations 1-4.

496 When VaSA is applied to both pretreatment and post-treatment as shown in Figure 8, the total
497 revenues (\$1,169.2/d or \$10.63/m³) will be greater than the total operating costs (\$764.6/d or
498 \$6.95/m³), indicating a benefit/cost ratio of 1.5. By comparison, the review by Li et al. [10] on

499 the input and output costs of different pretreatment methods found a median benefit/cost ratio of
500 0.21 only and only 4 out of the 15 reviewed methods had benefit/cost ratio greater than 1.
501 Heating energy accounts for 69% of VaSA's operating costs. The daily operational costs for feed
502 pumps, acid dosing pump, and heat pumps were estimated to be \$11.5 only. When VaSA is
503 applied to pretreatment only, the total revenues (\$5.45/m³) and total costs (\$3.18/m³) will be
504 smaller, but benefit/cost ratio will be slightly higher (1.7). When VaSA is applied to post-
505 treatment only, the digestate TAN concentration can be 1600 mg/L and hydraulic retention time
506 will be increased to 8.9 h for reducing TAN concentration to 280 mg/L. Subsequently, the
507 revenues (\$7.13/m³) and costs (\$4.72/m³) were estimated with Equations 1-6, resulting in a
508 benefit/cost ratio of 1.5. Based on the above cost and benefit estimates, therefore, VaSA can be
509 applied to pretreatment for increased biogas production, post-treatment for fertilizer production
510 and local land application of manure digestate, or both pretreatment and post-treatment for
511 multiple benefits.

512 Using NaOH to increase pH for vacuum stripping would increase Na⁺ concentration and
513 contribute to conductivity or salinity of the treated manure and digestate, leading to potential
514 risks to soil salinity and plant growth after long-term land application of VaSA-treated manure
515 digestate. As shown in Figure 9a for 2-h pretreatment and 5-h post-treatment, conductivity
516 increased upon pH elevation and decreased as NH₄⁺, HCO₃⁻ and CO₃²⁻ were converted to NH₃
517 and CO₂ and stripped over time (Figure 9). Besides ion removal, 2-h VaSA pretreatment and 5-h
518 post-treatment would concentrate manure and digestate by only 2.3% and 5.7%, respectively, at
519 the water vapor efflux rate of 1.7 L/m²/h. Overall, the digesters with pretreatment of liquid
520 manure in Period 2 had conductivity (11.80 mS/cm) slightly higher than the digesters without
521 pretreatment (11.13 mS/cm); and the post-treatment of digestate even decreased conductivity

522 from 11.10 mS/cm to 9.50 mS/cm. Therefore, both pretreatment and post-treatment by vacuum
 523 stripping are unlikely to change the risk of manure land application on soil salinity.

524 Figure 9. a) Conductivity variation throughout batch post-treatment of manure digestate in
 525 Period 2; and b) conductivity difference between digesters with and without pretreatment of cow
 526 manure by vacuum stripping.

527 Unlike the slight changes in conductivity due to NaOH dosing, sodium concentration would
 528 increase by 2.17 g/L in liquid manure at the average NaOH dosage of 3.78 g/L and by 1.37 g/L
 529 in manure digestate at the dosage of 2.39 g/L. Tao et al. [4] estimated Na content in dairy slurry
 530 in the U.S. at 0.90 g/L. Stürmer et al. [44] found the average Na content in anaerobic digestate at
 531 1.74 g/L based on the digestate testing results of 132 Austrian biogas plants (105 agricultural and
 532 27 waste plants) surveyed in 2014-2018. Therefore, VaSA treatment may make a substantial
 533 increase in Na content. Nevertheless, the effect of Na on soil conductivity and salinity is
 534 contextual and dependent on soil properties [45]. The European legal frameworks on use of
 535 digestate as fertilizer do not have requirements for pH and Na content [44]. The alkalinity of
 536 manure digestate with VaSA pretreatment (10.3 g/L as CaCO₃) and without pretreatment (9.1

537 g/L) would be high enough to keep soil pH stable despite land application of the alkaline
538 digestate. To mitigate the potential risks of excessive Na from VaSA treated digestate, NaOH
539 may be replaced, partially or fully, by KOH for pH elevation. KOH would not change the
540 performance of vacuum stripping while amending K as a macronutrient.

