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A B S T R A C T   

Multiple stressors to species and ecosystems are pervasive and escalating. Effective management and mitigation 
of these pressures requires ecological risk assessment (ERA), but data are often lacking for detailed, quantitative 
risk assessment. Data-poor ERAs have been developed and widely applied to terrestrial, marine, and freshwater 
ecosystems. Current frameworks, such as the Productivity-Susceptibility Analysis (PSA), are limited to single 
stressors and were not developed on statistical grounds. Previous work has partly addressed these limitations by 
incorporating multiple stressors (e.g. Aggregated Susceptibility) and a statistical basis (rPSA). However, the more 
robust rPSA is more difficult to implement than the PSA. To overcome this barrier, here we develop EcoRAMS 
(Ecological Risk Assessment of Multiple Stressors), which provides statistically-robust ecological risk assessments 
of multiple stressors in data-poor contexts. The web app format of EcoRAMS.net lowers the barrier of use for 
practitioners and scientists at any level of statistical training.   

1. Introduction 

Gathering an accurate estimate of risk to multiple stressors is a 
fundamental challenge in ecological risk assessment. Quantification of 
threats to species and habitats is necessary to develop management 
policies, yet the magnitude of threats and their compounded effects are 
often obscured by data limitations. Because ecosystems affected by 
multiple stressors require broader assessment, data limitations render 
these analyses especially fraught. This includes systems of conservation 
and commercial significance, such as small scale fisheries that together 
support the livelihoods of over 117 million people and provide essential 
nutrition for many more (FAO, 2020). Data-poor risk assessments are 
critical to establish intervention priorities in these contexts. Therefore, a 
wide variety of qualitative and semi-quantitative approaches is 
deployed to measure risk of species to stressors, which are often human- 
mediated. Common stressors of wildlife result from harvesting, mining, 
recreational, or construction activities, and those chosen for analysis are 
relevant to the species affected and stakeholder interests (Hope, 2006). 

Unlike contexts in which the effects of a stressor can be precisely 
quantified under controlled conditions – for instance when a physio

logical or behavioral response is measured for increasing concentration 
of a contaminant (Norton et al., 1992) – in data-poor contexts, the 
quantitative relationship between stressor and response is unknown or 
under-studied. Semi-quantitative methodologies developed to overcome 
these limitations assess risk via standardized scoring procedures. Scores 
are based on the life history traits of species of conservation and com
mercial interest and on stressors' magnitude, distribution, and effects on 
target species, sometimes supplemented by expert input (Pilling et al., 
2009). This type of assessment is particularly common for species 
affected by harvesting or bycatch in small-scale fisheries, where data is 
often not collected systematically. The Productivity-Susceptibility 
Analysis (PSA) has become the most commonly used approach to 
conduct ecological risk assessments for data-poor fisheries and has been 
applied widely to freshwater and terrestrial ecosystems. The PSA cal
culates Vulnerability, a metric of risk that incorporates qualitative 
scores of life history characteristics of species (Productivity) and fishing 
activity that overlaps with each species (Susceptibility). It has been 
incorporated within the broader Ecological Risk Assessment for the Ef
fects of Fishing (ERAEF) framework which uses Vulnerability estimates 
from the PSA to prioritize evaluation by managers, scientists, and 
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stakeholders (Hobday et al., 2007; Hobday et al., 2011; Stobutzki et al., 
2001). Ecosystem based management efforts can account for all species, 
guilds, and communities with this approach (Hazen et al., 2016; 
Townsend et al., 2019). For this reason, data-poor methodologies like 
the PSA have been widely adopted (Battista et al., 2017; Marine Stew
ardship Council, 2019; Pontón-Cevallos et al., 2020). Variations in input 
procedure and outcome of analysis, including the use of Exposure and 
Sensitivity as risk determinants, have made these approaches accessible 
to stakeholders with varied interests (Samhouri et al., 2019). However, 
we demonstrated in our previous work that the outcomes of these as
sessments introduce biases without statistical considerations (Grewelle 
et al., 2021). We presented a statistically-robust approach to derive 
Vulnerability from Productivity and Susceptibility scores that addresses 
several limitations with the original PSA. Productivity and Susceptibility 
are each scored as the mean of their respective set of several attributes. 
Attribute values are generally assigned by standardized biologically- 
relevant criteria. For example, a Productivity attribute, age at matu
rity, may receive values by percentiles derived from an expected range 
for the relevant managed species: 1 = 0–33%, 2 = 33–67%, 3 =

67–100%. A species with age at maturity in the 50th percentile receives 
an attribute score of 2. Risk associated to Productivity is then computed 
as 4 minus the mean of Productivity attributes, so that 1 = low Pro
ductivity is classified as 3 = high risk. (Grewelle et al., 2021; Hobday 
et al., 2011) further discuss scoring recommendations. Productivity and 
Susceptibility are then used to calculate Vulnerability. Vulnerability in 
the original PSA was calculated as the Euclidean distance from the 
origin. 

V =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
P2 + S2

√
(1) 

The Euclidean distance of each species from the origin is not a 
suitable metric for Vulnerability because it does not account for the 
distribution of species on the PSA plot (Grewelle et al., 2021). Our 
revised PSA (rPSA) framework is able to incorporate commonly used 
variations of the analysis to assess Vulnerability by projecting the the 

two-dimensional distribution (e.g. P-S space) of species onto a one- 
dimensional risk axis, along which species' risk to fishing activity in
creases (Fig. 1). 

While PSA-like approaches have been widely used in both marine 
and terrestrial ecosystems, these methods usually consider a single 
threat or pressure (e.g. susceptibility to a specific fishing gear), whereas 
populations are often subject to multiple stressors at the same time 
(Halpern et al., 2009; Van den Brink et al., 2016a). Thus it is crucial to 
have robust methods to assess Vulnerability to cumulative impacts of 
these stressors. Prior to our revised PSA, Micheli et al. addressed the 
limitations of single stressor analyses by computing an Aggregated 
Susceptibility (AS) that broadened the definition of Susceptibility to 
multiple fishing gears or stressors (Micheli et al., 2014). Susceptibility to 
each stressor was independently scored on the same scale between 1 and 
3, and Aggregated Susceptibility reflected the combined contributions of 
all stressors to species' susceptibility to fishing activity. Aggregated 
Susceptibility was truncated at a maximum value of 3 and took a min
imum value of 1 to remain within the scoring bounds of the PSA. 

AS = min

{

3, 1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Si − 1)

2

√ }

(2) 

When Susceptibility (Si) to a stressor i is 1, this stressor does not 
increase AS. When Si > 1 for two or more stressors, then AS is greater 
than or equal to Susceptibility from each stressor. 

AS substituted S in Eq. (1) to calculate Vulnerability to multiple 
stressors. Though practical, the empirical formula to calculate AS was 
not derived on the basis of statistical principles. The aims of this work 
are two-fold: to create a statistical interpretation of AS to robustly 
measure Vulnerability to multiple stressors and to introduce a web 
application to enhance its use in data-poor ERAs. Because the di
mensions of risk vary by study, we generalize this framework to evaluate 
any two-dimensional scoring procedure, including Sensitivity-Exposure 
(Rodier and Norton, 1992), Impact-Probability (Dumbravă and Iacob, 
2013), or Severity-Likelihood based analyses (Woodruff, 2005). We 

Fig. 1. In the scoring model used by the PSA, a bivariate 
normal distribution (blue ellipse) is produced along the Pro
ductivity and Susceptibility axes. This can be projected along a 
Risk Axis (black line, ascending left to right), which is defined 
by the likelihood properties of the analysis, to form an ordered 
set of points along a one dimensional normal distribution 
(black). This new distribution is used to score Vulnerability in 
the rPSA. Vulnerability scores fall into risk categories delin
eated by thresholds (light orange, descending left to right) 
which divide the distribution of points into equal partitions by 
probability. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of 
this article.)   
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present this approach as a user-friendly web application, EcoRAMS, 
accessible to scientists and stakeholders at any level of statistical 
training. 

