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Significance

The oak wilt pathogen is one of 
the most destructive threats to 
oaks in North America. Millions 
of dollars are invested annually 
to manage and mitigate its 
spread. Drought stress is also a 
leading cause of tree death and 
ecosystem collapse in oak-
dominated forests. Both 
disturbances simultaneously 
impact forests across large 
spatial scales making early 
detection and management 
extremely challenging. We 
developed remote sensing tools 
to detect oak wilt and drought 
before visual symptoms appear 
and differentiate these dual 
stresses by integrating 
anatomical, physiological, and 
spectroscopic information from 
cellular to canopy levels. 
Previsual detection of oak wilt 
when followed by rapid 
treatment response will reduce 
incidence, spread, and impact of 
oak wilt in forest landscapes.
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Tree mortality due to global change—including range expansion of invasive pests and 
pathogens—is a paramount threat to forest ecosystems. Oak forests are among the most 
prevalent and valuable ecosystems both ecologically and economically in the United 
States. There is increasing interest in monitoring oak decline and death due to both 
drought and the oak wilt pathogen (Bretziella fagacearum). We combined anatomical and 
ecophysiological measurements with spectroscopy at leaf, canopy, and airborne levels to 
enable differentiation of oak wilt and drought, and detection prior to visible symptom 
appearance. We performed an outdoor potted experiment with Quercus rubra saplings 
subjected to drought stress and/or artificially inoculated with the pathogen. Models 
developed from spectral reflectance accurately predicted ecophysiological indicators of 
oak wilt and drought decline in both potted and field experiments with naturally grown 
saplings. Both oak wilt and drought resulted in blocked water transport through xylem 
conduits. However, oak wilt impaired conduits in localized regions of the xylem due to 
formation of tyloses instead of emboli. The localized tylose formation resulted in more 
variable canopy photosynthesis and water content in diseased trees than drought-stressed 
ones. Reflectance signatures of plant photosynthesis, water content, and cellular dam-
age detected oak wilt and drought 12 d before visual symptoms appeared. Our results 
show that leaf spectral reflectance models predict ecophysiological processes relevant 
to detection and differentiation of disease and drought. Coupling spectral models that 
detect physiological change with spatial information enhances capacity to differentiate 
plant stress types such as oak wilt and drought.

drought | oak wilt | previsual detection | spectral reflectance | tree mortality

Forests provide critical ecosystem services including habitat for organisms, regulation of 
climate and air quality, erosion control, and maintenance of global biogeochemical cycles 
(1). Multiple global change factors threaten the health of these ecosystems due to rising 
abiotic and biotic stress (2). In particular, ongoing climate warming is contributing to 
increased tree mortality through compounded heat and drought stress (3), making forests 
more vulnerable to biotic agents (4). Increasing human mobility across the globe has 
heightened vulnerability to biotic stress through greater exposure to invasive species (5). 
In North American forests, invasive pests and pathogens have severely impacted tree species 
due to increased global warming, drought, and trade. Protecting forest ecosystems from 
current and future abiotic and biotic threats is one of the most pressing challenges of our 
time (1). Developing methods for accurate and early detection of tree decline is critical 
to manage forests and part of an urgent global effort to integrate remote sensing and 
ground-based tools to monitor changes in biodiversity for planetary stewardship (6).

Oak-dominated forests are the most abundant forest type in the conterminous United 
States and are critical to maintain ecosystem services in North America, but they face 
compounding threats of increasing heat, drought, insect pests, and tree pathogens (7). 
Local, state, and federal governments in the United States invest hundreds of millions 
annually to manage and mitigate the impacts of these threats. Given the ecological and 
economic importance of oak forests, it is critical to understand where these forests are at 
risk of widespread decline due to drought and diseases—especially as the atmosphere 
becomes hotter and drier—to manage the spread and impacts of pathogens. Satisfying 
this need requires 1) mechanism-based remote sensing tools that can predict forest health 
across space, time, and environments; 2) early detection capabilities to locate abiotic and 
biotic stressors rapidly and efficiently; and 3) capacity to distinguish stress types.

Among the many invasive pathogens that threaten oak forests, oak wilt caused by Bretziella 
fagacearum is considered one of the most destructive threats to oaks in the Eastern United 
States (8). The disease has been documented in 24 eastern states (9) and its intensification is 
annually monitored in affected regions (8). The pathogen has severely affected the more D
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vulnerable red oak lineage (Quercus section Lobatae) throughout the 
disease range. Red oak species fail to defend against and contain the 
disease once they are infected (10–12). The oak wilt pathogen 
spreads belowground to neighboring trees through grafted roots and 
aboveground by insect vectors (nitidulid beetles and oak bark bee-
tles) that disperse the spores over short to long distances (10). 
Long-distance dispersal poses serious challenges to track or predict 
the advance of oak wilt; thus, early detection of the disease across 
the landscape is required to limit disease spread. Accurate detection 
of oak wilt also requires differentiating its symptoms from those 
caused by other stressors such as drought, which can be confused 
with oak wilt (13). While spectral reflectance has been used to detect 
oak wilt in mature trees (14) and to differentiate oak wilt from 
drought in greenhouse-grown seedlings (13), previsual detection of 
the disease and differentiation from drought in an outdoor context 
has yet to be achieved. In this paper, we link physiology and remote 
sensing across spatial scales using proximal and drone-retrieved spec-
tral signals to detect oak wilt and drought stress before visual symp-
toms appear and to differentiate both types of stress in an outdoor 
potted experiment. We validate the approach in a field experiment 
on naturally occurring saplings inoculated with the pathogen.

Remotely sensed plant spectral reflectance is increasingly used 
to detect abiotic and biotic stress in ecosystems at local and land-
scape scales. Spectral reflectance has been successfully used to detect 
disease and insect pest damage such as rapid ohia death, emerald 
ash borer, bark beetles, olive decline due to Xylella fastidiosa, 
Phytophthora-induced decline of Holm oak as well as oak wilt 
(15–23). Drought stress can also be detected spectrally at leaf to 
landscape scales (24–29). While studies on the detection of these 
stress types are increasing, only a handful of studies show early 
detection capacity (i.e., limited symptoms in tree crowns) (26, 30) 
and even fewer show previsual detection capabilities (19, 31). 
Underlying this gap is a lack of reflectance datasets associated with 
1) the transition between non-stressed and slightly stressed plants 
and 2) the physiological processes underlying this transition such 
as photosynthetic decline, turgor loss, dehydration, cell content 
leakage, and cell death (4, 32–35). A focus on the onset of plant 
stress is therefore key to understanding which spectrally predicted 
physiological processes might indicate abiotic and biotic stress 
before visible symptoms appear. Of the physiological processes 
associated with plant stress and mortality, only photosynthetic 
declines, and dehydration have been previously linked to spectral 
features (29, 36). Yet, turgor loss, cell leakage, and death can likely 
be spectrally detected due to structural and chemical alterations in 
cells and tissues and used to inform stress detection at larger scales 
of canopy, stand, and landscape.