541 **4. Conclusions**

542 This study proved that coupling anaerobic digestion with the novel vacuum stripping and
543 absorption process is an integrative strategy to empower anaerobic digestion. When liquid dairy
544 manure is pretreated by vacuum stripping, solubilization of the lignocellulosic solids in dairy
545 cow manure is enhanced by the vacuum-assisted low-temperature thermal and mild-alkali
546 treatments under the vacuum stripping conditions. Consequently, anaerobic digestion of VaSA-
547 pretreated dairy manure produces more biogas and discharges digestate with improved
548 dewaterability. When the vacuum stripping and absorption process is further applied to post-
549 digestion treatment of digestate, ammonia is recovered as $(\text{NH}_4)_2\text{SO}_4$ fertilizer and allows more
550 digestate to be applied to nearby land at lower transportation costs. Post-treatment by vacuum
551 stripping also benefits recycling of manure digestate due to pathogen reduction.

552 Pretreatment of dairy manure by VaSA for 2 h increased the dissolved fraction of volatile solids
553 by 45%. When one half of the digester influent was pretreated by vacuum stripping for 2 h,
554 anaerobic digestion of liquid dairy manure could produce 17% more biogas and decrease time-
555 to-filter and viscosity of digestate by 9-15%. 100% of the digester influent could be pretreated by
556 VaSA to produce 34% more biogas without concern of alkaline pH and overheating digesters if
557 heat exchangers were added between VaSA and digesters. Post-treatment of manure digestate by
558 vacuum stripping for 3.5 h reduced fecal coliform to undetected. Ammonia was recovered from

559 liquid dairy manure and manure digestate at similar liquid-phase ammonia mass transfer
560 coefficients, 0.21-0.29/h. Post-treatment of manure digestate by VaSA made minor changes in
561 the total concentration and mass of volatile organic compounds. Pretreatment and post-treatment
562 together would bring in a total benefit of \$10.63/m³ versus a total operating cost of \$6.95/m³.

563 **Acknowledgments**

564 This work was supported by the National Science Foundation [award No. 2122808] and the New
565 York State Foundation for Science, Technology and Innovation via NYS Center of Excellence in
566 Healthy Water Solutions [award No. 101898 01]. It is acknowledged that several (exchange)
567 students with California Polytechnic State University at San Luis Obispo participated in the
568 operation and monitoring of the anaerobic digesters and laboratory analyses of samples. Our
569 thanks go to the Cal Poly Dairy for help with collection of the digestion inoculum and substrates.

570 **References**

571 [1] V. Sharma, D. Sharma, M.-L. Tsai, R.G.G. Ortiz, A. Yadav, P. Nargotra, C.-W. Chen, P.-
572 P. Sun, C.-D. Dong, 2023. Insights into the recent advances of agro-industrial waste
573 valorization for sustainable biogas production. *Bioresource Technology*, 390, 129829.
574 <https://doi.org/10.1016/j.biortech.2023.129829>

575 [2] Y. Li, J. Zhao, J. Krooneman, G.J.W. Euverink, 2021. Strategies to boost anaerobic
576 digestion performance of cow manure: Laboratory achievements and their full-scale
577 application potential. *Science of the Total Environment*, 755, 142940.
578 <https://doi.org/10.1016/j.scitotenv.2020.142940>

579 [3] U.S. EPA, 2024. NPDES CAFO Rule Implementation Status - National Summary,
580 Endyear 2023, completed 14 May 2024. <https://www.epa.gov/npdes/npdes-cafo-regulations-implementation-status-reports>. Last updated on June 20, 2024. U.S.
581 Environmental Protection Agency, Washington, DC.

582

583 [4] W. Tao, K.P. Fattah, M.P. Huchzermeier, 2016. Struvite recovery from anaerobically
584 digested dairy manure: A review of application potential and hindrances. *Journal of
585 Environmental Management*, 169, 46-57. <https://doi.org/10.1016/j.jenvman.2015.12.006>

586 [5] U.S. EPA, 2023. AgSTAR Data and Trends. <https://www.epa.gov/agstar/agstar-data-and-trends>, last updated on 7 July 2023. U.S. Environmental Protection Agency, Washington,
587 DC.

