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Multiple stressors to species and ecosystems are pervasive and escalating. Effective management and mitigation
of these pressures requires ecological risk assessment (ERA), but data are often lacking for detailed, quantitative
risk assessment. Data-poor ERAs have been developed and widely applied to terrestrial, marine, and freshwater
ecosystems. Current frameworks, such as the Productivity-Susceptibility Analysis (PSA), are limited to single
stressors and were not developed on statistical grounds. Previous work has partly addressed these limitations by
incorporating multiple stressors (e.g. Aggregated Susceptibility) and a statistical basis (rPSA). However, the more
robust rPSA is more difficult to implement than the PSA. To overcome this barrier, here we develop ECORAMS
(Ecological Risk Assessment of Multiple Stressors), which provides statistically-robust ecological risk assessments
of multiple stressors in data-poor contexts. The web app format of EcoRAMS.net lowers the barrier of use for
practitioners and scientists at any level of statistical training.

1. Introduction

Gathering an accurate estimate of risk to multiple stressors is a
fundamental challenge in ecological risk assessment. Quantification of
threats to species and habitats is necessary to develop management
policies, yet the magnitude of threats and their compounded effects are
often obscured by data limitations. Because ecosystems affected by
multiple stressors require broader assessment, data limitations render
these analyses especially fraught. This includes systems of conservation
and commercial significance, such as small scale fisheries that together
support the livelihoods of over 117 million people and provide essential
nutrition for many more (FAO, 2020). Data-poor risk assessments are
critical to establish intervention priorities in these contexts. Therefore, a
wide variety of qualitative and semi-quantitative approaches is
deployed to measure risk of species to stressors, which are often human-
mediated. Common stressors of wildlife result from harvesting, mining,
recreational, or construction activities, and those chosen for analysis are
relevant to the species affected and stakeholder interests (Hope, 2006).

Unlike contexts in which the effects of a stressor can be precisely
quantified under controlled conditions — for instance when a physio-

logical or behavioral response is measured for increasing concentration
of a contaminant (Norton et al., 1992) — in data-poor contexts, the
quantitative relationship between stressor and response is unknown or
under-studied. Semi-quantitative methodologies developed to overcome
these limitations assess risk via standardized scoring procedures. Scores
are based on the life history traits of species of conservation and com-
mercial interest and on stressors' magnitude, distribution, and effects on
target species, sometimes supplemented by expert input (Pilling et al.,
2009). This type of assessment is particularly common for species
affected by harvesting or bycatch in small-scale fisheries, where data is
often not collected systematically. The Productivity-Susceptibility
Analysis (PSA) has become the most commonly used approach to
conduct ecological risk assessments for data-poor fisheries and has been
applied widely to freshwater and terrestrial ecosystems. The PSA cal-
culates Vulnerability, a metric of risk that incorporates qualitative
scores of life history characteristics of species (Productivity) and fishing
activity that overlaps with each species (Susceptibility). It has been
incorporated within the broader Ecological Risk Assessment for the Ef-
fects of Fishing (ERAEF) framework which uses Vulnerability estimates
from the PSA to prioritize evaluation by managers, scientists, and
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stakeholders (Hobday et al., 2007; Hobday et al., 2011; Stobutzki et al.,
2001). Ecosystem based management efforts can account for all species,
guilds, and communities with this approach (Hazen et al., 2016;
Townsend et al., 2019). For this reason, data-poor methodologies like
the PSA have been widely adopted (Battista et al., 2017; Marine Stew-
ardship Council, 2019; Ponton-Cevallos et al., 2020). Variations in input
procedure and outcome of analysis, including the use of Exposure and
Sensitivity as risk determinants, have made these approaches accessible
to stakeholders with varied interests (Samhouri et al., 2019). However,
we demonstrated in our previous work that the outcomes of these as-
sessments introduce biases without statistical considerations (Grewelle
et al.,, 2021). We presented a statistically-robust approach to derive
Vulnerability from Productivity and Susceptibility scores that addresses
several limitations with the original PSA. Productivity and Susceptibility
are each scored as the mean of their respective set of several attributes.
Attribute values are generally assigned by standardized biologically-
relevant criteria. For example, a Productivity attribute, age at matu-
rity, may receive values by percentiles derived from an expected range
for the relevant managed species: 1 = 0-33%, 2 = 33-67%, 3 =
67-100%. A species with age at maturity in the 50th percentile receives
an attribute score of 2. Risk associated to Productivity is then computed
as 4 minus the mean of Productivity attributes, so that 1 = low Pro-
ductivity is classified as 3 = high risk. (Grewelle et al., 2021; Hobday
et al., 2011) further discuss scoring recommendations. Productivity and
Susceptibility are then used to calculate Vulnerability. Vulnerability in
the original PSA was calculated as the Euclidean distance from the
origin.

V=P +§ )

The Euclidean distance of each species from the origin is not a
suitable metric for Vulnerability because it does not account for the
distribution of species on the PSA plot (Grewelle et al., 2021). Our
revised PSA (rPSA) framework is able to incorporate commonly used
variations of the analysis to assess Vulnerability by projecting the the
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two-dimensional distribution (e.g. P-S space) of species onto a one-
dimensional risk axis, along which species' risk to fishing activity in-
creases (Fig. 1).

While PSA-like approaches have been widely used in both marine
and terrestrial ecosystems, these methods usually consider a single
threat or pressure (e.g. susceptibility to a specific fishing gear), whereas
populations are often subject to multiple stressors at the same time
(Halpern et al., 2009; Van den Brink et al., 2016a). Thus it is crucial to
have robust methods to assess Vulnerability to cumulative impacts of
these stressors. Prior to our revised PSA, Micheli et al. addressed the
limitations of single stressor analyses by computing an Aggregated
Susceptibility (AS) that broadened the definition of Susceptibility to
multiple fishing gears or stressors (Micheli et al., 2014). Susceptibility to
each stressor was independently scored on the same scale between 1 and
3, and Aggregated Susceptibility reflected the combined contributions of
all stressors to species' susceptibility to fishing activity. Aggregated
Susceptibility was truncated at a maximum value of 3 and took a min-
imum value of 1 to remain within the scoring bounds of the PSA.

ASmin{ 3,1+,/§n:(3‘-71)2 } @)
i=1

When Susceptibility (S;) to a stressor i is 1, this stressor does not
increase AS. When S; > 1 for two or more stressors, then AS is greater
than or equal to Susceptibility from each stressor.

AS substituted S in Eq. (1) to calculate Vulnerability to multiple
stressors. Though practical, the empirical formula to calculate AS was
not derived on the basis of statistical principles. The aims of this work
are two-fold: to create a statistical interpretation of AS to robustly
measure Vulnerability to multiple stressors and to introduce a web
application to enhance its use in data-poor ERAs. Because the di-
mensions of risk vary by study, we generalize this framework to evaluate
any two-dimensional scoring procedure, including Sensitivity-Exposure
(Rodier and Norton, 1992), Impact-Probability (Dumbrava and Iacob,
2013), or Severity-Likelihood based analyses (Woodruff, 2005). We
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Fig. 1. In the scoring model used by the PSA, a bivariate
normal distribution (blue ellipse) is produced along the Pro-
ductivity and Susceptibility axes. This can be projected along a
Risk Axis (black line, ascending left to right), which is defined
by the likelihood properties of the analysis, to form an ordered
set of points along a one dimensional normal distribution
(black). This new distribution is used to score Vulnerability in
the rPSA. Vulnerability scores fall into risk categories delin-
eated by thresholds (light orange, descending left to right)
which divide the distribution of points into equal partitions by
probability. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of
this article.)
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present this approach as a user-friendly web application, ECORAMS,
accessible to scientists and stakeholders at any level of statistical
training.

2. Methods
2.1. Derivation of vulnerability

EcoRAMS ([data-poor] Ecological Risk Assessment of Multiple
Stressors) measures Vulnerability from multiple stressor variables,
standardized by the distance of each stressor score, x;, from the theo-
retical mean, yu,, set by the attribute scoring criteria and the chosen
model (additive or multiplicative). Multiple stressor Vulnerability
values provide unique resolution of risk across the low, medium, high-
risk range not otherwise captured by evaluation of a single stressor.
All ecological risk assessments which compute risk variable scores (e.g.
Productivity, Susceptibility, Exposure, Likelihood, Probability, Sensi-
tivity, Effect, Severity, Impact, etc.) from a mean of multiple attributes
produce scores that are normally distributed along each variable's axis.
The statistical properties of these assessments were derived in our pre-
vious work for a single stressor (Grewelle et al., 2021). To generalize the
statistics for multiple stressors, we denote a as any response variable (e.
g. Productivity, Sensitivity, Effect, Severity, Impact, etc.) determined by
characteristics of the species or endpoints studied and f as any stressor
variable (e.g. Susceptibility, Exposure, Likelihood, Probability, etc.)
determined by the probability of contact with stressors. It is assumed
that g is an n-dimensional variable with basis {f;, f,, ..., 5, } to represent
n stressors, while « is a single variable. The formula for AS (Eq. (2)) does
not yet form a statistical distribution. Below we create a suitable sta-
tistical metric for multiple stressors, f8, to be incorporated in the rPSA
framework. Each stressor variable, f;, forming the basis of $ is Gaussian
because they are scored by calculating the mean of several attributes,
which were chosen to the reflect the interactions of species to one or
more stressors (e.g. spatial overlap with stressor, post-contact mortality
from stressor). Attributes are scored from low = 1 to high = 3 based on
biologically relevant scoring criteria. Each stressor variable, g;, can
therefore be defined by a normal random variable, X:

)
= o me 3)

We further define Y as the distribution formed by the weighted sum
of these stressor random variables.

