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Understanding how natural communities and ecosystems are structured and re-

spond to anthropogenic pressures in a rapidly changingworld is key to successful

management and conservation. A fundamental but often overlooked biological

characteristic of organisms is sex. Sex-based responses are often considered

when conducting studies at organismal and population levels, but are rarely

investigated in community ecology. Focusing on kelp forests as a model system,

and through a review of other marine and terrestrial ecosystems, we found

evidence of widespread sex-based variation in species interactions. Sex-based

variation in species interactions is expected to affect ecosystem structure and

functioning via multiple trophic and nontrophic pathways. Understanding the

drivers and consequences of sex-based variation in species interactions can in-

form more effective management and restoration.

Biological sex is rarely considered in community ecology

In recent years, community (see Glossary) ecology has undergone a paradigm shift, moving

beyond species as the sole operational unit around which species interactions and food

web dynamics are structured, towards a trait-based lens. By both broadening to the level of

functional groups [1] and narrowing to consider intraspecific variation [2], these approaches

have improved predictions of ecosystem dynamics [3,4], ecological responses to environmental

change [2,5], and ecological resilience [6,7]. However, the role of biological sex as a fundamen-

tal characteristic of living organisms has been overlooked in community ecology [8].

Biological sex affects the physiology, metabolism, and behaviour of organisms across taxa and

ecosystems [9]. Most (90–94%) studies at the organismal, population, and species levels that con-

sidered sex have noted differences in biological responses among sexes through laboratory and

field experiments [8,10,11]. Yet, few empirical studies have evaluated the role of biological sex in

the dynamics and functioning of whole ecological communities [8,12]. Community-wide, sex-

related effects are likely to occur, as sex is known to influence energetic requirements [13], foraging

behaviour [14], body size [15], spatial distribution and population dynamics [16], home ranges [17],

and phenology [18] in a wide range of marine and terrestrial species. Recent theoretical models in

community ecology have highlighted that sex-based differences in consumers can have important

consequences for consumer-resource coexistence, abundance, and dynamics [12,18], and that

these differences can affect food web persistence and structure [19].

The interplay between ecology and evolution is also important. For example, traits that have

evolved via sexual selection can have direct and indirect effects on species interactions and
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community processes, such as morphological, physiological, and behavioural characteristics,

which have been well studied in vertebrates across a range of ecosystems [20]. In addition,

variation in sex ratios is key to evolving sex differences in reproductive behaviour, including

mate competition, mate choice, and parental care [16]. In wild populations, skewed sex ratios

are often observed, with female-biased populations in seagrasses [21], copepods [22], and

mammals [23], and male-biased in Schistosoma parasites [24], insects [25], birds [24,26], and

dioecious angiosperms [27]. Moreover, sex ratios can vary in time and space [16,28,29], as in

the case of the mosquitofish (Gambusia affinis) [30], snowy plovers (Charadrius nivosus) [31],

and the European eel (Anguilla anguilla) [32]. Male–female intraspecific demographic variation in

predators can influence consumption rates and prey densities [30,33]. Yet, the role of sex-

based differences in altering species interactions and the resulting community structure and

community dynamics remains a major knowledge gap in ecology.

Here, we explore how sex-based differences in species interactions may affect community

dynamics. We draw on examples from kelp forest ecosystems, where previous studies have

demonstrated the strong influence of cascading trophic and nontrophic interactions on

community structure and dynamics, and on community persistence. We also included

examples from other terrestrial and marine ecosystems to begin exploring the generality of sex-

based variation in species interactions across communities and ecosystems.

Sex-specific variation in species interactions in kelp forest ecosystems

Kelp forests are iconic temperate ecosystems with important ecological, economic, and cultural

value [34,35]. Studies of kelp forests have contributed to the development of general ecological

concepts and theory, including the role of foundation species [36,37], cascading interactions

[34,38,39], top-down and bottom-up effects in food web regulation [40], alternative stable

states [41], and climate-related regime shifts [42–44]. In particular, the globally distributed giant

kelp (Macrocystis pyrifera) has been studied since the 1960s (reviewed in [45]).

Pioneering work on giant kelp forests in Alaska, USA, demonstrated a linear chain of trophic ef-

fects (Figure 1A), where a reduction in the abundance of kelps was related to increased predation

by killer whales (Orcinus orca) on sea otters (Enhydra lutris), sea otters being keystone predators

that suppress outbreaks of sea urchin grazing and thus prevent deforestation [34,46]. Over time,

this textbook example of a trophic cascade expanded to reflect other species interactions (Figure

1B) and the role of bottom-up processes [45]. In addition to sea otters, other predators, such as

sheepheads (Semicossyphus pulcher), spiny lobsters (Panulirus interruptus), and sunflower sea

stars (Pycnopodia helianthoides), also influence sea urchin densities and behaviours [47–49],

while microcarnivorous fishes can indirectly benefit kelp forests by consuming amphipod

mesograzers [39]. Beyond trophic interactions, temperature, nutrients, storms, and other abiotic

features influence the population dynamics of giant kelp and the downstream consequences for

the associated community [43,50,51].