Studying previsual detection of any stress is challenging because 
the observed data necessary to construct detection models must 
meet two requirements. First, it is necessary to frequently monitor 
and document changes in visual symptoms throughout the process 
of stress-induced plant decline. These data enable us to represent 
time relative to the first appearance of visual symptoms instead of 
time since pathogen inoculation or since the start of an experi-
ment. Representing timing in terms of symptom appearance is 
key to identify which physiological processes are impaired before 
visual symptoms of stress appear. Biologically based temporal var-
iables such as time since visual symptom appearance also reduce 
plant-to-plant variation that is not relevant to previsual detection 
by accounting for individual differences in time to symptom 
appearance due to plant size, ontogeny, morphology, or environ-
mental heterogeneity (37). Second, it is necessary to measure the 
candidate early detection predictors before, during, and after the 
onset of visual symptoms at high frequency and with large sample 
sizes. These are critical to capture and accurately model the 

transition from healthy to declining plant status. An approach 
based solely on stress-specific physiological mechanisms might 
allow for previsual detection of causal stressors such as drought 
and oak wilt. However, physiological measurements are time con-
suming and often destructive, thus precluding high-frequency 
sampling and large sample sizes. In contrast, physiological status 
estimated from rapid and non-destructive observations of spectral 
reflectance has the potential to overcome these constraints.

Oak wilt and drought-stressed oaks show similar progression of 
symptoms because both stressors involve impairment of vascular 
function. Under soil and/or atmospheric drought, water transport 
through the xylem is reduced causing declines in turgor pressure, 
stomatal conductance, and transpiration rates (38–40). Severe 
drought triggers embolism formation followed by tissue dehydra-
tion, cell damage, cell content leakage, and eventually plant death 
(4, 41–43). Infection of oaks by B. fagacearum also reduces water 
transport through the xylem but does so because of induced tylose 
formation rather than embolism. Tyloses are balloon-like defense 
structures that irreversibly occlude vessels in response to the pres-
ence of the fungus (10, 12). Tyloses can slow down the spread of 
the fungus within a tree, but occluded vessels lose function and 
prevent long-distance transport of water to the leaves, leading to 
reduced photosynthesis and transpiration similar to drought-stressed 
trees. The overlap in physiological decline processes between oak 
wilt and drought makes it challenging to distinguish these two 
stressors. However, we expect that differences in the cause of xylem 
dysfunction (i.e., emboli vs. tyloses) and how they are generated 
(i.e., xylem tension vs. fungal infection) provide the mechanistic 
information necessary to distinguish between oak wilt and drought.

The spatial patterning of xylem dysfunction likely differs between 
oak wilt and drought-obstructed vessels. Vascular wilts like oak wilt 
obstruct vessels following infection (44, 45) such that vessels 
become obstructed by tyloses as they come into contact with the 
fungus. As such, xylem dysfunction develops from the point of 
pathogen entry inwards, forming clusters of occluded vessels. 
Drought stress obstructs vessels by formation of emboli, which form 
as a function of vessel vulnerability to tension and tend to occur 
first in larger vessels (46). Vessel sizes in ring-porous oaks vary radi-
ally from large to small within a given annual growth ring across 
the entire cross-section of a stem, such that xylem dysfunction due 
to drought tends to progress radially rather than developing locally 
around a pathogen-colonized area, as in the case of oak wilt. Spatial 
patterns of physiological decline in tree canopies likely mirror spatial 
patterns of xylem dysfunction because they result from loss of water 
transport in the vessels that supply the leaves. Consequently, oak 
wilt–infected trees might show clustered physiological decline in 
the canopy with some branches affected while others remain 
healthy. This would result in high within-canopy variability in 
symptoms. In contrast, drought-stressed trees might show more 
widespread physiological decline across the canopy (i.e., low 
within-canopy variability). Because physiological decline can be 
correlated with and detected using spectral reflectance data, we test 
whether spatially explicit spectral data obtained using low-cost 
multispectral cameras mounted on unoccupied aerial vehicles 
(UAVs) can detect spatial patterns of stress that differentiate oak 
wilt and drought. However, the links between both physiological 
mechanisms and processes and spectral reflectance across spatial 
scales necessary to evaluate the potential of multispectral UAVs as 
tools to detect drought and oak wilt have yet to be resolved.

Here, we aimed to 1) determine which physiological processes 
are impacted as the plant loses function and which can be estimated 
through plant spectral reflectance (Fig. 1, O1), 2) identify which of 
these spectrally predicted physiological processes can detect oak wilt 
and drought before visual symptoms appear (Fig. 1, O2), and 3) D
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find spectral indices that are compatible with low-cost multi-spectral 
UAV sensors that capitalize on physiologically informative wave-
lengths to detect and differentiate oak wilt from drought (Fig. 1, 
O3). We hypothesized that i) processes of plant dysfunction such 
as dehydration, cellular death, and cell content leakage can be spec-
trally detected due to their impacts on tissue structure and chemistry, 
ii) physiological measurements related to cell death would detect 
oak wilt and drought before visible symptoms appear, and iii) trees 
infected with the oak wilt pathogen would show higher within- 
canopy physiological variability than droughted trees when observed 
through UAV spectral indices related to cell damage and death.

Results

Physiological Progression of Oak Wilt and Drought Stress. In all 
treatments of the potted sapling experiment, physiological state 
remained similar to the control group (C, Fig. 2 violin plots) values 
until visual symptoms appeared (Fig. 2, day 0 vertical line). Right 
before visible symptoms appeared, we observed slight increases in 
electrolyte leakage (EL, Fig. 2A) and in loss of rehydration capacity 
(LRC, Fig. 2F), as well as slight declines in relative and volumetric 
water content (RWC and VWC, Fig. 2 D and E) in all treatments. 
In the case of midday water potential (Fig. 2G), only drought 
(D) and drought combined with oak wilt (DxOW) showed slight 
declines before visible symptoms appeared. Maximum efficiency 
of photosystem II (Fv/Fm, Fig. 2C) showed the earliest decline of 
all physiological variables measured. However, for all variables, CI 
were too wide to ascertain previsual detection capacity. After visible 
symptoms appeared, D, OW, and DxOW treatments showed 
sharp increases in EL and LRC and sharp declines in RWC, VWC, 
and water potential (P-value range: 0.022 to <0.001). Importantly, 
there were no significant differences in physiological progression 
between D, OW, and DxOW treatments.

