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High CO, dampens then amplifies N-induced
diversityloss over 24 years
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M Check for updates

Risinglevels of atmospheric carbon dioxide (CO,) and nitrogen (N) deposition

affect plant communities in numerous ways' ™. Nitrogen deposition causes local
biodiversity loss globally”?™, but whether, and if so how, rising CO, concentrations
amplify or dampen those losses remains unclear and is almost entirely unstudied.

We addressed this knowledge gap with an open-air experiment in which 108 grassland
plots were grown for 24 years under different CO, and N regimes. We initially found
thatadding N reduced plant species richness less at elevated than at ambient CO,.
Over time, however, thisinteraction reversed, and elevated CO, amplified losses in
diversity fromenriched N, tripling reductions in species richness from N addition over
thelast eight years of the study. These interactions resulted from temporal changes in
the drivers of diversity, especially light availability, that were in turn driven by CO, and

Ninputs and associated changes in plant biomass. This mechanismis likely to be
similar in many grasslands, because additions of the plant resources CO,and N are
likely toincrease the abundance of the dominant species. If rising CO, generally
exacerbates the widespread negative impacts of N deposition on plant diversity, this
bodes poorly for the conservation of grassland biodiversity worldwide.

Rising levels of atmospheric CO, and N deposition are influencing
plant communities now and will continue to do so''°. Elevated levels of
Ndeposition occurin muchoftheworld, and although trends are geo-
graphically variable, average global N deposition rates are continuing
torise™. Thisis amajor concern for biodiversity because observational
and experimental studies indicate that this N pollution decreases the
richness of plant communities by as much as 20-30% across herba-
ceous ecosystems on multiple continents'> . Numerous studies have
shown that elevated levels of N availability cause these losses in local
species diversity by multiple mechanisms. These mechanisms mostly
involve competitive exclusion, but also reduced niche dimensionality
and changed ecological stoichiometry**2°_Essentially,increased N
allows a subset of species to grow faster and reduce the resources avail-
able to their neighbours, as well as reducing the number of resources
limiting plants, thereby decreasing the number of niches. By contrast,
there has been surprisingly little research about how rising CO, lev-
els will directly influence species diversity***2, The gradual rise in
well-mixed atmospheric CO, concentrations makes it extremely diffi-
culttoevaluateitsimpact from observations of vegetation change, and
there have been very few experimental manipulations of atmospheric
CO, at decadal timescales to address this question***%,

The effects of elevated CO, (eCO,) onlocal diversity might mirror or
differ fromthose of N deposition. Just as nutrient enrichment can drive
biodiversity loss by increasing biomass production and decreasing
light availability?*2¢, atmospheric CO, may similarly increase biomass
and drive biodiversity loss by favouring only the best competitors
for light. Alternatively, eCO, can alter biogeochemical cycling and

strengthen N limitation relative to the carbon supply?; ifimbalanced
stoichiometry results in greater niche dimensionality, this might
increase local diversity. Furthermore, atmospheric CO, differs from
soil resources, such as N, in ways that may influence its effects on diver-
sity. For example, although plants can outcompete one another by
depleting soil resources, CO, is well mixed in the atmosphere, making
it almost impossible for plants to outcompete one another by locally
depleting atmospheric CO,.

We wondered how plant diversity might respond to the combination
of eCO, and N deposition, which occur together in many regions of
the world. Many pairs of global changes are thought to synergistically
drive biodiversity loss, such that their combined effects are greater
than the sum of their individual effects®?. It remains unclear whether
eCO,and N enrichment non-additively drive biodiversity loss, because
relevant evidence is extremely scarce®>?. A10-year open-air grassland
experiment, called Biodiversity, CO,, and Nitrogen (BioCON), which
addedNat4 g m?2yr?, resultedinanaverageloss of species richness of
16% atambient CO,but 8% at eCO, (ref.23). The present study extends
BioCON by another 14 years, making it the longest study by more than
adecade to consider this question.

Here we report the results of 24 years of the BioCON experiment
and examine the underlying mechanisms. Surprisingly, the early (the
first 12 years) dampening of species loss from N addition by eCO,
shifted over time to amplify such losses in years 17-24. This reversal
was driven by associated changes in light availability. We documented
these responses using 108 plots, each 4 m?, that were planted in 1997
with either 9 (60 plots) or 16 (48 plots) perennial herbaceous species
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Table 1| Treatment effects on realized species richness
over time

numDF  denDF F-value P-value
Intercept 1 2,476 3,204.23 <0.0001
Planted diversity 1 96 380.85 <0.0001
N 1 96 4563 <0.0001
CO, 1 4 0.43 0.5481
Year of study 1 2,476 2,859.21  <0.0001
Planted diversityxN 1 96 1.37 0.2443
Planted diversityxCO, 1 96 0.23 0.6339
NxCO, 1 96 0 0.9527
Planted diversity xyear 1 2,476 375.23 <0.0001
Nxyear 1 2,476 0.07 0.7950
CO,xyear 1 2,476 144 0.2305
Planted diversityxNxCO, 1 96 07N 0.4020
Planted diversityxNxyear 1 2,476 35.8 <0.0001
Planted diversityxCO,xyear 1 2,476 2.34 01261
NxCO,xyear 1 2,476 331 <0.0001
Planted diversityxNxCO,xyear 1 2,476 1.4 0.2357

Mixed model output for the treatment effects of original planted species numbers (9 or
16 species; planted diversity), ambient versus enriched nitrogen, ambient versus elevated
CO,, and time (year) on realized species richness (the number of species observed in the
sampled portion of each plot). numDF and denDF indicate numerator and denominator
degrees of freedom, respectively.

and treated from 1998 to 2021 with all combinations of ambient CO,
and eCO, (with the addition of 180 pmol mol™ CO, delivered using a
free-air CO,-enrichment technique) and ambient N and enriched N
(with the addition of N at 4 g m2 yr)»?%3° Non-target species were
removed from plots, so the results reflect changesin the original pool
of planted species (Methods). We sampled at neighbourhood scales
(0.1-0.5m?), that is, scales at which plants in herbaceous communities
arelikely to interact with their neighbours® 2, The focus of our study
was the simplification of communities at such scales, rather than the
extinctions of rare speciesin the broader landscape. Some natural and
restored grasslands have been losing diversity over time**~¢, although
less so in those recovering following disturbance®?8, The diversity of
our experimentally assembled communities also declined with time,
including under ambient conditions. The effects of CO,and N treat-
mentwere therefore superimposed on atrajectory of declining species
richness (Methods). In the following sections, we sequentially do the
following: report the impact of treatments on diversity; highlight the
treatment-driven changes in resources that caused those changes in
diversity; identify the mechanisms by which changes inbiomass drove
changesinresources and thus diversity; examine the role of individual
species in these dynamics; and provide interpretations and implica-
tions of these findings.

