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Global scale exploration of human faecal 
and sewage resistomes as a function of 
socio-economic status

Suraj Gupta    1, Xiaowei Wu    2, Amy Pruden    3, Liqing Zhang4 & 
Peter Vikesland    3 

Prior studies have shown that socio-economic indicators collectively 
explain most of the variance in sewage resistomes. However, the 
relationship between human faecal and sewage resistomes has not been 
well characterized. We investigated common and discriminating features 
between human faecal and sewage microbiomes and resistomes by 
analysing 451 publicly available metagenomic samples from 69 countries 
(240 human faecal samples from 23 countries and 211 urban sewage samples 
from 60 countries) representing different socio-economic statuses. 
We found that sewage and human faecal resistome compositions were 
distinct, with sewage exhibiting higher relative antibiotic resistance gene 
abundance and total diversity than human faeces. The ANOSIM test revealed 
stronger separation by socio-economic status in sewage samples (R = 0.47) 
compared to faecal samples (R = 0.17). The distinctions between human 
faecal and sewage resistomes revealed in this study are key considerations 
in the advancement of sewage surveillance efforts aimed at informing the 
antibiotic resistance status of human populations.

The continued rise in antibiotic resistance is a global challenge that 
reflects the influence of multiple interconnected drivers1. The World 
Health Organization (WHO) Global Action Plan2 is centred on a One 
Health framework that is correspondingly reflected in National Action 
Plans developed and implemented globally3. These action plans gener-
ally emphasize prudent antibiotic use and stewardship, innovation to 
minimize antibiotic use and some form of surveillance to track changes 
in antibiotic resistance over time and in response to mitigation efforts. It 
is increasingly being recognized that coordinated global environmental 
surveillance is required to support a One Health approach to stem the 
spread of antibiotic resistance4,5.

With growing awareness of the importance of the human gut 
microbiome to health and well being, its role as a reservoir of antibi-
otic resistance is of particular concern6–9. It is challenging, however, to 
collect individual human faecal samples because of ethical concerns, 

legal requirements, the need for informed consent and logistical con-
straints hindering collection of enough samples to support statisti-
cally valid conclusions10. As an alternative, Aarestrup and Woolhouse11 
and others have advocated for sewage-based antibiotic resistance 
surveillance via shotgun metagenomic sequencing. The primary 
purpose of such surveillance is to first profile the antibiotic resist-
ance genes (ARGs) circulating within the human populations that 
contribute to sewage. Wastewater treatment plant influent sewage 
serves as a composite sample that captures and reflects the collec-
tive ARGs and antibiotic-resistant bacteria (ARB) circulating within 
populations served by a given sewershed12. Consistent with this under-
standing, Karkman et al.13 demonstrated that the normalized total 
ARG abundances in anthropogenically affected environments (such 
as sewage, hospital wastewater effluent, river and lake sediments) 
reflect the extent of faecal pollution. Ideally, surveillance systems 
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socio-economics reflects faecal resistomes. The correlation of resist-
ance levels with socio-economic factors such as income, gross domestic 
product (GDP), health, infrastructure and governance40–43 suggests that 
such factors may similarly correlate with human faecal resistomes and 
the extent to which they are reflected in sewage. Therefore, it is impera-
tive to evaluate the relationship between socio-economic factors and 
the faecal resistome and to compare the strength of associations, if 
any, with the sewage resistome.

Faeces and sewage are environmental niches that reflect the 
extreme high end of microbial density and it is not expected that the 
total microbial density will change in these environments over time. 
Hence, it is of importance to examine the relative abundances of bac-
teria and ARGs within faeces and sewage. In this Article, we carried 
out large-scale analysis of globally sourced human faecal and sewage 
metagenomes. We comprehensively compared bacterial resistomes 
and microbiomes to characterize shifts that occur during sewage con-
veyance. To determine the potential effects of social and environmental 
conditions as drivers in the dissemination of antibiotic resistance, 
a systematic comparison of ARG abundance and diversity was per-
formed across and within resistomes grouped based on country-scale 
metrics of socio-economic status (https://data.worldbank.org/ 
indicator). Core resistome and discriminatory resistome analyses 
were performed to identify globally spread ARGs versus those that dif-
ferentiate resistomes. Finally, regression analyses were performed to 
elucidate how broad socio-economic indicators correlate with the total 
relative abundance of ARGs in human faecal and sewage resistomes. 
This study provides important insight needed to inform the develop-
ment of sewage surveillance efforts aimed at informing antibiotic 
resistance status of human populations and at assessing and informing 
potential interventions.

Data included in this study
During the exploration of public repositories, it was observed that a 
majority of published gut metagenome datasets are skewed by large 
cohorts that are available for specific countries or studies. Similarly, 
the sewage dataset obtained from Hendriksen et al. was also limited 
with small sample size N for several countries, but at the time this study 
was done, this was the best dataset available that was collected via a 
uniform sample collection and processing strategy. To address the 
challenge of limited samples, we sought to compare broad-level dif-
ferences in resistance profiles across socio-economic groups. The 
following approach was taken to ensure a sufficient sample size for 
such comparison. First, the countries were clustered into low, middle 
and high socio-economic groups based on socio-economic data using 
K-means clustering. Next, a balanced dataset avoiding over representa-
tion of any specific study or country was created.

