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Derived invariants from topological

Hochschild homology

Benjamin Antieau and Daniel Bragg

Abstract

We consider derived invariants of varieties in positive characteristic arising from topo-
logical Hochschild homology. Using theory developed by Ekedahl and Illusie–Raynaud
in their study of the slope spectral sequence, we examine the behavior under derived
equivalences of various p-adic quantities related to Hodge–Witt and crystalline coho-
mology groups, including slope numbers, domino numbers, and Hodge–Witt numbers.
As a consequence, we obtain restrictions on the Hodge numbers of derived equivalent
varieties, partially extending results of Popa–Schnell to positive characteristic.

1. Introduction

In this paper we study derived invariants of varieties in positive characteristic.

– Let X and Y be smooth proper k-schemes for some field k. We say that X and Y are
Fourier–Mukai equivalent, or FM-equivalent, if there is a complex P ∈ Db(X ×k Y ) such
that the induced functor ΦP : Db(X) → Db(Y ) is an equivalence, where Db(−) denotes
the dg category of bounded complexes of coherent sheaves. This is equivalent to asking
for Db(X) and Db(Y ) to be equivalent as k-linear dg categories (see [Toë07]). When X
and Y are smooth and projective, they are FM-equivalent if and only if there is a k-linear
triangulated equivalence Db(X) ' Db(Y ), by Orlov’s theorem (see [Huy06, Theorem 5.14]).

– Let h be a numerical or categorical invariant of smooth proper k-schemes. We say that h is
a derived invariant if whenever there is a Fourier–Mukai equivalence Db(X) ' Db(Y ), we
have h(X) = h(Y ).

The Hochschild homology groups HH∗(X/k) of a smooth proper variety X, which are finite-
dimensional vector spaces over k, are derived invariants. In characteristic zero and in character-
istic p for p > d = dimX, the Hochschild–Kostant–Rosenberg isomorphism [HKR62] relates the
Hochschild homology groups to Hodge cohomology groups H∗(X,Ω∗

X). We briefly review this
story in Section 2. This relationship has been extensively studied and plays a key role in our
understanding of derived categories of varieties, especially over the complex numbers.
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Derived invariants from THH

Now suppose that k is a perfect field of characteristic p > 0. With a smooth proper variety X
over k we may associate via topological methods certain p-adic analogs of Hochschild homology:
the topological Hochschild homology groups THH∗(X), as well as the related groups TR∗(X) and
TP∗(X). We recall this theory in Section 3. These are modules over W = W (k) (the ring of Witt
vectors of k) which are equipped with certain extra semilinear structures, and whose construction
moreover depends only on Db(X). Furthermore, by a result of Hesselholt [Hes96], the TR∗(X)
may be computed in terms of the Hodge–Witt cohomology groups H∗(WΩ∗

X); compare with
the classical relationship between Hochschild homology and Hodge cohomology. Our goal in this
paper is to study these objects as derived invariants of the variety X.

Our key technical results are obtained in Section 4, where we analyze the spectral sequence
connecting Hodge–Witt cohomology groups to TR∗(X) and study the extent to which the extra
structures of F , V , d are preserved. We also recall the theory of coherent R-modules introduced
by Illusie and Raynaud [IR83] in their study of the slope spectral sequence and explain how our
noncommutative structures fit into this framework.

For the remainder of the paper, we study consequences of this theory. In Section 5, we observe
the following fact, which extends results of Bragg–Lieblich [BL18]. Given a smooth proper d-
dimensional k-scheme, following Artin–Mazur [AM77], we let Φd

X be the functor on augmented
Artin local k-algebras defined by Φd

X(A) = ker
(
Hd(X ×Spec k SpecA,Gm)→ Hd(X,Gm)

)
.

Proposition 1.1. Let X and Y be Calabi–Yau d-folds over a perfect field k of positive charac-

teristic. If X and Y are FM-equivalent, then Φd
X
∼= Φd

Y . In particular, the heights of X and Y
are equal.

When d = 2, one calls Φ2
X the formal Brauer group of X. Proposition 1.1 implies in particular

that the height of a K3 surface is a derived invariant, which was already known.

We then study derived invariants of surfaces in more detail. We find another proof that the
Artin invariant is a derived invariant of supersingular K3 surfaces and recover a result of Tirabassi
on Enriques surfaces.