Spectral Reflectance Progression of Oak wilt and Drought 
Stress. In the potted sapling experiment, we observed increasingly 
significant shifts across several wavelength regions of the canopy 
spectra as oak wilt and drought stress visual symptoms increased 
in severity (Fig. 3 A and B and SI Appendix, Appendix S6). The 

first shifts in spectral reflectance appeared in canopies 33 d after 
imposing treatments. In OW trees, canopy spectral reflectance first 
increased at 1,400 to 1,500 nm within the short-wave infrared 
(SWIR) (P < 0.01). The red edge region declined at 700 to 750 nm 
at 48 d (P < 0.01). By day 62, nearly the full spectral range was 
different than controls except for the green region of the visible 
range (VIS), some areas of the red edge, and SWIR wavelengths 
around 1,600 nm. In D trees, canopy spectral reflectance first 
decreased at ca. 1,150 nm of the NIR (P < 0.01) and those detected 
in OW by day 33. After 48 d, significant wavelengths were found 
in the blue and red VIS regions, between 1,000 to 1,270 nm, 
1,400 to 1,500 nm, and 1,950 to 2,200 nm (P < 0.01). After 62 d, 
nearly the full spectral range was different like in the case of OW 
(P < 0.01). DxOW also manifested changes at 33 d; significant 
wavelengths were a combination of the first wavelengths detected 
in OW and D trees, plus a region at 1,600 to 1,750 nm (P < 0.01). 
By day 48, DxOW trees showed significant wavelengths across the 
whole spectral range (P < 0.01) similar in direction and magnitude 
to those observed in OW trees by day 62.

Shifts in leaf spectral reflectance lagged those of canopy reflec-
tance. Although the shape of the spectra was already changing by 
33 d, we did not observe significant differences until 62 d because 
we set our alpha threshold at 0.01. At 62 d, we observed increases 
in the VIS range, declines in reflectance across and beyond the 
VNIR range (750 to 1,300 nm), and increases at the SWIR range 
(P < 0.01) of the spectra (Fig. 3-IV-A). D leaves first showed 
increased reflectance at the red region of the VIS (P < 0.01) by 
day 33. The blue and the 750 nm regions increased and decreased 
(P < 0.01) respectively, and reflectance at the SWIR water bands 
increased (P < 0.01) by day 48. Nearly the full range of the spectra 
of D leaves was different than controls by day 62. DxOW leaves 
went from no difference from controls to suddenly being the most 
spectrally different, with nearly all regions of the spectra showing 
significant differences by day 62 (P < 0.01).

Predicting Physiology from Spectra. PLSR models based on leaf 
spectral reflectance predicted relative and volumetric water content 
(RMSEP = 11.47%, 10.76% respectively), loss of rehydration 

Fig. 1. Logic schematic of the experimental design, questions, and methodological approach. The panel on the left depicts treatment groups and methods of 
spectral imaging, both at the canopy and the leaf level. Each of the gray boxes indicates the approach taken to answer the three main objectives which are (O1) 
Predict physiology from spectra, (O2) detect oak wilt and drought from spectra before visual symptoms appear, and (O3) distinguish oak wilt from drought stress.
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capacity and electrolyte leakage (RMSEP = 11.98%, 13.09% 
respectively), water potential (RMSEP = 19.77%), and maximum 
efficiency of photosystem II (RMSEP = 16.16%) both when all 

trees were used and when controls were excluded (SI  Appendix, 
Appendix S7). When applied to data from the outdoor potted 
experiment not used to train models (cross-validation), measured 

Fig. 2. Progression of physiological symptoms in oak wilt (OW), drought (D), and drought plus oak wilt (DxOW) treatments. The violin plots in green indicate 
the median and range of physiological status observed in the control group (C in the x axis) across the duration of the experiment. The black vertical line and 
leaf icon at day 0 indicate the start of visual symptoms. Electrolyte leakage (A) increases before visual symptoms appear in the form of non-healthy leaves (i.e., 
wilted, brown edges, or dry), as indicated in the decline in healthy leaves (B). Fv/Fm (C), volumetric water content (D), and relative water content (E) decline before 
symptom appearance. Loss of rehydration capacity (F) increases, and water potential (G) declines before the start of symptoms. All panels show statistically 
significant effects of days since start of symptoms on the response variables, but we did not detect significant differences in slopes among treatments.
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vs predicted plots showed similar slopes among treatments (Fig. 4 A, 
C, E, and G) which indicated that physiological status was predicted 
with similar bias regardless of the type of stress. When models 
were independently validated with measurements from a natural 
population of red oaks inoculated with B. fagacearum at Cedar 
Creek, spectrally predicted VWC and Fv/Fm nicely tracked the 
measured values both in control and oak wilt diseased trees (Fig. 4 
B and D). VWC and Fv/Fm of the diseased trees diverged from 
controls (no overlap in CI) before visible symptoms appeared (day 
22 after inoculation) in both measured and spectra-predicted values. 
Spectra-predicted VWC and Fv/Fm also tracked a slight recovery 
in VWC and Fv/Fm that occurred after a rain pulse around day 70 
after inoculation. Based on the success of VWC and Fv/Fm spectral 
models to predict measured values at Cedar Creek, we decided to 
apply two other spectral models (LRC and EL) that showed good 
cross-validation performance to the Cedar Creek dataset. While we 
did not measure LRC and EL at Cedar Creek to validate predictions, 
spectrally predicted LRC and EL in these plants showed clearly 
distinct patterns between oak wilt diseased and control trees (Fig. 4 
F and H).

Distinguishing Oak Wilt from Drought Stress in Xylem and 
Canopies. Trees infected with B. fagacearum that showed no visual 
symptoms by the end of the experiment (asymptomatic) retained 
some of their xylem functional, but less than controls (P < 0.05), 
whereas symptomatic trees lost all their functional xylem (P < 0.001, 
and SI Appendix, Appendix S9). Xylem occluded by tyloses could 
not be removed by flushing, whereas embolisms caused by drought 
could be flushed (P < 0.05, Fig.  5C), differentiating hydraulic 
dysfunction caused by drought from that caused by oak wilt. 
Hydraulic dysfunction associated with oak wilt showed a spatial 
pattern typical of a pathogen that is carried in the transpiration 
stream from a point of infection (or artificial inoculation) toward 

contiguous sections of the xylem; whereas drought-affected trees 
showed no spatial pattern (P < 0.001, Fig. 5C). Trees subjected to 
both drought and oak wilt (DxOW) exhibited xylem occlusion 
levels intermediate to those of D and OW trees and were not 
significantly different from either group (P > 0.05, Fig. 5C and 
SI  Appendix, Appendix S9). These DxOW trees exhibited both 
contiguous and non-contiguous hydraulic dysfunction, covering 
the range of responses observed in both D and OW trees. However, 
their spatial pattern was statistically most similar to that of D trees.

