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Abstract

Aniline-related structures are common in anthropogenic chemicals such as pharmaceuticals and
pesticides. Compared with the widely studied phenolic compounds, anilines have received far less
assessment of their disinfection byproduct (DBP) formation potential, even though anilines and
phenols likely exhibit similar reactivities on their respective aromatic rings. In this study, a suite
of 19 aniline compounds with varying N- and ring-substitutions were evaluated for their formation
potentials of haloacetonitriles and trihalomethanes under free chlorination and free bromination
conditions. Eight of the aniline compounds formed dichloroacetonitrile at yields above 0.50%; the
highest yields were observed for 4-nitroaniline, 3-chloroaniline, and 4-(methylsulfonyl)aniline
(1.6-2.3%). Free bromination generally resulted in greater haloacetonitrile yields, with the highest
yield observed for 2-ethylaniline (6.5%). The trthalomethane yields of anilines correlated with
their haloacetonitrile yields. Product analysis of aniline chlorination by liquid chromatography—
high-resolution mass spectrometry revealed several large-molecule DBPs, including
chloroanilines, (chloro)hydroxyanilines, (chloro)benzoquinone imines, and ring-cleavage
products. The product time profiles suggested that the reaction pathways include initial ring-
chlorination and hydroxylation, followed by the formation of benzoquinone imines that eventually
led to ring cleavage. This work revealed the potential of aniline-related moieties in micropollutants
as potent precursors to haloacetonitriles and other emerging large-molecule DBPs with expected

toxicity.
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Synopsis
Aniline is a common moiety in anthropogenic chemicals. Upon chlorination, it is a potent, but so

far overlooked, precursor to haloacetonitriles and large-molecule disinfection byproducts such as

(chloro/hydroxy)anilines and (chloro)benzoquinone imines.
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1. Introduction

Disinfection byproducts (DBPs) are compounds formed by the reactions between
disinfectants and some natural or anthropogenic compounds present in source waters. '’
Epidemiological studies show that DBP exposure can increase the risk of bladder cancer and other
health issues. ® ° Among the commonly monitored small-molecule DBPs (with 1-2 C atoms),
haloacetonitriles (HANSs) often contribute the most to the cytotoxicity of finished drinking waters.
19 Recent studies showed that the routinely monitored small-molecule DBPs typically only account
for ~30% of the total organic halogen (TOX) ' 12 and <20% of the total cytotoxicity. !?
Accordingly, large-molecule DBPs (>2 C atoms) were proposed as contributors for the remaining
cytotoxicity. !> Halogen-substituted aromatic DBPs were found to dominate the developmental
toxicity of the chlorinated Suwannee River humic acid solutions. '* Compared with small-molecule
DBPs, the occurrence and formation mechanisms of large-molecule DBPs are poorly studied. '?

Nitrogenous DBPs (N-DBPs) are generally more cytotoxic and genotoxic than those

lacking nitrogen, as extensively documented for small-molecule DBPs!3-!17

and with emerging
evidence for large-molecule (e.g., aromatic) DBPs. 22 N-DBP formation potential is higher for
nitrogen-rich waters such as wastewater effluents and algal-impacted waters® 23 24 Some
nitrogenous biomolecules can form small-molecule N-DBPs at relatively high-yields. 2 For
example, in a recent summary of 34 free amino acid, peptide, and primary amine precursors for
dichloroacetonitrile (DCAN) from 11 studies, the 75" percentile of DCAN yields was 0.64%.2¢
Anthropogenic chemicals can also form N-DBPs. > 2739 For example, the herbicide isoxaflutole,
upon hydrolysis to diketonitrile, can form DCAN at up to 100% yield during chlorination.

However, the importance of individual anthropogenic chemicals to the overall DBP formation is

not well established, due to their low concentrations (typically ng/L to low pg/L levels). 3! A recent



study reported that in a synthetic mixture of Suwannee River humic acid (2 mg C/L) and ten
pharmaceuticals (155 pg C/L total), the pharmaceutical-derived DBPs contributed 9% of the TOX
but nearly all of the developmental toxicity. ® Given the large structural variety of anthropogenic
compounds, prioritization of common structural moieties across compound classes is necessary to
identify potential DBP precursors.

Aniline is a nitrogen-containing aromatic functional group found in pharmaceuticals and
pesticides in forms of primary, secondary, and tertiary amines and amides, such as the antibiotics
sulfathiazole and sulfamethoxazole, the herbicides propanil and metalachlor, and the non-steroidal
anti-inflammatory drugs acetaminophen and diclofenac. Sulfamethoxazole and acetaminophen
respectively have DCAN yields of 0.8—0.9% and 0.6-0.7% (free chlorine 10-fold molar excess,
24-72 h, pH 7), similar to many amino acids. * > 2% To date, only a few studies have investigated
anilines as DBP precursors; they reported substantial formation of HANs, trihalomethanes
(THMs), and haloacetic acids. >33 Several haloanilines (e.g., 2,4,6-trichloroaniline) were recently
detected in finished drinking waters. 3¢ Given the environmental relevance of aniline and related
structures, a dedicated investigation into their potential links to DBPs is warranted.