X ~ Ny, 0%) =f(x)

Y=wX= Z WX, @
u=1

Stressor random variables are weighted by importance by w,. By
default, these weights should be equal across stressors. Differential
contribution of each stressor to Vulnerability is incorporated in the low
to high f3, scoring process. However, in some cases undo influence of one
or more stressors may contribute to species' Vulnerability. In these in-
stances, the importance of each stressor is different, and weighting
should not be equal.

w = wdiag ' (py) 5)
The characteristic function for Y is
$1(1) = E[e"] = E[e™] = g (1w) ©)

Expanded, this becomes

¢y (1) = exp (iti Wall, — %;2 i i Wuvauv> 7
u=1

u=1 v=1

where Kyy is the covariance matrix.
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Var(Xu) = Kuu (8)

Cov(Xva) =K, )

The characteristic function for each stressor random variable is
. 1 2 2
¢y (1) = exp| itpy —50x (10)

X and Y share the same form of characteristic function when

By =Y W, an
u=1

oy = z": zn:w“w‘,K,,v 12)

u=l v=1
Therefore, Y is also normally distributed
Y ~N(uy,03) 13)

For p, variables that are log-normally distributed due to the use of a
multiplicative model in attribute scoring, log transformation produces a
normal distribution. The transformation of mean and variance of these
variables is presented in (Grewelle et al., 2021). Recalling from (Gre-
welle et al., 2021) any vector x; = [ax — fi, Sy — ﬁﬂ}r can be projected
along the risk vector, r, to map X to one dimension. k is the species index.
After mapping all points to the risk vector, the distance of each point
Xx = (ak, B;) from the mean is the magnitude of the projection:

r-Xg

D(x) = (14)

Irl

The projection results in a linear transformation of X with standard
error

. \/fa,,a,;
\/o2 + 6/2,

The cumulative distribution function that yields the probabilistic
metric of Vulnerability is:

or (15)

Dlsy)
1 1 (a8

— + R

2 /)
This metric can be compared across all varieties of input conditions,

including variable number and type of stressors and attributes. How-

ever, comparisons across studies are most explicable when conditions of
the analyses are similar.

Vv, = e dt (16)

2.2. Covariance among stressors

By default, stressors are assumed independent. The covariance ma-
trix, Kxy, is the identity matrix. When stressors are expected to interact,
covariance values are positive or negative, respectively. Variance can be
calculated given known correlations between stressor variables.

var(f) = (W © 65)p(w O aﬂ)T a7

oy is the row vector of standard errors for stressor variables, and p is
the correlation matrix with entries between —1 and 1.

2.3. Treatment of stressors: Antagonistic, neutral, or compounding

For a single stressor, scoring criteria define the mean of the expected
normal distribution for . When additional stressors are included in the
risk analysis, we provide flexibility in ECORAMS to treat each of these
stressors as an obligatory elevator of Vulnerability (compounding),
neutrally with equal chance to decrease or increase Vulnerability, or
antagonistically as an obligatory reducer of Vulnerability. In the neutral
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treatment, the above methods hold, and the definition of the distribution
for § does not change. Generally, for all treatments, the mean is modi-
fied:

U T \4
Hy = Z W, + Z thax{ﬁu+f} + Z w,min {ﬂU+T+v}
u=1 =1 v=1

U is the number of neutral stressors, T is the number of antagonistic
stressors, and V is the number of compounding stressors. The minimum
of fy.r,, referenced is the minimum value an attribute used to score
Pu.r., could theoretically receive. In the case where attributes take
values between 1 and 3, min{f,,r.,} = 1. This treatment is analogous to
the derivation of AS in Eq. (2). The maximum of g, referenced is the
maximum value an attribute used to score f,, could theoretically
receive. In the case where attributes take values between 1 and 3, max

{ﬂU+t} =3.

(18)

2.4. Scoring practices

The EcoRAMS web app provides CSV (Comma Separated Values)
templates for users to input scoring criteria, attribute scores for each
stressor and species, and analysis conditions. Prior to submitting these
templates to the web app and receiving results, ECORAMS requires users
to conduct several preparatory steps (Fig. 2). After the analysis condi-
tions are setup, the a and g attributes must be chosen. Attributes should
be approximately independent from each other. Biologically redundant
attributes should not be used in the analysis to avoid double counting,
and to account for highly collinear ones by estimating the effective
number of attributes see the method outlined in the supplementary in-
formation of (Grewelle et al., 2021). Percentiles are then chosen for
scoring each attribute, adhering to relevant expected ranges. For ease,
we recommend equal bin sizes: 1 = 0-33%, 2 = 33-67%, 3 = 67-100%.
When attributes are irrelevant or lack expert input or data for scoring,
the attributes should not be scored. Leaving these cells and the corre-
sponding weight cells blank in the CSV templates will adjust the number
of attributes used for the species and broaden standard error estimates
for calculating Vulnerability; scored attributes will be appropriately
weighted. The a and $ values are calculated as the weighted means of
their respective attribute scores. Weights can be applied on the basis of
importance or data quality, and efforts to justify weights via supporting
mechanism or data should be made. The mean calculated depends on the
model assumed for the attributes (geometric mean = multiplicative,
arithmetic mean = additive). However, as a default, a variables are
assumed to be additive, while $ variables are assumed to be multipli-
cative. A multiplicative model should be used when the magnitude of
risk associated with a variable depends on interactions of the attributes
with each other. For instance, species mortality, often used as an attri-
bute to score Susceptibility, depends on other attributes like spatial

EcoRAMS Workflow

Choose analysis type:

Productivity-Susceptibility
Sensitivity-Exposure
Severity-Likelihood

Define variable models
and scoring criteria

Determine stressors,
attributes, and weights
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overlap between fishery activity and species distribution. Values of
variables scored in this way act much like probabilities, and in fact, a
geometric mean is an isotone (order-preserving) mapping of probability
and is indistinguishable in the results of the ECORAMS analysis. When f; ,
Pa, ..., B, are scored with different sets of attributes, ECORAMS supports
the use of different models (additive or multiplicative) for each variable.

To demonstrate the use of ECORAMS, we generated a hypothetical set
of 100 species using a standard scoring procedure for the PSA used in the
Ecological Risk Assessment for the Effects of Fishing. We adopted the
same scoring procedure by which attributes of @ and g variables are
scored 1 (low-risk), 2 (medium-risk), or 3 (high-risk). Note that these
scores reflected association with risk, not association with the a or g
variables per se. For example, in a PSA high Productivity is associated
with low-risk (Hobday et al., 2007), and therefore Productivity attribute
scores were transformed by subtracting from 4 if originally scored as 1
= low Productivity, 2 = medium Productivity, 3 = high Productivity.
For EcoRAMS users, this option can be chosen before analysis when
applicable. In our simulated analysis, 7 @ and 4 § attributes were scored
randomly on a uniform distribution of integers between 1 and 3. The &
score was calculated as the arithmetic mean assuming an additive
model. The f score was calculated as the geometric mean assuming a
multiplicative model. Attributes were weighted equally. We calculated
the Vulnerability of 100 in silico species when three simulated stressors
were treated both as neutral and compounding to compare the in-
terpretations of Vulnerability. We also analyzed 81 fished species in Baja
California, Mexico for which each of five fishing gear types represented a
separate stressor. We used the same attributes and scoring procedure as
the original study (Micheli et al., 2014). Species were analyzed for each
single stressor, which produced results identical to the rPSA. Vulnera-
bility was then computed for all five stressors (set gillnets, drift gillnets,
lobster traps, fish traps, and dive fishing), treating each additional
stressor as compounding on the stressor of greatest impact (set gillnets).

3. Results
3.1. Neutral treatment of stressors

When stressors (f variables) were treated neutrally and were instead
standardized by the expected mean, additional stressors did not affect
the distribution of risk categorization; approximately one-third of spe-
cies fell into each category (Fig. 3). This procedure maximally discrim-
inated Vulnerability of species within a study for downstream
assessment.