The average canopy pixel value from the UAV sensor for the 
re-normalized difference vegetation index (RDVI), which uses key 
wavelengths identified by our spectrally predicted physiological 
models (SI Appendix, Appendix S7), declined in OW, D, and 
DxOW trees as drought and oak wilt progressed (Fig. 3 C–F, I-IV). 
However, the within-canopy SD in RDVI increased in OW trees 
relative to D trees as the disease progressed and visible symptoms 
appeared (P = 0.02, Fig. 5B).

Detecting Oak Wilt and Drought Stress Before Visible Symptoms 
Appear. Bayesian segmented regressions identified an inflection 
point corresponding to the day at which spectrally predicted 
physiology started to change in response to stress (Fig. 6A). Fv/
Fm had the highest previsual detection capacity, showing spectrally 
predicted Fv/Fm declines in D, OW, and DxOW treatments at 
about 11, 12, and 6 d (respectively), but up to 27, 24, and 12 d 
(respectively) before visible symptoms appeared (Fig.  6B and 
SI  Appendix, Appendix S10). LRC could also detect drought 
and oak wilt before visible symptoms appeared. On average, 
increases in LRC could be spectrally detected in D, OW, and 
DxOW treatments about 8, 6, and 5 d, but up to 15, 11, and 9 d 
(respectively), before visible symptoms appeared. Water potential, 
VWC, RWC, and EL could previsually detect D and DxOW stress 
within similar timeframes as LRC. However, in trees of the OW 

Fig. 3. Repeated measurements of leaf- (A), canopy- (B), and UAV-measured spectra (C–F) over the course of stress progression allowed identification of 
wavelengths indicative of oak wilt (OW) and drought (D) stress at different stages of physiological decline. The heterogenous physiological decline within canopies 
of oak wilt trees during early stages of infection can be clearly observed in the UAV-measured re-normalized difference vegetation index (RDVI) images at 48 d 
since the start of the experiment (black box in C III), but decline was already noticeable at 33 d (black box in C III). Note that 33 d corresponds to the date in 
which visible symptoms of stress appeared for the oak wilt–infected tree shown in the outlined box. Columns (A and B) show the difference in normalized 
reflectance between control and treated trees at each date (13, 33, 48, and 62 d) since the start of the experiment. Bolded line segments in columns (A and B) 
show wavelengths with significant (P < 0.01) changes over time.
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treatment, their detection threshold was not significantly different 
from the day of visible symptom appearance.

Discussion

A long-standing challenge in remote sensing of plant stress is to 
detect and differentiate stress types by causal factor early enough 
to improve efficacy of local site treatments for disease management. 

Our results show that leaf spectral reflectance can detect oak wilt 
and drought more than 1 wk before visual symptoms appear and 
can differentiate the two stressors. Accurately differentiating oak 
wilt symptoms from drought-induced stress requires coupling leaf 
spectra to the physiological processes and mechanisms underpin-
ning each causal factor to identify wavelengths associated with 
early physiological decline. We find that spatial patterns of spectral 
indices sensitive to oak wilt and drought can help differentiate 
these stresses using relatively low-cost multi-spectral UAV sensors. 
Our results highlight the importance of mechanistically linking 
characteristics derived from remote sensing to physiological pro-
cesses to improve monitoring of forest health.

Reflectance-Based Physiological Models Detect Oak Wilt and 
Drought. Physiological processes linked to photosynthesis, 
dehydration, and cell death can be predicted from leaf spectral 
reflectance. Declining turgor and stomatal closure are the first 
processes to occur in oak wilt and drought-stressed oak seedlings 
(13). In trees infected with B. fagacearum, these changes result 
from clogged conduits (Fig. 5C) (10). In drought-stressed trees, 
decreased turgor and closure of stomata occur due to decreasing 
water potentials triggered by water deficit (4). Prolonged 
stomatal closure eventually impacts chlorophyll concentrations, 
manifested in leaf spectra as an increase in reflectance at red and 
blue wavelengths (47). Increases in reflectance at red and blue 
wavelengths are among the first to occur in oak wilt and drought-
stressed trees (Fig. 3A and SI Appendix, Appendix S6) and are a 
strong predictor of physiological processes linked to photosynthesis 
such as maximum quantum efficiency of Photosystem II (Fv/Fm) 
(SI Appendix, Appendix S8). After photosynthetic inhibition and 
turgor loss, leaves continue to dehydrate and start to experience 
permanent and irreparable damage to cell walls due to cellular 
collapse (i.e., cytorrhysis, which causes loss of rehydration capacity) 
(42). Cellular contents leak through degraded membranes, and 
cells die (SI Appendix, Appendix S8). Dehydration, cytorrhysis, 
and cell leakage all increased leaf reflectance across wavelengths 
that are absorbed by water and decreased reflectance across 
wavelengths sensitive to changes in cell mesophyll structure and 
pigment content (SI Appendix, Appendies S6 and S8). Cytorrhysis 
and cell leakage are processes that occur nearly simultaneously due 
to dehydration (42). As such, they occur at similar times relative 
to the onset of visible symptoms for both oak wilt and drought 
(Fig. 2).