This study investigated the transformation of anilines upon halogenation. Using a suite of
19 aniline-related compounds with systematically varied N- or ring-substitutions, we first
evaluated the formation of small-molecule DBPs under free chlorination and free bromination
conditions, focusing on HANs and THMs with relevance to driving toxicity and regulatory
compliance, respectively. Second, the halogenation products of aniline were examined using liquid
chromatography high-resolution mass spectrometry (LC-HRMS) to identify new large-molecule

DBPs and shed light on the formation mechanisms of small-molecule DBPs.



2. Materials and Methods

Chemicals and analytical standards are described in Supporting Information Text S1.
2.1 DBP Formation Potential (FP) Experiments

Figure S1 shows the structure of the 19 aniline model precursors assessed in this study,
which featured systematic structural variations, including different N-substitutions (methyl and
carbonyl) and ring substitutions that are electron donating (hydroxyl), near neutral (methyl and
ethyl), or electron-withdrawing (acetyl, nitro, sulfonyl, and chlorine), at ortho-, meta-, or para-
positions. All DBP-FP experiments were performed in 30 mL solutions containing 30 uM
precursor, 10 mM phosphate buffer at pH 7, and 150 uM free chlorine or free bromine. The 5:1
oxidant to precursor molar ratio was previously shown to achieve significant HAN yields without
inducing excess HAN decay. *” Free bromination was used, instead of chlorination in the presence
of bromide, to provide direct comparison between chlorination and bromination in terms of HAN
yields and reaction mechanisms. Free bromine was prepared as previously described. 384 The
precursor was added the last to initiate the reactions in both chlorination and bromination
experiments. After 24 h, the solutions were quenched with sodium thiosulfate (at 0.75:1 molar
ratio to residual chlorine) and then solvent extracted within 10 min to minimize potential DBP
decay. Additional experimental details and the DBP analysis method are described in Text S2.
Correlation among DBP yields and other parameters were evaluated using the nonparametric
Spearman’s rank correlation test (Minitab version 21.3.1); the coefficient (p) is a measure of
monotonicity of the relationship between two variables.
2.2 LC-HRMS Analysis

Samples (10 mL) were prepared with 100 uM aniline, 500 or 1000 uM free chlorine (or

free bromine), and 10 mM pH 7 phosphate buffer. Higher precursor concentrations were used to



facilitate the detection of large-molecule DBPs; sample pre-concentration was avoided to
minimize the loss of unstable products. At pre-determined time points (5 min and 2, 4, 6, 8, 12,
and 24 h), sample vials were quenched with ammonium chloride (see Text S3 for the selection of
quenching agents), spiked with 400 pg/L 4-chloroaniline-2,3,5,6-d4 as an internal standard, and
analyzed by LC-HRMS (Thermo Scientific Ultimate 3000 LC with Q-Exactive Focus Orbitrap
MS). Experiments were conducted in triplicates. To enable a consistent and short holding time (9—
10 min) between sample quenching and LC injection, start times of the triplicate experiments were
offset by the instrument run time. To facilitate HRMS data processing, 25 control samples were
also analyzed (Table S1). The HRMS was used in positive mode with a scan range of 50-700 m/z
and R = 70,000. Discovery mode ddMS? was employed with a resolution of 17,500, isolation
window 3.0 m/z and a stepped collision energy of 10, 20, and 40 eV. Additional LC and MS
settings are described in Text S4.
2.3 HRMS Data Processing

The HRMS data were processed in a non-targeted screening workflow using Mass-Suite
Version 1.1.2, an open-source Python-based package. *! All .raw files were converted to .mzML
format using ProteoWizard Version 3.0. *> The data analysis workflow included peak alignment,
data reduction, molecular formula assignment, and structure assignment (Figure S2). Table S2
summarizes the values of all parameters used in Mass-Suite data processing. The tuning of the
peak alignment parameters is described in Text S5. After alignment, the data was processed with
a data reduction function to remove any features also present in control samples based on criteria
such as the relative signal intensity between samples and controls or feature occurrence in
replicates (see Table S2 for further details). The remaining features were assigned molecular

formula using a mass error cutoff of 20 ppm and formula criteria (1) C4-6Ho-1200-5No-1'X 0-5X 0-5



or (2) C12H2-13N0-200-5No-1'X 0-52X 0-5, where 'X = 33Cl or 7Br, X = 3’Cl or 3!'Br. After molecular
formula assignment in Mass-Suite, attempts were made to draw structures after checking the mass
error in the specific chromatograms (< 10 ppm). In addition to considering degree of saturation,
the halogen isotopic patterns, MS/MS spectra, literature was also consulted related to
aniline/phenol oxidation, quinone formation and detection, and reaction mechanisms in
environmental organic chemistry. Further details regarding formula and structure assignment are
provided in Text S6. Confidence levels followed a modified Schymanski criteria (Text S7). 43
3. Results and Discussion
3.1 Formation of Small-Molecule DBPs from Aniline Halogenation
3.1.1 Haloacetonitriles