2. Methods 

2.1. Derivation of vulnerability 

EcoRAMS ([data-poor] Ecological Risk Assessment of Multiple 
Stressors) measures Vulnerability from multiple stressor variables, 
standardized by the distance of each stressor score, xu, from the theo
retical mean, μu, set by the attribute scoring criteria and the chosen 
model (additive or multiplicative). Multiple stressor Vulnerability 
values provide unique resolution of risk across the low, medium, high- 
risk range not otherwise captured by evaluation of a single stressor. 
All ecological risk assessments which compute risk variable scores (e.g. 
Productivity, Susceptibility, Exposure, Likelihood, Probability, Sensi
tivity, Effect, Severity, Impact, etc.) from a mean of multiple attributes 
produce scores that are normally distributed along each variable's axis. 
The statistical properties of these assessments were derived in our pre
vious work for a single stressor (Grewelle et al., 2021). To generalize the 
statistics for multiple stressors, we denote α as any response variable (e. 
g. Productivity, Sensitivity, Effect, Severity, Impact, etc.) determined by 
characteristics of the species or endpoints studied and β as any stressor 
variable (e.g. Susceptibility, Exposure, Likelihood, Probability, etc.) 
determined by the probability of contact with stressors. It is assumed 
that β is an n-dimensional variable with basis {β1, β2,…, βn} to represent 
n stressors, while α is a single variable. The formula for AS (Eq. (2)) does 
not yet form a statistical distribution. Below we create a suitable sta
tistical metric for multiple stressors, β, to be incorporated in the rPSA 
framework. Each stressor variable, βi, forming the basis of β is Gaussian 
because they are scored by calculating the mean of several attributes, 
which were chosen to the reflect the interactions of species to one or 
more stressors (e.g. spatial overlap with stressor, post-contact mortality 
from stressor). Attributes are scored from low = 1 to high = 3 based on 
biologically relevant scoring criteria. Each stressor variable, βi, can 
therefore be defined by a normal random variable, X: 

X ∼ N
(
μX , σ2

X

)
= f (x) =

1
σX

̅̅̅̅̅
2π

√ e
− 1

2

(
x− μX

σX

)2

(3) 

We further define Y as the distribution formed by the weighted sum 
of these stressor random variables. 

Y = wT X =
∑n

u=1
wuXu (4) 

Stressor random variables are weighted by importance by ωu. By 
default, these weights should be equal across stressors. Differential 
contribution of each stressor to Vulnerability is incorporated in the low 
to high βu scoring process. However, in some cases undo influence of one 
or more stressors may contribute to species' Vulnerability. In these in
stances, the importance of each stressor is different, and weighting 
should not be equal. 

w = ωdiag− 1(μX) (5) 

The characteristic function for Y is 

ϕY (t) = E
[
eitY] = E

[
eitwT X

]
= ϕX(tw) (6) 

Expanded, this becomes 

ϕY (t) = exp

(

it
∑n

u=1
wuμu −

1
2
t2
∑n

u=1

∑n

v=1
wuwvKuv

)

(7)  

where KXX is the covariance matrix. 

var(Xu) = Kuu (8)  

cov(Xu,Xv) = Kuv (9) 

The characteristic function for each stressor random variable is 

ϕX(t) = exp
(

itμX −
1
2
t2σ2

X

)

(10) 

X and Y share the same form of characteristic function when 

μY =
∑n

u=1
wuμu (11)  

σ2
Y =

∑n

u=1

∑n

v=1
wuwvKuv (12) 

Therefore, Y is also normally distributed 

Y ∼ N
(
μY , σ2

Y

)
(13) 

For βu variables that are log-normally distributed due to the use of a 
multiplicative model in attribute scoring, log transformation produces a 
normal distribution. The transformation of mean and variance of these 
variables is presented in (Grewelle et al., 2021). Recalling from (Gre
welle et al., 2021) any vector xk =

[
αk − μ̂α βk − μ̂β

]T can be projected 
along the risk vector, r, to map X to one dimension. k is the species index. 
After mapping all points to the risk vector, the distance of each point 
xk = (αk, βk) from the mean is the magnitude of the projection: 

D(xk) =
r⋅xk

|r|
(14) 

The projection results in a linear transformation of X with standard 
error 

σr =

̅̅̅
2

√
σασβ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

α + σ2
β

√ (15) 

The cumulative distribution function that yields the probabilistic 
metric of Vulnerability is: 

Vp =
1
2

+
1̅
̅̅
π

√

∫ D(xk)

σr
̅̅
2

√

0
e− t2 dt (16) 

This metric can be compared across all varieties of input conditions, 
including variable number and type of stressors and attributes. How
ever, comparisons across studies are most explicable when conditions of 
the analyses are similar. 

2.2. Covariance among stressors 

By default, stressors are assumed independent. The covariance ma
trix, KXX, is the identity matrix. When stressors are expected to interact, 
covariance values are positive or negative, respectively. Variance can be 
calculated given known correlations between stressor variables. 

var(β) =
(
w ⊙ σβ

)
ρ
(
w ⊙ σβ

)T (17) 

σβ is the row vector of standard errors for stressor variables, and ρ is 
the correlation matrix with entries between − 1 and 1. 

2.3. Treatment of stressors: Antagonistic, neutral, or compounding 

For a single stressor, scoring criteria define the mean of the expected 
normal distribution for β. When additional stressors are included in the 
risk analysis, we provide flexibility in EcoRAMS to treat each of these 
stressors as an obligatory elevator of Vulnerability (compounding), 
neutrally with equal chance to decrease or increase Vulnerability, or 
antagonistically as an obligatory reducer of Vulnerability. In the neutral 
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treatment, the above methods hold, and the definition of the distribution 
for β does not change. Generally, for all treatments, the mean is modi
fied: 

μY =
∑U

u=1
wuμu +

∑T

t=1
wtmax

{

βU+t

}

+
∑V

v=1
wvmin

{

βU+T+v

}

(18) 

U is the number of neutral stressors, T is the number of antagonistic 
stressors, and V is the number of compounding stressors. The minimum 
of βU+T+v referenced is the minimum value an attribute used to score 
βU+T+v could theoretically receive. In the case where attributes take 
values between 1 and 3, min{βU+T+v} = 1. This treatment is analogous to 
the derivation of AS in Eq. (2). The maximum of βU+t referenced is the 
maximum value an attribute used to score βU+t could theoretically 
receive. In the case where attributes take values between 1 and 3, max 
{βU+t} = 3. 

2.4. Scoring practices 

The EcoRAMS web app provides CSV (Comma Separated Values) 
templates for users to input scoring criteria, attribute scores for each 
stressor and species, and analysis conditions. Prior to submitting these 
templates to the web app and receiving results, EcoRAMS requires users 
to conduct several preparatory steps (Fig. 2). After the analysis condi
tions are setup, the α and β attributes must be chosen. Attributes should 
be approximately independent from each other. Biologically redundant 
attributes should not be used in the analysis to avoid double counting, 
and to account for highly collinear ones by estimating the effective 
number of attributes see the method outlined in the supplementary in
formation of (Grewelle et al., 2021). Percentiles are then chosen for 
scoring each attribute, adhering to relevant expected ranges. For ease, 
we recommend equal bin sizes: 1 = 0–33%, 2 = 33–67%, 3 = 67–100%. 
When attributes are irrelevant or lack expert input or data for scoring, 
the attributes should not be scored. Leaving these cells and the corre
sponding weight cells blank in the CSV templates will adjust the number 
of attributes used for the species and broaden standard error estimates 
for calculating Vulnerability; scored attributes will be appropriately 
weighted. The α and β values are calculated as the weighted means of 
their respective attribute scores. Weights can be applied on the basis of 
importance or data quality, and efforts to justify weights via supporting 
mechanism or data should be made. The mean calculated depends on the 
model assumed for the attributes (geometric mean = multiplicative, 
arithmetic mean = additive). However, as a default, α variables are 
assumed to be additive, while β variables are assumed to be multipli
cative. A multiplicative model should be used when the magnitude of 
risk associated with a variable depends on interactions of the attributes 
with each other. For instance, species mortality, often used as an attri
bute to score Susceptibility, depends on other attributes like spatial 

overlap between fishery activity and species distribution. Values of 
variables scored in this way act much like probabilities, and in fact, a 
geometric mean is an isotone (order-preserving) mapping of probability 
and is indistinguishable in the results of the EcoRAMS analysis. When β1,

β2,…, βn are scored with different sets of attributes, EcoRAMS supports 
the use of different models (additive or multiplicative) for each variable. 

To demonstrate the use of EcoRAMS, we generated a hypothetical set 
of 100 species using a standard scoring procedure for the PSA used in the 
Ecological Risk Assessment for the Effects of Fishing. We adopted the 
same scoring procedure by which attributes of α and β variables are 
scored 1 (low-risk), 2 (medium-risk), or 3 (high-risk). Note that these 
scores reflected association with risk, not association with the α or β 
variables per se. For example, in a PSA high Productivity is associated 
with low-risk (Hobday et al., 2007), and therefore Productivity attribute 
scores were transformed by subtracting from 4 if originally scored as 1 
= low Productivity, 2 = medium Productivity, 3 = high Productivity. 
For EcoRAMS users, this option can be chosen before analysis when 
applicable. In our simulated analysis, 7 α and 4 β attributes were scored 
randomly on a uniform distribution of integers between 1 and 3. The α 
score was calculated as the arithmetic mean assuming an additive 
model. The β score was calculated as the geometric mean assuming a 
multiplicative model. Attributes were weighted equally. We calculated 
the Vulnerability of 100 in silico species when three simulated stressors 
were treated both as neutral and compounding to compare the in
terpretations of Vulnerability. We also analyzed 81 fished species in Baja 
California, Mexico for which each of five fishing gear types represented a 
separate stressor. We used the same attributes and scoring procedure as 
the original study (Micheli et al., 2014). Species were analyzed for each 
single stressor, which produced results identical to the rPSA. Vulnera
bility was then computed for all five stressors (set gillnets, drift gillnets, 
lobster traps, fish traps, and dive fishing), treating each additional 
stressor as compounding on the stressor of greatest impact (set gillnets). 