In total, 275 human faecal samples from 23 countries and 234 
urban sewage samples from 62 countries were retrieved from public 
repositories (Supplementary Table 1). After annotating all 509 samples 
against the CARD database (v3.0.7), samples with ‘unique ARG counts’ 
(the total number of unique ARGs in a sample) and ‘total ARG counts’ 
(the total number of ARG hits or counts in a sample) in the bottom 
fifth percentile were considered as compromised and not included in 
subsequent analyses. This curation resulted in 240 faecal samples from 
23 countries and 211 sewage samples from 60 countries. By design, the 
samples reflect geographically and socio-economically diverse loca-
tions (Supplementary Fig. 1 and Supplemental Table 2). There was less 
variance in resistome dissimilarities among faecal samples sourced 
from within the same country than among samples obtained from 
different countries (permutation test, P < 0.0001), which suggests that 
the samples were representative of the observed antibiotic resistance 
patterns within a given country. A similar conclusion was reached for 
the sewage dataset37. Lastly, the samples were grouped based on the 
respective country’s socio-economic bin into low, middle and high 
socio-economic status categories. This resulted in 57, 79 and 104 faecal 

need to provide an early warning for outbreaks of antibiotic-resistant 
and other infections while also allowing changes in antibiotic resist-
ance patterns to be tracked with time. Culture-based approaches are 
the focus of traditional clinical and livestock surveillance14,15 and are 
appropriate for precise monitoring of specific targets but can only 
scratch the surface of the broader microbial ecological factors dictat-
ing resistance evolution. On the other hand, shotgun metagenomic 
sequencing has the capacity to broadly capture key trends, includ-
ing the potential emergence of new forms of resistance11,16,17. While 
shotgun metagenomics lacks sensitivity in detecting low-abundance 
species relative to cultivation-based or PCR-based methods, it pro-
vides target breadth18.

Whereas human faeces are a fundamental contributor to the sew-
age microbiome and resistome (that is, the collection of ARGs carried 
by a microbial community19), the harsh physico-chemical conditions 
imposed in sewers (for example, variable dissolved oxygen levels, 
extreme pH and potentially high concentrations of antibiotics and 
antimicrobials) most certainly create conditions conducive to selection 
pressure and horizontal gene transfer20,21. In addition to human excreta, 
untreated sewage receives a vast array of microbiological and chemi-
cal constituents, including antibiotics and antimicrobials20,22. Faecal 
samples are often collected as representative of the human gut, which 
is an anaerobic environment23, whereas sewage is typically conveyed 
in an aerobic, open-channel flow environment, resulting in a distinct 
ecosystem. Sewage conveyance systems also receive other non-human 
microbiome sources and are often plagued by leaks as well as inflow 
and infiltration. Thus, we hypothesized that faecal microbiomes and 
resistomes will shift following passage through the sewage collection 
network. We note three prior published reports assessing the validity 
of a similar hypothesis. Newton et al.24 examined taxonomic compo-
sition in human faecal and sewage samples using 16S rRNA amplicon 
sequencing data and demonstrated that sewage represents the faecal 
microbial community. However, the study made no characterization 
of the respective resistomes and was focused only on the US popula-
tion, hence lacking a global dimension. Pal et al.25 compared resistomes 
from multiple distinct environments (skin, oral, gastrointenstinal, 
wastewater, smog and so on) but did not provide detailed comparison 
of human faecal and sewage resistomes. A study conducted by Su and 
colleagues26 in China’s major cities demonstrated parity in the bacte-
rial taxonomic makeup of both sewage and human gut samples, but 
no analysis was done to compare the resistomes. Hence, an in-depth 
global-scale characterization of faecal and sewage microbiomes and 
resistomes is warranted.

If the human faecal microbiome changes during sewage con-
veyance, it has important implications on the development of 
sewage-based antibiotic resistance surveillance (that is, wastewater 
surveillance). In addition to tracking trends in ARGs excreted by a 
community over time, ideally such a system can also provide the reso-
lution required to identify drivers of changes in antibiotic resistance 
and to assess the efficacy of mitigation strategies4,5,27. Recent research 
has sought to identify pivotal factors shaping both gut6–9 and sewage 
resistomes28–30. It is often assumed that indiscriminate antibiotic use 
is the primary driver of the emergence and maintenance of antibi-
otic resistance within microbial populations31–34. However, striking 
disconnects between antibiotic sales data and antibiotic resistance 
measures have been identified35,36. This finding underscores the impor-
tance of holistically considering other potential drivers of antibiotic 
resistance. Notably, using data collected from WHO and Resistance 
Map, Collignon et al.36 found that socio-economic indicators cor-
relate with the observed levels of Escherichia. coli and Klebsiella spp. 
resistance in clinical isolates. Similarly, Hendriksen et al.37 showed that 
socio-economic indicators collectively explained much of the variance 
in sewage resistomes collected from across the world. The correlation 
of socio-economic factors with the gut taxonomic composition has 
been documented38,39. However, little is known with respect to how 
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samples, and 28, 53 and 130 sewage samples in low, middle and high 
socio-economic bins, respectively.

Resistome composition patterns by 
socio-economic status
A total of 617 different ARGs were detected among the faecal samples 
(with a median of 165 ARGs per sample) and 857 ARGs were detected 
in the sewage samples (with a median of 394 per sample). The relative 
abundance of total ARGs varied across locations, socio-economic sta-
tus categories and sample types (Fig. 1a,b). For the faecal samples, the 
highest ARG abundances were observed in Asian countries, whereas 
the lowest abundances were found in North America and Africa. A simi-
lar trend was observed when faecal samples were grouped based on 
socio-economic status (that is, lower total ARG relative abundances for 
low socio-economic status faecal samples). The trend was somewhat 

opposite for the sewage samples where the lowest ARG abundances 
were observed in samples from Oceania and North America and the 
highest ARG abundances were observed in South America, followed 
by Africa. Similarly, sewage samples from low socio-economic status 
countries generally harboured the highest total ARG relative abun-
dances, whereas high socio-economic status countries harboured 
the lowest levels. Collectively, it was observed that the total relative 
abundance of ARGs in faecal samples was lower than that observed 
in sewage samples.