Figure 1a shows the formation of DCAN and DBAN from anilines under free chlorination
and free bromination conditions, respectively. Eight of the anilines formed DCAN at yields above
0.50%. 4-Nitroaniline, 3-chloroaniline, and 4-(methylsulfonyl)aniline formed DCAN at the
highest yields (1.6-2.3%). When compared with a recent summary of DCAN yields of 34 amino
acids, short peptides, and amines under different chlorination conditions?® (Figure 1b), the DCAN
yields of anilines obtained in this study are on par with many nitrogenous precursors tested
previously, although not as high as some unique precursors such as free aspartic acid and
asparagine. A few anilines have been tested for DCAN vyields previously: 3% 33 our results for
aniline, 2-hydroxyaniline, and acetanilide were similar to the literature values, but more than 10-
fold differences were observed for the 4-nitroaniline and 3-hydroxyaniline (Table S4). These

differences may arise from the much greater molar excess of chlorine to precursor used previously

(20- or 35-fold) 3% 33 compared with this study (5-fold).



Of the 19 precursors, 16 formed more DBAN during bromination than DCAN during
chlorination (Figure 1), similar to that previously observed for tryptophan and indole. 37 Aniline,
3-chloroaniline, 4-chloroaniline, 2-acetylaniline, 2-methylaniline, and 2-ethylaniline all formed
DBAN at >2% yields. Across the 19 model precursors, there was an overall positive correlation
between DCAN and DBAN (Figure S3). However, some notable exceptions existed: 2-ethylaniline
formed DBAN at the highest yield (6.5%) but its DCAN yield (0.30%) was lower than 10 of the
compounds tested; 4-(methylsulfonyl)aniline had the highest DCAN yield (2.3%), but its DBAN
yield (0.90%) was lower than 11 of the compounds tested. HAN formation involves complex
reaction pathways. 2% 374 The overfall greater DBAN yields than DCAN yields may be attributed
to the faster reaction of free bromine with aromatic moieties than free chlorine, as previously
observed for phenolic compounds. >4 On the other hand, Br incorporation may be more sensitive
to steric hindrance due to its larger size than Cl. Depending on the reaction pathway, the halogen
initially incorporated into the aromatic moiety may not be present in the final HAN product, as
previously observed for tryptophan. >’ Moreover, the lower reduction of HOBr than HOCI (1.34
and 1.48 V, respectively) #’ may also result in different initial products, only some eventually
yielding HANs (further discussed below). Future research with mixed halogens (e.g., chlorination
in the presence of bromide) can provide further insight into the HAN formation potential of
anilines under environmentally relevant conditions.

The HAN yields of the 19 model precursors suggested that both N- and ring-substitutions
influence HAN formation. Free aniline showed higher HAN yields than N-substituted anilines,
indicating that N-halogenation was involved in some of the HAN formation pathway. Consistent
with this, amidification of the free amino group (i.e., acetanilide) completely inhibited HAN

formation. For ring-substituted anilines with near neutral or electron donating groups, ortho-



substituted compounds had far greater HAN formation than their meta- and para-substituted
analogues. For example, 2-hydroxyaniline formed 7—17 times more HANSs than did 3- and 4-
hydroxyaniline; 2-methylaniline formed 4—84 times more HANSs than 3- or 4-methylaniline. This
trend, however, did not apply to anilines substituted with the electron withdrawing acetyl group.
Both Hammett constants and the pKa values of anilines are indicators of the electronic effects of
ring substituents, but neither of them correlated with the DCAN/DBAN yields (Text S8),
indicating that the influence of ring substituents on the formation of small-molecule DBPs
extended beyond the initial ring halogenation. Future research may consider quantifying the kinetic
rate constants for the halogenation of anilines and examining their correlation with Hammett
constants, similar to the previous assessment for phenols. 48

The HAN yields obtained in this study can be used to infer the HAN formation potential
of environmental contaminants with related structures. For example, the antibiotic
sulfamethoxazole, analogous to 4-(methylsulfonyl)aniline with an electron withdrawing
substituent para to the free amino group, is expected to be a potent DCAN precursor. Indeed,
sulfamethoxazole formed DCAN at 0.8-0.9% yields. * On the other hand, acetanilide did not form
DCAN or DBAN (< 0.003% yield), suggesting that aniline-derived compounds with secondary
amide-N are unlikely to be potent HAN precursors. However, amide bond is known to be degraded
by microorganisms or chemical oxidants to release the free amino group. 4->! For example, the
herbicide propanil (3',4'-dichloropropionanilide), not expected to be a potent HAN precursor itself,

49, 52

can hydrolyze to 3,4-dichloroaniline, which may be a potent precursor based on the DCAN

yields of 3-chloroaniline and 4-chloroaniline (1.8% and 0.9%, respectively).
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3.1.2 Trihalomethanes