3. Results 

3.1. Neutral treatment of stressors 

When stressors (β variables) were treated neutrally and were instead 
standardized by the expected mean, additional stressors did not affect 
the distribution of risk categorization; approximately one-third of spe
cies fell into each category (Fig. 3). This procedure maximally discrim
inated Vulnerability of species within a study for downstream 
assessment. 

3.2. Compounded stressors 

When stressors were compounded on the first, the distribution of 
Vulnerability scores shifted upward (Fig. 4). Fewer species remained in 

Fig. 2. Workflow diagram for EcoRAMS anal
ysis. The analysis type chosen determines 
which of the pairs of variables is used in the 
risk assessment, which will constrain the types 
of attributes used for scoring. Included 
stressors, attribute weights, and their associ
ated models and scoring criteria will define the 
scope and structure of the analysis. After at
tributes are scored using provided templates, 
users submit templates simultaneously on the 
EcoRAMS web app at EcoRAMS.net and results 
are automatically generated.   
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the low- or medium-risk categories; this effect became more pronounced 
as the number of stressors increased. Visualized β scores were truncated 
at 3, resulting in a collection of species at this upper limit when more 
stressors are included. 

3.3. Correlated stressors 

In some cases, stressors analyzed cannot be assumed to indepen
dently influence species' Vulnerability. Using the same 100 simulated 
species previously analyzed, we visualized the effects on risk categori
zation thresholds of positive and negative correlation between stressors 
in a two-stressor analysis (Fig. 5). Positive correlations widen the 
medium-risk thresholds, while negative correlations narrow them. For 
these simulated species, fewer are categorized as medium-risk when 
stressors are negatively correlated, which is expected when β scores 
were derived independently (no correlation) in the simulation. Simu
lating dependent stressors would recapitulate equal partitioning of 
species across risk categories observed in Figs. 3 and 4. 

3.4. Baja California case study 

Figs. 3, 4, and 5 represent uniform attribute scoring for all stressors; 
however, for empirical multiple stressor analyses not all stressors 
equivalently impact the group of species analyzed. Across the 81 species, 
set gillnets was the stressor of highest impact measured by mean Sus
ceptibility score. Despite the majority of species being classified in the 
low-risk category if each stressor is assessed individually (Fig. 6 A-E), the 
cumulative impacts of each of the five stressors produced a higher 
Susceptibility score, and therefore, a higher Vulnerability score when 
compounded (Fig. 6 F). Compared with the single stressor of highest 
impact (set gillnets), accounting for multiple stressors resulted in 46% 
higher net risk overall (37/81 species shifted to higher risk categories). 
Of the 81 species assessed, the Vulnerability breakdown was 14% low, 
17% medium, 69% high for multiple stressors compared to 49% low, 
10% medium, 41% high for set gillnets. 

Fig. 3. Risk classification of 100 simulated species by 
Vulnerability scores in which stressors were treated neutrally. 
The horizontal axis (α) measures Productivity, Sensitivity, 
Effect, Severity, Impact, etc., while the vertical axis (β) mea
sures Susceptibility, Exposure, Likelihood, Probability, etc. 
Low-risk species are in blue, medium-risk in yellow, high-risk 
in red. The size of a dot corresponds to the number of species 
sharing overlapping positions in the plot. (A) A single stressor 
(β1) was used in the analysis. (B) Two stressors were used in 
the analysis; the second (β2) was treated neutrally with the 
first shown in panel A. (C) Three stressors (β1, β2, β3) treated 
neutrally were used in an analysis. (For interpretation of the 
references to colour in this figure legend, the reader is referred 
to the web version of this article.)   

Fig. 4. Risk classification of 100 simulated species by 
Vulnerability scores in which stressors compounded. The hor
izontal axis (α) measures Productivity, Sensitivity, Effect, 
Severity, Impact, etc., while the vertical axis (β) measures 
Susceptibility, Exposure, Likelihood, Probability, etc. Low-risk 
species are in blue, medium-risk in yellow, high-risk in red. The 
size of a dot corresponds to the number of species sharing 
overlapping positions in the plot. (A) A single stressor (β var
iable) was used in the analysis. (B) Two stressors were used in 
the analysis, the second (β2) compounded on the first shown in 
panel A. (C) Three stressors (β1, β2, β3) were used in the anal
ysis, the second and third compounded on the first. (For 
interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.)   

Fig. 5. Risk classification of 100 simulated species by Vulnerability scores in 
which the two stressors analyzed are correlated. The horizontal axis (α) mea
sures Productivity, Sensitivity, Effect, Severity, Impact, etc., while the vertical 
axis (β) measures Susceptibility, Exposure, Likelihood, Probability, etc. Low- 
risk species are in blue, medium-risk in yellow, high-risk in red. The size of a 
dot corresponds to the number of species sharing overlapping positions in the 
plot. (A) Two neutral stressors (β variables) were positively correlated. (B) Two 
neutral stressors were negatively correlated. (C) A second, positively correlated 
stressor compounds on the first. (D) A second, negatively correlated stressor 
compounds on the first. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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4. Discussion 

4.1. The future of ecological risk assessment 

The evolution of ecological risk assessments has occurred in inde
pendent scientific fields, such as toxicology and fisheries research. An 
increasing focus on ecosystem-level analysis, rather than species-specific 
impacts, highlights the importance of the interactions between species 
and the effects of multiple stressors (Hines and Landis, 2014; Van den 
Brink et al., 2016b). The inclusion of multiple stressors at the problem 
formulation stage promises to protect the values of stakeholders and 
ecosystems through integrated research design. Building conceptual 
models of cause and effect to improve the selection of relevant risk at
tributes is a crucial step in ecological risk assessments (Jackson et al., 
2016), and although data-rich analyses have incorporated probabilistic 
interpretations of risk for decades, data-poor analyses have done so only 
recently (Grewelle et al., 2021; Ofungwu, 2014). Probabilistic ap
proaches are far more accurate in that they provide a quantitative 
description of risk that can be used to rank vulnerable species for con
servation priority. These rankings can be used to inform practitioners, 
stakeholders, and the public of routes to protection of species threatened 
by one or more stressors. Movement toward ecosystem-wide assess
ments requires evaluating ecosystem function (McMahon et al., 2012), 
not only species preservation. Management priorities informed by the 
role of species and their interactions within ecosystems will lead to more 
resilient communities. Ultimately, modern approaches to ecological risk 
assessment, such as EcoRAMS, will lead to more capable adaptive 
management strategies that are crucial in rapidly changing environ
ments (Walters, 1986). 

4.2. The role of EcoRAMS for evaluating multiple stressors 

Although these analyses highlighted the application of EcoRAMS to 
multiple sources of fishing pressure, EcoRAMS is fully flexible to analyze 
any system for which multiple independent sources of stress introduce 
risk to subjects of the analysis. For example, the PSA has been used to 
evaluate terrestrial ecosystems, subsequent to its use for data-poor 
fisheries. Similar risk-based frameworks that use Exposure and Sensi
tivity (or Effect) or Severity and Likelihood as variables have been 
applied to marine and terrestrial systems and have also been extensively 
developed for data-rich ecological risk assessments (N. R. Council, 2009; 

Samhouri et al., 2019). These applications extend beyond ecology and 
include analysis of risk in business (Koller, 2005), human health (Rav
indra and Mor, 2019; World Health Organization, 2020), engineering 
(Zio, 2018), and others. We provided a cohesive statistical framework, 
associated software, and web application to easily and robustly analyze 
risk in any data-poor context for one or more stressors. EcoRAMS re
quires no prior statistical or programming knowledge, as full function
ality of this software is deployed as a web app that only requires users to 
fill template CSV files with their data. We view wide and reliable access 
to robust statistical methods as imperative to the progress of ecosystem- 
based management and risk analysis. Because 90 + % of marine species 
are considered data-poor (FAO, 2020; Mora et al., 2011), EcoRAMS has 
the opportunity to be widely adopted to improve analyses marine sci
ences, and we anticipate EcoRAMS to have similar value to other 
ecological risk assessments of terrestrial and freshwater systems when 
data is sparse. The best use of EcoRAMS is with input from scientists, 
managers, practitioners, and stakeholders to allocate time and resources 
to species for which conservation provides mutual benefits to the 
ecosystem and the people within it (Finkbeiner et al., 2017; Oestreich 
et al., 2019). 