Treatment effects on realized diversity

The changing effect of added nitrogen (+N) on neighbourhood species
richness over time at the contrasting CO, levelsisillustrated in Table1,
Fig.1and Extended Data Fig. 1. Across all years and both CO, levels,
+Ntended toreducerichness (Fig.1a,b). Atambient CO,, thisreduction
was largest initially (around 15%) and diminished thereafter (Fig. 1b).
Because richness declined inall treatments, and at both neighbourhood
and plot scales (Extended DataFig. 2), this decrease in the effect of +N
atambient CO, does not mean that realized richness increased over
time; rather, it declined at a slowing rate in this treatment combina-
tion. AteCO,, the decrease in richness from +N was smaller and shrank
faster than at ambient CO, for the first eight years of the study, after
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whichit reversed direction (Fig. 1b). Thus, although +N initially had a
less negative effect onrichnessin eCO, thanin ambient CO,, over time
this flipped (Fig. 1b,c). In the first eight years, +N reduced richness
by an average of 13% at ambient CO, and by only 5% at eCO,; that is,
eCO, eliminated more than half of the loss of richness from +N under
ambient CO,. During the last eight years (years 17-24), +N reduced
richness onaverage by 7% at ambient CO,and by 19% at eCO,, thus eCO,
nearly tripled the losses from +N during that later period. Statistically
supporting these patterns, in amixed-effects linear model there were
significant main effects of N enrichment on species richness, as well
asasignificantinteraction of year x CO, x N (Table 1). The plots with 9
and 16 species did not differ significantly in their CO, x N interaction
over time (Table1, P=0.24).

A measure of evenness, the Pielou corrected index* also showed
asignificant (P<0.0001) year x CO, x N interaction (Extended Data
Table1). Inall four combinations of CO,and N, evenness (the equity of
species’ relative abundances in sampled areas) increased for the first
seven years and then gradually decreased, especially in the eCO, and
+N treatment (Fig. 1d,e). +N caused evenness to decline much more
markedly over timein eCO,, suchthatevenness was around 18% lower in
eCO,inthelast eight years thanunder ambient CO, (Fig.1e).Inessence,
eCO, initially modestly dampened reductions of evenness from +N,
but with time that effect switched to a larger amplification of loss of
evenness (Fig. le,f).

We can also express the above results in terms of the eCO, effect,
instead of the +N effect. Doing so reveals that, at ambient N, eCO,
initially had modest negative effects on richness and evenness that
became positive with time, whereas at +N, eCO, increased diversity
initially but decreased it thereafter (Extended Data Fig. 3a,b). During
the last four years (years 21-24), eCO, increased richness by 5-10% at
ambient N, but decreased richness by 10-20% at +N. Thus, in the long
term, differences in N availability changed the direction of the eCO,
effects on speciesrichness.

Mechanisms driving observed interactions

Several factors influence richness and evenness in grasslands, often
through competition for resources such as light, water and nutri-
ents”?°?%, These resources may in turn be sensitive to enriched CO,
and N72°2¢ We tested whether changes in these resources influenced
richness and how it varies over time by individually adding light avail-
ability, soil volumetric water content, soil solution inorganic N concen-
tration or soil pHas a covariate to our full factorial experimental mixed
model. Light availability had a significantinteractive effect onrichness
with year x CO, x N (year x CO, x N x light, P= 0.007; Extended Data
Table 2), whereas none of the soil metrics did (P> 0.59). Moreover, of
these variables, only light availability was influenced by CO, x N treat-
ment (Fig. 2a-c) in a manner that varied across time (year x CO, x N,
P=0.0027; Extended Data Table 3). To be clear, light was not the only
environmental factor influencing diversity responses to CO, x N over
the 24 years.IneCO,, light and soil solution N concentration both influ-
enced howmuch +Nreducedrichness, and, inambient CO, treatment,
the +Nsuppression of richness was dependent onlight and interactions
of light, soil moisture and soil pH (Extended Data Tables 4 and 5). How-
ever, here we focus onlight for three reasons: light and its interactions
explained the most about the richnessresponse to +N (Extended Data
Table4); light was the only driver of richness that itself varied interac-
tively over time at contrasting CO, x N (Fig. 2, Extended Data Table 3);
and light was the only covariate that had achanging effect on richness
over time at contrasting CO, x N treatments.

The time period during which +N increased shading the most dif-
fered markedly across CO, levels. In the first four years, light avail-
ability under ambient CO, was roughly one-fifth less on average under
+N than under ambient N, with little difference thereafter (Fig. 2a).
By contrast, light availability under eCO, was higher under +N than
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Fig.1|Changeinspeciesdiversity under CO,andN. a, Realized species
richness (SR) inthe sampled area of the plot each year as a percentage of planted
richnessinthe entire plot for four treatment combinations; aCO,, aN,eCO,, and
+Nindicateambient CO,, ambientN, elevated CO,and enriched N, respectively.
b, Percentage difference in SR resulting from +N (compared with aN) at two CO,
levels. The difference under +Nwas calculated as: SRin+N -SRinaN x100/SRin
aNforeachlevel of CO,.c,eCO, mediation of richnessloss resulting from +N.
Thisisdescribed by the change inthe +N effect on SR under eCO, (compared
withaCO0,) and calculated as the difference between the +N effect on SR in
elevated and ambient CO, levels (that s, the difference between the dashed
andsolidlinesinb).d, Values of the species evenness metric Pielou corrected]
foralltreatment combinations. e, Differencein evenness caused by +N at

under ambient N annually from years 3-10 and then lower under +N
thanunder ambient N annually fromyears12-24; during the last seven
years of the study, light availability under eCO, was on average roughly
one-tenthless under +N than under ambient N (Fig. 2a). Thus, +N treat-
ment resulted in reduced light availability early in the experiment
under ambient CO, but not eCO,, whereas late in the experiment, +N
resultedinincreased shadingineCO,and in decreased shading under
ambient CO, (Fig. 2b).