3.2. Compounded stressors

When stressors were compounded on the first, the distribution of
Vulnerability scores shifted upward (Fig. 4). Fewer species remained in

Fig. 2. Workflow diagram for ECORAMS anal-
ysis. The analysis type chosen determines
which of the pairs of variables is used in the
risk assessment, which will constrain the types
of attributes used for scoring. Included
stressors, attribute weights, and their associ-
ated models and scoring criteria will define the
scope and structure of the analysis. After at-
tributes are scored using provided templates,
users submit templates simultaneously on the
EcoRAMS web app at EcoRAMS.net and results
are automatically generated.

Submit templates
and generate results

27\

Score attributes with templates
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3 3 3 Fig. 3. Risk classification of 100 simulated species by
A & B C Vulnerability scores in which stressors were treated neutrally.
8 The horizontal axis (@) measures Productivity, Sensitivity,
L ¢ : P " Effect, Severity, Impact, etc., while the vertical axis () mea-
o°® 4 . @ H sures Susceptibility, Exposure, Likelihood, Probability, etc.
B 2 R ° 9.9 2 ; °s ; 2 g e Low-risk species are in blue, medium-risk in yellow, high-risk
e . .: ° e ° 99, &2eC W ’ . in red. The size of a dot corresponds to the number of species
(R J sal » e sharing overlapping positions in the plot. (A) A single stressor
oeo ® & - () was used in the analysis. (B) Two stressors were used in
’ ° ® the analysis; the second (f,) was treated neutrally with the
1]_ 2 3 1]_ 2 3 1]|_ 2 3| first shown in panel A. (C) Three stressors (f1, f5, f3) treated
neutrally were used in an analysis. (For interpretation of the
(x references to colour in this figure legend, the reader is referred
to the web version of this article.)
3 3 - v~ 3 Fig. 4. Risk classification of 100 simulated species by
A ® B 8%, 8 C 1 F : Vulnerability scores in which stressors compounded. The hor-
P 3 o8 ® ° izontal axis (@) measures Productivity, Sensitivity, Effect,
I " it ° o Severity, Impact, etc., while the vertical axis () measures
o°® 9~ Susceptibility, Exposure, Likelihood, Probability, etc. Low-risk
B 2 R ; . o :: 2 2 species are in blue, medium-risk in yellow, high-risk in red. The
e o 8@ ° G size of a dot corresponds to the number of species sharing
(R J overlapping positions in the plot. (A) A single stressor (f var-
LAl iable) was used in the analysis. (B) Two stressors were used in
. ® ® the analysis, the second (f,) compounded on the first shown in
11 2 3 l]_ 2 3 11 2 3 panel A. (C) Three stressors (f;, 5, 33) were used in the anal-
a ysis, the second and third compounded on the first. (For
interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
the low- or medium-risk categories; this effect became more pronounced
as the number of stressors increased. Visualized j scores were truncated 3 A 3 B
at 3, resulting in a collection of species at this upper limit when more . g
stressors are included. °® °®
e ¢ " ® °, 8
3.3. Correlated stressors > b s A 2 . N s 83
8 o U ]
o8 o @ ® P e 0o
In some cases, stressors analyzed cannot be assumed to indepen- * . e . T
dently influence species' Vulnerability. Using the same 100 simulated °e =8 =
species previously analyzed, we visualized the effects on risk categori- ¢ ¢
zation thresholds of positive and negative correlation between stressors p= 0'5_ 1 p= '0'5_
in a two-stressor analysis (Fig. 5). Positive correlations widen the B | 2 3 1 2 3
medium-risk thresholds, while negative correlations narrow them. For 3 & B | "® T ™ 'D—'T;'?_'i
these simulated species, fewer are categorized as medium-risk when o? L] ‘ o8 -
stressors are negatively correlated, which is expected when S scores 5? 'S | @
were derived independently (no correlation) in the simulation. Simu- o8 e °® ecece
lating dependent stressors would recapitulate equal partitioning of 2 : 2 -
species across risk categories observed in Figs. 3 and 4. i -
®
3.4. Baja California case study
Figs. 3, 4, and 5 represent uniform attribute scoring for all stressors; 1'|. 5 p= 0'53 1'|. 5 p= '0'53

however, for empirical multiple stressor analyses not all stressors
equivalently impact the group of species analyzed. Across the 81 species,
set gillnets was the stressor of highest impact measured by mean Sus-
ceptibility score. Despite the majority of species being classified in the
low-risk category if each stressor is assessed individually (Fig. 6 A-E), the
cumulative impacts of each of the five stressors produced a higher
Susceptibility score, and therefore, a higher Vulnerability score when
compounded (Fig. 6 F). Compared with the single stressor of highest
impact (set gillnets), accounting for multiple stressors resulted in 46%
higher net risk overall (37/81 species shifted to higher risk categories).
Of the 81 species assessed, the Vulnerability breakdown was 14% low,
17% medium, 69% high for multiple stressors compared to 49% low,
10% medium, 41% high for set gillnets.

Fig. 5. Risk classification of 100 simulated species by Vulnerability scores in
which the two stressors analyzed are correlated. The horizontal axis (a) mea-
sures Productivity, Sensitivity, Effect, Severity, Impact, etc., while the vertical
axis (f) measures Susceptibility, Exposure, Likelihood, Probability, etc. Low-
risk species are in blue, medium-risk in yellow, high-risk in red. The size of a
dot corresponds to the number of species sharing overlapping positions in the
plot. (A) Two neutral stressors (f variables) were positively correlated. (B) Two
neutral stressors were negatively correlated. (C) A second, positively correlated
stressor compounds on the first. (D) A second, negatively correlated stressor
compounds on the first. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Risk classification of 81 marine species in Baja Cali-
fornia, Mexico analyzed by Micheli et al. Low-risk species are
in blue, medium-risk in yellow, high-risk in red. The size of a
dot corresponds to the number of species sharing overlapping
positions in the plot. @ = Productivity and p = Susceptibility.
(A) Analysis of stressor of highest impact, set gillnets, followed
by analyses of four other fishing stressors in descending order
of impact: (B) drift gillnets, (C) lobster traps, (D) fish traps, (E)
dive fishing. (F) These stressors are analyzed together in the
EcoRAMS framework assuming stressors compound, revealing
higher Vulnerability scores due to increased Susceptibility
than for any stressor alone. (For interpretation of the refer-
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4. Discussion
4.1. The future of ecological risk assessment

The evolution of ecological risk assessments has occurred in inde-
pendent scientific fields, such as toxicology and fisheries research. An
increasing focus on ecosystem-level analysis, rather than species-specific
impacts, highlights the importance of the interactions between species
and the effects of multiple stressors (Hines and Landis, 2014; Van den
Brink et al., 2016b). The inclusion of multiple stressors at the problem
formulation stage promises to protect the values of stakeholders and
ecosystems through integrated research design. Building conceptual
models of cause and effect to improve the selection of relevant risk at-
tributes is a crucial step in ecological risk assessments (Jackson et al.,
2016), and although data-rich analyses have incorporated probabilistic
interpretations of risk for decades, data-poor analyses have done so only
recently (Grewelle et al., 2021; Ofungwu, 2014). Probabilistic ap-
proaches are far more accurate in that they provide a quantitative
description of risk that can be used to rank vulnerable species for con-
servation priority. These rankings can be used to inform practitioners,
stakeholders, and the public of routes to protection of species threatened
by one or more stressors. Movement toward ecosystem-wide assess-
ments requires evaluating ecosystem function (McMahon et al., 2012),
not only species preservation. Management priorities informed by the
role of species and their interactions within ecosystems will lead to more
resilient communities. Ultimately, modern approaches to ecological risk
assessment, such as EcoRAMS, will lead to more capable adaptive
management strategies that are crucial in rapidly changing environ-
ments (Walters, 1986).