4.3. Considerations 

EcoRAMS is a highly flexible tool that may be leveraged in different 
ways to fit the needs of diverse analyses. Attributes and scoring practices 
often differ between PSA studies, and the EcoRAMS framework provides 
opportunities for further diversification as multiple stressors are incor
porated. In each study where EcoRAMS is applied, it is crucial to care
fully consider the assumptions made and provide justifications for 
choices such as scoring models, chosen attributes, chosen stressors, 
weighting schemes, and the interactions stressors have with each other. 
External data regarding correlations between stressors, for example, can 
provide a more ecologically relevant analysis. Prior studies have focused 
on the cumulative impacts of multiple stressors, assuming that more 
stressors equals proportionately greater risk to affected species and 
habitats (Halpern et al., 2009). However, when stressors interact with 
one another, these assumptions break down. Accounting for these 
complexities as well as providing a cohesive statistical framework multi- 
stress risk analyses were key goals for the design of EcoRAMS. Even 
when a stressor is treated neutrally (i.e. incorporating it into the analysis 
does not inherently imply increase or decreased risk), information about 

Fig. 6. Risk classification of 81 marine species in Baja Cali
fornia, Mexico analyzed by Micheli et al. Low-risk species are 
in blue, medium-risk in yellow, high-risk in red. The size of a 
dot corresponds to the number of species sharing overlapping 
positions in the plot. α = Productivity and β = Susceptibility. 
(A) Analysis of stressor of highest impact, set gillnets, followed 
by analyses of four other fishing stressors in descending order 
of impact: (B) drift gillnets, (C) lobster traps, (D) fish traps, (E) 
dive fishing. (F) These stressors are analyzed together in the 
EcoRAMS framework assuming stressors compound, revealing 
higher Vulnerability scores due to increased Susceptibility 
than for any stressor alone. (For interpretation of the refer
ences to colour in this figure legend, the reader is referred to 
the web version of this article.)   
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the impacts of the stressor on species improves resolution of Vulnera
bility scores by reducing standard errors of measurements along the β 
axis. Greater confidence of relative risk between species in the analysis is 
useful for initiating prioritization of actions to reduce risk. 

Statistical (probabilistic) methods have been deployed for ecological 
risk assessments where data is available (Ofungwu, 2014). EcoRAMS 
makes multi-stressor, multi-species risk assessment broadly accessible, 
without requiring advanced statistical skills and in data poor contexts. 
Even in data-rich contexts, the use of statistical risk assessments is not 
universally accepted practice. Challenges like increased complexity, 
greater data needs, and difficulty in communicating results to stake
holders slow widespread uptake (Hope, 2006). Conventional non- 
statistical methods like hazard quotients or guidelines set to fixed 
thresholds without regard to uncertainty in data or mechanistic inter
pretation of the underlying model are often simple and convenient in
terpretations of risk and are used by decision-makers (Tannenbaum 
et al., 2003), but these benefits become less tenable when statistical 
practices are highly accessible. Changing convention will take time, and 
ecological risk assessments will benefit from the transition to statistical 
methods, as they provide more reliable insights into risk management. 
Adoption of statistical methods for data-poor ecological risk assessments 
may similarly require time, and the key to improving the state of the 
field in the shortest time is to make methods accessible. EcoRAMS rep
resents a sophisticated statistical software with easy inputs and easily 
understood results for any audience. Engagement with stakeholders and 
downstream efforts to prioritize management is crucial for any risk 
assessment, and EcoRAMS can facilitate these synergies. 
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Appendix A. EcoRAMS Instructions 

Downloadable templates and instructions for EcoRAMS, also found at https://github.com/grewelle/EcoRAMS/blob/main/README.md. 
EcoRAMS is software used to perform ecological risk assessments in data-poor contexts. It provides a statistical interpretation of risk for each 

species or endpoint analyzed. This metric is probabilistic Vulnerability (Vp). Inputs are attribute scores and weights for two variables: response (e.g. 
Productivity, Effect, Sensitivity, Severity) and stressor (e.g. Susceptibility, Exposure, Likelihood). EcoRAMS is designed to incorporate multiple 
stressors that when aggregated can have compound impacts on risk or not. Below is a guide to using EcoRAMS. After downloading and completing 
templates, analysis occurs within a few seconds of upload. If your data is well organized to be input into templates, a full analysis from template 
download to results can occur within a few minutes. The instructions are divided into three sections: pre-download of templates, template completion, 
and EcoRAMS analysis. 

——————————————————————-  

1. Pre-download of templates  

• Determine the types of response and stressor variables used in analysis (e.g. Productivity-Susceptibility, Exposure-Effect/Sensitivity, Severity- 
Likelihood)  

• Generate a set of one or more stressor variables that independently contribute to risk  
• Decide which set of attributes will be used to assess each of the variables. If more than one stressor is included, different attributes may be used for 

different types of stressors, though care should be taken to interpret results appropriately given the added complexity of the analysis. Chosen 
attributes should be approximately independent from each other. Highly correlated/redundant attributes should not be included in the analysis. If 
moderately-highly correlated attributes are used, refer to the supplement of Grewelle et al. 2021, Redefining Risk in Data-Poor Fisheries to estimate 
the effective number of attributes used for each variable.  

• Classify each variable as additive or multiplicative in nature. When an additive model is used for a variable, it is assumed that each attribute 
contributes to a fraction of risk proportional to its weight (see following instruction on weighting). Therefore, adding all attribute contributions to 
risk gives the full risk associated with the variable. When a multiplicative model is used for a variable, it is assumed that each attribute's 
contribution is affected by the contributions of other attributes. Simply, if risk from one or more attributes is absent, overall risk associated with the 
variable would be absent as well even when high risk is associated with other attributes. This model is often used when attributes measured operate 
in a sequence or are probabilistic (e.g. Likelihood). By default, response variables are additive and stressor variables are multiplicative in the 
templates. Different models can be used for each stressor, though care should be taken to interpret results appropriately given the added 
complexity of the analysis.  

• Set criteria for low-, medium-, and high-risk for each variable. This consists of two percentile cut-offs, below the first is low-, above the second is 
high-, and between them is medium-risk. These cut-offs can be chosen as any percentile provided they are symmetric (i.e. low and high categories 
are of equal range). The template defaults assume equally sized categories. 
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• Assign weights to each attribute. Weights can take any numerical value and are only important relative to weights of other attributes for a single 
species or endpoint. Weights can differ within an attribute but across species. The template defaults to equal weighting.  

• Score attributes for all species. Attribute scores should take values between 1 and 3. These values should fall within intended categories based on 
the percentile cut-offs assigned above. Defaults correspond to 1 = low-risk, 2 = medium-risk, 3 = high-risk. 

———————————————————————–  

2. Template completion  

• Download one alpha template, one beta csv template, and one correlation template.  
• Open the alpha template. The top four rows have six sets of values to input.  

a) Additive or Multiplicative attributes? Acceptable inputs: Additive, Multiplicative.  
b) Low and high percentile cut-offs for attribute scoring. Acceptable inputs: any two fractions that as cut-offs produce a symmetric distribution of 

score ranges. Numerators and denominators must include a decimal. Values must remain in fraction form (i.e. do not give the decimal 
equivalent of the fraction).  

c) Number of attributes. Acceptable input: a whole number corresponding to the number of attribute columns.  
d) Low and high thresholds. Acceptable inputs: The second value must be larger than the first. Numerators and denominators must include a 

decimal. Values must remain in fraction form (i.e. do not give the decimal equivalent of the fraction). These thresholds determine the risk 
categories following Vulnerability scoring.  

e) Scoring in reversed risk order? Acceptable inputs: Y, N. In some cases (e.g. Productivity) the attributes of the alpha variable may be scored such 
that high values represent low risk. If scores input in the template were scored in this way, assign Y to this field. If high values correspond to 
high-risk, assign N to this field.  

f) Axis label. Acceptable inputs: any x-axis label for the resulting plot, preferably the name of the alpha variable.  
g) Weight. Acceptable inputs: any numerical value. The weight of each stressor relative to the others determines the contribution of each stressor 

to the β score. Higher input values indicate greater weight.  
• Row 5 must be left empty. Row 6 is the dataset header, and values in these cells can be changed without affecting the analysis.  
• Columns must be organized accordingly: column 1 is for higher level organization of species and will not be output in results. Column 2 is the list of 

species and will be reported in results alongside Vulnerability scores and risk categories. Input your list of species in column 2. No input is required 
for column 1 unless it is helpful for your organization. Blank rows can be included in between species or chunks of species for aesthetics without 
affecting the analysis provided the blank rows are placed consistently for all templates so that species fall on the same row.  

• Columns 3+ are for attribute scores and weights. Add or remove columns to rows 6+ to add or subtract attributes. Two empty columns must be 
kept between attribute scores and attribute weights. Attribute weight columns must be in the same order, left to right, as the attribute columns. For 
example, for 5 attributes, columns 1 and 2 would report group (optional) and species (or endpoint generally). Columns 3–7 would report attribute 
scores. Columns 8–9 would be blank. Columns 10–14 would report attribute weights. When an attribute is unscored due to lack of data or 
irrelevance for the species, both the attribute score and weight cells should be left blank. Default attribute scores are randomly chosen between 1 
and 3. Default weights are equal.  

• Save the alpha template as alpha_xxx.csv where xxx is any string you choose. The file must be saved in UTF-8 format. Note: Microsoft Office for Mac 
incorrectly encodes the UTF-8 format, so upload errors may be a result of incorrect encoding. Use LibreOffice, Google Sheets, or Numbers on a Mac. 
Microsoft Office works correctly on a PC for csv encoding.  