Within and across CO, treatments, the effects of +N on light were
related to its effects on diversity. In both CO, treatments considered
separately, over the 24 years, the effect of +N on richness was correlated
with the effects of +N on light; in other words, when +N reduced light
the most, +N reduced richness the most (Extended Data Fig. 4a,e and
Extended Data Table 4). Moreover, the period (years 17-24) of amplified
shading from +N at eCO, (Fig. 2b,c) matched the period of amplified
diversity lossby +N at eCO, (Fig.1b,c). Inessence, eCO, modulation of
the +N effect on diversity tracked its modulation of the +N effect on
light; regression (Fig. 3) shows that the eCO, regulation of the effects
of +N on light explained half of the interannual variation in the eCO,
regulation of the effects of +N on both richness and evenness (R? > 0.49,
P<0.0001; Fig. 3). In other words, when eCO, amplified shading by

two CO, levels (calculated as the difference between aN and +N for each CO,
level).f, Change in the effect of +N on evenness under eCO, (calculated asinc).
Dampening and amplifying indicate adecrease orincrease, respectively, in
diversity loss from+Nresulting from treatment with eCO,. Theresults are
supported by linear mixed models (Table 1and Extended Data Fig.1), whichare
based onthe full dataset (108 plots over 24 years). For all figures, values are
averaged over 9-and 16-species plots (n =27 plots per unique treatment, or
108 plotsintotal), and for visualization purposes, locally estimated scatterplot
smoothing (LOESS) polynomial fits are shown when the patterns are nonlinear.
Thedashedlineat O representsnochangeinresponsetothe treatments, and
the shaded regionrepresents the 95% confidence interval.

added N, eCO, also increased the loss of diversity from added N. Fur-
thermore, amodel of the 24 years of eCO, regulation of the effects of
+Nonrichness was most strongly related to the eCO, modulation of the
effects of +N on light and soil N, with light being the most important
driver (Extended Data Table 5).

The dynamics of the effects of treatments on light were driven by
changesinbiomass and cascaded to affect species diversity. Over time
(Fig.2d), there were shiftsin plant biomass responses under CO,andN
treatments (year x CO, x N, P=0.05); +N consistently increased plant
biomass to agreater extent under elevated thanambient CO, during the
second half of the experiment, but not earlier. Asaresult, +N reduced
light availability more under eCO, than under ambient CO,in the second
half of the experiment (Fig. 2b). Light availability was generally lower
inplots with greater above-ground biomass (Fig. 2e), and the effects of
the eCO,and +N treatments on light were largely manifested by those
changesinbiomass. This contrasting and temporally varying effect of
+N on biomass, and thereby on light availability, at the different CO,
levels (Fig. 2) echoed the changing effects on richness (Fig. 1). In the
first decade of the study, eCO,dampened decreasesin light transmis-
sionin +N plots. This effect subsequently flipped to amplification by
eCO,of the effects of +N, because +N created shadier conditions under
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Fig.2|Changeinlightavailability under CO,andN. a, The three-year moving
average of average May-July percentage light availability beneath the plant
canopy for four treatment combinations. b, Annual difference in percentage
lightavailability for +N relative toaN at two CO, levels. ¢, Annual change in +N
percentage lightavailability under eCO, relative to aCO,. Data for band c were
calculatedinthe same way as Fig. 1d,e, respectively.d, The three-year moving
average of the total above-ground biomass for the four treatment combinations,
centred around the middle year. e, Relationship between the three-year moving

eCO,thanunderambient CO, inthelast decade of the study. Thus, the
changingresponse of diversity to CO, x N over time was driven, at least
in part, by the shifting interactive effect of CO, x N on biomass (Fig. 2)
and thus on light (Fig. 2 and Extended Data Table 3), a resource that
had astronginfluence onrichness and evenness (Fig. 3 and Extended
Data Table 2).

Theresponses of individual species can help to explain these results.
Some of those that cast more shade (such as Amorpha, Andropogon,
Lespedeza and Lupinus species) in monoculture during some or most
of the time periods (Methods) tended to be more dominant in mix-
tures, whether averaged across the entire experiment, examined early
(R*=0.26, P<0.0001; Fig. 4) versus late in the experiment (R*=0.42,
P<0.0001;Fig.4), orinevery year of the study. Thus, increased shad-
ingleadingtoreducedrichnessin certaintreatment combinations was
also associated with the increasing dominance of species that probably
reduced light availability to other species in mixtures. In particular,
Andropogon gerardii became the dominant species in mixtures over
time, and as its relative abundance increased, both shading and loss
of richness increased too (P < 0.0001).

Species that disappeared from specific combinations of CO, x N
treatments (Extended Data Fig. 5) show the complexity of changing
diversity in these plots. Species differed in whether, how and when
they were lost, potentially as a result of varying environmental filters
imposed by the different global change treatments. For example,
Amorphatended to disappear under +N at both CO, levels, whereas
at+N, Solidago was lost frequently under eCO, but much less so under
ambient CO,. Furthermore, the sensitivities of species and functional
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500 600

Above-ground biomass (g m™?)

average percentage light availability and above-ground biomass.Inbandc,
annual values are shown, not three-year moving averages. The dashed lines at
Orepresent no differenceinlightavailability in response to the treatments, and
theshadedregionrepresentsthe 95% confidence intervals. Three-year moving
averagesareshown fora,dand e toincrease data visibility, but all mixed models
used annual data. Theseresults are supported by alinear mixed model reported
inExtended Data Table 2 thatis based on the full dataset (108 plotsand 23 years).
Dataonlightavailability are not available for2020.

groups to global change treatments also varied with time, and this may
indirectly affect temporal patternsin diversity.