588

589 [6] B. Chen, S. Azman, R. Dewil, L. Appels. 2023. Alkaline anaerobic digestion of livestock
590 manure: Unveiling mechanisms, applications, and perspective. *Chemical Engineering
591 Journal*, 477, 146852. <https://doi.org/10.1016/j.cej.2023.146852>

592 [7] H. Carrere, G. Antonopoulou, R. Affes, F. Passos, A. Battimelli, G. Lyberatos, I. Ferrer,
593 2016. Review of feedstock pretreatment strategies for improved anaerobic digestion: From
594 lab-scale research to full-scale application. *Bioresource Technology*, 199, 386-397.
595 <https://doi.org/10.1016/j.biortech.2015.09.007>

596 [8] G. Kor-Bicakci, C. Eskicioglu, 2019. Recent developments on thermal municipal sludge
597 pretreatment technologies for enhanced anaerobic digestion. *Renewable and Sustainable
598 Energy Reviews*, 110, 423-443. <https://doi.org/10.1016/j.rser.2019.05.002>

599 [9] H. Ma, Y. Guo, Y. Qin, Y.Y. Li, 2018. Nutrient recovery technologies integrated with
600 energy recovery by waste biomass anaerobic digestion. *Bioresource Technology*, 269, 520-
601 531. <https://doi.org/10.1016/j.biortech.2018.08.114>

602 [10] Y. Li, Y. Chen, J. Wu, 2019. Enhancement of methane production in anaerobic digestion
603 process: A review. *Applied Energy*, 240, 120-137.
604 <https://doi.org/10.1016/j.apenergy.2019.01.243>

605 [11] D.M. Yin, W. Qiao, C. Negri, F. Adani, R. Fan, R.J. Dong, 2019. Enhancing hyper-
606 thermophilic hydrolysis pre-treatment of chicken manure for biogas production by in-situ
607 gas phase ammonia stripping. *Bioresource Technology*, 287, 121470.
608 <https://doi.org/10.1016/j.biortech.2019.121470>

609 [12] S.M.M. Azizi, W. Dastyar, M.N.A. Meshref, R. Maal-Bared, B.R. Dhar, 2021. Low-
610 temperature thermal hydrolysis for anaerobic digestion facility in wastewater treatment
611 plant with primary sludge fermentation. *Chemical Engineering Journal*, 426, 130485.
612 <https://doi.org/10.1016/j.cej.2021.130485>

613 [13] V. Toutian, M. Barjenbruch, C. Loderer, C. Remy, 2021. Impact of process parameters of
614 thermal alkaline pretreatment on biogas yield and dewaterability of waste activated sludge.
615 *Water Research*, 202, 117465. <https://doi.org/10.1016/j.watres.2021.117465>

616 [14] B.K. Biswal, H. Huang, J. Dai, G.-H. Chen, D. Wu, 2020. Impact of low-thermal
617 pretreatment on physicochemical properties of saline waste activated sludge, hydrolysis of
618 organics and methane yield in anaerobic digestion. *Bioresource Technology*, 297, 122423.
619 <https://doi.org/10.1016/j.biortech.2019.122423>

620 [15] L. Nazari, Z. Yuan, D. Santoro, S. Sarathy, D. Ho, D. Batstone, C. Xu, M.B. Ray, 2017.
621 Low-temperature thermal pre-treatment of municipal wastewater sludge: Process
622 optimization and effects on solubilization and anaerobic degradation. *Water Research*, 113,
623 111-123. <http://dx.doi.org/10.1016/j.watres.2016.11.055>

624 [16] W. Tao, M.A.H. Badsha, P.W. Arachchilage, A. Mostafa. 2024. Simultaneous ammonia

625 recovery and treatment of sludge digestate using the vacuum stripping and absorption
626 process: Scale-up design and pilot study. Chemical Engineering Journal, 480, 148336.
627 <https://doi.org/10.1016/j.cej.2023.148336>

628 [17] Y. Han, F. Agyeman, H. Green, W. Tao, 2022. Stable, high-rate anaerobic digestion
629 through vacuum stripping of digestate. Bioresource Technology, 343, 126133.
630 <https://doi.org/10.1016/j.biortech.2021.126133>

631 [18] K. Risberg, H. Cederlund, M. Pell, V. Arthurson, A. Schnürer, 2017. Comparative
632 characterization of digestate versus pig slurry and cow manure – Chemical composition
633 and effects on soil microbial activity. Waste Management, 61, 529-538.
634 <https://doi.org/10.1016/j.wasman.2016.12.016>