4.2. The role of ECoORAMS for evaluating multiple stressors

Although these analyses highlighted the application of ECORAMS to
multiple sources of fishing pressure, ECORAMS is fully flexible to analyze
any system for which multiple independent sources of stress introduce
risk to subjects of the analysis. For example, the PSA has been used to
evaluate terrestrial ecosystems, subsequent to its use for data-poor
fisheries. Similar risk-based frameworks that use Exposure and Sensi-
tivity (or Effect) or Severity and Likelihood as variables have been
applied to marine and terrestrial systems and have also been extensively
developed for data-rich ecological risk assessments (N. R. Council, 2009;

Samhouri et al., 2019). These applications extend beyond ecology and
include analysis of risk in business (Koller, 2005), human health (Rav-
indra and Mor, 2019; World Health Organization, 2020), engineering
(Zio, 2018), and others. We provided a cohesive statistical framework,
associated software, and web application to easily and robustly analyze
risk in any data-poor context for one or more stressors. ECORAMS re-
quires no prior statistical or programming knowledge, as full function-
ality of this software is deployed as a web app that only requires users to
fill template CSV files with their data. We view wide and reliable access
to robust statistical methods as imperative to the progress of ecosystem-
based management and risk analysis. Because 90 + % of marine species
are considered data-poor (FAO, 2020; Mora et al., 2011), ECORAMS has
the opportunity to be widely adopted to improve analyses marine sci-
ences, and we anticipate ECORAMS to have similar value to other
ecological risk assessments of terrestrial and freshwater systems when
data is sparse. The best use of ECORAMS is with input from scientists,
managers, practitioners, and stakeholders to allocate time and resources
to species for which conservation provides mutual benefits to the
ecosystem and the people within it (Finkbeiner et al., 2017; Oestreich
et al., 2019).

4.3. Considerations

EcoRAMS is a highly flexible tool that may be leveraged in different
ways to fit the needs of diverse analyses. Attributes and scoring practices
often differ between PSA studies, and the ECORAMS framework provides
opportunities for further diversification as multiple stressors are incor-
porated. In each study where EcoRAMS is applied, it is crucial to care-
fully consider the assumptions made and provide justifications for
choices such as scoring models, chosen attributes, chosen stressors,
weighting schemes, and the interactions stressors have with each other.
External data regarding correlations between stressors, for example, can
provide a more ecologically relevant analysis. Prior studies have focused
on the cumulative impacts of multiple stressors, assuming that more
stressors equals proportionately greater risk to affected species and
habitats (Halpern et al., 2009). However, when stressors interact with
one another, these assumptions break down. Accounting for these
complexities as well as providing a cohesive statistical framework multi-
stress risk analyses were key goals for the design of EcoRAMS. Even
when a stressor is treated neutrally (i.e. incorporating it into the analysis
does not inherently imply increase or decreased risk), information about



R.E. Grewelle et al.

the impacts of the stressor on species improves resolution of Vulnera-
bility scores by reducing standard errors of measurements along the g
axis. Greater confidence of relative risk between species in the analysis is
useful for initiating prioritization of actions to reduce risk.

Statistical (probabilistic) methods have been deployed for ecological
risk assessments where data is available (Ofungwu, 2014). EcoRAMS
makes multi-stressor, multi-species risk assessment broadly accessible,
without requiring advanced statistical skills and in data poor contexts.
Even in data-rich contexts, the use of statistical risk assessments is not
universally accepted practice. Challenges like increased complexity,
greater data needs, and difficulty in communicating results to stake-
holders slow widespread uptake (Hope, 2006). Conventional non-
statistical methods like hazard quotients or guidelines set to fixed
thresholds without regard to uncertainty in data or mechanistic inter-
pretation of the underlying model are often simple and convenient in-
terpretations of risk and are used by decision-makers (Tannenbaum
et al., 2003), but these benefits become less tenable when statistical
practices are highly accessible. Changing convention will take time, and
ecological risk assessments will benefit from the transition to statistical
methods, as they provide more reliable insights into risk management.
Adoption of statistical methods for data-poor ecological risk assessments
may similarly require time, and the key to improving the state of the
field in the shortest time is to make methods accessible. ECORAMS rep-
resents a sophisticated statistical software with easy inputs and easily
understood results for any audience. Engagement with stakeholders and
downstream efforts to prioritize management is crucial for any risk
assessment, and ECORAMS can facilitate these synergies.
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Appendix A. EcoRAMS Instructions

Downloadable templates and instructions for ECORAMS, also found at https://github.com/grewelle/EcoRAMS/blob/main/README.md.

EcoRAMS is software used to perform ecological risk assessments in data-poor contexts. It provides a statistical interpretation of risk for each
species or endpoint analyzed. This metric is probabilistic Vulnerability (Vp). Inputs are attribute scores and weights for two variables: response (e.g.
Productivity, Effect, Sensitivity, Severity) and stressor (e.g. Susceptibility, Exposure, Likelihood). ECoORAMS is designed to incorporate multiple
stressors that when aggregated can have compound impacts on risk or not. Below is a guide to using ECORAMS. After downloading and completing
templates, analysis occurs within a few seconds of upload. If your data is well organized to be input into templates, a full analysis from template
download to results can occur within a few minutes. The instructions are divided into three sections: pre-download of templates, template completion,
and EcoRAMS analysis.

1. Pre-download of templates

e Determine the types of response and stressor variables used in analysis (e.g. Productivity-Susceptibility, Exposure-Effect/Sensitivity, Severity-
Likelihood)

Generate a set of one or more stressor variables that independently contribute to risk

Decide which set of attributes will be used to assess each of the variables. If more than one stressor is included, different attributes may be used for
different types of stressors, though care should be taken to interpret results appropriately given the added complexity of the analysis. Chosen
attributes should be approximately independent from each other. Highly correlated/redundant attributes should not be included in the analysis. If
moderately-highly correlated attributes are used, refer to the supplement of Grewelle et al. 2021, Redefining Risk in Data-Poor Fisheries to estimate
the effective number of attributes used for each variable.

Classify each variable as additive or multiplicative in nature. When an additive model is used for a variable, it is assumed that each attribute
contributes to a fraction of risk proportional to its weight (see following instruction on weighting). Therefore, adding all attribute contributions to
risk gives the full risk associated with the variable. When a multiplicative model is used for a variable, it is assumed that each attribute's
contribution is affected by the contributions of other attributes. Simply, if risk from one or more attributes is absent, overall risk associated with the
variable would be absent as well even when high risk is associated with other attributes. This model is often used when attributes measured operate
in a sequence or are probabilistic (e.g. Likelihood). By default, response variables are additive and stressor variables are multiplicative in the
templates. Different models can be used for each stressor, though care should be taken to interpret results appropriately given the added
complexity of the analysis.

Set criteria for low-, medium-, and high-risk for each variable. This consists of two percentile cut-offs, below the first is low-, above the second is
high-, and between them is medium-risk. These cut-offs can be chosen as any percentile provided they are symmetric (i.e. low and high categories
are of equal range). The template defaults assume equally sized categories.
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e Assign weights to each attribute. Weights can take any numerical value and are only important relative to weights of other attributes for a single
species or endpoint. Weights can differ within an attribute but across species. The template defaults to equal weighting.

Score attributes for all species. Attribute scores should take values between 1 and 3. These values should fall within intended categories based on
the percentile cut-offs assigned above. Defaults correspond to 1 = low-risk, 2 = medium-risk, 3 = high-risk.

2. Template completion

Download one alpha template, one beta csv template, and one correlation template.

Open the alpha template. The top four rows have six sets of values to input.

a) Additive or Multiplicative attributes? Acceptable inputs: Additive, Multiplicative.

b) Low and high percentile cut-offs for attribute scoring. Acceptable inputs: any two fractions that as cut-offs produce a symmetric distribution of
score ranges. Numerators and denominators must include a decimal. Values must remain in fraction form (i.e. do not give the decimal
equivalent of the fraction).

¢) Number of attributes. Acceptable input: a whole number corresponding to the number of attribute columns.

d) Low and high thresholds. Acceptable inputs: The second value must be larger than the first. Numerators and denominators must include a
decimal. Values must remain in fraction form (i.e. do not give the decimal equivalent of the fraction). These thresholds determine the risk
categories following Vulnerability scoring.

e) Scoring in reversed risk order? Acceptable inputs: Y, N. In some cases (e.g. Productivity) the attributes of the alpha variable may be scored such
that high values represent low risk. If scores input in the template were scored in this way, assign Y to this field. If high values correspond to
high-risk, assign N to this field.

f) Axis label. Acceptable inputs: any x-axis label for the resulting plot, preferably the name of the alpha variable.

g) Weight. Acceptable inputs: any numerical value. The weight of each stressor relative to the others determines the contribution of each stressor
to the p score. Higher input values indicate greater weight.

Row 5 must be left empty. Row 6 is the dataset header, and values in these cells can be changed without affecting the analysis.

Columns must be organized accordingly: column 1 is for higher level organization of species and will not be output in results. Column 2 is the list of

species and will be reported in results alongside Vulnerability scores and risk categories. Input your list of species in column 2. No input is required

for column 1 unless it is helpful for your organization. Blank rows can be included in between species or chunks of species for aesthetics without
affecting the analysis provided the blank rows are placed consistently for all templates so that species fall on the same row.