Interpretation and take-home messages

Insummary, losses of diversity from adding N became larger under eCO,
thanunder ambient CO,inthe second half of the 24-year study, because
thistreatment combination led to greater biomass and thus to greater
competition for light. Because of this heightened light competition, +N
drove more speciestolocal extinction under elevated thanambient CO,
inthe later stages of the experiment. The combination ofeCO,and +N
treatment resulted in 22% lower species richness in the last two years
of the study thanin the plots under completely ambient conditions.
Whether the changing interaction of CO,and N on species diversity
we observed is representative of what occurs elsewhere is uncertain,
for several reasons. First, there has been an almost complete lack of
previous experimental or observational datarelevant to this question,
so we have almost no evidence to compare our data with. Second,
our experiment chronicled the consequences of interactions among
planted communities of a pool of 16 native and naturalized grass and
forb species. Non-target species were removed from the plots, and
this could bias our assessment of the relative effects of CO,and N by
preventing colonization from species that could otherwise have been
present in control or treatment plots. However, these diverse com-
munities were relatively resistant to colonization each year (new col-
onizer plant biomass averaged about 1% of resident biomass), and
neither +N nor the CO, x Ninteraction (P> 0.05) influenced colonizer
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had lower richness and evenness than all other treatments, was the
most light-limited (Fig. 2), and thus would have been the least likely to
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ofgrassland speciesin this site are light-demanding and that their rich-
ness declines with shade?******, There is therefore no evidence that
removing non-target species had animpact on the observed shift over
time towards reduced diversity fromadded Nunder eCO,, and, based
on existing evidence, allowing non-target species to persist would
have been morelikely to amplify rather than dampen this trend. Third,
because N depositionblanketslandscapesinaratherinescapable man-
ner, and eCO, does so even more, the effects of treatments may have
been underestimated in our study if diversity in resource-enriched
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that in anon-experimental context would probably be further away.
Fourth, climate change associated with rising CO, could alter the way
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CO,and Ndepositioninteract to affect diversity, but whether and how
it will is currently unknown. Despite these limitations, this experi-
ment offers a unique opportunity to assess the long-term effects of
N deposition and eCO,, and provides a baseline for expectations in
natural systems. It should also motivate the development of theory
ontheinteractive effects of global changes.

In our study, the shifting dynamics we observed may have partly
depended onthe stage of ecosystem development, with the CO,ame-
lioration of N-induced species loss during the first decade reflecting
the response of a community in a transitional successional phase. By
contrast, if the greater-than-additive loss of richness through enhanced
resource competition that occurred under combined CO,and Nenrich-
ment during the second half of the study represents the response of
well-established grassland communities, this is of general concern for
intact communities. However, our results may be more likely to occur
inecosystemsinwhich N depositionand eCO, exacerbate light limita-
tion than in systems primarily limited by other factors.
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speciesinoneof the four CO, x Ncombinations averaged over the years shown
and averaged across 9-and 16-species plantings, over 12 years foraand over
11yearsforbbecauselight datawere notavailable for 2020. The shaded regions
around the trend lines represent 95% confidence intervals, and simple linear
models provided the R*and P-values using F-statistics based on sample sizes of
n=64(eachspeciesinall CO, x N combinations).
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That CO, concentrations will remain elevated over historical levels,
and will continue toincrease for several decades at least, if not for the
entire century, is not in dispute®, and these elevated concentrations
will affect vegetation everywhere on Earth. Levels of atmospheric
N deposition remain elevated over much of the globe, although the
trends and impacts of this are decreasing insome regions and increas-
ing in others™”. Our broad concerns about biodiversity changes,
including those resulting from habitat loss, change in fire regimes,
extirpation of historic large grazers, and climate change®*3¢*?, need
to be viewed in the context of rising CO, and varying N deposition,
which probably also have considerable effects in many ecosystems.
If rising CO, generally exacerbates the already substantial negative
effects of N deposition on established community-scale species rich-
ness? ™ over relevant ecological time scales, this bodes poorly for
biodiversity conservation, especially given the myriad other threats
tobiodiversity. Calls for biodiversity preservation and restoration are
already at fever pitch, and results such asthose shown here only add to
the chorus.
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Methods

Experimental design

The complete BioCON experiment includes 371 plots, each measur-
ing2m x 2 m, insix circular areas 20 min diameter called rings, and is
located at the Cedar Creek Ecosystem Science Reserve in Minnesota,
USA.The plots were established on secondary successional grassland
on a sandy outwash soil after removing the existing vegetation. The
BioCON projectincludes several overlapping and nested experiments.
The main biodiversity x CO, x N experiment (n = 296 plots) consisted
ofasplit-plotarrangement of treatments ina completely randomized
design. CO, treatment (ambient CO, or +180 pmol mol™ CO,) is the
whole-plot factor (ring scale) and is replicated three times in the six
rings. Each ring contains about 60 plots, and on the exterior bound-
ary along its circumference are some perforated vertical poles that
discharge either ambientair or CO,-enriched air during the day. The N
treatment (ambient or enriched with4 g m2yrN) wasasubplot factor
(plot scale) assigned randomly and replicated in half of the individual
plots in the six rings*?%**, Planted richness (1,4, 9 or 16 species) was a
subplot factor (plot scale) assigned randomly among plots in the six
rings?3%*_ All 16 species were planted individually in 8 monoculture
plots (2 per unique CO, and N treatment) and all together in 12 plots
per unique CO, and N treatment. There were 15 plots per unique CO,
and N treatment planted with either 4 or 9 species, with theindividual
speciesassignmentin each plotdrawn at random from the full pool of
16 species.

The present study focuses on 108 plots drawn from the main bio-
diversity x CO, x N experiment, all of which were originally planted
with 9 or 16 species and experimentally treated with the complete
factorial combination of CO, and N levels. Thus, each ring, contained
5and4 plots planted with 9 and 16 species, respectively, withambient
N treatment and another 5 and 4 plots planted with 9 and 16 species,
respectively, withenriched N treatment. Intotal, therefore, there were
15and12plots planted with 9 or 16 species, respectively, for each unique
combination of CO, and N treatment. Beginning in 2007, 2 of the 5
plots with 9 species at each N treatment level in each ring began to be
treated annually with a rainfall reduction, and in 2012, 2 of the 5 plots
with 9 species at each N treatment level in each ring (one of which had
rainfall reduction) began to be treated annually with warming treat-
ments*®. As we describe later in the Analyses section, we conducted
statistical analyses both removing plots that eventually had altered
rainfall and/or temperature treatments from the entire analyses and
also retaining all plots in the analyses. The results were similar for
analyses done in these two ways. We also tested whether rainfall and/
or temperature treatments influenced the CO, x N x year interaction
(thatis, testing for those four- or five-way interactions) using data from
2007-21onwards for rainfall treatments and 2012-21 onwards for tem-
perature. None of those four- or five-way interactions had significant
results (P> 0.05). Hence, responses of species richness to CO, x Nand
how thatchanged over time were notinfluenced by treatment-induced
variationinrainfall or temperature (that wasinany case balanced across
CO, x Ntreatments). Given the similar results for including or removing
plotstreated with rainfall and temperature, we used all the plotsin the
analyses presented here.