Anilines formed appreciable amounts of chloroform and bromoform, respectively, under
free chlorination and bromination conditions (Figure S4). With a free chlorine to precursor molar
ratio (Cl:Precursor) of 5 and a reaction time of 24 h, eight of the 19 anilines formed chloroform at
molar yields >2%; 2-acetylaniline and 2-methylaniline had the highest yields (4.5% and 3.8%,
respectively). These yields are lower than those previously reported for phenolic compounds and
(chloro)anilines obtained with much greater Cl:Precursor ratios. ** # 33 For example, with
Cl:Precursor = 13—18, the chloroform yields of aniline and chloroanilines were 10-35%;** with
Cl:Precursor >335, phenolic compounds formed chloroform at 1-95% yields. 4% 33 Most THM
studies used excess chlorine due to the stability of THMs, in contrast to the concern for HAN decay
induced by excess oxidants. *

The molar yields of bromoform (0.003—6.5%) for the aniline compounds under
bromination conditions are generally within the same range as those of chloroform (Figure S5a),
in contrast to the substantially higher yields of DBAN than DCAN (Figure S3a). This may be
attributable to the different formation mechanisms for these two DBP groups. As shown in Figure
S5, correlation was found between chloroform and bromoform formation, chloroform and DCAN
formation, and bromoform and DBAN formation. Interestingly, bromoform and DBAN formed at
similar molar concentrations from most of the tested aniline compounds; THM yields did not
correlate with Hammett constant.

3.2 Analysis of Aniline Halogenation Products by LC-HRMS
3.2.1 LC-HRMS Data Processing by Mass-Suite
Figure 2a shows the HRMS data analysis workflow using Mass-Suite (chlorination

samples): 7675 features were identified during initial peak picking and alignment; 243 features
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remained after data reduction based on several filtering criteria, including removing features that
were present in samples with less than 100-fold greater abundance than blanks/controls, missing
from one or more replicates, and/or with signal-to-noise ratio less than 3 (more details in Table
S2). In formula assignment, our workflow focused on the Cas.6 and Ci2 products from aniline
chlorination due to their expected occurrence analogous to the phenol chlorination products>->7
and their importance for elucidating the pathway for small-molecule DBP formation. Although
this workflow will miss the other products (e.g., C3 and C7.11), it enhances efficiency in the
subsequent manual structure assignment (Text S6). As shown in Figure S6, the features after
formula assignment (106 Cs6 and 39 Ci2 features) spanned 54-420 Da and reflected the entire
range of polarity captured by the LC gradient (0.6—-11.0 min). Because preliminary analyses
identified fewer bromination products and all their counterparts were identified in the chlorination
samples, the following section will discuss the chlorination products in detail, followed by a brief
summary of bromination products.
3.2.2 Aniline Halogenation Products

Seventeen Ca.¢ products were identified from aniline chlorination (Table 1, and Figure 2b
for product time profiles). Of these, 14 products retained the six-membered ring, including 11 ring-
substituted products with chloro- and/or hydroxy-functional groups and 3 quinone imines; the
remaining 3 were ring-cleavage products. Additionally, six Ci2 dimer products were tentatively
identified (Table S6). From preliminary bromination experiments, seven Ca.¢ products were
detected (Table S7); all of their chlorinated analogues are included in Table 1.
Ring-substituted products

Two monochlorinated and one dichlorinated anilines (RS-128-1, RS-128-2, and RS-161)

were detected, all had RTs (5.5, 8.2, and 9.1 min) longer than aniline (1.9 min), consistent with
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the increased hydrophobicity upon chlorine substitution. RS-128-1 and RS-128-2 were identified
as 4-chloroaniline and 2-chloroaniline, respectively, with level 1 confidence based on the matching
of MS/MS spectra (Figure S7 and S8) and RTs with the standards. Previous studies suggested that
ring-chlorination products are prevalent for free aniline. 36! Compared with amino acids and alkyl
amines that rapidly form N-chloramines, %> % aniline’s amino group is relatively electron-poor due
to the aromatic ring, thus promoting ring halogenation. ® Although N-halogenated intermediates
have been observed, they typically rearrange to form ring-halogenated products. * For example,
when anilines were mixed with free chlorine in non-aqueous solvents, N-chlorinated intermediates
were detected, but they quickly rearranged to o-chloroaniline (majority) and p-chloroaniline. > 6
Although N-chlorosulfamethoxazole and N-chlorobenzoquinone imine were found as high-yield
products from the free chlorination of sulfamethoxazole (a para-substituted aniline), ® the site of
chlorination may have been influenced by the strong electron-withdrawing sulfonyl substituent.
Five (chloro)hydroxyanilines were detected. RS-110-1 with a 1.4 min RT was identified as
4-hydroxyaniline with level 1 confidence based on matching RTs and MS/MS spectra with the
standard. Another peak with identical parent mass and MS/MS spectrum (RS-110-2(Q); Figure
S9) was detected at RT 7.4 min (same as Q-108; discussed below), much later than 2-, 3-, or 4-
hydroxyaniline (1.4, 1.8, and 1.4 min, respectively; via standards). Accordingly, we postulate this
product to be p-benzoquinone imine that was analytically reduced to 4-hydroxyaniline during
ionization. The reduction of quinones has been reported from electrospray ionization (ESI) in both
positive® and negative modes. ¢7-% Other redox-labile compounds can also be reduced during
positive ESI, 7972 and the reduction was promoted by formic acid present in LC mobile phase. 72
Similar diagnostic evidence indicates that RS-144-2(Q), which had similar MS/MS spectra to the