ARGs conferring resistance to tetracyclines reflected the most 
abundant resistance category across all faecal samples, whereas 
macrolide-lincosamide-streptogramin (MLS) and multidrug (that 
is, genes conferring resistance to two or more drug classes) resist-
ance constituted the highest relative abundance across the sew-
age samples (Fig. 1c). The Mann–Whitney U test and a subsequent 
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Fig. 1 | Resistome composition and ARG abundance across globally 
distributed human faecal and sewage samples. a–e, Distribution of total 
relative abundance of ARGs in human faeces and sewage across continents (a) 
and as a function of socio-economic status (b) in units of fragments per kilobase 
million (FPKM). c, Relative abundance of ARGs grouped by drug class in human 
faeces and sewage as a function of socio-economic status. Relative abundance 

of the most abundant ARGs in human faeces (d) and sewage (e), respectively, 
as classified by socio-economic status. Human faeces data reflect 240 samples 
across 23 countries collected from publicly available data in the National Center 
for Biotechnology Information (NCBI) database. Sewage data represent  
211 samples across 60 countries collected from publicly available data in NCBI.
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Benjamini–Hochberg correction for the false discovery rate (FDR) 
were utilized to analyse the variations in the log transformed relative 
abundance of ARGs, with the significance level set at an adjusted P value 
of 0.05. In the faecal resistome, MLS resistance increased by two- and 
four-fold in samples in the high socio-economics bin as compared 
to samples in the middle and low socio-economic bins, respectively. 
Phenicol resistance was found to be 3.6-fold higher in samples binned 
in high socio-economic groups than in samples in low socio-economic 
bins, but there was no significant difference between samples in high 
and middle socio-economics groups (Supplementary Table 10). In 
sewage resistomes, the abundance of trimethoprim, phenicol and 
sulfonamide ARG classes were approximately five- and three-fold 
higher in samples within low socio-economics groups as compared 
to samples in high and middle socio-economics groups, respectively 
(Supplementary Table 10).

The dominant ARGs in human faecal samples belonged to the 
tetracycline (tetQ, tetW/tet(W/N/W), tetO, tet37, tet32, tet40), MLS 
(macB), multidrug (efrB), lincosamide (llma) and peptide (ugd, bcrA) 
classes (Fig. 1d). In sewage samples, genes conferring resistance to 
aminoglycoside (ANT(3”)-IIa_clust), beta-lactam (OXA-256_clust), MLS 
(msrE, mphE, mel, macB), multidrug (mexK, adeJ, mdtB), quaternary 
ammonium compounds (qacH) and sulfonamide (sul1) were most 
abundant (Fig. 1e). Three dominant ARGs common in both sewage and 
faecal samples were macB (MLS), ugd (Peptide) and tetW/tet(W/N/W) 
(tetracycline).

Taxonomic composition patterns by 
socio-economic status
A total of 676 genera were detected across all samples. The dominant 
genera (Fig. 2) in faecal samples were Bacteroides, Blautia, Roseburia, 
Alistipes, Escherichia, Bifidobacterium, Bacillus, Enterococcus and  
Klebsiella. In sewage samples, the dominant genera were Acinetobac-
ter, Acidovorax, Pseudomonas, Escherichia, Klebsiella, Enterobacter, 
Streptococcus and Bifidobacterium.

When clustered by socio-economic status, Prevotella predomi-
nated in low socio-economic status faecal samples, whereas Bacte-
riodes predominated in high socio-economic status faecal samples. 
This observation is consistent with previous studies44. On comparing 
the sewage samples across socio-economic status classifications, no 
discerning pattern was observed, as no particular genus was more 

prevalent. Many prevalent genera in sewage samples; such as Acido-
vorax, Acinetobacter, Chryseobacterium and Comamonas are primar-
ily representative of environmental bacteria37,45,46. Unsurprising, this 
suggests that sewage, along with containing human faecal bacteria, is 
comprised of other genera that reflect changes occurring in the sew-
age collection system.

Resistome diversity patterns by socio-economic 
status
To compare faecal and sewage resistomes, a similarity/dissimilarity 
analysis was performed via nonmetric multi-dimensional scaling 
(NMDS) ordination derived from Bray–Curtis dissimilarity matrices 
(Fig. 3a). Clear clustering was observed for faecal versus sewage 
samples (ANOSIM R Statistic 0.89, P value < 0.001). With regard to 
dissimilarities in the sewage resistomes, ANOSIM indicated that 
sewage samples were well separated when grouped by either conti-
nent (R = 0.45, P value < 0.001) or socio-economic status (ANOSIM 
R Statistic 0.47, P value < 0.001) (Supplementary Fig. 2a). In con-
trast, the separation for human faecal resistomes (Supplementary 
Fig. 2b) was not as strong as that observed for sewage samples when 
grouped by either continent (ANOSIM R Statistic 0.15, P value < 0.001) 
or socio-economic status (ANOSIM R Statistic 0.17, P value < 0.001). 
This observation suggests that although the differences are signifi-
cant, there is relatively higher within group variation compared 
to between group variation in the case of faecal samples (R = 0.17) 
when compared with sewage samples (R = 0.47) across different 
socio-economic statuses.

Alpha diversity indices such as Simpson diversity index, Chao1 
richness and Pielou’s evenness were estimated to further compare 
resistomes (Fig. 3b and Supplementary Fig. 3). Mann–Whitney U test 
was applied to perform pairwise comparisons of samples grouped 
according to socio-economic status. It was noted that sewage samples 
had higher alpha diversity relative to faecal samples (P value < 0.05). 
Among faecal samples, no significant difference was observed in the 
diversity indices as a function of socio-economic status. Among sewage 
samples, a significant difference in alpha diversity was observed across 
the socio-economic status categories (P value < 0.05), with the low 
category having the highest overall alpha diversity. Higher variability 
in the ANOSIM statistic, which is derived from dissimilarity matrices, 
was noted among faecal samples within each socio-economic status 
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category than among sewage samples, which was consistent with 
sewage more strongly indicating socio-economic status than faeces.

Taxonomic diversity patterns by socio-economic 
status
Microbiome alpha diversity estimated at genus level was compared 
between sample types and across socio-economic status categories 
(Fig. 3c and Supplementary Fig. 4). On the basis of the Mann–Whitney 
U test, a significant difference was observed in the diversity indices 
(that is, Simpson, Chao1 richness, evenness) in faecal samples across 
the three socio-economic status categories. The highest diversity was 
observed in the Low category. For sewage samples, the Simpson diver-
sity index and Chao1 richness median diversity were also highest in 
the low socio-economic status samples, with no significant difference 
between high and middle categories. There were no noted differences 
in richness across the different socio-economic categories.