• Open the beta template. Like the alpha template, the top four rows have six sets of values to input. These sets of values can be entered according to 
the guidelines for the alpha template above except for (e). Here the entry differs: Compound model? Acceptable inputs: A, N, C. This entry refers to 
whether the stressor is statistically standardized by the expected mean (N), the expected minimum (C), or the expected maximum (A). By default, 
this value should be N for the first beta template to yield an identical analysis to the rPSA for a single stressor. Subsequent stressors can be treated as 
compounding (increasing risk with more stressors – C), neutral (N), or antagonistic (A) by completing additional beta templates for each stressor.  

• The same rules apply for column and row formatting and data entry for both beta and alpha templates. It is recommended to rank stressors in order 
of impact, with the highest impact stressor entered in the first beta template, and the lowest impact stressor entered in the last beta template. All 
values can differ between stressors except for (d) low and high thresholds. These thresholds will be the same across all templates, including the 
alpha template, as the thresholds are applied to Vulnerability scores at the end of the analysis. The software is setup to take the threshold values 
from the alpha template, so modifying the thresholds in the beta templates will not change results.  

• Save each beta template as beta1_xxx.csv, beta2_xxx.csv, beta3_xxx.csv, etc. in the same folder as you saved the completed alpha template. 
Ordering of these completed templates matters in the upload stage, as all files are selected simultaneously. Therefore, in the folder, files must 
appear in the following order: alpha_xxx.csv, beta1_xxx.csv, beta2_xxx.csv, beta3_xxx.csv, etc.  

• Open the correlation matrix template. Starting in cell A1, input a symmetric matrix describing the expected correlations between stressor variables. 
Acceptable values in each cell are numbers between − 1 and 1. By default, the identity matrix for three variables is given. Save the matrix template 
as corrMatrix.csv so that this file appears after the alpha and beta templates in the same folder. 

————————————————————————  

3. EcoRAMS analysis  

• Navigate to the main page of EcoRAMS.net.  
• Click on the’Choose Files' button after which a file browser window will appear. Navigate to the folder hosting your completed templates. The 

order the files appear is the order they will be uploaded and should be in the order described above. Use ctrl (or cmd) + select or shift select to select 
all files to be analyzed.  

• After opening these files, the homepage will read the number of files selected. Click’Submit’ to analyze your data. 
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• After a few seconds, a display page will appear with results. Results will appear in order of the stressors uploaded with stressor 1 corresponding to 
beta1_xxx.csv. These are single stressor results for each stressor standardized by the expected mean. Each plot will precede a list of all species and 
their associated α, β, probabilistic Vulnerability scores between 0 (lowest) and 1 (highest), and their associated risk category determined by the 
thresholds set. The final result is the multiple stressor result.  

• All figures can be downloaded by saving the image with a right click, and the data tables can be copied and pasted directly into any format like a csv 
file. 

Appendix B. EcoRAMS home page

Appendix C. Empirical case study tables of results 

Scores in the following tables are truncated to a single decimal place.  

Appendix C.1 
Set gillnets.  

Species Productivity Susceptibility Vulnerability (Vp) Risk Category 

Cynoscion parvipinnis 1.7 3.0 0.82 high 
Gymnothorax mordax 2.1 2.3 0.86 high 
Mycteroperca jordani 2.3 2.3 0.92 high 
Paralichthys californicus 2.1 2.3 0.86 high 
Sarda chiliensis var. chiliensis 1.9 2.3 0.67 high 
Sphyraena argentea 1.9 2.3 0.67 high 
Stereolepis gigas 2.4 2.3 0.96 high 
Synodus lucioceps 1.4 1.9 0.11 low 
Torpedo californica 2.6 2.3 0.98 high 
Pteroplatytrygon violacea 2.4 1.6 0.75 high 
Squalus acanthias 2.9 1.6 0.95 high 
Kathetostoma averruncus 1.4 1.9 0.11 low 
Squatina californica 2.7 2.3 0.99 high 
Sphyrna lewini 2.9 1.6 0.95 high 
Seriola lalandi 2.0 1.6 0.38 medium 
Porichthys notatus 1.7 1.9 0.29 low 
Pristigenys serrula 1.3 1.9 0.06 low 
Antennarius avalonis 1.3 1.9 0.06 low 
Phalacrocorax pelagicus 2.3 1.6 0.64 medium 
Phoca vitulina 2.7 1.6 0.91 high 
Tursiops truncatus 3.0 1.6 0.98 high 
Zalophus californianus 2.7 2.3 0.99 high 
Gymnura marmorata 2.6 2.3 0.98 high 
Caulolatilus princeps 1.9 2.3 0.67 high 
Heterostichus rostratus 1.7 1.9 0.29 low 
Paralabrax clathratus 1.7 1.9 0.29 low 
Cephaloscyllium ventriosum 2.6 2.3 0.98 high 
Raja rhina 2.7 2.3 0.99 high 
Scorpaena guttata 1.9 1.9 0.41 medium 
Rhacochilus vacca 2.1 1.9 0.67 high 
Triakis semifasciata 2.9 2.3 1.0 high 
Scorpaenichthys marmoratus 1.7 1.9 0.29 low 
Semicossyphus pulcher 2.1 1.9 0.67 high 
Cheilotrema saturnum 1.7 1.9 0.29 low 
Microlepidotus inornatus 1.6 2.3 0.42 medium 
Rhinobatos productus 2.7 2.3 0.99 high 
Zapteryx exasperata 2.3 2.3 0.92 high 
Anisotremus davidsoni 1.6 1.9 0.19 low 
Paralabrax nebulifer 1.7 1.9 0.29 low 
Calamus brachysomus 1.6 2.3 0.42 medium 

(continued on next page) 

R.E. Grewelle et al.                                                                                                                                                                                                                             



Ecological Informatics 77 (2023) 102198

10

Appendix C.1 (continued ) 

Species Productivity Susceptibility Vulnerability (Vp) Risk Category 

Sebastes paucispinis 2.1 2.3 0.86 high 
Anisotremus interruptus 1.4 1.9 0.11 low 
Brachyistius frenatus 1.7 1.4 0.08 low 
Platyrhinoidis triseriata 2.3 2.3 0.92 high 
Rhacochilus toxotes 2.0 1.9 0.54 medium 
Balistes polylepis 1.6 1.9 0.19 low 
Hypsurus caryi 1.9 1.9 0.41 medium 
Halichoeres semicinctus 1.3 1.9 0.06 low 
Embiotoca jacksoni 1.4 1.4 0.02 low 
Atractoscion nobilis 1.9 2.3 0.67 high 
Heterodontus francisci 2.3 2.3 0.92 high 
Urolophus halleri 2.0 1.4 0.23 low 
Hypsypops rubicundus 1.6 1.9 0.19 low 
Myliobatis californica 2.4 2.3 0.96 high 
Oxyjulis californica 1.1 1.4 0.0 low 
Scomber japonicus 1.3 1.6 0.03 low 
Sphoeroides annulatus 1.4 1.9 0.11 low 
Callinectes bellicosus 1.1 1.0 0.0 low 
Cancer anthonyi 1.6 1.6 0.08 low 
Eugorgia ampla 2.0 2.3 0.78 high 
Eugorgia daniana 2.0 2.3 0.78 high 
Leptogorgia diffusa 2.0 2.3 0.78 high 
Muricea californica 2.0 2.3 0.78 high 
Octopus rubescens 1.4 1.9 0.11 low 
Pacifigorgia 2.0 1.6 0.38 medium 
Panulirus interruptus 1.9 1.4 0.14 low 
Chromis punctipinnis 1.3 1.4 0.01 low 
Medialuna californiensis 1.4 1.9 0.11 low 
Parastichopus parvimensis 1.3 1.1 0.0 low 
Sardinops sagax 1.4 1.2 0.0 low 
Girella nigricans 1.3 2.3 0.19 low 
Eucidaris thourasii 1.1 1.2 0.0 low 
Haliotis corrugata 1.3 1.0 0.0 low 
Haliotis fulgens 1.4 1.0 0.0 low 
Kyphosus analogus 1.3 1.9 0.06 low 
Megastraea undosa 1.1 1.1 0.0 low 
Megathura crenulata 1.1 1.1 0.0 low 
Strongylocentrotus franciscanus 1.3 1.0 0.0 low 
Strongylocentrotus purpuratus 1.4 1.0 0.0 low 
Eisenia arborea 1.6 1.9 0.19 low 
Gelidium robustum 1.4 1.4 0.02 low   

Appendix C.2 
Drift gillnets.  