Thel6 species usedinthisstudy were all native or naturalized to the
Cedar Creek Ecosystem Science Reserve. They include four C4 grasses
(Andropogon gerardii, Bouteloua gracilis, Schizachyrium scoparium
and Sorghastrum nutans), four C3 grasses (Agropyron repens, Bromus
inermis, Koeleria cristata and Poa pratensis), four N-fixing legumes
(Amorpha canescens, Lespedeza capitata, Lupinus perennis and Peta-
lostemum villosum) and four non-N-fixing herbaceous species (Achil-
lea millefolium, Anemone cylindrica, Asclepias tuberosa and Solidago
rigida).Since the experimentbegan, A. repens has been renamed Elymus
repens and K. cristata has been renamed Koeleria macrantha. For con-
sistency with previous publications from this experiment, we continue

touse the previous name here. Each 16-species plot was plantedin 1997
with12 g m2of seed partitioned equally among the 16 species. For each
9-species plot, the plants were drawn at random from all 16 species,
with 12 g m™ of seed partitioned equally among the 9 species. All the
BioCON plots were weeded annually to remove species that were notin
theinitial planting, but the 9-and 16-species plots resisted invasion and
soneeded littleweeding. Enriched N treatments on unweeded grassland
plotselsewhere at Cedar Creek exhibited similar effects on speciesrich-
ness as those found in this study, indicating that the overall patterns
observed here are likely to be representative of the unmanipulated,
as well as the manipulated, assemblages. Figure 4 also includes data
from the 128 monoculture plots, which were compared (by averages
from species, CO, and N combinations) with species performance in
the 108 mixed-species plots that we focused on.

Beginning in 1998, the equivalent of 4 gm2yr' Nin the form of
NH,NO; was added to all the plots assigned to the enriched-N treat-
ment, inthree doses during the growing season (in May,June andJuly).
This Nadditionis similar to, or slightly larger than, the average annual
net N mineralization rate in similar secondary grasslands on these
soils. Beginning in 1998, a free-air CO,-enrichment system was used
during each growing season to maintain the CO, concentration at an
average of +180 pmol mol™in elevated treatments (three rings) during
all daylight hours from spring (early April) to autumn (late October to
mid-November) each year. The three ambient-CO, rings were treated
identically but without the additional CO,.

Species composition, richness, biomass and biogeochemistry

In eachyear (unless otherwise noted), plant species composition and
richness, above- and below-ground biomass, percentage soil mois-
ture, percentage light transmission, plant C and N, and soil solution
N concentration were assessed in every plot*?**, Soil solution N con-
centrations (total) were measured in each plot every year with four
cores2.5cmindiameter taken fromadepth of 0-20 cm duringearly to
mid-summer (typically late June). The cores were composited, sieved
(2 mm) and extracted with 1 MKCI. Extracts were analysed for NO;” and
NH," onan Alpkem auto-analyser (Ol Analytical). Percentage soil mois-
tureand light transmission were measured repeatedly throughout each
growing seasonin every plot. Light transmission was measured using an
80-sensor linear array, an AccuPARLP-80 (Decagon Devices). Each sen-
sor measured photosynthetic photon flux density inthe 400-700 nm
range. For each measurement, the sensors were arrayed above (one
measurement) and below (average of three measurements) the live
vegetation in each plot, with the latter divided by the former x100 to
obtain the percentage light transmission, a proxy for light availabil-
ity. Soil moisture was measured using time-domain reflectometry at
adepth of 0-20 cm. Average light transmission and percentage soil
moisture datameasured between1May and 31July each year were used
toassess the effects of treatments on these environmental variables, as
well as their relations with species richness. Presence and estimates of
percentage cover were made visually inJuly for each of the 16 species
in a permanent zone of 0.50 m? (50 cm x 100 cm) for each plot that
throughout the experiment was neither sampled for biomass nor had
soil cores removed. Above-ground biomass was collected elsewhere for
everyplotin early August by clipping astrip10 cm x 100 cmjust above
the soil surface; these locations rotated year by year among ten such
locationsineachplot. Allbiomass was collected, sorted to live material
and senesced litter, dried and weighed. Live material was considered
to be current plant biomass, sorted to species and used to assess spe-
cies richness and the relative abundance of each species (defined as
afraction of the total above-ground biomass). The two independent
estimates of species richness for each plot (from sorting of clipped
biomass and from visible estimates of presence and percentage cover,
doneindifferentareas of the plot) were averaged for each plotand year.
The average was used for three reasons: there was no a priori reason
to consider one measure to be more reliable than the other (they are
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well correlated anyway); because they were done in different parts of
the plot, this doubled the sampling intensity; and because each was
doneby different researchers withinand among years, the use of both
measurements together helped to smooth out any observer bias. In
cases for which clipped and sorted biomass were missing (in2005 and
2006 for all nine-species plots, and in2020 for low-rainfall nine-species
plots), we used only the percentage-cover data.

In2019,inaseparate study, species richness was assessed in 70 of the
9-and 16-species plots using the identical percentage-cover method
in324 grid cells of 10 cm x 10 cmin the central zone 0of 1.8 m x 1.8 m for
each 2 m x 2 m plot. The total aggregate number of observed species
amongall of the 324 sampled cellsin each plot was significantly related
for the 70 plots to the number of species originally planted (9 or 16)
and the observed neighbourhood richness (P < 0.001, R*= 0.73). We
applied the coefficients of this model to the neighbourhood richness
datain ambient plots for all years to obtain an estimate of total rich-
ness at almost whole-plot scale. We used this to compare changes over
timeinrichness at plot scale with other published studies of changing
grasslandrichness over time, which were usually at asimilar scale. This
isrelevantbecause, as observed in some grasslands® ¢, but not those
recovering from disturbance®, the diversity of our experimentally
assembled communities declined with time, including under ambient
conditions at both neighbourhood and plot scales (Extended Data
Fig.2).Richness measured at the neighbourhood scale was one-quarter
to one-halfless than the estimated available species pool at almost
whole-plot scale (3.2 m?), showing that neighbourhoods did not con-
tainthe full available species pool. Moreover, the fraction of that pool
observed at the neighbourhood scale declined over the course of the
experiment, indicating increased control of realized neighbourhood
richness by species interactions over time (Extended Data Fig. 2).