In Sections 5.2–5.4, we introduce various numerical p-adic invariants. Specializing to the case
of varieties of dimension d 6 3, we prove the following (for definitions, see the body of the paper).

Theorem 1.2. Let k be a perfect field of positive characteristic p, let W = W (k) be the ring of

p-typical Witt vectors over k, and let K = W
[
p−1

]
be the fraction field of W . The following are

derived invariants of smooth proper varieties of dimension d 6 3 over k:

(i) the slopes of Frobenius with multiplicity acting on the rational Hodge–Witt cohomology

groups Hj
(
WΩi

X

)
⊗W K and rational crystalline cohomology groups Hi(X/K),

(ii) the domino numbers T i,j ,

(iii) the Hodge–Witt numbers hi,jW ,

(iv) the Zeta function ζ(X) (if X is projective and defined over a finite field), and

(v) the Betti numbers bi = dimK Hi(X/K).

Parts (iv) and (v) were previously proved by Honigs in [Hon18], as well as by Achter, Casa-
laina–Martin, and Vial in [ACV19]. The methods of these papers also suffice to prove part (i).
Parts (ii) and (iii) are new, and their proof crucially relies on the topological derived invariants
discussed in this paper.

In Section 5.5, we consider the question of whether the Hodge numbers hi,j = dimk H
j
(
X,Ωi

X

)

are derived invariants. For context, we note that a conjecture of Orlov [Orl05] states that the
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rational Chow motive hX of a variety X is a derived invariant. In characteristic zero, the Hodge
numbers are determined by the rational Chow motive, and so Orlov’s conjecture implies that the
Hodge numbers are derived invariant. This consequence has been verified by Popa–Schnell [PS11]
for varieties of dimension d 6 3. However, as discussed in Section 5.5, their proof breaks in several
ways in positive characteristic. In characteristic p, the Hodge numbers are related (in a somewhat
subtle way) to Hodge–Witt cohomology groups. Using this relationship and Theorem 1.2, we
prove the following.

Theorem 1.3. Suppose that X and Y are FM-equivalent smooth proper varieties of dimension d
over a field k of positive characteristic.

(i) If d 6 2, then hi,j(X) = hi,j(Y ) for all i, j.

(ii) If d 6 3, then χ
(
Ωi
X

)
= χ

(
Ωi
Y

)
for all i.

We remark that our proof of this result uses topological Hochschild homology constructions
in a key way. Even in the case of surfaces, we do not know a direct proof using only Hochschild
homology.

Under a mild additional assumption, we are able to strengthen this result for d = 3. We
say that a smooth proper variety X over a perfect field k of positive characteristic is Mazur–
Ogus if the Hodge–de Rham spectral sequence for X degenerates at E1 and the crystalline
cohomology groups of X are torsion-free. The class of Mazur–Ogus schemes includes smooth
complete intersections, abelian varieties, and K3 surfaces.

Theorem 1.4. Suppose that X and Y are FM-equivalent smooth proper varieties of dimension

d = 3 over a perfect field k of positive characteristic p > 3. If X is Mazur–Ogus, then so is Y ,

and hi,j(X) = hi,j(Y ) for all i, j.

However, recent work [AB21] of Addington and the second-named author gives examples
of derived equivalent smooth projective 3-folds in characteristic 3 with different Hodge num-
bers. The appendix of Petrov to their paper shows that h0,3 is not a derived invariant in any
characteristic.

Finally, in Section 6, we compute TR and TP for twisted K3 surfaces and discuss how to
recover the fine structure of the Mukai lattice from TP.

Conventions. We will use many spectral sequences in this paper. They all converge for smooth
and proper schemes or dg categories, so we will say nothing more about convergence in our
discussion.

If X is a smooth proper scheme over k, we will write H∗(X/W ) for the crystalline cohomol-
ogy groups of X relative to W = W (k) and H∗(WΩ∗

X) = H∗(X,WΩ∗
X) for the Hodge–Witt

cohomology groups of X, as defined in [Ill79].