monochlorinated hydroxyaniline RS-144-1 but a much longer RT (8.3 and 2.3 min, respectively),
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was a reduction product of the corresponding quinone imine during ESI. Indeed, the corresponding
benzoquinone imine products Q-108 and Q-142-2 were detected (further discussed below). These
observations brought our attention to RS-126(Q), with a mass indicative of a dihyroxyaniline but
a RT (7.2 min) much later than monohydroxyanilines (1.4—1.8 min) while similar to the quinone
imine products. Therefore, we suspect that RS-126(Q) was a benzoquinone product.

RS-177-1 and RS-177-2 were both dichlorinated hydroxyanilines with ClI, CHO, and CHN
fragments (Figure S11). The observed [C4H4Cl1]" fragment in both spectra indicated that at least
one Cl was on the ring. RS-177-1 was also detected in samples from preliminary experiments
quenched with thiosulfate that is known to remove N-chloramines, % further suggesting that both
Cl were on the ring. The last ring-hydroxylated product RS-145 corresponded to a
monochlorinated dihydroxybenzene that had lost the amino group.

Most of the (chloro)hydroxyaniline products were detected as early as 5 min (Figure 2b).
With Cl:Aniline = 5, most of the products maintained their signal intensity at levels slightly lower
than that at 5 min throughout the rest of the 24 h experiment; RS-110-1 and RS-145 showed an
overall increasing signal intensity. In contrast, with Cl:Aniline = 10, the signal intensity of most
products peaked at 5 min (or 2—4 h) and declined afterwards, suggesting that excess chlorine
promoted further transformation.

Benzoquinone imine products

Three benzoquinone imine products were detected from aniline chlorination; in addition,
RS-110-2(Q), RS-144-2(Q), and RS-126(Q) were also suspected benzoquinone imines as
described above. Q-108 was identified as p-benzoquinone imine with level 2b confidence (Figure
S12), with observed C=0 and C=NH losses consistent with previous spectra reported for

benzoquinone. 3 Ortho-substituted quinones generally have a prominent [M+H+2]" peak: 73 the
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lack of this peak is the first line of evidence that Q-108 was p-benzoquinone imine. Additionally,
as discussed above, RS-110-2, the putative reduction product of Q-108 formed during ESI, had
MS/MS spectra matching with the 4-hydroxyaniline standard, suggesting para ketone and imine
groups. Q-142-2 was identified as a chloro-o-benzoquinone imine isomer (Figure S13), with a
prominent [M+H+2]" fragment and a [C4H4Cl]" fragment indicative of ring chlorination. In
preliminary HRMS experiments with thiosulfate quenching, Q-142-2 was also detected, further
supporting that it is ring-chlorinated. Q-142-1 did not trigger ddMS? but is suspected to have ortho-
ketone and imine groups, because Q-142-1 is unlikely chloro-p-benzoquinone given its almost
identical RT as p-benzoquinone (7.4 min).

The temporal profiles of benzoquinone imine abundance (Figure 2b) were dependent on
chlorine dose. At Cl:Aniline = 10, the abundance of most benzoquinone imine products peaked at
5 min and rapidly declined, with few detected in 12 and 24 h samples. In comparison, with
Cl:Aniline = 5, the abundance of several benzoquinone imine products peaked at later times (~4
h); at 24 h, Q-108, Q-142-2, RS-110-2(Q), RS-144-2(Q), and RS-126(Q) were still detected.
Cl/Ani =10 samples had overall less abundance of benzoquinone imine products than Cl/Ani = 5
samples.

Ring-cleavage products

Three ring-cleavage (RC) products, including two Ca products (RC-117 and RC-132) and
one Ce product (RC-179) were detected. Unfortunately, MS/MS spectra were not acquired for
these products via ddMS?, likely due to the high background for early eluting products (1.8 min
RT for RC-117 and RC-132) and/or their low abundance. The C4 products likely are dicarboxylic
acids without halogens. RC-117 was tentatively assigned as maleic acid based on the matching

retention time from a reference standard. RC-132 was likely an amino-modified maleic or fumaric
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acid, i.e., a tautomer with the corresponding imine. RC-179 is tentatively assigned as a di-
carboxylic acid; other structures are possible including ones with 1-2 terminal aldehyde groups.