Using biological sex as a lens through which we re-examine food web dynamics (Table S1 in the

supplemental information online), we found widespread evidence of sex-based variation in spe-

cies interactions between two or more species or functional groups in kelp forests (Figure 1C).

We categorised examples of top-down and bottom-up interactions into typologies (Figure 2,

Table S2 in the supplemental information online).

Predators

Functional redundancy in predators is hypothesised to allow kelp forests to persist and prevent

transitions to a sea-urchin dominated ‘barren’ state [52]. In Northeast Pacific kelp ecosystems,
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the main predators of sea urchins include sea otters, sheepheads, spiny lobsters, and sun-

flower sea stars. Sea otters can have different foraging strategies depending on their sex and

age; and these affect population structure and kelp forest community dynamics. For example,

male otters more often target sea urchins and have more generalist diets than females. How-

ever, younger males predominantly eat large urchins and clams and tend to have more special-

ised diets than adults [53–55]. These dietary differences are partly driven by differences in

mobility and home range. Females are more reliant on the kelp canopy for a nursery habitat

and spend more time at the surface with pups (i.e., prioritising parental care [55,56]), which re-

sults in smaller home ranges and restricted mobility relative to males [53,55]. However, while

larger home ranges and high mobility might increase resilience to some stressors, these char-

acteristics also make male sea otters more susceptible to mistargeted predation by white

sharks (Carcharodon carcharias) [17]. This example illustrates how myriad sex-based interac-

tions influence sea otter distribution, prey preferences, and age/population structure, which

can directly impact predation rates and, potentially, the otters’ role in controlling sea urchin

populations.

Sea otters are not the only kelp forestmesopredators for which trophic interactions differ between

the sexes. South of Point Conception, California, USA, sheepheads, spiny lobster, and sunflower

sea stars serve a similar ecological role as predators of urchins and other invertebrates. Sheep-

heads are sequential protogynous hermaphrodites, where they are born as females and change

into males. They display clear morphological differences in colour and size, with males being

larger than females, and differences in diel movement and site fidelity [57]. Males and females

also have different diets, with larger individuals, typically males, consuming more sea urchins

than smaller females [58,59]. These differences have important implications for management

and conservation. For instance, failure to consider sheephead sex ratios can bias stock assess-

ments [60]. Importantly, recreational and commercial fishing of sheepheads is typically size-

selective, such that males are more susceptible to fishing pressure. Size-selective fishing trun-

cates sheephead size distribution and skews sex ratios, reducing predatory control on sea

urchin populations in kelp forests [52,59]. In contrast to sheepheads, little is known about sex-

specific diet and foraging behaviour in spiny lobsters and sunflower sea stars, and their potential

consequences at the community level. Thus, sex-based interactions between predators and prey

may be common in kelp forests.

In other ecosystems, sex-based interactions among predators and prey are also common and

may influence overall trophic interactions and population dynamics. Examples of sex-selective

predation are known in freshwater systems for brook trout (Salvelinus fontinalis) on calanoid co-

pepod populations [61], in terrestrial systems for Northern goshawks (Accipiter gentilis) on tawny

owls (Strix aluco) [62], and for various carnivores on ungulates [63]. Sex-selective predation can

have a stabilising or destabilising effect on prey populations, depending on predator bias and

the prey’s mating system [64,65]. These examples underscore the influence of sex-specific pre-

dation on predator–prey dynamics. The diverse effects of sex-specific predation uniquely modu-

late interactions within various ecosystems and cannot be inferred solely from predation rates and

species abundance.

Herbivores

Further down the food web, herbivores can have sex-specific impacts on kelps. Sex-specific

behaviour of herbivores can affect the biomass and abundance of algae, with likely implica-

tions for algae persistence. For example, female amphipods (Pseudopleonexes lessoniae)

build nests on the blades of giant kelp, reducing blade length and surface by 40% and

55%, respectively [66], possibly influencing kelp forest productivity and biomass.
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Glossary

Biological sex: characteristics of an

organism (e.g., male, female, or

hermaphrodite) determined by genetics

and/or the environment that regulate the

production of gametes and can

influence the physiology, morphology,

and behaviour of individuals.