Species Productivity Susceptibility Vulnerability (Vp) Risk Category 

Cynoscion parvipinnis 1.7 3.0 0.82 high 
Gymnothorax mordax 2.1 1.4 0.34 medium 
Mycteroperca jordani 2.3 1.4 0.46 medium 
Paralichthys californicus 2.1 1.3 0.22 low 
Sarda chiliensis var. chiliensis 1.9 2.3 0.67 high 
Sphyraena argentea 1.9 2.3 0.67 high 
Stereolepis gigas 2.4 2.3 0.96 high 
Synodus lucioceps 1.4 1.3 0.01 low 
Torpedo californica 2.6 2.3 0.98 high 
Pteroplatytrygon violacea 2.4 1.6 0.75 high 
Squalus acanthias 2.9 1.6 0.95 high 
Kathetostoma averruncus 1.4 1.3 0.01 low 
Squatina californica 2.7 2.3 0.99 high 
Sphyrna lewini 2.9 1.6 0.95 high 
Seriola lalandi 2.0 1.6 0.38 medium 
Porichthys notatus 1.7 1.3 0.04 low 
Pristigenys serrula 1.3 1.3 0.0 low 
Antennarius avalonis 1.3 1.3 0.0 low 
Phalacrocorax pelagicus 2.3 1.6 0.64 medium 
Phoca vitulina 2.7 1.6 0.91 high 
Tursiops truncatus 3.0 1.6 0.98 high 
Zalophus californianus 2.7 2.3 0.99 high 
Gymnura marmorata 2.6 1.4 0.71 high 
Caulolatilus princeps 1.9 1.4 0.14 low 
Heterostichus rostratus 1.7 1.3 0.04 low 
Paralabrax clathratus 1.7 1.3 0.04 low 

(continued on next page) 
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Appendix C.2 (continued ) 

Species Productivity Susceptibility Vulnerability (Vp) Risk Category 

Cephaloscyllium ventriosum 2.6 1.4 0.71 high 
Raja rhina 2.7 1.4 0.81 high 
Scorpaena guttata 1.9 1.3 0.08 low 
Rhacochilus vacca 2.1 1.3 0.22 low 
Triakis semifasciata 2.9 1.4 0.89 high 
Scorpaenichthys marmoratus 1.7 1.3 0.04 low 
Semicossyphus pulcher 2.1 1.3 0.22 low 
Cheilotrema saturnum 1.7 1.3 0.04 low 
Microlepidotus inornatus 1.6 1.4 0.04 low 
Rhinobatos productus 2.7 1.4 0.81 high 
Zapteryx exasperata 2.3 1.4 0.46 medium 
Anisotremus davidsoni 1.6 1.3 0.02 low 
Paralabrax nebulifer 1.7 1.3 0.04 low 
Calamus brachysomus 1.6 1.4 0.04 low 
Sebastes paucispinis 2.1 1.4 0.34 medium 
Anisotremus interruptus 1.4 1.3 0.01 low 
Brachyistius frenatus 1.7 1.1 0.02 low 
Platyrhinoidis triseriata 2.3 1.4 0.46 medium 
Rhacochilus toxotes 2.0 1.3 0.14 low 
Balistes polylepis 1.6 1.3 0.02 low 
Hypsurus caryi 1.9 1.3 0.08 low 
Halichoeres semicinctus 1.3 1.3 0.0 low 
Embiotoca jacksoni 1.4 1.1 0.0 low 
Atractoscion nobilis 1.9 2.3 0.67 high 
Heterodontus francisci 2.3 1.4 0.46 medium 
Urolophus halleri 2.0 1.1 0.07 low 
Hypsypops rubicundus 1.6 1.3 0.02 low 
Myliobatis californica 2.4 1.4 0.59 medium 
Oxyjulis californica 1.1 1.1 0.0 low 
Scomber japonicus 1.3 1.4 0.01 low 
Sphoeroides annulatus 1.4 1.3 0.01 low 
Callinectes bellicosus 1.1 1.0 0.0 low 
Cancer anthonyi 1.6 1.1 0.0 low 
Eugorgia ampla 2.0 1.1 0.07 low 
Eugorgia daniana 2.0 1.1 0.07 low 
Leptogorgia diffusa 2.0 1.1 0.07 low 
Muricea californica 2.0 1.1 0.07 low 
Octopus rubescens 1.4 1.1 0.0 low 
Pacifigorgia 2.0 1.0 0.04 low 
Panulirus interruptus 1.9 1.1 0.04 low 
Chromis punctipinnis 1.3 1.1 0.0 low 
Medialuna californiensis 1.4 1.3 0.01 low 
Parastichopus parvimensis 1.3 1.0 0.0 low 
Sardinops sagax 1.4 1.2 0.0 low 
Girella nigricans 1.3 1.4 0.01 low 
Eucidaris thourasii 1.1 1.1 0.0 low 
Haliotis corrugata 1.3 1.0 0.0 low 
Haliotis fulgens 1.4 1.0 0.0 low 
Kyphosus analogus 1.3 1.3 0.0 low 
Megastraea undosa 1.1 1.0 0.0 low 
Megathura crenulata 1.1 1.0 0.0 low 
Strongylocentrotus franciscanus 1.3 1.0 0.0 low 
Strongylocentrotus purpuratus 1.4 1.0 0.0 low 
Eisenia arborea 1.6 1.1 0.01 low 
Gelidium robustum 1.4 1.1 0.0 low   

Appendix C.3 
Lobster traps.  

Species Productivity Susceptibility Vulnerability (Vp) Risk Category 

Cynoscion parvipinnis 1.7 1.2 0.03 low 
Gymnothorax mordax 2.1 1.4 0.34 medium 
Mycteroperca jordani 2.3 1.4 0.46 medium 
Paralichthys californicus 2.1 1.4 0.34 medium 
Sarda chiliensis var. chiliensis 1.9 1.1 0.04 low 
Sphyraena argentea 1.9 1.1 0.04 low 
Stereolepis gigas 2.4 1.4 0.59 medium 
Synodus lucioceps 1.4 1.4 0.02 low 
Torpedo californica 2.6 1.1 0.43 medium 
Pteroplatytrygon violacea 2.4 1.0 0.23 low 
Squalus acanthias 2.9 1.0 0.6 medium 
Kathetostoma averruncus 1.4 1.9 0.11 low 

(continued on next page) 
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Appendix C.3 (continued ) 

Species Productivity Susceptibility Vulnerability (Vp) Risk Category 

Squatina californica 2.7 1.1 0.56 medium 
Sphyrna lewini 2.9 1.0 0.6 medium 
Seriola lalandi 2.0 1.0 0.04 low 
Porichthys notatus 1.7 1.4 0.08 low 
Pristigenys serrula 1.3 1.4 0.01 low 
Antennarius avalonis 1.3 2.3 0.19 low 
Phalacrocorax pelagicus 2.3 1.2 0.26 low 
Phoca vitulina 2.7 1.0 0.45 medium 
Tursiops truncatus 3.0 1.0 0.67 medium 
Zalophus californianus 2.7 1.1 0.51 medium 
Gymnura marmorata 2.6 1.4 0.71 high 
Caulolatilus princeps 1.9 1.4 0.14 low 
Heterostichus rostratus 1.7 1.4 0.08 low 
Paralabrax clathratus 1.7 2.3 0.55 medium 
Cephaloscyllium ventriosum 2.6 1.4 0.71 high 
Raja rhina 2.7 1.4 0.81 high 
Scorpaena guttata 1.9 1.4 0.14 low 
Rhacochilus vacca 2.1 1.4 0.34 medium 
Triakis semifasciata 2.9 1.4 0.89 high 
Scorpaenichthys marmoratus 1.7 1.4 0.08 low 
Semicossyphus pulcher 2.1 2.3 0.86 high 
Cheilotrema saturnum 1.7 1.4 0.08 low 
Microlepidotus inornatus 1.6 1.6 0.1 low 
Rhinobatos productus 2.7 1.4 0.81 high 
Zapteryx exasperata 2.3 1.4 0.46 medium 
Anisotremus davidsoni 1.6 2.3 0.42 medium 
Paralabrax nebulifer 1.7 2.3 0.55 medium 
Calamus brachysomus 1.6 1.4 0.04 low 
Sebastes paucispinis 2.1 1.4 0.34 medium 
Anisotremus interruptus 1.4 1.4 0.02 low 
Brachyistius frenatus 1.7 2.3 0.55 medium 
Platyrhinoidis triseriata 2.3 1.4 0.46 medium 
Rhacochilus toxotes 2.0 1.4 0.23 low 
Balistes polylepis 1.6 1.4 0.04 low 
Hypsurus caryi 1.9 2.3 0.67 high 
Halichoeres semicinctus 1.3 1.4 0.01 low 
Embiotoca jacksoni 1.4 2.3 0.3 low 
Atractoscion nobilis 1.9 1.1 0.04 low 
Heterodontus francisci 2.3 1.4 0.46 medium 
Urolophus halleri 2.0 2.3 0.78 high 
Hypsypops rubicundus 1.6 1.4 0.04 low 
Myliobatis californica 2.4 1.4 0.59 medium 
Oxyjulis californica 1.1 2.3 0.12 low 
Scomber japonicus 1.3 1.0 0.0 low 
Sphoeroides annulatus 1.4 2.3 0.3 low 
Callinectes bellicosus 1.1 1.2 0.0 low 
Cancer anthonyi 1.6 1.4 0.04 low 
Eugorgia ampla 2.0 1.4 0.23 low 
Eugorgia daniana 2.0 1.4 0.23 low 
Leptogorgia diffusa 2.0 1.4 0.23 low 
Muricea californica 2.0 1.4 0.23 low 
Octopus rubescens 1.4 2.3 0.3 low 
Pacifigorgia 2.0 1.2 0.1 low 
Panulirus interruptus 1.9 1.6 0.22 low 
Chromis punctipinnis 1.3 2.1 0.12 low 
Medialuna californiensis 1.4 2.3 0.3 low 
Parastichopus parvimensis 1.3 1.1 0.0 low 
Sardinops sagax 1.4 1.2 0.0 low 
Girella nigricans 1.3 1.4 0.01 low 
Eucidaris thourasii 1.1 1.1 0.0 low 
Haliotis corrugata 1.3 1.0 0.0 low 
Haliotis fulgens 1.4 1.0 0.0 low 
Kyphosus analogus 1.3 1.4 0.01 low 
Megastraea undosa 1.1 1.1 0.0 low 
Megathura crenulata 1.1 1.0 0.0 low 
Strongylocentrotus franciscanus 1.3 1.0 0.0 low 
Strongylocentrotus purpuratus 1.4 1.0 0.0 low 
Eisenia arborea 1.6 1.4 0.04 low 
Gelidium robustum 1.4 1.4 0.02 low   
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Appendix C.4 
Fish traps.  