Across all detected products from aniline chlorination, the ring-cleavage products show the
slowest signal intensity. At Cl/Ani = 10, all three ring-cleavage products were detected: RC-132
and RC-179 were detected at 4 h while RC-117 was detected at 8 h; each maintained relatively
stable abundance up to 24 h. At ClI/Ani =5, RC-132 was the only ring-cleavage product detected,
with low abundance and high variability.
Dimer products

Six dimer products were detected, all with two nitrogen and two oxygen atoms and three
of them also chlorinated (Table S6, Figure S16). Dimers were likely formed by reactions between
hydroxyanilines, ®>7* 75 hydroxyaniline and benzoquinone imine, >> 76 or benzoquinone imines. >3
Although dimer formation is not expected at the environmentally relevant concentrations of
chlorine and aniline-related precursors, their detection supported the presence of hydroxyaniline
and benzoquinone imine intermediates. > 6
Aniline bromination products

When aniline was brominated (Table S7), two dibromohydroxyaniline isomers RS-265-1
and RS-265-2 (Figure S14) and a dibromodihydroxybenzene RS-266 were detected. Based on
RT, RS-188(Q) was likely a monobrominated benzoquinone reduced to a hydroxyphenol during
ESI. Three benzoquinone (imines) were detected: Q-108 (p-benzoquinone imine) with matching
MS/MS spectra and RT from that detected in chlorination samples, Q-185 (bromo-p-benzoquinone

imine; Figure S15), and Q-201. No ring-cleavage products were detected.
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Summary of Large-Molecule DBPs from Aniline Halogenation

The products detected by HRMS, including haloanilines, (halo)hydroxyanilines,
(halo)benzoquinone imines, and Ca dicarboxylic acids, represent the large-molecule DBPs that
may contribute to the toxicity of disinfected water when aniline-related precursors are present. 4-
Chloroaniline and two other mono-/di-chlorinated anilines were detected; although they rapidly
decompose in the presence of excess chlorine, their lasting presence in disinfected waters is
probable at lower chlorine doses/residual chlorine levels. Indeed, 2,4,6-trichloroaniline was
reported in chlorinated drinking water. 3

Halobenzoquinone imines are a new class of large-molecule DBPs. Benzoquinone imines
are soft electrophiles that can react with biomolecules such as proteins and glutathione. 77 Although
the toxicity of the specific halobenzoquinone imines detected here remains undefined, several N-
and ring-chlorinated halobenzoquinone imines showed 1.2—10 times greater cytotoxicity than 2,6-
dichlorobenzoquinone, 2> which is the most commonly detected halobenzoquinone and 230 times
more cytotoxic than the regulated DBP chloroform. ® Several benzoquinone imines were recently
detected in drinking waters. > 7 Future research is warranted to focus on the occurrence and
toxicity of halobenzoquinone imines.

The detection of these large-molecule DBPs is consistent with the limited previous reports
on the oxidation of aniline-related structures. For example, the chlorination of sulfamethoxazole
yielded a hydroxylated sulfamethoxazole, 3° several chloroanilines, (chloro)hydroxyanilines, and
even chlorophenols that had lost the amino group. 3! The chlorination of acetaminophen (N-acetyl-
p-aminophenol) forms N-acetyl-p-benzoquinone imine and p-benzoquinone; 7% 82 When aniline is

oxidized by chlorine dioxide, p-benzoquinone imine and p-benzoquinone were detected. 74 33 84
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Similarities and differences were observed between phenol and aniline chlorination
products. For example, phenol formed 2-chlorophenol and 4-chlorophenol upon chlorination,
which fully accounted for the initial phenol transformation; 4> 46 48 yet the formation of
hydroxylation products (e.g., hydroquinone, catechol, etc.) is not commonly reported. While
aniline chlorination also formed 4-chloroaniline and other mono-/di-chlorinated anilines,
hydroxylation products such as 4-hydroxyaniline were also detected as early as 5 min. Similar to
aniline, phenol chlorination also formed benzoquinones and dimers. 4> 6. 85, 86
3.3 Mechanisms of Aniline Halogenation to Form Large-Molecule DBPs and HANs

The observed products provide insight into the mechanisms of aniline halogenation and the
formation of HANSs and other small-molecule DBPs. Despite the differences in DCAN and DBAN
yields from chlorination and bromination of anilines, similar products were observed, suggesting
that the two halogens react with aniline in similar pathways but with different kinetics along the
reaction pathways. As shown in Scheme la, we propose that aniline reacts initially to form
chloroanilines or hydroxyaniline. Chlorohydroxyanilines are then formed from hydroxyanilines or
chloroanilines; these further react with free chlorine via a two-electron transfer mechanism to form
(chloro)benzoquinone imines. (Chloro)benzoquinone imines then undergo further oxidation to
form ring-cleavage products, which further transform into small-molecule DBPs.

A few pathways may be involved in the formation of hydroxyanilines. In the initial stage
of the experiments (5 min), aniline may react with free chlorine or free bromine via a single
electron transfer to form a radical cation intermediate®” 88 that can undergo hydrolysis to form
hydroxyaniline. Compared with phenols, anilines have lower aqueous oxidation potentials and are

therefore more easily oxidized by single electron transfer mechanisms to form radical cations. ¥