Bottom-up effects: effects from

species at a lower trophic level affecting

or controlling the community structure of

higher trophic levels by means of

resource limitation or availability.

Cascading interactions: indirect

interactions that occur if predators

reduce the abundance or alter the

behaviour of their prey, thereby

enhancing survival and releasing the

next lowest trophic level from predation

(or herbivory, if the intermediate trophic

level is a herbivore). Cascading

interactions occur across a minimum of

three trophic levels and can control

entire ecosystems.

Community: assemblage of at least

two species that are organised into food

webs in which each species interacts

directly and indirectly within a defined

geographic area.

Community dynamics: the changes in

community structure and composition

over time and space, following, for

instance, cascading interactions,

bottom-up effects, or anthropogenic

and environmental disturbances.

Community stability: the capacity of

an ecological community to return to its

equilibrium state after perturbation or to

not experience unexpected large

changes in its characteristics across time.

Community structure: the number

and type of species (composition) and

their interactions in a given community,

also including species distribution,

abundance, demography, and

interactions among coexisting

populations.

Food web: a network of trophic and

nontrophic interactions among species

that co-occur within an ecological

community.

Intraspecific variation: variation

among individuals of the same species

(e.g., differences due to biological sex or

ontogeny).

Nontrophic interactions: any

nonconsumptive interactions between

two species; for instance, two or more

species that have a net benefit from their

interaction, or when the behaviour of a

species affects the availability or status of

another species.



Furthermore, female herring cales (Odax cyanomelas) in Australia bite the meristems of the

stipitate golden kelp (Eklonia radiata) more often than males during the female spawning

period, weakening the algae and theoretically increasing the likelihood of kelp clearings

following disturbances [67].

Sex-specific behaviour in herbivorous fishes can also impact benthic algae in kelp forests.

Garibaldi (Hypsypops rubicundus) are conspicuous inhabitants of the kelp forests in southern

and Baja California. Like other damselfishes (Pomacentridae), they maintain and defend algal

gardens on temperate and tropical reefs; males also create algal 'nests' to attract females for

egg deposition. Male garibaldi selectively remove certain algal species from their territories,

thereby promoting unique habitats on the reef. The quantity and quality of algal mats is associated

with female behaviour and egg-laying, suggesting there is strong sexual selection for this male

trait [68,69]. These sexually selected traits, and their ecological consequences, have been stud-

ied in other temperate reefs [67,70]. Thus, the amount of male garibaldi on the reef may influence

the community composition of benthic algae.

Sex-specific differences in diet were found for analogous species in other ecosystems.

For instance, in controlled experiments with Mediterranean sea urchins (Arbacia lixula and

Paracentrotus lividus), females consumed 50% more algae than males to meet the energetic

cost of egg production [71], potentially resulting in larger effects on the biomass and recruitment

of algae. In a lentic freshwater system, female amphipods of Gammarus aequicauda tend to be

less selective and have higher consumption and feeding rates than males, yet a male-biased pop-

ulation may lead to less grazing pressure overall [72]. Similarly, in terrestrial systems, the female-

biased population of the seed eating fig-wasp (Chalcidoidea spp.) restricts the parasitic impacts

of sedentary males that solely consume seeds, compared with mobile females that consume

seeds and pollinate hosts [73,74]. Sexual dimorphism also influences the dietary habits of birds,
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Figure 1. Food web models emerging from empirical evidence of trophic and nontrophic interactions in kelp

food webs. (A) A model of Northeast Pacific kelp forest ecosystems as a linear chain of trophic effects, where a

reduction in kelp’s abundance was attributed to increased predation by killer whales (Orcinus orca) on sea otters (Enhydra

lutris), a keystone predator that suppresses grazing outbreaks by urchin (Strongylocentrotus purpuratus) and thus

deforestation [34,46]. (B) Evolution of the model, updating the trophic cascade to reflect other species interactions and the

role of bottom-up processes as documented, for instance, by [45]. (C) Emerging model with sex-specific variations in

species interactions represented through existing empirical research for a composite food web of kelps in temperate

regions. Black unbroken arrows represent trophic interactions, black broken arrows represent nontrophic interactions,

and grey arrows represent known trophic interactions for which there is no evidence about sex-specific influences;

thickness represents the intensity of effects by or on males and females.
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Species interactions: the assemblage

of populations of at least two different

species that interact directly and

indirectly within a defined geographic

area.