The reflectance-based models that we built to predict these 
physiological processes were trained in a controlled experimental 
setup with one species (Quercus rubra). Yet, they detected physi-
ological stress caused by oak wilt in the field despite the variability 
inherent to natural communities with mixed species—two red 
oak species (Q. rubra and Q. ellipsoidalis) in our case—and uneven 
ages (Fig. 4). Predicted vs measured values showed variability at 
intermediate values of the measured physiological range. This 
could occur because spectral reflectance is not a perfect predictor 
of physiological characteristics or due to within-leaf variability in 
physiology and spectra. Within-leaf variability is captured by the 
small field of view of the fiber optic but not by physiological 
measurements that are measured at the whole leaf level. Covering 
a wide range of physiological values during model training ensured 
that measured vs predicted slopes remained close to the 1:1 line 
and intermediate values could be accurately predicted. Accordingly, 
spectrally predicted physiology at the Cedar Creek experiment 
tracked measured physiology even at intermediate values of the 
measured range of the testing data (Fig. 4 B and D). We were also 
able to distinguish trees infected with B. fagacearum from healthy 
trees based on LRC and EL models despite having no physiological 

Fig. 4. Predictions of physiology from spectral reflectance using PLSR models. 
Measured vs. predicted plots (left) and validation plots (right) for volumetric 
water content (A, B), Fv/Fm (C, D), loss of recovery capacity (E, F), and electro-
lyte leakage (G, H). On the measured vs. predicted plots, the thin, gray line 
indicates a 1:1 fit. The black line indicates the overall model fit across treat-
ments. All other lines represent the overall model fit within each treatment 
and are colored according to their treatment (control=green, oak wilt=purple, 
drought=gold, drought X oak wilt=blue). On the validation plots, the models 
were validated using an external dataset from the Cedar Creek natural pop-
ulation field experiment. Circles indicate the measured values, and crosses 
indicate the predicted values. A leaf icon and black vertical line indicate the 
date of visual symptoms detected. An arrow indicates the date of a rain event 
that led to a recovery of function.
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observations for these variables in the field (Fig. 4 F and H). These 
results suggest that reflectance-based physiological models provide 
lower risk of faulty extrapolation and higher chance of success 
than models that do not have a physiological basis when applied 
to new locations, periods, or species. Our findings indicate that 
spectroscopic models of plant stress that are grounded in the phys-
iological mechanisms and processes that plants undergo during 
oak wilt disease progression and drought can produce general 
insights.

Oak Wilt and Drought Can Be Detected More Than a Week 
before Visual Symptoms Appear. While all spectrally predicted 
physiological processes were able to detect drought stress before 
visual symptoms appeared, only Fv/Fm and loss of rehydration 
capacity (LRC) could do so for oak wilt (Fig. 6). Fv/Fm and LRC 
can detect oak wilt and drought more than 1 wk before leaves 
exhibit visual symptoms. This is likely because they are associated 
with early signs of stress, such as photosynthetic declines and turgor 
loss (48, 49). While only two spectrally predicted physiological 
processes could detect oak wilt before visual symptoms appeared, 
all of them could detect oak wilt disease within 3 d after the first 
leaf showed visual symptoms in a tree (Fig. 6). Landscape detection 

of oak wilt by ground detection surveys (GDS) conducted by 
personnel trained to recognize visual crown symptoms and other 
site clues are labor intensive, slow, and based on advanced crown 
symptoms (e.g., >30% of crown affected) (10). Close examination 
of suspect trees by GDS is required to differentiate diseased and 
droughted trees. Aerial detection surveys monitor landscapes more 
quickly, but ground-truthing of suspect sites is also required if 
both droughted and diseased trees are present because they cannot 
be distinguished from the air. Management strategies can fail to 
contain oak wilt because the disease often has already spread via 
insect vectors to nearby trees by the time the symptomatic trees 
are correctly diagnosed and sites treated (10). Our results suggest 
that oak wilt and drought could be detected much earlier using 
spectral reflectance data from remote sensing platforms. Survey 
crews could monitor larger areas with fewer people and quickly 
respond with treatments before the pathogen has a chance to 
spread. Previsual detection via spectra could also improve methods 
aimed at stopping pathogen spread through inter-tree root grafts. 
For instance, previsual detection could improve delineation of 
outer perimeter lines of oak wilt centers and surrounding buffers 
which are currently based on experience or statistical models (50) 
and that sometimes miss asymptomatic but already infected trees. 

Fig. 5. Oak wilt–infected canopies are more physiologically heterogeneous than drought-stressed canopies (panel A). This heterogeneity can be spatially detected 
by measuring within-canopy variability using UAVs and spectral indexes associated with physiological decline, such as the re-normalized difference vegetation 
index (RDVI, panel B). The heterogeneity is caused by the spread of the oak wilt pathogen through the stem vascular system, blocking conduits and causing 
dysfunction in localized areas of the wood, as indicated by a lack of dye in areas of the stem cross sections while other areas remain functional (shown as red 
colored areas, panel C, not flushed). At early stages of infection, the localized dysfunction in the xylem leads to localized physiological decline in the canopies. 
This is because some branches and the leaves they support are connected to blocked vessels while most remain connected to functional ones. In contrast, 
drought reduces water flow through the vascular system as a function of conduit size because wide vessels are often more vulnerable to bubble formation and 
cavitation. Drought thus generates a non-localized pattern of loss in xylem function (yellow coloring shows the small number of functional xylem vessels under 
drought stress, and blue coloring shows the still smaller number of functional vessels under drought and oak wilt stress, panel C, not flushed). Drought-induced 
air bubbles can be flushed out with high-pressure dye-infused water while blockages from oak wilt cannot be flushed (panel C, flushed).
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Currently, UAVs equipped with RGB sensors are used to detect 
single trees exhibiting oak wilt symptoms in forest compartments 
in Menominee County, WI, USA, managed by Menominee Tribal 
Enterprises foresters. A rapid response treatment has been devised 
to prevent spread of the pathogen downward into the root systems 
and then to adjacent trees. The treatment involves making two 
stem girdling cuts 15 to 25 cm apart into the outer xylem of the 
lower main stem of a tree exhibiting incipient wilt and applying 
liquid herbicide to the fresh cuts. Low-cost multispectral UAVs 
like ours would maximize the time window during which these 
treatments are effective. In terms of drought, early detection can 
greatly improve our ability to forecast and manage forest health 
under future drier conditions and, for instance, take action to 
increase forest defenses against biotic agents or reduce fire risk 
resulting from higher flammability of droughted stems.