Consistent with this, aniline and phenol were shown to react differently with triplet state methylene
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blue. *° Alternatively, hydroxyaniline may be formed via singlet oxygen ('O2), which has been
detected by near-IR chemiluminescence spectroscopy®' and demonstrated by density functional
theory calculation for hypochlorite solutions. > 'Oz can selectively form a para-hydroxylation
product upon reaction with aniline. °* In the later stage of the experiments (up to 24 h), the
continuous detection of 4-hydroxyaniline may involve a mechanism that is analogous to the
formation of hydroxyl radical via semiquinone radicals formed by hydroquinone reacting with p-
benzoquinone: ** 4-hydroxyaniline (initial product) may react with p-benzoquinone imine (further
transformation product) to form hydroxyl radicals. Hydroxyl radicals can react with phenol and
yield additional hydroxylation to aromatic rings; °> ° aniline may similarly form hydroxyaniline.
Our findings that chlorination of aniline yields both chloroanilines and hydroxyanilines are
consistent with the detection of halogenated and non-halogenated aromatic DBPs upon
chlorination of natural organic matter, which can undergo further reactions to form small-molecule
DBPs. 9798

The proposed formation of (chloro)benzoquinone imines from (chloro)hydroxyaniline via
two-electron transfer was based on the observation of Q-108, Q-142-1, Q-142-2 and other
suspected quinone imine products, drawing analogy with the rapid formation of o- and p-
benzoquinone from o- and p-hydroxyphenols upon reaction with free chlorine via electron transfer.
%5 The detection of dimers suggested the presence of radicals and/or quinone (imine) intermediates.
43,99, 100 Hydroxyl radicals, if formed as described above, can react with aniline to form a N-
centered radical'®! leading to dimerization. !> Two of the detected products, benzoquinone imine
and 4-hydroxyaniline, can also form dimers. ' Similarly, aniline readily forms dimers with o-

benzoquinone. 3
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We proposed two ring-opening pathways to explain the formation of haloacetonitriles and
other DBPs (Scheme 1b and Ic). Oxidation of 4-hydroxyaniline would yield p-benzoquinone
imine (Q-108), which hydrolyzes to the non-nitrogenous p-benzoquinone, ' before forming ring-
cleavage products such as RC-117. On the other hand, 2-hydroxyaniline, if formed, can be
oxidized to o-benzoquinone imine, which then hydrolyzes to RS-126(Q), 19 before ring-cleavage
to form RC-132. Previous research established quinones as key intermediates in the formation of
small-molecule DBPs from phenols; °% 19 197 quinone orientation can influence the formation of
ring-cleavage products: for example, hydroquinone and p-benzoquinone are oxidized to Cs-
dicarboxylic acid, whereas catechol and o-benzoquinone are oxidized to the Cs-dicarboxylic acid,
muconic acid. 6174331088 From RC-132, a tautomer with the corresponding imine, N-chlorination
can result in another pair of tautomers, one of which undergoes decarboxylation coupled with
chloride loss to form a nitrile, similar to the pathways for amino acids. *+ 6> 1% Dichlorination on
the a-carbon of the nitrile leads to DCAN. ?¢ The proposed DCAN formation through 2-
hydroxyaniline was consistent with the DBP-FP results: 2-hydroxyaniline exhibited a higher
DCAN yield (0.92%) than 4-hydroxyaniline (0.12%). The higher DCAN yields of 3-chloroaniline,
4-chloroaniline, 4-nitroaniline, and 4-(methylsulfonyl)aniline (0.90-2.3%) may reflect the
enhancement in hydroxylation at the 2-position via electronic and/or steric effects of the
substituent groups.

4. Environmental Implications

This work is among the first efforts to systematically evaluate anilines as precursors to
small- and large-molecule DBPs. The high HAN yields from several anilines implicate the
numerous anthropogenic chemicals sharing aniline-like moieties as potential precursors to this

group of highly toxic DBPs. While each individual compound at environmentally relevant
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concentrations may not form substantial levels of DBPs, the collective pool may contribute
significantly. Our findings expand evaluation of HAN precursors beyond amino acids, peptides,
and aliphatic amines. A suite of large-molecule DBPs were detected from aniline chlorination,
including chloro(hydroxy)anilines and (choro)benzoquinone imines. Mechanisms were proposed
for the formation of large- and small-molecule DBPs from aniline chlorination based on the results
from HRMS product analysis. Future research is warranted to further elucidate the structural role
of anilines in large-molecule DBPs formation potential as well as the toxicity and occurrence of

the emerging large-molecule DBPs.
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Figure 1. The molar yields of (a) dichloroacetonitrile (DCAN) and dibromoacetonitrile (DBAN)
under free chlorination and free bromination conditions, respectively, from 19 anilines. (b)
Comparison of DCAN and DBAN yields observed in this study, as well as with the DCAN
yields reported in the literature for amino acids, short peptides, and amines. All experiments in
this study were performed with 30 uM initial precursor concentration, at pH 7 (10 mM
phosphate buffer), and with 150 uM free chlorine or free bromine for 24 h; samples were
quenched by thiosulfate (Text S2). Error bars represent the standard deviation of the results from
triplicate experiments. N.D. = non-detect (< 0.1 ug/L). DBP concentration data are shown in
Table S3. The literature values for non-aniline amines and amino acids were summarized by
Zhou et al.;?® 64 non-zero records for 34 precursors were plotted. The literature values for DCAN