Trophic interactions: any

consumptive interaction between two

species that implies a transfer of energy

from the bodies of individuals of one

species to those of a different species,

(e.g., predation between a predator and

a prey, herbivory between a consumer

and a resource, and parasitism between

a host and a parasite).



such as the great bustard (Otis tarda), where males consume more weeds while females more

fruits and seeds [75]. These dietary differences, along with their spatial segregation outside the

mating season, suggest that males and females apply different levels of grazing pressure to plant

species and also provide variation in seed distribution. Collectively, these examples provide initial

evidence, generate hypotheses, and raise new research questions for how sex-specific differences

in the herbivore guild can impact ecosystem productivity and biomass, overall guild composition,

and stability to disturbances.

TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure 2. Types of sex-based species interactions emerging from studies on kelp forests. Each panel represents
a type of interaction: sex-specific dietary preferences in sea otters (Enhydra lutris) (A) and in sheephead (Semicossyphus

pulcher) (B); dietary differences due to sex-specific ontogeny in wrasse (Notolabrus fucicola) (C); spatial segregation of

consumers in tanner crabs (Chionoecetes tanneri) (D), and of prey in redspotted catshark (Schroederichthys chilensis) (E);

sex-specific host–parasite interactions between Sarcocystis neurona (causing protozoal encephalitis) and sea otters (F);

sex-specific foraging behaviour in herbivorous fish (damselfish, Parma victoriae) influencing resource state (G); sex-specific

habitat use in sea otters (H); and nontrophic interactions mediated by sex-specific spatial segregation between great white

sharks (Carcharodon carcharias) and sea otters (J). These types of interaction are not mutually exclusive but are combined

across the food web. Examples from kelp forests are presented in Table S2 in the supplemental information online.

Abbreviations: C, consumers; F, females; H, hermaphrodites; Hs, host; M, males; P, parasites; R, resource. Unbroken

arrows represent trophic interactions, broken arrows represent nontrophic interactions, and blue and orange colours are

used for sex-specific variation in species interactions.
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Primary producers and bottom-up influences

Kelp is a foundation species that forms a physical habitat supporting complex food webs [76].

Protection and restoration initiatives have intensified globally to reverse declines in kelp forests

[77]. Sex-specific recruitment and persistence of kelps may influence kelp recovery and effective

restoration. Sex determination in kelps (i.e., the development of gametophytes into males or fe-

males) is species-specific and depends on the interaction of genetics with environmental factors

(e.g., temperature, salinity) influencing the postgermination mortality of either males or females

[78,79]. Thus, high temperatures induced by climate change could modulate the ratios of female

to male kelp gametophytes, hypothetically altering egg fertilisation rates [80]. Skewed sex ratios in

warming oceans could hinder kelp fertilisation and sporophyte production, since the abundance

and fertility of females determines the overall recruitment of kelp sporophytes [81]. Understanding

the possible drivers of kelp sex ratios, sexual variation, and sporophyte production across lati-

tudes and environmental conditions [80] is essential to predicting the persistence of kelp forests

and informing their protection and restoration.

The fate of kelp populations will reverberate throughout the food web through bottom-up influ-

ences intersecting with top-down cascading effects. The observed global decline in kelp for-

ests driven by local anthropogenic activities, climate change, and destructive grazing

[44,82,83] could have sex-specific bottom-up influences on consumers. For instance, the

loss of the kelp habitat can influence the population dynamics of sea otters by influencing the

survival of females and pups, which rely on kelp for their nursing habitat [53,55], as well as

other species that rely on kelp as food and refuge, particularly during reproduction and juvenile

recruitment.

Sex determination, recruitment, and the persistence of primary producers is expected to have

complex influences on ecosystem structure and functioning via multiple trophic pathways. For

example, sex-based differences in energy allocation and defensive chemical production in terres-

trial plants can control the abundance of herbivores and their predators [84,85]. The omnivorous

common flower bug (Anthocoris nemorum) develops faster on male plants of its dioecious host of

grey willow (Salix cinera), so, its prey, the blue willow beetle (Pharatora vulgatissimia), shows a be-

havioural preference for the female plant. However, A. nemorum follows its prey to female plants,

leading to plant-sex-biased predation [86]. An expanded understanding of the drivers and conse-

quences of species interactions, including sex-based differences among primary producers, can

help managers in reversing ecosystem degradation.