Species Productivity Susceptibility Vulnerability (Vp) Risk category 

Cynoscion parvipinnis 1.7 1.1 0.02 low 
Gymnothorax mordax 2.1 1.3 0.22 low 
Mycteroperca jordani 2.3 1.3 0.33 low 
Paralichthys californicus 2.1 1.3 0.22 low 
Sarda chiliensis var. chiliensis 1.9 1.1 0.03 low 
Sphyraena argentea 1.9 1.1 0.03 low 
Stereolepis gigas 2.4 1.3 0.46 medium 
Synodus lucioceps 1.4 1.3 0.01 low 
Torpedo californica 2.6 1.1 0.38 medium 
Pteroplatytrygon violacea 2.4 1.0 0.22 low 
Squalus acanthias 2.9 1.0 0.58 medium 
Kathetostoma averruncus 1.4 1.2 0.0 low 
Squatina californica 2.7 1.1 0.51 medium 
Sphyrna lewini 2.9 1.0 0.58 medium 
Seriola lalandi 2.0 1.0 0.04 low 
Porichthys notatus 1.7 1.3 0.04 low 
Pristigenys serrula 1.3 1.3 0.0 low 
Antennarius avalonis 1.3 1.3 0.0 low 
Phalacrocorax pelagicus 2.3 1.2 0.26 low 
Phoca vitulina 2.7 1.0 0.45 medium 
Tursiops truncatus 3.0 1.0 0.67 medium 
Zalophus californianus 2.7 1.1 0.51 medium 
Gymnura marmorata 2.6 1.3 0.59 medium 
Caulolatilus princeps 1.9 1.4 0.14 low 
Heterostichus rostratus 1.7 1.3 0.04 low 
Paralabrax clathratus 1.7 1.4 0.08 low 
Cephaloscyllium ventriosum 2.6 1.3 0.59 medium 
Raja rhina 2.7 1.3 0.71 high 
Scorpaena guttata 1.9 1.3 0.08 low 
Rhacochilus vacca 2.1 1.3 0.22 low 
Triakis semifasciata 2.9 1.3 0.81 high 
Scorpaenichthys marmoratus 1.7 1.3 0.04 low 
Semicossyphus pulcher 2.1 2.3 0.86 high 
Cheilotrema saturnum 1.7 1.3 0.04 low 
Microlepidotus inornatus 1.6 1.4 0.04 low 
Rhinobatos productus 2.7 1.3 0.71 high 
Zapteryx exasperata 2.3 1.3 0.33 low 
Anisotremus davidsoni 1.6 1.9 0.19 low 
Paralabrax nebulifer 1.7 1.4 0.08 low 
Calamus brachysomus 1.6 1.3 0.02 low 
Sebastes paucispinis 2.1 1.3 0.22 low 
Anisotremus interruptus 1.4 1.3 0.01 low 
Brachyistius frenatus 1.7 1.6 0.14 low 
Platyrhinoidis triseriata 2.3 1.3 0.33 low 
Rhacochilus toxotes 2.0 1.3 0.14 low 
Balistes polylepis 1.6 1.3 0.02 low 
Hypsurus caryi 1.9 1.3 0.08 low 
Halichoeres semicinctus 1.3 1.3 0.0 low 
Embiotoca jacksoni 1.4 1.9 0.11 low 
Atractoscion nobilis 1.9 1.1 0.03 low 
Heterodontus francisci 2.3 1.3 0.33 low 
Urolophus halleri 2.0 1.9 0.54 medium 
Hypsypops rubicundus 1.6 1.4 0.04 low 
Myliobatis californica 2.4 1.3 0.46 medium 
Oxyjulis californica 1.1 1.9 0.03 low 
Scomber japonicus 1.3 1.0 0.0 low 
Sphoeroides annulatus 1.4 1.9 0.11 low 
Callinectes bellicosus 1.1 1.2 0.0 low 
Cancer anthonyi 1.6 1.1 0.01 low 
Eugorgia ampla 2.0 1.4 0.23 low 
Eugorgia daniana 2.0 1.4 0.23 low 
Leptogorgia diffusa 2.0 1.4 0.23 low 
Muricea californica 2.0 1.4 0.23 low 
Octopus rubescens 1.4 1.4 0.02 low 
Pacifigorgia 2.0 1.2 0.1 low 
Panulirus interruptus 1.9 1.1 0.04 low 
Chromis punctipinnis 1.3 1.7 0.04 low 
Medialuna californiensis 1.4 1.3 0.01 low 
Parastichopus parvimensis 1.3 1.1 0.0 low 
Sardinops sagax 1.4 1.1 0.0 low 
Girella nigricans 1.3 1.3 0.0 low 
Eucidaris thourasii 1.1 1.1 0.0 low 
Haliotis corrugata 1.3 1.0 0.0 low 
Haliotis fulgens 1.4 1.0 0.0 low 
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Appendix C.4 (continued ) 

Species Productivity Susceptibility Vulnerability (Vp) Risk category 

Kyphosus analogus 1.3 1.3 0.0 low 
Megastraea undosa 1.1 1.1 0.0 low 
Megathura crenulata 1.1 1.0 0.0 low 
Strongylocentrotus franciscanus 1.3 1.0 0.0 low 
Strongylocentrotus purpuratus 1.4 1.0 0.0 low 
Eisenia arborea 1.6 1.4 0.04 low 
Gelidium robustum 1.4 1.4 0.02 low   

Appendix C.5 
Dive fishing.  

Species Productivity Susceptibility Vulnerability (Vp) Risk Category 

Cynoscion parvipinnis 1.7 1.0 0.01 low 
Gymnothorax mordax 2.1 1.0 0.07 low 
Mycteroperca jordani 2.3 1.0 0.13 low 
Paralichthys californicus 2.1 1.0 0.07 low 
Sarda chiliensis var. chiliensis 1.9 1.0 0.02 low 
Sphyraena argentea 1.9 1.0 0.02 low 
Stereolepis gigas 2.4 1.0 0.22 low 
Synodus lucioceps 1.4 1.0 0.0 low 
Torpedo californica 2.6 1.0 0.32 low 
Pteroplatytrygon violacea 2.4 1.0 0.19 low 
Squalus acanthias 2.9 1.0 0.54 medium 
Kathetostoma averruncus 1.4 1.0 0.0 low 
Squatina californica 2.7 1.0 0.45 medium 
Sphyrna lewini 2.9 1.0 0.54 medium 
Seriola lalandi 2.0 1.0 0.03 low 
Porichthys notatus 1.7 1.0 0.01 low 
Pristigenys serrula 1.3 1.0 0.0 low 
Antennarius avalonis 1.3 1.0 0.0 low 
Phalacrocorax pelagicus 2.3 1.0 0.11 low 
Phoca vitulina 2.7 1.0 0.41 medium 
Tursiops truncatus 3.0 1.0 0.67 medium 
Zalophus californianus 2.7 1.0 0.45 medium 
Gymnura marmorata 2.6 1.0 0.32 low 
Caulolatilus princeps 1.9 1.0 0.02 low 
Heterostichus rostratus 1.7 1.0 0.01 low 
Paralabrax clathratus 1.7 1.0 0.01 low 
Cephaloscyllium ventriosum 2.6 1.0 0.32 low 
Raja rhina 2.7 1.0 0.45 medium 
Scorpaena guttata 1.9 1.0 0.02 low 
Rhacochilus vacca 2.1 1.0 0.07 low 
Triakis semifasciata 2.9 1.0 0.58 medium 
Scorpaenichthys marmoratus 1.7 1.0 0.01 low 
Semicossyphus pulcher 2.1 1.0 0.07 low 
Cheilotrema saturnum 1.7 1.0 0.01 low 
Microlepidotus inornatus 1.6 1.0 0.0 low 
Rhinobatos productus 2.7 1.0 0.45 medium 
Zapteryx exasperata 2.3 1.0 0.13 low 
Anisotremus davidsoni 1.6 1.0 0.0 low 
Paralabrax nebulifer 1.7 1.0 0.01 low 
Calamus brachysomus 1.6 1.0 0.0 low 
Sebastes paucispinis 2.1 1.0 0.07 low 
Anisotremus interruptus 1.4 1.0 0.0 low 
Brachyistius frenatus 1.7 1.0 0.01 low 
Platyrhinoidis triseriata 2.3 1.0 0.13 low 
Rhacochilus toxotes 2.0 1.0 0.04 low 
Balistes polylepis 1.6 1.0 0.0 low 
Hypsurus caryi 1.9 1.0 0.02 low 
Halichoeres semicinctus 1.3 1.0 0.0 low 
Embiotoca jacksoni 1.4 1.0 0.0 low 
Atractoscion nobilis 1.9 1.0 0.02 low 
Heterodontus francisci 2.3 1.0 0.13 low 
Urolophus halleri 2.0 1.0 0.04 low 
Hypsypops rubicundus 1.6 1.0 0.0 low 
Myliobatis californica 2.4 1.0 0.22 low 
Oxyjulis californica 1.1 1.0 0.0 low 
Scomber japonicus 1.3 1.0 0.0 low 
Sphoeroides annulatus 1.4 1.0 0.0 low 
Callinectes bellicosus 1.1 1.0 0.0 low 
Cancer anthonyi 1.6 1.0 0.0 low 
Eugorgia ampla 2.0 1.0 0.04 low 
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Appendix C.5 (continued ) 