635 [19] Reza, L. Chen, 2022. Optimization and modeling of ammonia nitrogen removal from
636 anaerobically digested liquid dairy manure using vacuum thermal stripping process.
637 Science of the Total Environment, 851, 158321. <https://doi.org/10.3390/pr9112059>

638 [20] A.T. Ukwuani, W. Tao, 2016. Developing a vacuum thermal stripping – acid absorption
639 process for ammonia recovery from anaerobic digester effluent. Water Research, 106, 108-
640 115. <https://doi.org/10.1016/j.watres.2016.09.054>

641 [21] W. Tao, A.T. Ukwuani, F. Agyeman, 2018. Recovery of ammonia in anaerobic digestate
642 using vacuum thermal stripping - acid absorption process: scale-up considerations. Water
643 Science and Technology, 78, 878-885. <https://doi.org/10.2166/wst.2018.360>

644 [22] M. Cerrillo, M. Moreno, L. Burgos, R. Estéfano, D. Coll, J. Soraluce, N. Navarro, P.A.
645 Arnau, A. Bonmatí, 2023. Low-temperature vacuum evaporation of ammonia from pig
646 slurry at laboratory and pilot-plant scale. Processes, 11, 2910.
647 <https://doi.org/10.3390/pr11102910>

648 [23] C.E. Manyi-Loh, S.N. Mamphweli, E.L. Meyer, G. Makaka, M. Simon, A.I. Okoh, 2016.
649 An overview of the control of bacterial pathogens in cattle manure. International Journal of
650 Environmental Research and Public Health, 13, 843.
651 <https://doi.org/10.3390/ijerph13090843>

652 [24] American Public Health Association (APHA), American Water Works Association, Water
653 Environment Federation, 2012. Standard Methods for the Examination of Water and
654 Wastewater, 22nd edition, Washington, DC.

655 [25] D. Yellezuome, X. Zhu, Z. Wang, R. Liu, 2022. Mitigation of ammonia inhibition in
656 anaerobic digestion of nitrogen-rich substrates for biogas production by ammonia
657 stripping: A review. Renewable and Sustainable Energy Reviews, 157, 112043.
658 <https://doi.org/10.1016/j.rser.2021.112043>

659 [26] B. Molinuevo-Salces, B. Riaño, M.B. Vanotti, D. Hernández-González, M.C. García-
660 González, 2020. Pilot-scale demonstration of membrane-based nitrogen recovery from
661 swine manure. Membranes (Basel), 10, 270. <https://doi.org/10.3390/membranes10100270>

662 [27] X. Liu, Q. Xu, D. Wang, Q. Yang, Y. Wu, Y. Li, Q. Fu, F. Yang, Y. Liu, B.J. Ni, Q. Wang,
663 X. Li, 2019. Thermal-alkaline pretreatment of polyacrylamide flocculated waste activated
664 sludge: Process optimization and effects on anaerobic digestion and polyacrylamide
665 degradation. Bioresource Technology, 281, 158-167.
666 <https://doi.org/10.1016/j.biortech.2019.02.095>

667 [28] J.S. Kim, Y.Y. Lee, T.H. Kim, 2016. A review on alkaline pretreatment technology for
668 bioconversion of lignocellulosic biomass. Bioresource Technology, 199, 42-48.
669 <https://doi.org/10.1016/j.biortech.2015.08.085>

670 [29] F.O. Agyeman, Y. Han, W. Tao, 2021. Elucidating the kinetics of ammonia inhibition to

671 anaerobic digestion through extended batch experiments and stimulation-inhibition
672 modeling. *Bioresource Technology*, 340, 125744.
673 <https://doi.org/10.1016/j.biortech.2021.125744>

674 [30] G. Capson-Tojo, R. Moscoviz, S. Astals, Á. Robles, J.P. Steyer, 2020. Unraveling the
675 literature chaos around free ammonia inhibition in anaerobic digestion. *Renewable and*
676 *Sustainable Energy Reviews*, 117, 109487. <https://doi.org/10.1016/j.rser.2019.109487>

677 [31] Wang M., Wang J., Li Y., Li Q., Li P., Luo L., Zhen F., Zheng G., Sun Y., 2022. Low-
678 temperature pretreatment of biomass for enhancing biogas production: A review.
679 *Fermentation*, 8, 562. <https://doi.org/10.3390/fermentation8100562>