Relationship between the taxonomy and 
resistome
The association between the taxonomy and resistome was evaluated 
using the Mantel test. A Pearson correlation coefficient was esti-
mated between the Bray–Curtis dissimilarity matrices representing 

the taxonomy and resistomes. A significant correlation (P < 0.001) 
was observed between the ARG and genus-based taxonomy distance 
matrices for both faecal and sewage samples. The strength of the cor-
relation trended stronger for sewage samples (r = 0.67) than for faecal 
samples (r = 0.59).

Core resistome analysis
The core resistome was operationally defined as those ARGs detected 
in ≥80% of the samples pertaining to a given category (Fig. 4). The 
core resistome of the human faecal samples constituted 73 ARGs 
(Supplementary Table 3). In contrast, 253 ARGs composed the core 
sewage resistome (Supplementary Table 3). There were 64 ARGs 
shared between the faecal and sewage core resistomes. Notably, a 
substantial portion of the faecal core resistome was found within the 
core sewage resistome, with the common ARGs reflecting multidrug 
(22), tetracycline (12), peptide (6) and glycopeptide (6) resistance. 
Other core ARGs conferring resistance to specific drug classes of 
interest were one aminocoumarin, one quinolone, one rifamycin, one 
trimethoprim, two beta-lactam, four aminoglycoside and five MLS  
(Supplementary Table 3).

The core resistomes were further compared across socio-economic 
categories. For the faecal resistome, 87, 78 and 108 ARGs were found as 
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core ARGs across high, middle and low categories, respectively, with 
46 ARGs found irrespective of socio-economic status (Fig. 4b). Across 
sewage resistomes, 243, 261 and 295 ARGs comprised the core across 
high, middle and low socio-economic categories, with 226 ARGs in 
common (>75%) (Fig. 4c).

The core resistome analysis was further refined to focus on clini-
cally relevant ARGs. As noted by the bracketed numbers in Fig. 4, none 
of the ARGs in the core faecal resistomes were of clinical relevance. 
In contrast, 19 clinically relevant ARGs were found within the core 
sewage resistome. These 19 ARGs were TEM-126_clust, CARB-5_clust, 
OXA-256_clust, qnrS6_clust, MCR-9.1, SHV-100_clust, OXA-46_clust, 
OXA-347, OXA-164_clust, OXA-280_clust, GES-21_clust, OXA-296, OXA-
31_clust, OXA-37/OXA-20, OXA-226_clust, OXA-209, MCR-5.2/MCR-5.1, 
OXA-5/OXA-129 and OXA-464. Upon comparing clinically relevant ARGs 
found in the sewage core resistomes across socio-economic status, 
16 out of 19 ARGs were found in all three categories. Interestingly,  
TEM-126_clust was consistently found only in the low and high catego-
ries, whereas OXA-296 and MCR-9.1 were only consistently found in high 
and middle categories, respectively.

Discriminatory resistome analysis
Resistomes were characterized using the ExtrARG machine learning- 
based algorithm47 to identify ARGs that discriminated samples accord-
ing to categories of interest. All discriminatory resistome analyses were 
performed on the rarified and normalized resistance count matrix.

The top 50 discriminatory ARGs for each sample type (that is, 
faecal, sewage) were visualized using a heat map (Fig. 5a). Among the 
discriminatory ARGs identified, one beta-lactam (s_mupB), one lincosa-
mide (llma) and two tetracycline (tetQ and tetW/tet(W/N/W)) ARGs were 
abundant in the faecal samples, whereas the remaining discriminatory 
ARGs were abundant in the sewage samples. A substantial proportion 
of the discriminatory ARGs belonged to the multidrug class. Similar 
analyses were performed as a function of the socio-economic catego-
ries (Supplementary Figs. 5–7). It was observed that the peptide (bcrA 
(dominant in faecal samples) and rosB (dominant in sewage samples)) 
ARGs were only discriminatory in high socio-economic status samples 
(Supplementary Fig. 5). Several discriminatory clinically relevant ARGs 
were observed to occur at high abundances in the sewage resistomes. 
For example, beta-lactam (GES-21_clust, OXA-226_clust, OXA-256_clust) 
ARGs were commonly discriminatory across all sample type-based 
analyses (that is, comparing faecal and sewage resistomes within 
each socio-economic group; Supplementary Figs. 5–7). CARB-type 
(CARB-3 and CARB-5) ARGs specifically discriminated low/middle 
socio-economic categories (Supplementary Figs. 6 and 7).

Discriminatory analysis was further performed on faecal and 
sewage samples grouped by socio-economic status (Fig. 5b,c).  

The major pattern observed among faecal samples was distinct cluster-
ing where high socio-economic samples clustered together and several 
middle/low samples clustered together. Further, aminoglycoside 
(cblA-1, cfxA6) and glycopeptide (vanRA, vanRC, vanRI, vanSA) ARGs 
were predominantly found to be associated with high socio-economic 
status, whereas several multidrug (tolC, acrB, baeS, msbA, mdtB, mdtC, 
mdtM) and peptide (yojl, arnA, eptA, rosB) ARGs were predominant 
in middle/low socio-economic status samples. Similar clustering of 
high versus middle/low was observed for the discriminatory analysis 
of the sewage samples. It was observed that many multidrug ARGs 
were predominant in high socio-economic status sewage samples. On 
the other hand, aminoglycoside, beta-lactam, phenicol, tetracycline, 
trimethoprim and sulfonamide ARGs were predominant in most of 
the middle/low category sewage samples. These predominant ARGs 
in middle/low category sewage samples also included three ARGs of 
clinical relevance (CARB-3_clust, OXA-164_clust and OXA-256_clust).

Finally, discriminatory analysis was performed on faecal samples 
grouped based on subject age (in years) into three categories: Group 1 
(0-18), Group 2 (19-44), Group 3 (45 and above) (Supplementary Fig. 8) 
and sex (that is, female versus male) (Supplementary Fig. 9). There 
were no major patterns observed in the discriminatory analysis based 
on age or sex.