2. Hochschild homology

Let k be a commutative ring. For any k-linear dg category C, the Hochschild homology of C
over k is an object HH(C/k) ∈ D(k) which is equipped with an action of the circle S1. The
homology groups Hi(HH(C/k)) = HHi(C/k) are the Hochschild homology groups of C over k. For
a scheme X/k, we let HH(X/k) = HH(Perf(X)/k), where Perf(X) is the k-linear dg category
of perfect complexes on X. This is a noncommutative invariant of k-schemes, meaning in par-
ticular that if Perf(X) ' Perf(Y ), then HH(X/k) ' HH(Y/k) as complexes with S1-action. For
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some details on Hochschild homology and the constructions below from a classical perspective,
see [Lod98]; for details on Hochschild homology from a modern perspective, see [BMS19].

While the Hochschild homology of a smooth proper k-scheme X is a derived invariant, one
often computes it via the following spectral sequence, which is not.

Definition 2.1. The Hochschild–Kostant–Rosenberg (HKR) spectral sequence

Es,t
2 = Ht

(
X,Ωs

X

)
⇒ HHs−t(X/k) (1)

is the descent, or local-to-global, spectral sequence for Hochschild homology.1 Here, Ω∗
X = Ω∗

X/k
are the sheaves of de Rham forms relative to k.

The HKR spectral sequence is known to degenerate for smooth schemes in characteristic zero,
or more generally when dim(X)! is invertible in k by [Yek02]. It also degenerates in characteristic p
when dim(X) 6 p, by [AV20]. In general, when dim(X) > p, the HKR spectral sequence does
not degenerate; for examples, see [ABM21]. If (1) degenerates, then there exist noncanonical
isomorphisms

HHi(X/k) ∼=
⊕

j

Hj−i
(
X,Ωj

X

)

of k-vector spaces for each i. The above discussion implies the following well-known result.

Theorem 2.2. Let X and Y be FM-equivalent smooth proper schemes of dimension d over

a field k of characteristic p. If p = 0 or p > d, there exist isomorphisms
⊕

j

Hj−i
(
X,Ωj

X

)
∼=

⊕

j

Hj−i
(
Y,Ωj

Y

)
.

In particular, ∑

j

hj,j−i(X) =
∑

j

hj,j−i(Y )

for all i.

From Hochschild homology, one constructs several other noncommutative invariants, namely
the cyclic homology HC(C/k) = HH(C/k)hS1 obtained using the S1-homotopy orbits, the negative
cyclic homology HC−(C/k) = HH(C/k)hS

1

obtained using the S1-homotopy fixed points, and
the periodic cyclic homology HP(C/k) = HH(C/k)tS

1

obtained using the S1-Tate construction.
See [Lod98] for background. For a k-scheme X, each of these theories is computed by two spectral
sequences: a noncommutative spectral sequence and a de Rham spectral sequence. We review
the theory for HP(X/k); the other cases are similar.

Definition 2.3. By the definition of the Tate construction (see for example [NS18]), there is a
Tate spectral sequence

Es,t
2 = Ĥs

(
CP∞,HHt(X/k)

)
⇒ HPt−s(X/k) (2)

computing HP(X/k), with differentials dr of bidegree (r, r − 1), where Ĥ∗
(
CP∞,−

)
is a 2-pe-

riodic version of the cohomology of CP∞. When computing HP∗(X/k) via a mixed complex as
in [Lod98], this is the spectral sequence arising from the filtration by columns. This is often called
the noncommutative Hodge–de Rham spectral sequence.

1With this indexing, the differentials dr have bidegree (r−1, r); this convention has the advantage that the E2-page
of (1) agrees with the E1-page of the Hodge–de Rham spectral sequence (4).
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Definition 2.4. Let X be a smooth and proper k-scheme. There is a de Rham–HP spectral
sequence

Es,t
2 = Hs−t

dR (X/k)⇒ HP−s−t(X/k) , (3)

with differentials dr of bidegree (r, 1− r), where RΓdR(X/k) is the de Rham cohomology of X/k
and Hs−t

dR (X/k) = Hs−t(RΓdR(X/k)). This spectral sequence was constructed in [BMS19] in the
p-adically complete situation and in [Ant19] in general. In characteristic zero, it can easily be
extracted from [TV11].

Finally, for a smooth proper k-scheme, we have the Hodge–de Rham spectral sequence

Es,t
1 = Ht

(
X,Ωs

X/k

)
⇒ Hs+t

dR (X/k) , (4)

which has differentials dr of bidegree (r, 1− r). We summarize our situation in Figure 1.