Gains in all treatments in neighbourhood species richness from
new species recruits would dampen the degree of reductioninspecies
richness over the 24 years, and if different combinations of CO,and N
availability led to different magnitudes of gains in species richness,
this could alter the contrasts in their interactive effects. Data on new
colonizers were acquired in 10 of the first 11 years of the study in each
plotby removing, drying and weighing all individuals of all species not
originally planted there. Because we seeded at arelatively high density
and had successfully established most species, the 9- and 16-species
mixtures were fully stocked and dense, and proved difficult to colonize
from the beginning of the experiment right through to the end. For
example, inmonocultures of all 16 species, new recruit biomass (of any
of the other 15 species or of species not included in the experiment)
averaged 14.2% (median) of total plot biomass. By contrast, these values
were much smallerin plots planted with 9 (1.2% median) and 16 (0.15%,
median) species, respectively. Thus, 9- and 16-species plantings were
on average much harder to invade than plots planted with the same
speciesinmonocultures and were generally resistant toinvasion. More
germane to this issue, in plots planted with 9 and 16 species, neither
main effects of CO, or Nnor their interaction had significant effects on
the biomass of non-target species. There was a CO, x year interaction
(P<0.001); plots under eCO, had decreasing proportions of non-focal
biomass over time, at both N treatment levels. If the numbers of new
species gains were associated with the magnitude of new-recruit bio-
mass, thelack of CO, x Ninteractions indicates that even modest gains
inspeciesrichness fromrecruitment that would have occurred without
species removals were unlikely to influence the observed effects and
interactions of CO, and N. It is possible that the above-ground and
below-ground biomass in these diverse plots was sufficiently dense,
regardless of CO, or N treatment, to prevent these treatments from
having a major impact on colonization. Furthermore, across the 24
years of the study, total biomass in 9-and 16-species plots grew larger
with time, indicating that resistance to colonization was unlikely to
have weakened (and may even have strengthened) in the second half of
the study during which no dataonremoved recruitment are available.

Moreover, the eCO,and +N treatment, which through light pre-emption
reduced species richness the most in the second half of the experiment
compared with all other treatment combinations, also tended toreduce
light the most. Thus, if new recruits had been allowed, this treatment
would have been the least likely to be successfully colonized, given that
the vast majority of local grassland species require alot of light. Overall,
these dataindicate that allowing new recruitment would probably not
have confounded our interpretation of diversity changing on the basis
of CO,and N over time in this system.

Analyses

Statistical analyses were done using Rv.4.2.2 (ref. 45) and JMP Prov.16.2.
Allthe statistics shown in this paper were derived from R analyses. To
test the effect on speciesrichness of adding Nand CO,, weranalinear
mixed effects model in the nlme package*® with species richness as the
dependent variable, N treatment (ambient and enriched), CO, treat-
ment (ambient and elevated), planted diversity (9 and 16), and experi-
mental year (24 years,1998-2021as a continuous linear variable) as the
fixed effects, and included plot nested within ring as random effects to
account for the split-plot design of the experiment. We also included
an ARI1 correlation structure to account for repeated sampling from
the plots over the 24-year period. Furthermore, to better understand
any environmental variables that may be influencing species richness,
we ran a second set of linear mixed models that included covariates
(light, soil solution N, moisture and pH), each individually, and their
full interactions with year, CO,, N and plant species richness. In these
models, only light had significant interactions with CO, x N x year,
so only this output is shown in Extended Data Table 2. The model
including light was more likely than the model without it, on the basis
of Akaike information criteria (AIC) values. We also ran models that
included the covariates together to evaluate the effects they had on
species-richness responsesto +N at the two CO, levels independently.
Soil solution N, light availability, soil water and soil pH were extremely
weakly related to one another, so collinearity of these variables was
notanissue. We transformed the dependent variable where it was use-
ful to make distributions closer to normal and to reduce issues with
heteroscedastic residual patterns. We also tested whether responses
of richness to treatments were influenced by interannual variation in
temperature or rainfall, or the gradual and steady decline in richness
among all plots, and found that none were significant.

Tobetter visualize the effects of the +N and eCO, treatments, Figs. 1
and 2show temporal changesin three parameters (richness, evenness
and light) for each of the treatments, change in those parameters result-
ing from +N treatments at the two CO, levels, and CO, modulation of
the +Neffect as the differencein +N effect at the two CO, levels. Because
the effects of treatments were sometimes nonlinear, we show the poly-
nomial fitin the figures as appropriate, generated using the LOESS
method withspan=1forasmoothfitinthe ggplot2 package* (LOESS is
anon-parametricfitting method that fits multiple local regressions to
provide asmooth curve*s). Decisions about whether to show anonlinear
fit were based on AIC, patterns of residuals, and overall fit. Finally, to
better visualize temporal trends in light and above-ground biomass,
whichshowalot of interannual variation, we present three-year moving
average values for temporal trends in Fig. 2a,d,e. All other temporal
trends are presented as yearly values.

To test whether responses to CO, x N in the 9-species plots were
influenced by extra rainfall or temperature treatments that began
in mid-experiment, we ran several tests. First, for the 14 years of
rainfall-removal treatments, amodel of only 9-species plots including
rainfall treatmentsfound ayear x CO, x Ninteractionfor realized species
richness (year x CO, x N, P<0.0001) and no evidence that the interac-
tion was modified by rainfall treatment (year x CO, x N x rainfall, not
significant), indicating that the CO, x Ninteraction, and howit changed
over time, was not altered by rainfall treatment. Similarly, for the nine
years of rainfall removal and temperature treatments, a model of just