Socio-economic variables associated with  
ARG levels
To better identify variables that are likely drivers of the human fae-
cal and sewage resistome patterns identified here, representative 
socio-economic indicators from the preprocessed World Bank data 
were used to construct six broad indices (climate, education, GDP, gov-
ernance, health and infrastructure) (Supplementary Table 8b). Similar 
to Collignon et al.36, these indices were estimated by normalizing (mean 
of 0 and standard deviation of 1) and averaging individual indicators 
that were representative of the broader index. A univariate analysis 
was framed to evaluate the association of these broad socio-economic 
indices with total ARG relative abundance levels in the faecal and sewage 
resistomes. To address cross-sample dependence, a variance compo-
nent model was implemented, where the response variable was the 
total ARG relative abundance in each sample and the independent 
variables were the broad socio-economic indices corresponding to 
the country of sample origin.

For faecal samples, univariate analysis revealed that none of the 
socio-economic indicators individually had a significant impact on the 
total ARG relative abundance (Supplementary Table 8a). For sewage 
samples, governance, health and infrastructure were found to be the 
most significant factors associated with total ARG relative abundance 
(P value < 0.05).
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Discussion
There is growing momentum towards the use of sewage as a key 
environmental surveillance point for antibiotic resistance11,35,37,48 and 
this study addresses critical knowledge gaps towards realizing this 
aim. The extent to which sewage resistomes represent human faecal 
resistomes and which sample type best reflects the socio-economic 

factors thought to associate with the spread of antibiotic resistance, 
have remained open questions. This study sheds light on these issues 
by conducting a systematic assessment of various dimensions of micro-
biomes (for example, total ARG relative abundance, ARG diversity, core 
ARG analysis, discriminatory ARG analysis, taxonomic composition)  
in 451 publicly available metagenomic samples from 69 countries  
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(240 human faecal from 23 countries and 211 urban sewage samples 
from 60 countries) and assessing the association of socio-economic sta-
tus/indicators with faecal and sewage resistomes using statistical analy-
sis. It is imperative to note that the interplay between socio-economics 
and the dissemination of antibiotic resistance is highly complex and 
none of the statistical analyses are mature enough to infer causation. 
Nonetheless, these analyses do offer a path forward towards generating 
hypotheses and understanding various drivers that could contribute to 
the spread of antibiotic resistance. If strategically applied and globally 
coordinated, sewage surveillance could provide an early warning sys-
tem to identify forms of resistance circulating in a community, inform 
optimal prescription practices, identify new resistance determinants 
of concern or assess the efficacy of community-scale interventions4,11,48.

A clear outcome from this study is that sewage resistomes and 
microbiomes are largely distinct from human faecal resistomes and 
microbiomes. Whereas the validity of such a hypothesis has been previ-
ously shown in small-scale studies24–26, this study makes an important 
contribution by using globally sourced metagenomic data to definitely 
demonstrate that they differ. Sewage resistomes clustered separately 
from human faecal resistomes based upon NMDS analysis and also 
exhibited higher relative abundances and higher total ARG diversity 
than human faeces. The dominant ARG classes were distinct in sewage 
(MLS/multidrug) relative to human faeces (tetracycline) and, unexpect-
edly, sewage was notably more highly enriched in clinically relevant 
ARGs. The dominant genera (Bacteroides, Prevotella) in faeces were also 
found to be in very low abundance in sewage samples. This is expected 
as these genera are anaerobes and therefore would not survive well in an 
aerobic sewage environment. This finding suggests that corresponding 
resistome signals could be lost from anaerobes during sewage convey-
ance. On top of the differences in ecological niches, sewage is often a 
composite of faeces from many individuals and other sources such as 
stormwater, hospital wastewater and partially treated industrial waste-
water, which all contribute to the measured differences. Nonetheless, 
it was clear that sewage was highly influenced by human faeces, with 64 
core ARGs and 466 core genera in common (Supplementary Tables 3 
and 9). The genera that were found to be highly abundant in sewage 
were mostly environmental bacteria, thus suggesting that they either 
uniquely inhabit and are released from sewage biofilms and sediments 
or are introduced through inflow and infiltration into compromised 
pipes. The fact that most dimensions of the resistome, including clini-
cally relevant ARGs, gave a stronger signal in the sewage suggests that 
the sewage collection environment may amplify antibiotic resistance 
(for example, through imposing selective pressure or facilitating gene 
exchange in biofilms49).

Remarkably, sewage was found to more strongly reflect socio- 
economic status and clinical resistance indicators than human faeces. 
In particular, in the NMDS analysis, sewage resistomes were more 
sharply separated by continent and socio-economic status. The diver-
sity of the sewage resistomes, but not the human faecal resistomes, 
were differentiated by socio-economic status. To further investigate 
the role of specific socio-economic indicators, univariate analyses were 
performed to correlate broad socio-economic factors with total ARG 
relative abundance in the faecal and sewage resistomes. The analysis 
revealed that none of the socio-economic indicators individually were 
significantly associated with total ARG relative abundance in the faecal 
resistomes. This finding suggests that the influence of socio-economic 
factors is probably more intricate and collective in nature and extends 
beyond simple one-on-one associations. The observation that gov-
ernance, health and infrastructure are associated with the sewage 
resistome was in line with the conclusions made in prior studies by 
Collignon et al.36 and Hendriksen et al.37. It is remarkable that even 
after the differences in our analysis approaches, the same conclusions 
remain. This commonality underscores the potential importance 
of socio-economic drivers in dissemination of antibiotic resistance 
and thus the need to take such factors into account when developing 

intervention strategies (for example, water sanitation and hygiene) 
that target low and middle income countries50,51. Further, the sewage 
core resistome contained a wide array of ARGs classified as clinically 
relevant, whereas no core human faecal resistome ARGs were classified 
as such. These findings were contrary to the expectation that human 
faeces would more closely capture indicators of antibiotic resistance 
at its source (for example, human gut resistomes influenced by anti-
biotic treatment). On the other hand, human faecal sampling is much 
more logistically challenging, whereas also probably requiring much 
larger sample sizes to capture key trends, because of the large degree of 
individual variation. For example, there can be wide person-to-person 
variation in faecal resistomes as a function of multiple factors such 
as diet, lifestyle, past diseases and antibiotic courses49,52, not just 
socio-economic status. This was apparent in the greater degree of 
variance encountered in the human faecal data, whereas the composite 
nature of the sewage samples reduced sample variance. In addition 
to the benefits of ease of sewage sampling relative to human faecal 
sampling pointed out by Aerustrup and Woolhouse11, the findings of 
this study illustrate the statistical benefits of targeting sewage as a 
monitoring point.