yields from anilines were summarized from two other papers.*? 33
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Figure 2. (a) High-resolution mass spectrometry data processing workflow showing the number
of features remaining after each step of data processing. (b) Time profiles for the signal intensity
of features corresponding to chloroanilines (I), (chloro)hydroxyanilines (IT), benzoquinone
imines (III), and ring-cleavage products (IV). The postulated structures of these features are
shown in Table 1. Peak areas of the features in the chromatogram were normalized by the peak
area for the internal standard 4-chloroaniline-2,3,5,6-d4 (d4 4-CA) in the sample. Error bars
represent the standard deviation from triplicate experimental samples. Samples were from aniline
chlorination experiments with an initial chlorine to aniline molar ratio (Cl/Ani) of 5 or 10.
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Table 1. The full scan ion and MS/MS fragments (where applicable) for the postulated aniline chlorination products. Products were grouped in
three categories: RS = ring-substituted; Q = quinone; RC = ring-cleavage; within each category, products were listed in the order of increasing
molar mass and, in the case of identical molar mass, increasing retention time. Experimental conditions: 100 uM aniline, initial free chlorine to
aniline molar ratio (CI/Ani) =5 or 10, pH 7 10 mM phosphate buffer; samples were quenched by ammonium chloride. The MS/MS spectra for
products, when available, are shown in Figures S7-S13. For chlorinated products, the MS/MS spectra displayed are for the most abundant
isotope. Confidence level assignment criteria are shown in Text S7; briefly: levels 1, 2a, and 2b are as defined by Schymanski criteria,* 3a =
matching 2b except that the exact location of the halogen and/or hydroxyl/ketone group cannot be determined; 3b = multiple structures possible,
MS/MS spectra not informative or not available.

Full Scan ddMS?
RT Formula Error Formula Error Confidence
b (min) ™7 [M+H]"  (ppm) m/z [M+H]"  (ppm) Structure Level

110.0603 CsHsNO 2.6
65.0388 CsHs 3.0 HN

4-h}l/§1§(-)1<;(e)1;11iline 14 110.0602 CsHsNO 1.1 109.0524 CsH7NO 1.5 \©\ 1
80.0495 CsHsN 0.1 OH
92.0494 CeHeN -0.4
110.0602 CsHsNO 1.6 N

RS-110-2 ¢ i 65.0387 CsHs 2.6 es) 2
(Q-108) 7.4 110.0601 CsHsNO 0.8 109.0524 CsH7NO 1.9 E—— 2b

80.0495 CsHsN -0.3 OH

92.0496 Ce¢HeN 1.5

NH,
OH y
RS-126 7.2 1260549  Ce¢HsNO:»  -0.04 ﬁ ES /@/ 3bi
—_—

93.0574  CeHiN 0.9
RS-128.1 128.0263  CeH/NCI 13 HN
tchloroaniline 35 1280264 CHNCL 1.7 75.0229 1
66.0466 CsHs 3.0 cl
65.0389 CsHs 44
1280262 CéHNCL 0.03 cl
65.0388 CsHs 3.4
z-cilsc;rloii_iine 82 1280263 CGHNCI 1.5 92.0496  CeHeN 1.0 Hz"\é 1
93.0574  CeHN 1.9
75.0229
1440212 CeH/ONCI 1.0
109.0525  CHiON 2.2 HN A
RS-144-1 23 1440211 CHNOCI 0.2 80.0495  CsHeN 0.2 |  —oHnc 3a
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144.0211 C¢HONClI 0.2 o OH
RS.144. 109.0525  C¢H7ON 2.9 HN HoN
83  144.0210 CeH,NOCI  -0.2 80.0495 CsHsN 0.2 . 3a
(Q-142-2) T =5 | ——cl
™ P
HO X
RS-145 47  145.0050 CeHsO:Cl -0.8 | ——oH.ci 3b
/
H2N x
RS-161 9.1 1619871 Ce¢HeNCl;  -0.7 | e, 3b
=
177.9824 CsHONCL 1.6
143.0135  C¢HsONCI 1.9 HoN X
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78.0340 CsHaN 1.8
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80.0494 CsHeN -0.7
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0
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RC-117

S 1.8 117.0182  C4Hs04 -0.04 HO OH 3b
maleic acid _
0
RC-132 1.8 1320291 C4HNOs  -0.5 HO OH 3b
o NH,
o]
RC-179 8.0  179.0106  CeHs04Cl 0.2 “°W\)L0H 3bii
o Cl

iRS-110-2 was 4-hydroxyaniline formed via the reduction of p-benzoquinone imine (Q-108) during ESI. It has exact mass spectrum match to 4-hydroxyaniline standard, and
retention time match to Q-108. This diagnostic evidence led to the assignment of level 2b confidence for RS-110-2(Q) and Q-108.
ii Example structure; location of the ketone, imine, and/or chlorine groups are unknown.
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Scheme 1. (a) The proposed overall reaction pathway for the formation of small-molecule DBPs
dichloroacetonitrile (DCAN) and chloroform from aniline. The proposed pathway for (b) the
formation of ring-cleavage product RC-117 and (c) the formation of DCAN from RC-132.
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