Concluding remarks

Understanding the processes that drive the structure and function of ecological communities

is a fundamental goal of ecology and has implications for conservation, management, and

restoration. Studies on kelp forests show that sex-specific variation in species interactions

exists at multiple trophic levels. Thus, the available empirical evidence generates a more

complex and nuanced model for community dynamics, compared with the textbook trophic

cascade, and raises new questions about the community-wide consequences of sex-based

variation in species interactions for ecosystem structure, function and resilience. We propose

that the inclusion of sex-based differences in empirical and theoretical community ecology re-

search will improve our understanding of community dynamics and persistence, and is likely

to prove valuable in many food webs and ecosystems. Ecological studies are often missing a

fundamental characteristic by omitting biological sex, which may be as important as (and is

often confounded with) body size, which is, in contrast, broadly considered in ecological re-

search. Ecologists should consider explicitly incorporating interaction strengths among

males, females, and hermaphrodites, whenever possible, since sex is as important a source
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Outstanding questions
How do sexual phenotypes (e.g., size,

behaviour) that manifest across the

life cycle and ontogeny influence sex-

specific variation in species interac-

tions? Does biological sex influence

the strength of interactions across the

trophic levels of food webs?

Does sex-specific variation influence

other types of species interactions

such as mutualism, commensalism,

and parasitism?

Spatial and temporal variation in sexual

segregation and in sex ratios may

significantly impact predator–prey dy-

namics. Additionally, sex-based re-

source segregation can influence

bottom-up control mechanisms within

food webs. How do sex-based spatial

and temporal patterns collectively af-

fect an ecosystem’s processes and

stability?

How do sex-based intraspecific differ-

ences and the strength of interspecific

interactions influence community’s

stability in response to global climate

change and other local anthropogenic

pressures?

What new approaches and techniques

can enable studies of sex-specific var-

iation in species interactions in field re-

search, such as in species that are not

sexually dimorphic and for which sex-

specific differences are not visually ap-

parent, or where one sex is less acces-

sible than the other?



of individual variation in communities [87,88] as ontogeny or genotype [89]. Moreover, in

cases where sex-based variation in traits (e.g., body size, aggression) are under strong sex-

ual selection and have associated ecological consequences (e.g., trophic niche breadth,

density-dependence), there is potential for ecoevolutionary dynamics [20].

The typologies of sex-based interactions we detected by examining kelp forests as a model

system (Figure 2) can inform empirical and modelling studies, and can be expanded by consid-

ering sex-based species interactions in other ecosystems. Other typologies can be detected

by considering the specificities of marine, terrestrial, and freshwater systems, or other types

of species interactions (e.g., mutualism, commensalism, and parasitism). For instance, sex-

based differences in the foraging patterns of male and female pollinators, such as unequal

visit costs or the quality and quantity of transfers, affect plant reproduction and may influence

the movement of pollen at the community level, and community stability [74]. The extent to

which the typologies in simple food webs (Figure 2) will scale up to predict patterns at the

community level remains to be determined and is a conspicuous knowledge gap. Where ecol-

ogists have incorporated sex into simple (two or three species) theoretical food webs, they

have found that sex-based differences can significantly alter community dynamics [12,19].

For example, sexual dimorphism in consumers’ attack rates can alter the potential for

consumer-resource coexistence in a two-species model with male and female predators

[12]. Moreover, the amount of trophic inflow into males with less parental investment plays

an important role in system persistence and structure in a three-species food web model [19].

Expanding the understanding of sex-specific differences in species interactions and their role in

community dynamics will be essential in the context of climate change, as males, females, and

hermaphrodites can respond differently to climatic stressors [11,90]. Most studies examined

herein were field-based, but these studies were skewed towards species with easily distinguish-

able sexes (e.g., by sexual dimorphism). Laboratory experiments commonly apply an a priori

classification of groups by sex without clear justification or hypotheses for this grouping [91].

As laboratory-based studies may not approximate interspecific interaction rates at ecologically

relevant scales [92], it is important to evaluate the ecological effects of sex-specific variation in

species interactions in the field. Characterising and reporting sex-based differences through a

set of traits that contribute to the overall sex phenotype [93] will help uncover whether and how

any sex-specific variation matters and what drives it. However, there are major methodological

and logistical challenges in accounting for sex in ecological research, particularly in the field

(reviewed in [8]).

Future research may address new approaches and techniques for evaluating sex-specific

variation in species interactions in field research (see Outstanding questions). For example,

to explore the role of sex in explaining the variation in predation, researchers can implement

‘natural experiments’ by conducting the same field experiment at sites with different sex ra-

tios of the consumers or the resources, or in areas where females and males are known to

segregate. The setting of the techniques and related metrics in future studies will be driven

by the research objectives and the hypothesis, which are contextual and species-specific

[91,94].

Empirical research which illuminates the role of biological sex within ecological communities has

the potential to reshape our approach to biodiversity conservation ([8] and references therein).

Systematically considering sex-specific variation in community ecology will foster new discover-

ies, promote methodological innovation, and help answer open questions about community

dynamics in a rapidly changing world.
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