Many measures of the sewage resistomes were elevated in coun-
tries of low socio-economic status. Relative abundances of total ARGs 
were highest in Africa and South America and more broadly in sewage 
from low socio-economic status countries. Sewage alpha and beta 
diversity were also highest in low socio-economic status locations. 
Trends revealed in the sewage resistome analysis were largely consist-
ent with those recently reported by Hendriksen et al.37 and Munk et al.53 
at the continent scale, where systemic differences in ARG abundances 
were noted between Africa/Asia/South America samples and Europe/
North America/Oceania samples. These differences become more 
apparent upon categorizing samples according to socio-economic 
status. There were some minor deviations from the specific trends 
noted in Hendriksen et al.37. For example, we observed a difference in 
distribution of total ARG relative abundance at the specific continent 
level (for example, Africa and South America). These differences could 
be related to differences in data processing and annotation parameters 
in the two studies (for example, CARD versus ResFinder54 as the anno-
tation database). CARD contains both intrinsic and mobile resistance 
genes whereas ResFinder is curated to contain only mobile resistance 
genes. Further, the annotation parameters such as minimum length, 
e-value and Bitscore thresholds required to get a reliable hit were also 
different in the two studies and that could lead to some variation in 
the trends noted, even though the big picture conclusions remain the 
same. These comparisons further emphasize the need to standardize 
annotation parameters and pipelines as sewage surveillance expands 
to global scale4,55,56.

Interestingly the trends in the faecal resistome differed some-
what from those observed for sewage. For example, the lowest total 
ARG relative abundance was found in African faecal samples. Low 
socio-economic status faecal samples (primarily samples from Africa) 
exhibited the lowest abundance of total ARGs. The highest total ARG 
relative abundances were found in the middle socio-economic status 
faecal samples, primarily samples from Asia. The low socio-economic 
status samples were largely from rural populations. Considering lim-
ited access to many antibiotics in low-income countries and wide 
polarity in drug regulation, it is possible that the observed lower ARG 
abundances in low socio-economic human faecal resistomes and 
higher ARG abundances in middle and high socio-economic status 
locations reflect such differences in usage57. However, due to the lack 
of credible antibiotic usage data for many countries57, it is challenging 
to correlate the observed resistance levels with the antibiotic usage 
pattern and thus this requires further investigation. Upon compar-
ing the geographic pattern in resistome composition between our 
study and a similar analysis conducted by Fuhrmeister et al.58, con-
gruent trends were observed across most regions except for Africa.  
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Fuhrmeister et al.58 documented the highest total ARG relative abun-
dance in Africa, whereas in our investigation, we observed lowest 
levels in African samples. This discrepancy may stem primarily from 
differences in sampling strategies: Fuhrmeister et al.58 examined a vast 
dataset comprising 1,589 samples, whereas our study focused on a 
subsampled dataset of 240 samples. Notably, the observed imbalance 
in public datasets, featuring larger cohorts from specific countries or 
studies, prompted us to strive for a balanced dataset. Furthermore, the 
normalization and ARG annotation parameters also differed between 
the two studies.

Discriminatory resistome analysis delineated specific dissimi-
larities between faecal and sewage sample types and across samples 
grouped based on socio-economic status and could help to iden-
tify sewage monitoring indicators of specific interest. For example, 
a majority of discriminatory ARGs belonged to the multidrug class 
and were highly abundant in sewage. Clinically relevant ARGs such as 
GES-21_clust, OXA-226_clust, OXA-256_clust were highly abundant in 
all the sewage samples, whereas CARB-3 and CARB-5 were only abun-
dant in middle/low socio-economic status samples. Interestingly, 
the overarching feature of the discriminatory analysis was that high 
socio-economic samples clustered together and several middle/low 
socio-economic status samples clustered together. This clustering 
was observed for both human faecal and sewage samples. This finding 
supports the contention that there could be common drivers of anti-
biotic resistance in low and middle socio-economic status countries.

Whereas the current study provides an in-depth view into the 
human faecal and sewage resistomes, it should be noted that there are 
additional factors and inherent limitations associated with the study 
design and with metagenomic analysis that could impact interpreta-
tion of the results.

First, we note that the socio-economic status analysis performed 
in this study was necessarily aggregated at the country level. It is thus 
reasonably likely that the socio-economic status for each specific 
sample, whether faecal or sewage, could differ from that at the country 
level. Ideally our study design would have entailed comparison of urban 
sewage samples to faecal samples from individuals residing in urban 
environments as a means to isolate the effect of urbanicity, as deline-
ated by Fuhrmeister et al.58. However, scrutinization of the metadata 
for the samples from Hendriksen et al.37 and the original publications 
utilized in this study (Supplementary Table 1), indicated that whereas 
the sewage metagenomes were derived from urban areas, the faecal 
sample cohort encompasses samples collected from individuals resid-
ing in both urban and rural areas. Particularly noteworthy was the fact 
that all faecal samples from low SES countries were collected from 
denizens of rural areas (Supplementary Table 1). The limited availability 
of urban faecal samples from low SES countries thus constrained our 
capacity to segregate urban from rural samples and perform direct 
comparisons. This difference could potentially explain the modest 
association between the relative abundance of antibiotic resistance 
in faecal resistomes as compared to that for sewage resistomes, which 
reflect the collective population contributing to the sewershed sample. 
Nonetheless, our study highlights the significant correlation between 
the total relative abundances of ARGs in faecal and sewage resistomes, 
thus underscoring the relevance of socio-economic factors. These 
observations are crucial from a One Health perspective as they high-
light that there is no one single factor responsible for the shaping of 
resistomes. Our findings emphasize the need to identify the major 
factors that shape specific resistomes. Such an understanding could 
help attain a more holistic understanding that can frame precise inter-
vention strategies to curb the spread of antibiotic resistance.