Columns 3+ are for attribute scores and weights. Add or remove columns to rows 6+ to add or subtract attributes. Two empty columns must be

kept between attribute scores and attribute weights. Attribute weight columns must be in the same order, left to right, as the attribute columns. For

example, for 5 attributes, columns 1 and 2 would report group (optional) and species (or endpoint generally). Columns 3-7 would report attribute
scores. Columns 8-9 would be blank. Columns 10-14 would report attribute weights. When an attribute is unscored due to lack of data or

irrelevance for the species, both the attribute score and weight cells should be left blank. Default attribute scores are randomly chosen between 1

and 3. Default weights are equal.

Save the alpha template as alpha_xxx.csv where xxx is any string you choose. The file must be saved in UTF-8 format. Note: Microsoft Office for Mac

incorrectly encodes the UTF-8 format, so upload errors may be a result of incorrect encoding. Use LibreOffice, Google Sheets, or Numbers on a Mac.

Microsoft Office works correctly on a PC for csv encoding.

Open the beta template. Like the alpha template, the top four rows have six sets of values to input. These sets of values can be entered according to

the guidelines for the alpha template above except for (e). Here the entry differs: Compound model? Acceptable inputs: A, N, C. This entry refers to

whether the stressor is statistically standardized by the expected mean (N), the expected minimum (C), or the expected maximum (A). By default,
this value should be N for the first beta template to yield an identical analysis to the rPSA for a single stressor. Subsequent stressors can be treated as
compounding (increasing risk with more stressors — C), neutral (N), or antagonistic (A) by completing additional beta templates for each stressor.

The same rules apply for column and row formatting and data entry for both beta and alpha templates. It is recommended to rank stressors in order

of impact, with the highest impact stressor entered in the first beta template, and the lowest impact stressor entered in the last beta template. All

values can differ between stressors except for (d) low and high thresholds. These thresholds will be the same across all templates, including the
alpha template, as the thresholds are applied to Vulnerability scores at the end of the analysis. The software is setup to take the threshold values
from the alpha template, so modifying the thresholds in the beta templates will not change results.

Save each beta template as betal xxx.csv, beta2 xxx.csv, beta3_xxx.csv, etc. in the same folder as you saved the completed alpha template.

Ordering of these completed templates matters in the upload stage, as all files are selected simultaneously. Therefore, in the folder, files must

appear in the following order: alpha_xxx.csv, betal_xxx.csv, beta2_xxx.csv, beta3_xxx.csv, etc.

Open the correlation matrix template. Starting in cell A1, input a symmetric matrix describing the expected correlations between stressor variables.

Acceptable values in each cell are numbers between —1 and 1. By default, the identity matrix for three variables is given. Save the matrix template

as corrMatrix.csv so that this file appears after the alpha and beta templates in the same folder.

3. EcoRAMS analysis

Navigate to the main page of EcoRAMS.net.

Click on the’Choose Files' button after which a file browser window will appear. Navigate to the folder hosting your completed templates. The
order the files appear is the order they will be uploaded and should be in the order described above. Use ctrl (or cmd) + select or shift select to select
all files to be analyzed.

o After opening these files, the homepage will read the number of files selected. Click’Submit’ to analyze your data.
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o After a few seconds, a display page will appear with results. Results will appear in order of the stressors uploaded with stressor 1 corresponding to
betal_xxx.csv. These are single stressor results for each stressor standardized by the expected mean. Each plot will precede a list of all species and
their associated a, 5, probabilistic Vulnerability scores between 0 (lowest) and 1 (highest), and their associated risk category determined by the
thresholds set. The final result is the multiple stressor result.

o All figures can be downloaded by saving the image with a right click, and the data tables can be copied and pasted directly into any format like a csv
file.

Appendix B. EcoORAMS home page

Home Use Creators  Contact

Data-Poor Ecological Risk Assessment of

Multiple Stressors

Please upload completed CSV.templates

 choose Fies EEEREEE

Appendix C. Empirical case study tables of results

Scores in the following tables are truncated to a single decimal place.

Appendix C.1
Set gillnets.

Species Productivity Susceptibility Vulnerability (Vp) Risk Category
Cynoscion parvipinnis 1.7 3.0 0.82 high
Gymnothorax mordax 2.1 2.3 0.86 high
Mycteroperca jordani 2.3 2.3 0.92 high
Paralichthys californicus 2.1 2.3 0.86 high
Sarda chiliensis var. chiliensis 1.9 2.3 0.67 high
Sphyraena argentea 1.9 2.3 0.67 high
Stereolepis gigas 2.4 2.3 0.96 high
Synodus lucioceps 1.4 1.9 0.11 low
Torpedo californica 2.6 2.3 0.98 high
Pteroplatytrygon violacea 2.4 1.6 0.75 high
Squalus acanthias 2.9 1.6 0.95 high
Kathetostoma averruncus 1.4 1.9 0.11 low
Squatina californica 2.7 2.3 0.99 high
Sphyrna lewini 2.9 1.6 0.95 high
Seriola lalandi 2.0 1.6 0.38 medium
Porichthys notatus 1.7 1.9 0.29 low
Pristigenys serrula 1.3 1.9 0.06 low
Antennarius avalonis 1.3 1.9 0.06 low
Phalacrocorax pelagicus 2.3 1.6 0.64 medium
Phoca vitulina 2.7 1.6 0.91 high
Tursiops truncatus 3.0 1.6 0.98 high
Zalophus californianus 2.7 2.3 0.99 high
Gymnura marmorata 2.6 2.3 0.98 high
Caulolatilus princeps 1.9 2.3 0.67 high
Heterostichus rostratus 1.7 1.9 0.29 low
Paralabrax clathratus 1.7 1.9 0.29 low
Cephaloscyllium ventriosum 2.6 2.3 0.98 high
Raja rhina 2.7 2.3 0.99 high
Scorpaena guttata 1.9 1.9 0.41 medium
Rhacochilus vacca 2.1 1.9 0.67 high
Triakis semifasciata 2.9 2.3 1.0 high
Scorpaenichthys marmoratus 1.7 1.9 0.29 low
Semicossyphus pulcher 2.1 1.9 0.67 high
Cheilotrema saturnum 1.7 1.9 0.29 low
Microlepidotus inornatus 1.6 2.3 0.42 medium
Rhinobatos productus 2.7 2.3 0.99 high
Zapteryx exasperata 2.3 2.3 0.92 high
Anisotremus davidsoni 1.6 1.9 0.19 low
Paralabrax nebulifer 1.7 1.9 0.29 low
Calamus brachysomus 1.6 2.3 0.42 medium

(continued on next page)
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Appendix C.1 (continued)

Species Productivity Susceptibility Vulnerability (Vp) Risk Category
Sebastes paucispinis 2.1 2.3 0.86 high
Anisotremus interruptus 1.4 1.9 0.11 low
Brachyistius frenatus 1.7 1.4 0.08 low
Platyrhinoidis triseriata 2.3 2.3 0.92 high
Rhacochilus toxotes 2.0 1.9 0.54 medium
Balistes polylepis 1.6 1.9 0.19 low
Hypsurus caryi 1.9 1.9 0.41 medium
Halichoeres semicinctus 1.3 1.9 0.06 low
Embiotoca jacksoni 1.4 1.4 0.02 low
Atractoscion nobilis 1.9 2.3 0.67 high
Heterodontus francisci 2.3 2.3 0.92 high
Urolophus halleri 2.0 1.4 0.23 low
Hypsypops rubicundus 1.6 1.9 0.19 low
Myliobatis californica 2.4 2.3 0.96 high
Oxyjulis californica 1.1 1.4 0.0 low
Scomber japonicus 1.3 1.6 0.03 low
Sphoeroides annulatus 1.4 1.9 0.11 low
Callinectes bellicosus 1.1 1.0 0.0 low
Cancer anthonyi 1.6 1.6 0.08 low
Eugorgia ampla 2.0 2.3 0.78 high
Eugorgia daniana 2.0 2.3 0.78 high
Leptogorgia diffusa 2.0 2.3 0.78 high
Muricea californica 2.0 2.3 0.78 high
Octopus rubescens 1.4 1.9 0.11 low
Pacifigorgia 2.0 1.6 0.38 medium
Panulirus interruptus 1.9 1.4 0.14 low
Chromis punctipinnis 1.3 1.4 0.01 low
Medialuna californiensis 1.4 1.9 0.11 low
Parastichopus parvimensis 1.3 1.1 0.0 low
Sardinops sagax 1.4 1.2 0.0 low
Girella nigricans 1.3 2.3 0.19 low
Eucidaris thourasii 1.1 1.2 0.0 low
Haliotis corrugata 1.3 1.0 0.0 low
Haliotis fulgens 1.4 1.0 0.0 low
Kyphosus analogus 1.3 1.9 0.06 low
Megastraea undosa 1.1 1.1 0.0 low
Megathura crenulata 1.1 1.1 0.0 low
Strongylocentrotus franciscanus 1.3 1.0 0.0 low
Strongylocentrotus purpuratus 1.4 1.0 0.0 low
Eisenia arborea 1.6 1.9 0.19 low
Gelidium robustum 1.4 1.4 0.02 low

Appendix C.2
Drift gillnets.