Distinguishing Oak Wilt from Drought Requires Combining 
Physiology and Spectral Reflectance. The leaf-level physiological 
processes that trees experience as they develop oak wilt and 
drought symptoms (Fig. 2) are similar because the causal agent is 
the same: a loss of hydraulic conductivity in the xylem (Fig. 5C). 
As such, leaf-level physiology alone cannot distinguish oak wilt 
from drought stress. However, how loss of hydraulic conductivity 
manifests spatially through the xylem differs between oak wilt and 
drought-stressed trees (Fig. 5C). Loss of hydraulic conductivity in 
trees infected with oak wilt results in a clustered spatial pattern of 
xylem dysfunction that does not occur in drought-stressed trees. It 
is therefore possible to distinguish between oak wilt and drought 
using xylem staining techniques, but this approach is impractical 
for large-scale assessments. Yet, the spatial differences in xylem 

dysfunction provide the causal physiological mechanism that 
allows differentiation of both stressors at larger scales. Because 
branches in the canopy are connected to different sets of conduits 
at the base of the stem, trees at early stages of oak wilt crown 
symptom development show photosynthetic decline, dehydration, 
and cell death only in the subset of branches connected to 
occluded xylem vessels (Fig.  3C). This pattern generates large 
variability in physiological status across the canopy as symptoms 
develop (Fig.  5B). By coupling the physiological processes to 
spectral reflectance data, we identified wavelengths sensitive to 
these processes and used them to select spectral indices observable 
with low-cost UAVs such as the RDVI index, shown to be among 
the most sensitive to oak wilt (14). The wavelengths 900 and 
690 nm used in this index are linked to photosynthetic activity 
and leaf structural integrity (51)—confirmed by our PLSR models 
(SI Appendix, Appendix S8)—which explains the sensitivity of 
this index. This trans-disciplinary approach enabled us to detect 
spatial variability in physiological status and to distinguish trees 
at early stages of oak wilt development from drought-stressed 
trees (Figs. 3 C and D and 5B). Our results show that it is critical 
to consider spatial patterns as part of a mechanistic approach at 
all scales (i.e., tissue, organ, and individual). Considering xylem, 
leaf, and canopy patterns together was essential for distinguishing 
oak wilt from drought. Spatial patterns are also important for 
detecting oak wilt at both tree and stand levels because it reduces 
misclassification and allows detection of oak wilt pockets (14). 
Because oak wilt manifests similarly across the extant range of red 
oaks (Quercus section Lobatae) (52), we are hopeful that both the 
patterns observed in this study and our approach will be broadly 
applicable.

Fig. 6. Left panel: Bayesian segmented regressions (Left panel) identified inflection points (black box) corresponding to the day in which spectrally predicted 
physiological decline (e.g., loss of rehydration capacity associated with cell damage) started. Day 0 of the x axis represents the day in which visual symptoms 
appeared. Negative and positive values correspond to days prior and after the day of symptom appearance, respectively. If the inflection point occurs before 
day 0, the spectrally predicted physiological process can detect stress before visual symptoms appear. Right panel: Inflection points for each spectrally predicted 
physiological process and stress type. Lines represent CI around the predicted onset of physiological symptoms. All spectrally predicted physiological processes 
detected drought stress or combined drought and oak wilt stress prior to the appearance of visual symptoms (i.e., CI do not overlap with day 0, vertical black 
line). However, only spectrally predicted loss of rehydration capacity and Fv/Fm (related to photosynthetic activity) detected stress associated with oak wilt 
before visual symptoms appeared. Loss of rehydration capacity detected oak wilt between 11 to 2 d before visual symptoms appeared (average of 7), while Fv/
Fm detected oak wilt between 26 to 1 d before visual symptoms appeared. Physiological changes associated with oak wilt did not always occur before visual 
symptoms appeared (CI overlap with the 0 d) but were still detectable as early as 3 d after visual symptoms appeared.
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Conclusions

Throughout the decades-long history of remote sensing, scientists 
have aspired to monitor plant stress from the skies with the click 
of a button (53)—but that day has been slow to arrive. One reason 
may be that remote sensing approaches frequently lack the mech-
anistic basis to be generalized across space, time, and biological 
systems (54). The field of plant ecophysiology has long claimed 
to provide a solid mechanistic foundation that could be used to 
monitor the severity of plant stress in a general way (55). However, 
collecting large-scale ecophysiological data at temporal and spatial 
resolution needed to monitor plant stress across landscapes is 
impractical. Our study shows that combining both disciplines, 
into what could be called spectral ecophysiology, provides the best 
of both worlds. In our case, it enabled early detection and differ-
entiation of the biotic and abiotic stressors that cause oak wilt and 
drought. Ecophysiology informs which plant processes should be 
predicted from remotely sensed spectral reflectance. Remote sens-
ing enables high-throughput, spatially explicit estimates of such 
processes. Spectrally predicted ecophysiology and spectral indices 
grounded in ecophysiology are tied to fundamental biology. They 
are therefore likely to generalize better than reflectance signals that 
are not connected to biological processes. We hope that our research 
motivates future studies to explore the linkages between ecophys-
iology and spectral reflectance; to discern what can—and can-
not—be measured, when, and in which plant systems.

Methods

Experimental Design. In the spring of 2019 and 2021, we conducted two 
experiments: 1) a field experiment with naturally regenerated red oak saplings 
artificially inoculated with B. fagacearum at the Cedar Creek Ecosystem Science 
Reserve (45.396 N, 93.183 W, SI Appendix, Appendix S1) and 2) an outdoor pot-
ted experiment with Quercus rubra in which we applied a drought treatment and 
an oak wilt treatment (artificially inoculated with the pathogen) in a full-factorial 
design outside the Plant Growth Facilities of the University of Minnesota St. Paul 
Campus (44.988 N, 93.177 W).

For the Cedar Creek experiment, we selected forty naturally growing Q. ellipsoidalis 
and Q. rubra saplings with fully developed leaves. We chose a mixture of species 
because they are difficult to differentiate as juveniles and freely introgress. Both spe-
cies are equally susceptible to oak wilt. Trees ranged from 63 to 240 cm tall with an 
average height of 134 cm, and basal diameters at groundline ranged from 1.2 to 
5.4 cm with an average diameter of 2.8 cm. On June 27th 2019, we inoculated half 
of the trees (OW treatment) with B. fagacearum introduced as 1 mL of a homogenized 
aqueous spore suspension (2.1 × 105 spores × mL−1) pipetted into a single freshly 
drilled hole (1-mm diameter × 4 cm in radial depth) placed 4 cm above the root 
collar. Sterile moist cotton was then placed over the wound and affixed to the stem 
with parafilm. The rest of the trees remained untreated as a control treatment. We 
tracked physiological and spectral changes in OW and C trees at 14, 25, 42, 62, and 
74 d after inoculation. At each sampling date, we randomly selected five OW trees 
along with their nearest five control trees. This sampling scheme minimized spatial 
variation unrelated to the treatments.