Second, some of the countries included in both the faecal and 
sewage datasets had a low number of samples available. Whereas com-
paring resistance profiles across socio-economic status groups yielded 
important findings, the limited sample size restricts the generalizabil-
ity of the results. Accordingly, future sampling efforts should focus on 

addressing this gap to strengthen the study’s findings, as suggested by 
Cai et al.59. Because the samples were retrieved from a range of previ-
ously published studies, there are inevitable variations resulting from 
factors such as DNA extraction protocol, sample processing steps, 
sequencing depth and so on. To address such concerns, samples were 
screened to maintain uniformity (for example, only healthy cohorts 
were chosen for faecal samples and only samples sequenced on Illumina 
platforms were used).

Third, multiple databases are available for ARG annotation (for 
example, CARD, Resfinder). In this study, CARD was selected as it is 
well-curated and extensively cited in the antibiotic resistance literature. 
However, no two databases are identical and none are exhaustive in cov-
erage. When homology-based best hit annotation is applied, as it was in 
this study, the choice of stringency in annotation parameters (for exam-
ple, e-value, bitscore, min length of amino acid, % identity) will cor-
respondingly dictate the ratio of false positives and false negatives60. 
Here we selected annotation parameters consistent with previous 
studies55,61, but we recognize that appropriate annotation parameters 
will vary depending on the study question. Further, it is important to 
note that there is a very high sequence similarity amongst many of the 
entries in the CARD database (in some cases more than 97%). To avoid 
this leading to an overestimation in sequence diversity, CARD database 
sequences were clustered at 90% similarity and the annotations were 
performed across the representative sequences. Finally, there are 
various inherent limitations to metagenomics analysis, for example, 
live/dead organisms cannot be directly distinguished, point mutations 
cannot be distinguished from sequencing error/misalignment, and 
there is limited capacity to identify host bacteria carrying ARGs because 
of limitations to short-read assembly. Moreover, metagenomics is not 
ideally suited to obtain quantitative absolute measurements. However, 
the study’s primary objective was to establish qualitative baselines for 
antibiotic resistance determinants in faeces or sewage, which does not 
necessitate precise quantitative measurements.

Overall, the findings of this study support the development of 
sewage surveillance as a robust and sensitive means to identify driv-
ers and trends in antibiotic resistance in local populations. To further 
validate the approach, it would be useful to sample faecal and sewage 
resistomes from the same network and to assess the capacity of various 
metadata, including specific consideration of variables reflective of 
socio-economic status, to predict resistome composition.

Methods
Metagenomic data sources
Metagenomic studies of faecal samples were searched in the previ-
ously published literature and 20 NCBI-SRA Bioprojects were identi-
fied wherein the sequencing data and corresponding metadata were 
publicly available7,37,62–80. The sewage samples, which were collected 
from urban areas connected to a centralized wastewater collection 
system, were obtained from a prior study by Hendriksen et al.37. From 
these, 275 human faecal samples from 23 countries and 234 urban 
sewage samples from 62 countries were retrieved from EMBL EBI 
(https://www.ebi.ac.uk/) and NCBI-SRA (https://www.ncbi.nlm.nih.
gov/sra) public repositories (Supplementary Table 1). Inclusion criteria 
were imposed in the selection of samples to minimize the influence 
of extraneous factors. Only faecal samples from healthy individuals 
and datasets generated on Illumina shotgun sequencing platforms 
were selected. The average number of reads per human faecal sample 
and per sewage sample was 17 (0.5–66.5) and 20 (0.6–94.5) million 
reads, respectively. SRA accession and associated metadata about 
the metagenomes retrieved from the databases is included in Sup-
plementary Table 1.

Socio-economic data collection and processing
Socio-economic data were extracted from five World Bank databases 
(World Development indicators; Health Nutrition and Population 
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statistics; Worldwide Governance; Poverty and Equity; Environmen-
tal Social and Governance data). Supplementary Table 4 reports the 
number of indicators that are documented in the corresponding data-
base. Databases for 2011–2019 were downloaded to coincide with the 
collection dates of the samples from which metagenomic sequence 
data were derived.

The socio-economic data were preprocessed by removing indica-
tors with more than 30% of missingness in the dataset and the remain-
ing missing values were imputed using the missForest R package, 
a random forest-based imputation method consisting of both cat-
egorical and continuous predictors that is computationally efficient 
for high-dimensional data (more details in Supplementary Informa-
tion). After imputation, the dataset was standardized (mean = 0 and 
variance = 1) and transformed using principal component analysis. 
Principal components (PCs) explaining 80% of the variance in the 
data were retained. The PCs were used to cluster the countries using 
K-means clustering. The number of clusters were determined using the 
elbow method (Supplementary Fig. 10a). Additionally, clusters were 
visually inspected for human validation. The obtained socio-economic 
clusters (n = 3) were designated ‘high, middle and low’, as indicated 
in Supplementary Fig. 10b. Each country was labelled according to 
its respective cluster and the samples were grouped in high, middle 
and low socio-economic bins according to the country label (Supple-
mentary Table 2). This grouping information was used in performing 
socio-economics-based analyses.

ARG annotation database
A modified version of the Comprehensive Antibiotic Resistance Data-
base (CARD) v.3.0.7 was applied in the annotation of ARGs, employing 
a similar strategy reported by Lee et al.81. Known global regulators were 
removed and the remaining ARGs were clustered at 90% global identity 
using CD-HIT82. The obtained non-redundant representative ARGs were 
renamed if multiple ARGs belonged to the same cluster to indicate the 
association of other similar ARGs. For example, if a cluster contained 10 
ARGs and ‘GeneA’ was the representative ARG of that cluster. Then, the 
‘GeneA’ was renamed as ‘GeneA_clust’. In case, there are only two genes 
in a cluster (that is, ‘GeneA’ and ‘GeneB’) then the new name was formed 
by concatenating the two genes (that is, ‘GeneA/GeneB’). All analyses 
were performed with the new naming representing non-redundant 
ARGs. The list and classification of ARGs in the modified CARD database 
are provided in Supplementary Table 5-6.