Species Productivity Susceptibility Vulnerability (Vp) Risk Category
Cynoscion parvipinnis 1.7 3.0 0.82 high
Gymnothorax mordax 2.1 1.4 0.34 medium
Mycteroperca jordani 2.3 1.4 0.46 medium
Paralichthys californicus 2.1 1.3 0.22 low
Sarda chiliensis var. chiliensis 1.9 2.3 0.67 high
Sphyraena argentea 1.9 2.3 0.67 high
Stereolepis gigas 2.4 2.3 0.96 high
Synodus lucioceps 1.4 1.3 0.01 low
Torpedo californica 2.6 2.3 0.98 high
Pteroplatytrygon violacea 2.4 1.6 0.75 high
Squalus acanthias 2.9 1.6 0.95 high
Kathetostoma averruncus 1.4 1.3 0.01 low
Squatina californica 2.7 2.3 0.99 high
Sphyrna lewini 2.9 1.6 0.95 high
Seriola lalandi 2.0 1.6 0.38 medium
Porichthys notatus 1.7 1.3 0.04 low
Pristigenys serrula 1.3 1.3 0.0 low
Antennarius avalonis 1.3 1.3 0.0 low
Phalacrocorax pelagicus 2.3 1.6 0.64 medium
Phoca vitulina 2.7 1.6 0.91 high
Tursiops truncatus 3.0 1.6 0.98 high
Zalophus californianus 2.7 2.3 0.99 high
Gymnura marmorata 2.6 1.4 0.71 high
Caulolatilus princeps 1.9 1.4 0.14 low
Heterostichus rostratus 1.7 1.3 0.04 low
Paralabrax clathratus 1.7 1.3 0.04 low

(continued on next page)
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Appendix C.2 (continued)

Species Productivity Susceptibility Vulnerability (Vp) Risk Category
Cephaloscyllium ventriosum 2.6 1.4 0.71 high
Raja rhina 2.7 1.4 0.81 high
Scorpaena guttata 1.9 1.3 0.08 low
Rhacochilus vacca 2.1 1.3 0.22 low
Triakis semifasciata 2.9 1.4 0.89 high
Scorpaenichthys marmoratus 1.7 1.3 0.04 low
Semicossyphus pulcher 2.1 1.3 0.22 low
Cheilotrema saturnum 1.7 1.3 0.04 low
Microlepidotus inornatus 1.6 1.4 0.04 low
Rhinobatos productus 2.7 1.4 0.81 high
Zapteryx exasperata 2.3 1.4 0.46 medium
Anisotremus davidsoni 1.6 1.3 0.02 low
Paralabrax nebulifer 1.7 1.3 0.04 low
Calamus brachysomus 1.6 1.4 0.04 low
Sebastes paucispinis 2.1 1.4 0.34 medium
Anisotremus interruptus 1.4 1.3 0.01 low
Brachyistius frenatus 1.7 1.1 0.02 low
Platyrhinoidis triseriata 2.3 1.4 0.46 medium
Rhacochilus toxotes 2.0 1.3 0.14 low
Balistes polylepis 1.6 1.3 0.02 low
Hypsurus caryi 1.9 1.3 0.08 low
Halichoeres semicinctus 1.3 1.3 0.0 low
Embiotoca jacksoni 1.4 1.1 0.0 low
Atractoscion nobilis 1.9 2.3 0.67 high
Heterodontus francisci 2.3 1.4 0.46 medium
Urolophus halleri 2.0 1.1 0.07 low
Hypsypops rubicundus 1.6 1.3 0.02 low
Myliobatis californica 2.4 1.4 0.59 medium
Oxyjulis californica 1.1 1.1 0.0 low
Scomber japonicus 1.3 1.4 0.01 low
Sphoeroides annulatus 1.4 1.3 0.01 low
Callinectes bellicosus 1.1 1.0 0.0 low
Cancer anthonyi 1.6 1.1 0.0 low
Eugorgia ampla 2.0 1.1 0.07 low
Eugorgia daniana 2.0 1.1 0.07 low
Leptogorgia diffusa 2.0 1.1 0.07 low
Muricea californica 2.0 1.1 0.07 low
Octopus rubescens 1.4 1.1 0.0 low
Pacifigorgia 2.0 1.0 0.04 low
Panulirus interruptus 1.9 1.1 0.04 low
Chromis punctipinnis 1.3 1.1 0.0 low
Medialuna californiensis 1.4 1.3 0.01 low
Parastichopus parvimensis 1.3 1.0 0.0 low
Sardinops sagax 1.4 1.2 0.0 low
Girella nigricans 1.3 1.4 0.01 low
Eucidaris thourasii 1.1 1.1 0.0 low
Haliotis corrugata 1.3 1.0 0.0 low
Haliotis fulgens 1.4 1.0 0.0 low
Kyphosus analogus 1.3 1.3 0.0 low
Megastraea undosa 1.1 1.0 0.0 low
Megathura crenulata 1.1 1.0 0.0 low
Strongylocentrotus franciscanus 1.3 1.0 0.0 low
Strongylocentrotus purpuratus 1.4 1.0 0.0 low
Eisenia arborea 1.6 1.1 0.01 low
Gelidium robustum 1.4 1.1 0.0 low
Appendix C.3
Lobster traps.

Species Productivity Susceptibility Vulnerability (Vp) Risk Category
Cynoscion parvipinnis 1.7 1.2 0.03 low
Gymnothorax mordax 2.1 1.4 0.34 medium
Moycteroperca jordani 2.3 1.4 0.46 medium
Paralichthys californicus 2.1 1.4 0.34 medium
Sarda chiliensis var. chiliensis 1.9 1.1 0.04 low
Sphyraena argentea 1.9 1.1 0.04 low
Stereolepis gigas 2.4 1.4 0.59 medium
Synodus lucioceps 1.4 1.4 0.02 low
Torpedo californica 2.6 1.1 0.43 medium
Pteroplatytrygon violacea 2.4 1.0 0.23 low
Squalus acanthias 2.9 1.0 0.6 medium
Kathetostoma averruncus 1.4 1.9 0.11 low

(continued on next page)
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Appendix C.3 (continued)

Species Productivity Susceptibility Vulnerability (Vp) Risk Category
Squatina californica 2.7 1.1 0.56 medium
Sphyrna lewini 2.9 1.0 0.6 medium
Seriola lalandi 2.0 1.0 0.04 low
Porichthys notatus 1.7 1.4 0.08 low
Pristigenys serrula 1.3 1.4 0.01 low
Antennarius avalonis 1.3 2.3 0.19 low
Phalacrocorax pelagicus 2.3 1.2 0.26 low
Phoca vitulina 2.7 1.0 0.45 medium
Tursiops truncatus 3.0 1.0 0.67 medium
Zalophus californianus 2.7 1.1 0.51 medium
Gymnura marmorata 2.6 1.4 0.71 high
Caulolatilus princeps 1.9 1.4 0.14 low
Heterostichus rostratus 1.7 1.4 0.08 low
Paralabrax clathratus 1.7 2.3 0.55 medium
Cephaloscyllium ventriosum 2.6 1.4 0.71 high
Raja rhina 2.7 1.4 0.81 high
Scorpaena guttata 1.9 1.4 0.14 low
Rhacochilus vacca 2.1 1.4 0.34 medium
Triakis semifasciata 2.9 1.4 0.89 high
Scorpaenichthys marmoratus 1.7 1.4 0.08 low
Semicossyphus pulcher 2.1 2.3 0.86 high
Cheilotrema saturnum 1.7 1.4 0.08 low
Microlepidotus inornatus 1.6 1.6 0.1 low
Rhinobatos productus 2.7 1.4 0.81 high
Zapteryx exasperata 2.3 1.4 0.46 medium
Anisotremus davidsoni 1.6 2.3 0.42 medium
Paralabrax nebulifer 1.7 2.3 0.55 medium
Calamus brachysomus 1.6 1.4 0.04 low
Sebastes paucispinis 2.1 1.4 0.34 medium
Anisotremus interruptus 1.4 1.4 0.02 low
Brachyistius frenatus 1.7 2.3 0.55 medium
Platyrhinoidis triseriata 2.3 1.4 0.46 medium
Rhacochilus toxotes 2.0 1.4 0.23 low
Balistes polylepis 1.6 1.4 0.04 low
Hypsurus caryi 1.9 2.3 0.67 high
Halichoeres semicinctus 1.3 1.4 0.01 low
Embiotoca jacksoni 1.4 2.3 0.3 low
Atractoscion nobilis 1.9 1.1 0.04 low
Heterodontus francisci 2.3 1.4 0.46 medium
Urolophus halleri 2.0 2.3 0.78 high
Hypsypops rubicundus 1.6 1.4 0.04 low
Myliobatis californica 2.4 1.4 0.59 medium
Oxyjulis californica 1.1 2.3 0.12 low
Scomber japonicus 1.3 1.0 0.0 low
Sphoeroides annulatus 1.4 2.3 0.3 low
Callinectes bellicosus 1.1 1.2 0.0 low
Cancer anthonyi 1.6 1.4 0.04 low
Eugorgia ampla 2.0 1.4 0.23 low
Eugorgia daniana 2.0 1.4 0.23 low
Leptogorgia diffusa 2.0 1.4 0.23 low
Muricea californica 2.0 1.4 0.23 low
Octopus rubescens 1.4 2.3 0.3 low
Pacifigorgia 2.0 1.2 0.1 low
Panulirus interruptus 1.9 1.6 0.22 low
Chromis punctipinnis 1.3 2.1 0.12 low
Medialuna californiensis 1.4 2.3 0.3 low
Parastichopus parvimensis 1.3 1.1 0.0 low
Sardinops sagax 1.4 1.2 0.0 low
Girella nigricans 1.3 1.4 0.01 low
Eucidaris thourasii 1.1 1.1 0.0 low
Haliotis corrugata 1.3 1.0 0.0 low
Haliotis fulgens 1.4 1.0 0.0 low
Kyphosus analogus 1.3 1.4 0.01 low
Megastraea undosa 1.1 1.1 0.0 low
Megathura crenulata 1.1 1.0 0.0 low
Strongylocentrotus franciscanus 1.3 1.0 0.0 low
Strongylocentrotus purpuratus 1.4 1.0 0.0 low
Eisenia arborea 1.6 1.4 0.04 low
Gelidium robustum 1.4 1.4 0.02 low
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Appendix C.4