In the outdoor potted experiment at the Plant Growth Facilities, we planted 
100 bare-root saplings in pots. Trees ranged from 27 to 133 cm tall with an 
average height of 96 cm, and basal diameters calculated from stem perimeter at 
groundline ranged from 0.64 to 1.81 cm with an average diameter of 1.00 cm. 
On April 13 to 14, 2021, we replanted the dormant trees in 9.63L cone-shaped 
pots white-painted to prevent overheating of the root system and with a 2:1 
mix of potting soil and sand. Trees were placed outside where they subsequently 
flushed prior to application of treatments. On July 15th, we inoculated half of 
the trees with the same inoculum concentration used at Cedar Creek. A small 
bark flap was cut, ring of putty applied below the cut, an aqueous suspension 
of inoculum introduced, and the wound covered as previously described. Half 
of the B. fagacearum inoculated trees (OW) and half of the non-inoculated trees 
were covered with white cling film around the base to exclude rain and induce 
drought. Thus, we had four treatments in a full factorial design: control (C),  

drought (D), oak wilt (OW), and drought and oak wilt (DxOW). Treatments were 
randomly distributed, and trees were evenly spaced (ca. 0.5 m apart). We tracked 
physiological changes in five different, randomly selected OW, D, DxOW, and 
C trees after inoculation on a weekly basis. Additionally, full-range spectral 
reflectance (400 to 2,400 nm) at both leaf and canopy levels was measured 
in every tree on each of the sampling days. Finally, we tracked canopy visual 
appearance every 3 d to identify the date on which each tree first showed visible 
symptoms of stress.

Sampling Procedure. In both experiments, we assessed the canopy of each 
tree to record the proportion of leaves at each of four symptomatic stages to 
identify leaves at different symptomatic stages (green, drooping, and dis-
colored; drooping and brown edges; and entirely brown and dry). We selected 
representative leaves of each stage present in the target trees for physiological 
and spectral measurements (see below). This sampling approach was designed 
to ensure strong representation of the entire range of observed variation in 
spectra and physiology, which helps train robust spectral models. For each 
leaf type present, we chose a sun leaf and dark-acclimated it overnight using 
a light-blocking clip (Hansatech, PP Systems). The following day, we took the 
fluorescence in the morning and spectral measurements around midday in the 
selected leaves. We collected leaves and placed them in Ziploc bags containing 
a moist paper towel partially covered in aluminum foil to prevent desiccation 
without introducing external moisture into the leaf by contact with the towel 
(56). Leaves were then placed in a cooler and transported to the lab to measure 
their water status.

Chlorophyll Fluorescence, Leaf and Canopy Hyperspectral, and UAV 
Multispectral Reflectance. In the morning (9:00) of each sampling date 
and for both experiments, we measured Fv/Fm using a Hansatech chlorophyll 
fluorometer (PP Systems, Narborough, UK) under dark-acclimated conditions. 
Fv/Fm is a measure of maximum photosynthetic quantum efficiency under 
dark acclimated conditions and can be used to indicate leaf tissue vitality and 
stress (32, 57). Around midday (11:00 to 13:00), we measured full-range leaf 
spectral reflectance (400 to 2,400 nm) using a PSR+ 3500 instrument (Spectral 
Evolution, Haverhill, MA, USA) and a leaf clip, which covered a leaf surface area 
of ca. 1 cm2. We also measured canopy spectral reflectance 1 m above the canopy 
by replacing the fiber optic probe with a 4° field of view lens. Before measur-
ing each individual, we referenced light conditions using a Spectralon Diffuse 
Reflectance Standard placed directly under the fiber optic. We used R version 
3.5 (58) and the spectrolab package (59) to import, resample every 1 nm from 
400 to 2,400 nm, and normalize to a unit vector all raw spectra. Additionally, and 
for the outdoor potted experiment only, we flew an Unoccupied Aerial Vehicle 
(UAV) (DJI Inspire2) on days 13, 33, 48, and 62 of the experiment with a custom 
Sentera 6X multispectral camera developed in collaboration with Sentera (Saint 
Paul, MN). The camera measures reflectance at wavelengths 690 (±20) nm full 
width at half maximum, 720 (±10) nm, 760 (±10) nm, 900 (±20) nm, 970 
(±40) nm, and an RGB channel. These wavelengths were selected as important 
in ref. 14 given VNIR sensor constraints (400 to 990 nm). Digital numbers from 
the multispectral images were transformed to reflectance values by the empirical 
line method using reflectance values from known surfaces. We used QGIS (60) 
and the RGB images of the UAV to manually trace canopies of each tree avoiding 
empty spaces in each flight date and convert them to polygons. Polygons were 
used to extract reflectance at each wavelength from each pixel within a canopy. 
Last, we calculated the re-normalized difference vegetation index (RDVI) (51) 
as (R900-R690)/sqrt(R900+R690), which Sapes et al. (14) showed to be highly 
sensitive to oak wilt. For each flight, we estimated mean and SD RDVI within 
each tree canopy.

Water Relations. We harvested leaves and measured midday leaf water potential 
(i.e., xylem tension due to water deficit) in the lab using a pressure chamber (PMS 
Instrument Company, Corvallis, OR, USA) following methods in ref. 61. We used 
the same leaves to measure volumetric (VWC) and relative water content (RWC), 
and percent loss of rehydration capacity (LRC). For each sampled tree, an additional 
leaf of each type was collected to measure electrolyte leakage (EL). Declines in both 
VWC and RWC and increases in EL have been associated with mortality-inducing 
stress (34, 35, 43); LRC has been associated with irreversible turgor loss and leaf 
damage (49), which also contribute to plant stress and mortality. For the sake of 
space, we describe methods for these measurements in SI Appendix, Appendix S1.D
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Xylem Staining. At the end of the potted experiment, we destructively sampled 
stem segments 30 cm above the inoculation point to assess functional and dysfunc-
tional xylem area in a subset of trees of each treatment (9 C, 14 D, 14 OW, 22 DxOW) 
using the active xylem staining method (62) explained in SI Appendix, Appendix S1. 
The staining was done before and after flushing stems at high pressure to distinguish 
the area of xylem that was embolized from the area filled with tyloses. Conduits filled 
with tyloses due to oak wilt remained unstained after flushing. Because a subset 
of the OW trees were able to slow down the rate of within-tree colonization, we 
could split OW trees into symptomatic and asymptomatic. We used ImageJ (63) to 
measure the percent functional xylem area before flushing and the percent clogged 
xylem area after flushing. Additionally, we divided each cross-section into 16 sections 
and counted the number of contiguous obstructed xylem sections to quantify the 
degree of localized versus multiple xylem obstruction patterning.