9-species plots including rainfall and/or temperature found a year x
CO, x N interaction for realized species richness (year x CO, x N,
P<0.0001)andnoevidencethat theinteractionwas modified by temper-
atureor rainfall treatment or their interaction (year x CO, x N x rainfall,
not significant). We also ran the full mixed model of the experimental
treatments and theirimpacts onspeciesrichness, using both a full data-
setretaining all plots and a dataset removing all plots that had altered
rainfall and/or temperature treatments during all 24 years. The main
effects and interactions were similar in both analyses. Hence, we used
the complete data set because it provided more power for examining
and detecting the effects and interactions of CO,and N.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.
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Extended DataFig.2|Realized species richness measured at neighborhood
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Extended Data Table 1| Treatment effects on species evenness over time

numDF denDF F-value p-value
Intercept 1 2468 1396797 <.0001
Planted diversity 1 96 095 0.3311
N 1 96 11.85 0.0009
CO2 1 4 6.09 0.0691
Year 1 2468 142.36 <.0001
Planted diversity x N 1 96 228 0.1341
Planted diversity x CO2 1 96 0.09 0.7613
Nx CO2 1 96 469 0.0329
Planted diversity x Year 1 2468 517 0.0230
N x Year 1 2468 21.05 <.0001
CO2 x Year 1 2468 1.85 0.1743
Planted diversity x N x CO2 1 96 1.84 0.1786
Planted diversity x N x Year 1 2468 293 0.0872
Planted diversity x CO2 x Year 1 2468 0.00 0.9675
N x CO2 x Year 1 2468 11.24 0.0008
Planted diversity x N x CO2 x Year 1 2468 6.61 0.0102

Linear mixed model output for the treatment effects of original planted species numbers (9 or 16 species; “Planted Diversity”), ambient versus enriched nitrogen (N), ambient versus elevated
CO, treatment, and time (Year) on species evenness, Pielou’s corrected J.
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Extended Data Table 2 | Effect of light and its interactions on species richness

numDF denDF F-value p-value

Intercept 1 2352 3070.70 <.0001
Planted Diversity 1 96 391.51 <.0001
N 1 96 4424 <.0001
CO2 1 4 0.52 0.5121
Year 1 2352 2861.95 <.0001
Light 1 2352 0.59 0.4411
Planted Diversity x N 1 96 178 0.1849
Planted Diversity x CO2 1 96 0.12 0.7264
Nx CO2 1 96 0.09 0.7648
Planted Diversity x Year 1 2352 378.79 <.0001
N x Year 1 2352 0.21 0.6489
CO2x Year 1 2352 0.51 0.4762
Planted Diversity x Light 1 2352 17.00 <.0001
N x Light 1 2352 0.66 0.4181
CO2 x Light 1 2352 0.09 0.7583
Year x Light 1 2352 091 0.3405
Planted Diversity x N x CO2 1 96 0.40 0.5280
Planted Diversity x N x Year 1 2352 o020 <.0001
Planted Diversity x CO2 x Year 1 2352 193 0.1649
N x CO2 x Year 1 2352 29.34 <.0001
Planted Diversity x N x Light 1 2352 1.68 0.1952
Planted Diversity x CO2 x Light 1 2352 0.05 0.8284
N x CO2 x Light 1 2352 0.74 0.3895
Planted Diversity x Year x Light 1 2352 0.20 0.6539
N x Year x Light 1 2352 0.59 0.4440
CO2 x Year x Light 1 2352 0.03 0.8602
Planted Diversity x N x CO2 x Year 1 2352 0.19 0.6667
Planted Diversity x N x CO2 x Light 1 2352 0.06 0.8027
Planted Diversity x N x Year x Light 1 2352 240 0.1213
Planted Diversity x CO2 x Year x Light 1 2352 0.39 0.5311
N x CO2 x Year x Light 1 2352 13.78 0.0002
Planted Diversity x N x CO2 x Year x Light 1 2352 1.90 0.1681

Linear mixed model analyses testing the association of light and its interactions with the treatments- planted diversity (9 and 16 species), N (ambient and enriched), and CO, (ambient versus
elevated) with species richness. Some values for light availability were missing for the year 2020 and those values were excluded prior to the analysis.



Extended Data Table 3 | Effect of global change drivers on environmental covariates

a) Light numDF  denDF F-value  p-value
Intercept 1 2141 22517112  <.0001
Planted Diversity 1 96 26.0169 <0001
N 1 96 00699 0.7921
CO2 1 4 43017 0.1067
Year 1 2141 2171149  <.0001
Planted Diversity x N 1 96 5.1170 0.0259
Planted Diversity x CO2 1 96 04722  0.4936
Nx CO2 1 96 0.0921 0.7621
Planted Diversity x Year 1 2141 0.5875 0.4435
N x Year 1 2141 09060 0.3413
CO2 x Year 1 2141 6.4532 0.0111
Planted Diversity x N x CO2 1 96 02646 06082
Planted Diversity x N x Year 1 2141 0.8670 0.3519
Planted Diversity x CO2 x Year 1 2141 0.3503  0.5540
N x CO2 x Year 1 2141 90360 0.0027
Planted Diversity x N x CO2 x Year 1 2141 41371 0.0421
c) Moisture numDFE _ denDF F-value  p-value
Intercept 1 2141 12002128  <.0001
Planted Diversity 1 96 08114  0.3700
N 1 96 39727  0.0491
C02 1 4 02446 06469
Year 1 2141 6.7115  0.0096
Planted Diversity x N 1 96 0.8668  0.3542
Planted Diversity x CO2 1 96 18453 01775
Nx CO2 1 96 1.0778  0.3018
Planted Diversity x Year 1 2141 47009 0.0303
N x Year 1 2141 00127 09102
CO2 x Year 1 2141 08348 0.3610
Planted Diversity x N x CO2 1 96 06755 04132
Planted Diversity x N x Year 1 2141 0.2939  0.5878
Planted Diversity x CO2 x Year 1 2141 0.0269 0.8698
N x CO2 x Year 1 2141 0.0003 0.9872
Planted Diversity x N x CO2 x Year 1 2141 0.1863  0.6661

Results from linear mixed models testing the effect of CO, and N on different environmental covariates: a, light; b, soil solution N; ¢, moisture; and d, pH.