680 [32] B. Wu, X. Dai, X. Chai, 2020. Critical review on dewatering of sewage sludge: Influential
681 mechanism, conditioning technologies and implications to sludge reutilizations. *Water*
682 *Research*, 180, 115912. <https://doi.org/10.1016/j.watres.2020.115912>

683 [33] Pandey B, Chen L. 2021. Technologies to recover nitrogen from livestock manure - A
684 review. *Science of the Total Environment*, 784, 147098.
685 <https://doi.org/10.1016/j.scitotenv.2021.147098>

686 [34] T. Zhang, K.E. Bowers, J.H. Harrison, S. Chen, 2010. Releasing phosphorus from calcium
687 for struvite fertilizer production from anaerobically digested dairy effluent. *Water*
688 *Environment Research*, 82, 34-42. <https://doi.org/10.2175/106143009X425924>

689 [35] K. Güngör, K.G. Karthikeyan, 2008. Phosphorus forms and extractability in dairy manure:
690 A case study for Wisconsin on-farm anaerobic digesters. *Bioresource Technology*, 99, 425-
691 436. <https://doi.org/10.1016/j.biortech.2006.11.049>

692 [36] K.S. Le Corre, E. Valsami-Jones, P Hobbs, A. Parsons, 2009. Phosphorus recovery from
693 wastewater by struvite crystallization: A review. *Critical Reviews in Environmental*

694 Science and Technology, 39, 433-477. <http://dx.doi.org/10.1080/10643380701640573>

695 [37] A. Akhiar, A. Battimelli, M. Torrijos, H. Carrere, 2017. Comprehensive characterization of
696 the liquid fraction of digestates from full-scale anaerobic co-digestion. Waste
697 Management, 59, 118-128. <https://doi.org/10.1016/j.wasman.2016.11.005>

698 [38] R. Nkoa, 2014. Agricultural benefits and environmental risks of soil fertilization with
699 anaerobic digestates: a review. Agronomy for Sustainable Development, 34, 473-492.
700 <https://doi.org/10.1007/s13593-013-0196-z>

701 [39] U.S. EIA, 2024. Electric Power Monthly, Data for May 2024 released on July 24, 2024.
702 <https://www.eia.gov/electricity/monthly/>. U.S. Energy Information Administration,
703 Washington, DC.

704 [40] K.D. Orner, S. Smith, S. Nordahl, A. Chakrabarti, H. Breunig, C.D. Scown, H. Leverenz,
705 K.L. Nelson, A. Horvath, 2022. Environmental and economic impacts of managing
706 nutrients in digestate derived from sewage sludge and high-strength organic waste.
707 Environmental Science & Technology, 56, 17256-17265.
708 <https://doi.org/10.1021/acs.est.2c04020>.

709 [41] D.R. Bohnhoff, J.C. Converse, 1987. Engineering properties of separated manure solids.
710 Biological Wastes, 19, 91-106. [https://doi.org/10.1016/0269-7483\(87\)90103-0](https://doi.org/10.1016/0269-7483(87)90103-0)

711 [42] A. Beckinghausen, M. Odlare, E. Thorin, S. Schwede, 2020. From removal to recovery:
712 An evaluation of nitrogen recovery techniques from wastewater. Applied Energy, 263,
713 114616. <https://doi.org/10.1016/j.apenergy.2020.114616>

714 [43] B. Howland, J. Karszes, 2014. Manure Application Cost Study, New York State, Spring
715 2012. Cornell University, College of Agriculture and Life Sciences, Dyson School of
716 Applied Economics and Management, Ithaca, NY.

717 <http://dyson.cornell.edu/outreach/#bulletins>

718 [44] B. Stürmer, E. Pfundtner, F. Kirchmeyr, S. Uschnig, 2020. Legal requirements for
719 digestate as fertilizer in Austria and the European Union compared to actual technical
720 parameters. *Journal of Environmental Management*, 253, 109756.

721 <https://doi.org/10.1016/j.jenvman.2019.109756>

722 [45] M. Pawlett, M. Tibbett, 2015. Is sodium in anaerobically digested food waste a potential
723 risk to soils? *Sustainable Environment Research*, 25(4), 235-239.

724