Species Productivity Susceptibility Vulnerability (Vp) Risk Category 

Eugorgia daniana 2.0 1.0 0.04 low 
Leptogorgia diffusa 2.0 1.0 0.04 low 
Muricea californica 2.0 1.0 0.04 low 
Octopus rubescens 1.4 2.3 0.3 low 
Pacifigorgia 2.0 1.0 0.03 low 
Panulirus interruptus 1.9 1.0 0.02 low 
Chromis punctipinnis 1.3 1.0 0.0 low 
Medialuna californiensis 1.4 1.0 0.0 low 
Parastichopus parvimensis 1.3 2.3 0.19 low 
Sardinops sagax 1.4 1.0 0.0 low 
Girella nigricans 1.3 1.0 0.0 low 
Eucidaris thourasii 1.1 1.0 0.0 low 
Haliotis corrugata 1.3 2.3 0.19 low 
Haliotis fulgens 1.4 2.3 0.3 low 
Kyphosus analogus 1.3 1.0 0.0 low 
Megastraea undosa 1.1 2.3 0.12 low 
Megathura crenulata 1.1 2.3 0.12 low 
Strongylocentrotus franciscanus 1.3 2.3 0.19 low 
Strongylocentrotus purpuratus 1.4 2.3 0.3 low 
Eisenia arborea 1.6 1.0 0.0 low 
Gelidium robustum 1.4 2.3 0.3 low   

Appendix C.6 
All stressors.  

Species Productivity Susceptibility* Vulnerability (Vp) Risk Category 

Cynoscion parvipinnis 1.7 3 0.98 high 
Gymnothorax mordax 2.1 2.6 0.98 high 
Mycteroperca jordani 2.3 2.6 0.99 high 
Paralichthys californicus 2.1 2.5 0.97 high 
Sarda chiliensis var. chiliensis 1.9 2.7 0.94 high 
Sphyraena argentea 1.9 2.7 0.94 high 
Stereolepis gigas 2.4 2.9 1.0 high 
Synodus lucioceps 1.4 2.4 0.49 medium 
Torpedo californica 2.6 2.7 1.0 high 
Pteroplatytrygon violacea 2.4 2.2 0.95 high 
Squalus acanthias 2.9 2.2 1.0 high 
Kathetostoma averruncus 1.4 2.5 0.59 medium 
Squatina californica 2.7 2.7 1.0 high 
Sphyrna lewini 2.9 2.2 1.0 high 
Seriola lalandi 2.0 2.2 0.75 high 
Porichthys notatus 1.7 2.4 0.73 high 
Pristigenys serrula 1.3 2.4 0.36 medium 
Antennarius avalonis 1.3 2.7 0.63 medium 
Phalacrocorax pelagicus 2.3 2.3 0.96 high 
Phoca vitulina 2.7 2.2 0.99 high 
Tursiops truncatus 3.0 2.2 1.0 high 
Zalophus californianus 2.7 2.7 1.0 high 
Gymnura marmorata 2.6 2.6 1.0 high 
Caulolatilus princeps 1.9 2.6 0.94 high 
Heterostichus rostratus 1.7 2.4 0.73 high 
Paralabrax clathratus 1.7 2.7 0.93 high 
Cephaloscyllium ventriosum 2.6 2.6 1.0 high 
Raja rhina 2.7 2.6 1.0 high 
Scorpaena guttata 1.9 2.4 0.83 high 
Rhacochilus vacca 2.1 2.4 0.95 high 
Triakis semifasciata 2.9 2.6 1.0 high 
Scorpaenichthys marmoratus 1.7 2.4 0.73 high 
Semicossyphus pulcher 2.1 3 1.0 high 
Cheilotrema saturnum 1.7 2.4 0.73 high 
Microlepidotus inornatus 1.6 2.7 0.87 high 
Rhinobatos productus 2.7 2.6 1.0 high 
Zapteryx exasperata 2.3 2.6 0.99 high 
Anisotremus davidsoni 1.6 2.9 0.93 high 
Paralabrax nebulifer 1.7 2.7 0.93 high 
Calamus brachysomus 1.6 2.6 0.77 high 
Sebastes paucispinis 2.1 2.6 0.98 high 
Anisotremus interruptus 1.4 2.4 0.49 medium 
Brachyistius frenatus 1.7 2.6 0.85 high 
Platyrhinoidis triseriata 2.3 2.6 0.99 high 
Rhacochilus toxotes 2.0 2.4 0.9 high 
Balistes polylepis 1.6 2.4 0.62 medium 
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Appendix C.6 (continued ) 

Species Productivity Susceptibility* Vulnerability (Vp) Risk Category 

Hypsurus caryi 1.9 2.7 0.95 high 
Halichoeres semicinctus 1.3 2.4 0.36 medium 
Embiotoca jacksoni 1.4 2.7 0.73 high 
Atractoscion nobilis 1.9 2.7 0.94 high 
Heterodontus francisci 2.3 2.6 0.99 high 
Urolophus halleri 2.0 2.7 0.97 high 
Hypsypops rubicundus 1.6 2.4 0.67 high 
Myliobatis californica 2.4 2.6 1.0 high 
Oxyjulis californica 1.1 2.7 0.49 medium 
Scomber japonicus 1.3 2.1 0.12 low 
Sphoeroides annulatus 1.4 2.9 0.88 high 
Callinectes bellicosus 1.1 1.9 0.01 low 
Cancer anthonyi 1.6 2.1 0.36 medium 
Eugorgia ampla 2.0 2.5 0.94 high 
Eugorgia daniana 2.0 2.5 0.94 high 
Leptogorgia diffusa 2.0 2.5 0.94 high 
Muricea californica 2.0 2.5 0.94 high 
Octopus rubescens 1.4 3 0.96 high 
Pacifigorgia 2.0 2.1 0.67 high 
Panulirus interruptus 1.9 2.2 0.64 medium 
Chromis punctipinnis 1.3 2.6 0.52 medium 
Medialuna californiensis 1.4 2.7 0.74 high 
Parastichopus parvimensis 1.3 2.3 0.22 low 
Sardinops sagax 1.4 2.0 0.11 low 
Girella nigricans 1.3 2.6 0.54 medium 
Eucidaris thourasii 1.1 1.9 0.02 low 
Haliotis corrugata 1.3 2.2 0.13 low 
Haliotis fulgens 1.4 2.2 0.21 low 
Kyphosus analogus 1.3 2.4 0.36 medium 
Megastraea undosa 1.1 2.3 0.14 low 
Megathura crenulata 1.1 2.2 0.08 low 
Strongylocentrotus franciscanus 1.3 2.2 0.13 low 
Strongylocentrotus purpuratus 1.4 2.2 0.21 low 
Eisenia arborea 1.6 2.4 0.61 medium 
Gelidium robustum 1.4 2.7 0.76 high 

* Multi-stressor Susceptibility values are used for plot visualization and are not always equivalent to single stressor Susceptibility values, though they are an 
order-preserving metric of single stressor Susceptibility values. 
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României Conferinţa Internaţională Educaţie şi Creativitate Pentru O Societate 
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