Statistical Analyses.
Scaling from leaves to whole plant canopies. Both measured and spectrally pre-
dicted physiological values were scaled up to the whole plant level by calculating 
weighted averages according to the proportion of leaf types in the canopy. We per-
formed this upscaling to account for spatial variation in both physiology and spectral 
reflectance across leaves and ensure that intra-crown variation was considered.
Physiological and spectral progression of oak wilt and drought stress. In all 
treatments of the potted experiment, trees with larger stem basal perimeters devel-
oped visible symptoms of stress earlier (P < 0.001, SI Appendix, Appendix S3),  
likely due to higher transpiration rates. The effect of stem size on symptom 
development rates was highest in trees infected with oak wilt that remained 
well watered (OW treatment). As a result, we observed large variability in symptom 
development rates (SI Appendix, Appendix S3) and physiological decline within 
treatments. To isolate the influence of treatments rather than inter-individual vari-
ation in size, we represented time as a function of number of days since the start of 
visible symptoms (Fig. 2B). This approach also allowed us to assess physiological 
state before, and after visible symptoms appeared. To assess physiological differ-
ences among oak wilt, drought, and their combined stress, we built generalized 
(GLM) and linear (LM) models (64) with each physiological process (VWC, RWC, 
LRC, EL, water potential, and Fv/Fm) as response variables and the interaction 
between treatment and days since the start of visible symptom appearance as 
predictors. We used GLMs when response variables could not be transformed to 
meet LM assumptions. We also built an additional model with the proportion of 
healthy leaves as the response variable to assess whether treatments differed in 
the timing and rates of symptom development.

To assess whether spectra changed in response to stress, we explored the 
differences in leaf or canopy spectra in the potted experiment between control 
and treated trees for each day that we also measured canopy reflectance with the 
multispectral UAV (days 13, 33, 48, 62). As comparisons of reflectance at each 
measured wavelength would inflate chances of false positives, we only com-
pared a subset of wavelengths. Wavelengths were selected with a self-designed 
mathematical function (SI Appendix, Appendix S4) that used the difference in 
reflectance from one wavelength to the next to determine the number of wave-
lengths (i.e., nanometers) to skip. Thus, if two nearby wavelengths had similar 
reflectance, the second wavelength would be skipped to find a farther wavelength 
with less similar reflectance. The function also considered a minimum (5 nm) and 
maximum (40 nm) distance between candidate wavelengths to constrain the 
magnitude of the selective jumps. This procedure reduced the number of selected 
wavelengths from 2000 to 94 wavelengths while still representing the shape of a 
plant reflectance spectrum across the 400 to 2,400 nm range. To further reduce 
chances of false positives, we only considered differences between treatments 
to be significant at P-values lower than 0.01.
Spectral prediction of physiology. We built partial least square regression (PLSR) 
models (65) to test whether processes of plant dysfunction such as dehydra-
tion, cellular death, and cell content leakage could be detected from spectral 
reflectance data. Using the dataset from the outdoor potted experiment, we built 
models following a 100-iteration, 10-fold validation approach; each physiological 
variable (VWC, RWC, LRC, EL, water potential, Fv/Fm) was a response variable 
and all wavelengths resampled at 1 nm were predictors. For each physiological 
model, each iteration randomly divided the data into 10 groups and used 9 
groups to train a PLSR model. The iteration of that model was then tested against 
the remaining group and its performance was assessed based on Rms error of 

prediction in percentage (RMSEP), R2, slope, and bias. We optimized the number 
of components of the models based on RMSE. We assessed the overall capacity to 
predict a given physiological variable by calculating the median RMSEP and R2 
of the 100 iterations ran for each physiological model. Additionally, we extracted 
wavelength importance values based on Variable Importance in Projection (VIP, 
ref. 66) for each iteration for a given physiological model and calculated the over-
all importance of each wavelength as the median importance across all the iter-
ations. Finally, we validated each physiological model against the independent 
Cedar Creek experiment dataset. This experiment’s different location provides a 
useful setup to test whether spectral models are robust to differences among sites, 
experimental conditions, and causes of physiological stress. Each iteration within 
each physiological model was validated against the full Cedar Creek dataset. Then, 
we assessed the overall predictive accuracy of the models on the independent 
dataset by calculating the median RMSEP, R2, slope, and bias of all 100 iterations, 
as above. We considered physiological models with an RMSEP of 20% or less to 
be acceptable for predicting physiological processes.
Previsual detection of oak wilt and drought stress. Using the dataset from the 
outdoor potted experiment, we determined whether spectrally predicted physi-
ological processes could detect stress before visible symptom expression using 
Bayesian segmented regressions from the package mcp (67). These regressions 
identify inflection points (i.e., changes in status) and provide their location along 
the x-axis (days since visible symptom appearance) with CI around them. The 
response variables were the spectrally predicted physiological variables from PLSR 
models that showed RMSEP ≤20%, including VWC, RWC, LRC, EL, Fv/Fm, and WP. 
Because we measured leaf spectral reflectance in all trees at each sampling event, 
we could use our spectrally predicted physiological models to expand our phys-
iological observations from a few trees per day to all trees across the experiment 
at each time point. By doing so, we fully captured the existing variability and 
minimized uncertainty around the inflection point. Time was expressed in days 
since the start of visible symptom appearance; this allowed us to determine if 
changes in physiology were occurring before visible symptoms appeared (day 0).  
We used the default prior settings where priors are informed based on data 
properties (minimum, mean, and maximum values of x and y variables and 
existing variation), which ensured good parameter estimates. We iterated each 
model to achieve convergence between three chains by adjusting the “adapt” 
parameter until the Gelman–Rubin convergence metric (Rhat) was close to 1 (67).  
We extracted inflection points and their CI for each treatment and variable to 
assess which inflection points (i.e., day of onset of physiological decline) were 
significantly lower than 0 (day of visible symptom appearance).
Physiological and spectral differentiation of oak wilt and drought stress. To test 
whether physiological stress mechanisms differed between oak wilt and drought, 
we assessed differences in functional xylem patterns among treatments before and 
after flushing emboli at the end of the experiment. Additionally, we divided OW trees 
between visually symptomatic and asymptomatic to distinguish patterns of early 
and late oak wilt disease progression. For each of the three measures, we tested 
differences in percent of functional xylem before flushing, percent of occluded xylem 
after flushing, and number of contiguous occluded xylem sections after flushing 
among groups using Wilcoxon rank sum tests to account for non-normal variance 
between groups. To test the extent to which OW trees displayed higher within-
canopy physiological variability than D trees as they developed symptoms, we built 
linear models using within-canopy SD in RDVI as the response variable and the 
interaction between treatment and days since the start of symptom appearance as 
predictors. DxOW trees were not included in these models because our hypothesis 
was specifically targeted to differentiate drought from oak wilt symptoms.

Data, Materials, and Software Availability. Physiological, anatomical, and 
spectral records data have been deposited in DRUM (68).
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