Fish traps.
Species Productivity Susceptibility Vulnerability (Vp) Risk category
Cynoscion parvipinnis 1.7 1.1 0.02 low
Gymnothorax mordax 2.1 1.3 0.22 low
Mycteroperca jordani 2.3 1.3 0.33 low
Paralichthys californicus 2.1 1.3 0.22 low
Sarda chiliensis var. chiliensis 1.9 1.1 0.03 low
Sphyraena argentea 1.9 1.1 0.03 low
Stereolepis gigas 2.4 1.3 0.46 medium
Synodus lucioceps 1.4 1.3 0.01 low
Torpedo californica 2.6 1.1 0.38 medium
Pteroplatytrygon violacea 2.4 1.0 0.22 low
Squalus acanthias 2.9 1.0 0.58 medium
Kathetostoma averruncus 1.4 1.2 0.0 low
Squatina californica 2.7 1.1 0.51 medium
Sphyrna lewini 2.9 1.0 0.58 medium
Seriola lalandi 2.0 1.0 0.04 low
Porichthys notatus 1.7 1.3 0.04 low
Pristigenys serrula 1.3 1.3 0.0 low
Antennarius avalonis 1.3 1.3 0.0 low
Phalacrocorax pelagicus 2.3 1.2 0.26 low
Phoca vitulina 2.7 1.0 0.45 medium
Tursiops truncatus 3.0 1.0 0.67 medium
Zalophus californianus 2.7 1.1 0.51 medium
Gymnura marmorata 2.6 1.3 0.59 medium
Caulolatilus princeps 1.9 1.4 0.14 low
Heterostichus rostratus 1.7 1.3 0.04 low
Paralabrax clathratus 1.7 1.4 0.08 low
Cephaloscyllium ventriosum 2.6 1.3 0.59 medium
Raja rhina 2.7 1.3 0.71 high
Scorpaena guttata 1.9 1.3 0.08 low
Rhacochilus vacca 2.1 1.3 0.22 low
Triakis semifasciata 2.9 1.3 0.81 high
Scorpaenichthys marmoratus 1.7 1.3 0.04 low
Semicossyphus pulcher 21 2.3 0.86 high
Cheilotrema saturnum 1.7 1.3 0.04 low
Microlepidotus inornatus 1.6 1.4 0.04 low
Rhinobatos productus 2.7 1.3 0.71 high
Zapteryx exasperata 2.3 1.3 0.33 low
Anisotremus davidsoni 1.6 1.9 0.19 low
Paralabrax nebulifer 1.7 1.4 0.08 low
Calamus brachysomus 1.6 1.3 0.02 low
Sebastes paucispinis 2.1 1.3 0.22 low
Anisotremus interruptus 1.4 1.3 0.01 low
Brachyistius frenatus 1.7 1.6 0.14 low
Platyrhinoidis triseriata 2.3 1.3 0.33 low
Rhacochilus toxotes 2.0 1.3 0.14 low
Balistes polylepis 1.6 1.3 0.02 low
Hypsurus caryi 1.9 1.3 0.08 low
Halichoeres semicinctus 1.3 1.3 0.0 low
Embiotoca jacksoni 1.4 1.9 0.11 low
Atractoscion nobilis 1.9 1.1 0.03 low
Heterodontus francisci 2.3 1.3 0.33 low
Urolophus halleri 2.0 1.9 0.54 medium
Hypsypops rubicundus 1.6 1.4 0.04 low
Myliobatis californica 2.4 1.3 0.46 medium
Oxyjulis californica 1.1 1.9 0.03 low
Scomber japonicus 1.3 1.0 0.0 low
Sphoeroides annulatus 1.4 1.9 0.11 low
Callinectes bellicosus 1.1 1.2 0.0 low
Cancer anthonyi 1.6 1.1 0.01 low
Eugorgia ampla 2.0 1.4 0.23 low
Eugorgia daniana 2.0 1.4 0.23 low
Leptogorgia diffusa 2.0 1.4 0.23 low
Muricea californica 2.0 1.4 0.23 low
Octopus rubescens 1.4 1.4 0.02 low
Pacifigorgia 2.0 1.2 0.1 low
Panulirus interruptus 1.9 1.1 0.04 low
Chromis punctipinnis 1.3 1.7 0.04 low
Medialuna californiensis 1.4 1.3 0.01 low
Parastichopus parvimensis 1.3 1.1 0.0 low
Sardinops sagax 1.4 1.1 0.0 low
Girella nigricans 1.3 1.3 0.0 low
Eucidaris thourasii 1.1 1.1 0.0 low
Haliotis corrugata 1.3 1.0 0.0 low
Haliotis fulgens 1.4 1.0 0.0 low

(continued on next page)
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Appendix C.4 (continued)

Species Productivity Susceptibility Vulnerability (Vp) Risk category
Kyphosus analogus 1.3 1.3 0.0 low
Megastraea undosa 1.1 1.1 0.0 low
Megathura crenulata 1.1 1.0 0.0 low
Strongylocentrotus franciscanus 1.3 1.0 0.0 low
Strongylocentrotus purpuratus 1.4 1.0 0.0 low
Eisenia arborea 1.6 1.4 0.04 low
Gelidium robustum 1.4 1.4 0.02 low

Appendix C.5
Dive fishing.