b) Soil Solution N numDF  denDF F-value p-value
Intercept 1 2141 10102.8140 <.0001
Planted Diversity 1 96 1.3640 0.2457
N 1 96  234.6900 <.0001
C0O2 1 4 5.0150 0.0887
Year 1 2141 299.9300 <.0001
Planted Diversity x N 1 96 48360 0.0303
Planted Diversity x CO2 1 96 0.5260 0.4701
NxCO2 1 96 3.0580 0.0835
Planted Diversity x Year 1 2141 0.7630 0.3824
N x Year 1 2141 20.0030 <.0001
CO2x Year 1 2141 3.1790 0.0747
Planted Diversity x N x CO2 1 96 0.1270 07227
Planted Diversity x N x Year 1 2141 0.6750 0.4115
Planted Diversity x CO2 x Year 1 2141 0.0950 0.7582
N x CO2 x Year 1 2141 1.4960 02215
Planted Diversity x N x CO2 x Year 1 2141 0.0030 0.9544
d) pH numDF  denDF F-value p-value
Intercept 1 2141 13367.1460 <.0001
Planted Diversity 1 96 8.9090 0.0036
N 1 96 12.5160 0.0006
C0O2 1 4 0.2890 06195
Year 1 2141 129.0470 <.0001
Planted Diversity x N 1 96 1.3510 0.2480
Planted Diversity x CO2 1 96 0.1420 0.7076
Nx CO2 1 96 0.0120 09129
Planted Diversity x Year 1 2141 3.7070 0.0543
N x Year 1 2141 44720 0.0346
CO2x Year 1 2141 0.0830 0.7737
Planted Diversity x N x CO2 1 96 0.0500 0.8241
Planted Diversity x N x Year 1 2141 0.0240 0.8759
Planted Diversity x CO2 x Year 1 2141 0.0010 0.9698
N x CO2 x Year 1 2141 0.2520 06155
Planted Diversity x N x CO2 x Year 1 2141 2.1040 0.1471
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Extended Data Table 4 | Effect of N and environmental covariates on species richness at ambient and elevated CO,

a) Ambient CO2 Df Sum Sq Mean Sq F-value p-value b) Elevated CO2 Df Sum Sq Mean Sq F-value p-value
Soil N | 10.08 10.08 0.8208 0.3999 Soil N 1 77.06 77.06 42763 0.0841
Moisture 1 29.08 29.08 2.3682 0.1748 Moisture 1 1.16 1.16 0.0644 0.8081
Light 1 50.82 50.82 41378 0.0882 Light 1 383.16 383.16 21.2630 0.0036
pH d 8.87 8.87 0.7221 0.4281 pH 1 42.46 42.46 2.3562 0.1757
Soil N x Moisture 1 9.96 9.96 0.8114 0.4024 Soil N x Moisture 1 24.31 24.31 1.3491 0.2895
Soil N x Light b 1.41 1.41 0.1150 0.7460 Soil N x Light 1 21.85 21.85 1.2125 0.3130
Soil N x pH 1 1.58 1.58 0.1286 0.7322 Soil N x pH 1 1.95 1.95 0.1080 0.7536
Moisture x Light 1 33.92 33.92 27623 0.1476 Moisture x Light 1 6.02 6.02 0.3340 0.5843
Moisture x pH 1 299 299 0.2432 0.6394 Moisture x pH 1 0.69 0.69 0.0383 0.8513
Light x pH i 1.29 1.29 0.1048 0.7571 Light x pH 1 9.36 9.36 0.5193 0.4982
Soil N x Moisture x Light 1 8.66 8.66 0.7050 0.4333 Soil N x Moisture x Light 1 33.46 33.46 1.8569 0.2219
Soil N x Moisture x pH 1 0.69 0.69 0.0560 0.8208 Soil N x Moisture x pH 1 0.25 0.25 0.0141 0.9094
Soil N x Light x pH i 48.62 48.62 3.9592 0.0938 Soil N x Light x pH 1 531 531 0.2949 0.6066
Moisture x Light x pH 1 0.97 097 0.0789 0.7882 Moisture x Light x pH 1 0.00 0.00 0.0002 0.9892
Residuals 6 73.69 12.28 Residuals 6 108.12 18.02

Linear model results for variation in effect of N on percent species richness loss as influenced by N effect on environmental covariates: soil N (log-transformed), moisture, light, pH and their
interactions under: a, ambient CO, and b, elevated CO, conditions.



Extended Data Table 5 | Influence of environmental covariates in CO, modulation of N effect on species richness

Df Sum Sq Mean Sq F-value p-value

ASoilN 1 235.34 235.34 6.5994 0.0501
AMoisture 1 217 217 0.0608 0.8151
AlLight 1 463.23 463.23 12.9899 0.0155
ApH 1 69.99 69.99 1.9628 0.2201
ASoil N x AMoisture 1 7417 7417 2.0800 0.2088
ASoil N x ALight 1 101.18 101.18 2.8372 0.1529
ASoil N x ApH 1 20.49 20.49 0.5746 0.4826
AMoisture x ALight 1 2.36 2.36 0.0661 0.8074
AMoisture x ApH 1 0.01 0.01 0.0003 0.9864
ALight x ApH 1 51.00 51.00 1.4301 0.2854
ASoil N x AMoisture x ALight 1 89.76 89.76 2.5170 0.1735
ASoil N x AMoisture x ApH 1 3.87 3.87 0.1086 0.7551
ASoil N x ALight x ApH 1 459 459 0.1286 0.7345
AMoisture x ALight x ApH 1 240 240 0.0674 0.8055
ASoil N x AMoisture x ALight x ApH 1 20.15 20.15 0.5650 0.4861
Residuals 5 178.30 35.66

Linear model results showing associations between eCO, modulation of +N effect (denoted as A) of percent species richness loss and A soil N, Alight, Amoisture, ApH and their interactions.
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design

Species-specific plant biomass data from clippings and cover data from visual observation were collected for most years of the
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Data on species-specific plant biomass and cover have been collected annually from all 108 plots from 1998-2021 (except for 9

species plots, species specific biomass data for 2005 and 2006, and a subset of plots in 2020, were missing due to resource
limitations and/or COVID restrictions).

The experiment spans 24 years at one site, Cedar Creek Ecosystem Science Reserve, Minnesota, USA
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Location

The experiment is situated in a North American prairie ecosystem (i.e., a temperate grassland)) with a mean annual temperature of
7C and mean annual rainfall of 800mm. The study is located on primarily sandy soils which are relatively poor in nitrogen.

Cedar Creek Ecosystem Science Reserve, Minnesota, USA
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Plants

Seed stocks Planted in 1997 from seeds collected in Minnesota by commercial native plant vendors

Novel plant genotypes ~ NA

Authentication NA
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