Metagenomic analysis and read annotation
Fastq files obtained from the public databases were processed through 
FastQC83 to assess the quality of the metagenomic samples. Further, 
the samples were processed through Trimmomatic84 to trim the 
low-quality reads and adaptors that could pose problems in down-
stream analysis. Host (human) DNA contamination was removed by 
aligning the reads to human reference genome (hg38) using Bowtie285. 
The quality assessed samples were then merged using VSEARCH86. 
The merged files were annotated against the manually curated CARD 
(3.0.7) database. Due to the varied read lengths (75–150 bp) encoun-
tered in our dataset, we established a uniform filtering criterion appli-
cable across all samples. DIAMOND87 BlastX was used for mapping 
the reads with the set threshold of e-value < 10−10, identity> 80% and 
minimum length of 17 amino acids88–90. The parameters were chosen 
to be less conservative to identify ARGs that might not span the entire 
read. It is acknowledged that this approach will probably increase 
the false-positive rate but served to keep the annotation parameters 
consistent as the collected samples had variable read length distribu-
tion (75–150 bp). In case of paired-end sequencing, the best hit was 
considered among the first and second reads hit. The obtained hits 
were normalized using Fragments Per Kilobase Million. Taxonomy 
was annotated using kraken291. Clinically relevant ARGs were manu-
ally curated using the list in Supplementary Table 7. Clinically relevant 

ARGs were defined as conveying resistance to World Health Organiza-
tion classified ‘Reserve’ antibiotics92,93.

Statistical and diversity analysis
All tests were performed in R version 3.4.1 and Python94. Mann–Whitney 
U test, a non-parametric statistical test, was used to perform pairwise 
comparisons. NMDS plots were generated using the “Vegan” package 
(version 2.5-5) with the Bray–Curtis ordinations95. Analysis of similarity 
(ANOSIM) was used to determine differences in bacterial community 
beta diversity as well as when assessing resistome profiles. Microbial 
communities and resistome profiles were compared using Mantel 
test96. Diversity and richness were calculated on rarified versions of 
the resistance and bacterial count matrices. Count matrices were 
subsampled to the lowest samples’ depth, using the Vegan rarefy func-
tion. The Simpson diversity index (1-D), Pielou’s evenness, and the 
Chao1 richness estimates were calculated using the diversity function 
in the vegan package. The Simpson Diversity Index (1-D) is a measure 
of biodiversity that takes into account the number of species present 
as well as their relative abundance. Pielou’s Evenness is a measure of 
how evenly the individuals in a community are distributed among the 
different species. Chao1 Richness is an estimator of the total number of 
species in a community based on the number of rare species observed.

Within-country representativeness
To assess whether samples from individual sites were representative of 
other sites in that country, we compared the Bray–Curtis dissimilarities 
for pairs of sites within the same country and in different countries for 
resistome compositions. The significance of these differences was 
assessed using permutation tests. The country labels for each sample 
were permuted and the dissimilarities were reassessed for pairs of 
sites within the same country and in different countries with permuted 
labels. This procedure was repeated 106 times to build up a null distri-
bution of the differences in dissimilarity within and among countries. 
It was found that resistome dissimilarities were on average 19% higher 
for pairs of sites in different countries than for pairs of sites within the 
same country (permutation, P < 0.0001). These results demonstrated 
that there was less variance across samples collected within countries 
than samples collected from different countries. Thus, individual sites 
in this study were considered to be generally representative of a given 
country. It should be noted, however, that this does not imply that the 
variability within countries is negligible or even low.

Core resistome & discriminatory resistome analyses
The core resistome is defined as the collection of ARGs that are ubiq-
uitous to a given environment. The core resistome was operationally 
defined as ARGs detected in at least 80% of the samples defined within a 
given category. The discriminatory resistome is the collection of ARGs 
that display differential abundance across different sample categories. 
ARGs that discriminate samples based on a priori selected groups were 
systematically identified using ExtrARG, a machine learning-based 
algorithm47. To reduce the bias that may arise in the discriminatory 
resistome analysis due to uneven sequencing depth among the sam-
ples, the resistance count matrix was first rarified to the lowest total 
ARG count among the included sample, and was then normalized to 
Fragments Per Kilobase Million scale.

Regression model to explore the link between ARG abundance 
and socio-economic factors
For regression analyses, independent variables were constructed by 
selecting representative socio-economic indicators from the pre-
processed World Bank data to construct six broad indices (climate, 
education, GDP, governance, health and infrastructure). These indices 
were estimated by normalizing (mean of 0 and standard deviation of 
1) and averaging individual indicators that were representative of the 
broader index (Supplementary Table 8b).
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The variance component model (that is, random effects model) 
employed assumes that the response variable vector Y, representing 
the total ARG relative abundance in collected samples, follows a mul-
tivariate normal (MVN) distribution conditional on a matrix X, with its 
column representing the broad socio-economic indices,

Y|X ∼ MVN( μμμ,Σ),

where μμμ = Xβ and Σ = σ2e I + σ2a J . Here β is an unknown vector of fixed 
effects, I is the identity matrix, J is a block-diagonal matrix such that 
each diagonal block of 1s corresponds to one country, and the off 
diagonal blocks are 0 matrices. Correspondingly, σ2e  and σ2a  are two 
variance components to be estimated with the former representing 
variance due to random error at the sample level and the latter repre-
senting variance due to random effects at the country level. In the 
inference procedure, these two parameters σ2e  and σ2a are estimated by 
the maximum likelihood method and estimation of the coefficient 
vector β is obtained by the generalized least square estimator

β̂ = (XT ̂Σ
−1
X)−1(XT ̂Σ

−1Y ).

Identification of important indicators is then done by a test on the 
generalized regression t-statistic β̂/SE(β̂), where SE is the standard error.

Data availability
All data sources are available in the main text or the supplementary 
materials.
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