Species Productivity Susceptibility Vulnerability (Vp) Risk Category
Cynoscion parvipinnis 1.7 1.0 0.01 low
Gymnothorax mordax 2.1 1.0 0.07 low
Mycteroperca jordani 2.3 1.0 0.13 low
Paralichthys californicus 21 1.0 0.07 low
Sarda chiliensis var. chiliensis 1.9 1.0 0.02 low
Sphyraena argentea 1.9 1.0 0.02 low
Stereolepis gigas 2.4 1.0 0.22 low
Synodus lucioceps 1.4 1.0 0.0 low
Torpedo californica 2.6 1.0 0.32 low
Pteroplatytrygon violacea 2.4 1.0 0.19 low
Squalus acanthias 2.9 1.0 0.54 medium
Kathetostoma averruncus 1.4 1.0 0.0 low
Squatina californica 2.7 1.0 0.45 medium
Sphyrna lewini 2.9 1.0 0.54 medium
Seriola lalandi 2.0 1.0 0.03 low
Porichthys notatus 1.7 1.0 0.01 low
Pristigenys serrula 1.3 1.0 0.0 low
Antennarius avalonis 1.3 1.0 0.0 low
Phalacrocorax pelagicus 2.3 1.0 0.11 low
Phoca vitulina 2.7 1.0 0.41 medium
Tursiops truncatus 3.0 1.0 0.67 medium
Zalophus californianus 2.7 1.0 0.45 medium
Gymnura marmorata 2.6 1.0 0.32 low
Caulolatilus princeps 1.9 1.0 0.02 low
Heterostichus rostratus 1.7 1.0 0.01 low
Paralabrax clathratus 1.7 1.0 0.01 low
Cephaloscyllium ventriosum 2.6 1.0 0.32 low
Raja rhina 2.7 1.0 0.45 medium
Scorpaena guttata 1.9 1.0 0.02 low
Rhacochilus vacca 2.1 1.0 0.07 low
Triakis semifasciata 2.9 1.0 0.58 medium
Scorpaenichthys marmoratus 1.7 1.0 0.01 low
Semicossyphus pulcher 21 1.0 0.07 low
Cheilotrema saturnum 1.7 1.0 0.01 low
Microlepidotus inornatus 1.6 1.0 0.0 low
Rhinobatos productus 2.7 1.0 0.45 medium
Zapteryx exasperata 2.3 1.0 0.13 low
Anisotremus davidsoni 1.6 1.0 0.0 low
Paralabrax nebulifer 1.7 1.0 0.01 low
Calamus brachysomus 1.6 1.0 0.0 low
Sebastes paucispinis 2.1 1.0 0.07 low
Anisotremus interruptus 1.4 1.0 0.0 low
Brachyistius frenatus 1.7 1.0 0.01 low
Platyrhinoidis triseriata 2.3 1.0 0.13 low
Rhacochilus toxotes 2.0 1.0 0.04 low
Balistes polylepis 1.6 1.0 0.0 low
Hypsurus caryi 1.9 1.0 0.02 low
Halichoeres semicinctus 1.3 1.0 0.0 low
Embiotoca jacksoni 1.4 1.0 0.0 low
Atractoscion nobilis 1.9 1.0 0.02 low
Heterodontus francisci 2.3 1.0 0.13 low
Urolophus halleri 2.0 1.0 0.04 low
Hypsypops rubicundus 1.6 1.0 0.0 low
Myliobatis californica 2.4 1.0 0.22 low
Oxyjulis californica 1.1 1.0 0.0 low
Scomber japonicus 1.3 1.0 0.0 low
Sphoeroides annulatus 1.4 1.0 0.0 low
Callinectes bellicosus 1.1 1.0 0.0 low
Cancer anthonyi 1.6 1.0 0.0 low
Eugorgia ampla 2.0 1.0 0.04 low

(continued on next page)
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Appendix C.5 (continued)

Species Productivity Susceptibility Vulnerability (Vp) Risk Category
Eugorgia daniana 2.0 1.0 0.04 low
Leptogorgia diffusa 2.0 1.0 0.04 low
Muricea californica 2.0 1.0 0.04 low
Octopus rubescens 1.4 2.3 0.3 low
Pacifigorgia 2.0 1.0 0.03 low
Panulirus interruptus 1.9 1.0 0.02 low
Chromis punctipinnis 1.3 1.0 0.0 low
Medialuna californiensis 1.4 1.0 0.0 low
Parastichopus parvimensis 1.3 2.3 0.19 low
Sardinops sagax 1.4 1.0 0.0 low
Girella nigricans 1.3 1.0 0.0 low
Eucidaris thourasii 1.1 1.0 0.0 low
Haliotis corrugata 1.3 2.3 0.19 low
Haliotis fulgens 1.4 2.3 0.3 low
Kyphosus analogus 1.3 1.0 0.0 low
Megastraea undosa 1.1 2.3 0.12 low
Megathura crenulata 1.1 2.3 0.12 low
Strongylocentrotus franciscanus 1.3 2.3 0.19 low
Strongylocentrotus purpuratus 1.4 2.3 0.3 low
Eisenia arborea 1.6 1.0 0.0 low
Gelidium robustum 1.4 2.3 0.3 low

Appendix C.6
All stressors.

Species Productivity Susceptibility* Vulnerability (Vp) Risk Category
Cynoscion parvipinnis 1.7 3 0.98 high
Gymnothorax mordax 2.1 2.6 0.98 high
Mycteroperca jordani 2.3 2.6 0.99 high
Paralichthys californicus 2.1 2.5 0.97 high
Sarda chiliensis var. chiliensis 1.9 2.7 0.94 high
Sphyraena argentea 1.9 2.7 0.94 high
Stereolepis gigas 2.4 2.9 1.0 high
Synodus lucioceps 1.4 2.4 0.49 medium
Torpedo californica 2.6 2.7 1.0 high
Pteroplatytrygon violacea 2.4 2.2 0.95 high
Squalus acanthias 2.9 2.2 1.0 high
Kathetostoma averruncus 1.4 2.5 0.59 medium
Squatina californica 2.7 2.7 1.0 high
Sphyrna lewini 2.9 2.2 1.0 high
Seriola lalandi 2.0 2.2 0.75 high
Porichthys notatus 1.7 2.4 0.73 high
Pristigenys serrula 1.3 2.4 0.36 medium
Antennarius avalonis 1.3 2.7 0.63 medium
Phalacrocorax pelagicus 2.3 2.3 0.96 high
Phoca vitulina 2.7 2.2 0.99 high
Tursiops truncatus 3.0 2.2 1.0 high
Zalophus californianus 2.7 2.7 1.0 high
Gymnura marmorata 2.6 2.6 1.0 high
Caulolatilus princeps 1.9 2.6 0.94 high
Heterostichus rostratus 1.7 2.4 0.73 high
Paralabrax clathratus 1.7 2.7 0.93 high
Cephaloscyllium ventriosum 2.6 2.6 1.0 high
Raja rhina 2.7 2.6 1.0 high
Scorpaena guttata 1.9 2.4 0.83 high
Rhacochilus vacca 2.1 2.4 0.95 high
Triakis semifasciata 2.9 2.6 1.0 high
Scorpaenichthys marmoratus 1.7 2.4 0.73 high
Semicossyphus pulcher 2.1 3 1.0 high
Cheilotrema saturnum 1.7 2.4 0.73 high
Microlepidotus inornatus 1.6 2.7 0.87 high
Rhinobatos productus 2.7 2.6 1.0 high
Zapteryx exasperata 2.3 2.6 0.99 high
Anisotremus davidsoni 1.6 2.9 0.93 high
Paralabrax nebulifer 1.7 2.7 0.93 high
Calamus brachysomus 1.6 2.6 0.77 high
Sebastes paucispinis 2.1 2.6 0.98 high
Anisotremus interruptus 1.4 2.4 0.49 medium
Brachyistius frenatus 1.7 2.6 0.85 high
Platyrhinoidis triseriata 2.3 2.6 0.99 high
Rhacochilus toxotes 2.0 2.4 0.9 high
Balistes polylepis 1.6 2.4 0.62 medium

(continued on next page)
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Species Productivity Susceptibility* Vulnerability (Vp) Risk Category
Hypsurus caryi 1.9 2.7 0.95 high
Halichoeres semicinctus 1.3 2.4 0.36 medium
Embiotoca jacksoni 1.4 2.7 0.73 high
Atractoscion nobilis 1.9 2.7 0.94 high
Heterodontus francisci 2.3 2.6 0.99 high
Urolophus halleri 2.0 2.7 0.97 high
Hypsypops rubicundus 1.6 2.4 0.67 high
Myliobatis californica 2.4 2.6 1.0 high
Oxyjulis californica 1.1 2.7 0.49 medium
Scomber japonicus 1.3 2.1 0.12 low
Sphoeroides annulatus 1.4 2.9 0.88 high
Callinectes bellicosus 1.1 1.9 0.01 low
Cancer anthonyi 1.6 21 0.36 medium
Eugorgia ampla 2.0 2.5 0.94 high
Eugorgia daniana 2.0 2.5 0.94 high
Leptogorgia diffusa 2.0 2.5 0.94 high
Muricea californica 2.0 2.5 0.94 high
Octopus rubescens 1.4 3 0.96 high
Pacifigorgia 2.0 21 0.67 high
Panulirus interruptus 1.9 2.2 0.64 medium
Chromis punctipinnis 1.3 2.6 0.52 medium
Medialuna californiensis 1.4 2.7 0.74 high
Parastichopus parvimensis 1.3 2.3 0.22 low
Sardinops sagax 1.4 2.0 0.11 low
Girella nigricans 1.3 2.6 0.54 medium
Eucidaris thourasii 1.1 1.9 0.02 low
Haliotis corrugata 1.3 2.2 0.13 low
Haliotis fulgens 1.4 2.2 0.21 low
Kyphosus analogus 1.3 2.4 0.36 medium
Megastraea undosa 1.1 2.3 0.14 low
Megathura crenulata 1.1 2.2 0.08 low
Strongylocentrotus franciscanus 1.3 2.2 0.13 low
Strongylocentrotus purpuratus 1.4 2.2 0.21 low
Eisenia arborea 1.6 2.4 0.61 medium
Gelidium robustum 1.4 2.7 0.76 high

* Multi-stressor Susceptibility values are used for plot visualization and are not always equivalent to single stressor Susceptibility values, though they are an

order-preserving metric of single stressor Susceptibility values.
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