HH∗(X/k)

H∗(X,Ω∗
X) HP∗(X/k)

H∗
dR(X/k)

TateHKR

Hodge–de Rham de Rham–HP

Figure 1. Four spectral sequences associated with a smooth proper scheme X over k

The Tate spectral sequence (2) itself, meaning the collection of pages and differentials, is a
derived invariant. However, there is no reason for the de Rham–HP spectral sequence (3) to be
a derived invariant, although the objects it computes are derived invariants.

Remark 2.5. Playing these spectral sequences off of each other can be profitable. For example,
if k is a field and if X/k is smooth and proper and if the HKR spectral sequence (1) degenerates
(for example, if dim(X) 6 p), then the degeneration of the Tate spectral sequence (2) implies
degeneration of the de Rham–HP spectral sequence (3) and the Hodge–de Rham spectral se-
quence (4). Similarly, if the HKR and Hodge–de Rham spectral sequences degenerate, then the
Tate spectral sequence degenerates if and only if the de Rham–HP spectral sequence degenerates.

If k is a perfect field, the Tate spectral sequence (2) computing HP degenerates when C
is smooth and proper over k, HHi(C/k) = 0 for i /∈ [−p, p], and C lifts to W2(k), by work of
Kaledin [Kal08, Kal17] (see also Mathew’s paper [Mat20]). Using this fact, we prove a theorem
which implies Hodge–de Rham degeneration in many cases.

Theorem 2.6. Let k be a perfect field of positive characteristic p. Let X and Y be smooth

proper schemes such that Db(X) ' Db(Y ) and dim(X) = dim(Y ) 6 p. If X lifts to W2(k), then
the Hodge–de Rham spectral sequence degenerates for Y .

Proof. The HKR spectral sequence (1) degenerates for both X and Y by [AV20]. Since X lifts
to W2(k), the Tate spectral sequence (2) degenerates for X. This tells us the total dimension
of HP(X/k) ' HP(Y/k) and hence implies that the Tate spectral sequence (2) degenerates
for Y as well. The existence of the convergent de Rham–HP spectral sequence (3) now implies
that the Hodge–de Rham spectral sequence (4) degenerates for Y , as one can see by counting
dimensions.
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The theorem is some evidence for a positive answer to the following question.

Question 2.7 (Lieblich). Let X and Y be FM-equivalent smooth proper varieties over a perfect
field k of positive characteristic p. If X lifts to characteristic zero (or lifts to W2(k), etc.), does
Y also lift?

3. Topological Hochschild homology

In this section, we introduce the main tools of this paper, which are topological analogs of the
invariants of the previous section. Here, topological means that one works relative to the sphere
spectrum S, which is the initial commutative ring (spectrum) in homotopy theory. With any
stable ∞-category or dg category C, one can associate a spectrum THH(C) = HH(C/S) with S1-
action. This is again a noncommutative invariant, and there are various analogs of the spectral
sequences of the previous section. We will especially be interested in the topological periodic cyclic
homology

TP(C) = THH(C)tS
1

.

Topological Hochschild homology THH(C) is equipped with an even richer structure than sim-
ply an S1-action: it is a cyclotomic spectrum, a notion introduced by Bökstedt–Hsiang–Mad-
sen [BHM93] to study algebraic K-theory and recently recast by Nikolaus and Scholze in [NS18].
We use the following definition, which is a slight alteration of the main definition of [NS18].

Definition 3.1. A p-typical cyclotomic spectrum is a spectrum X with an S1-action together
with an S1-equivariant map X → XtCp , called the cyclotomic Frobenius, where XtCp is equipped
with the S1-action coming from the isomorphism S1 ∼= S1/Cp. We let CycSpp denote the
stable ∞-category of p-typical cyclotomic spectra. If k is a commutative ring, then THH(k) is
a commutative algebra object of CycSpp and we let CycSpTHH(k) denote the stable∞-category
of THH(k)-modules in p-typical cyclotomic spectra.

The exact nature of a cyclotomic spectrum will not concern us much, except in the extraction
of homotopy objects with respect to a natural t-structure on cyclotomic spectra studied in [AN21].

Definition 3.2. A p-typical Cartier module is an abelian group M equipped with endomor-
phisms F and V such that FV = p on M . A Dieudonné module over a perfect field k is a W -
module (recall that W = W (k)) M equipped with endomorphisms F and V satisfying FV =
V F = p and which are compatible with the Witt vector Frobenius σ in the sense that

F (am) = σ(a)F (m) and V (σ(a)m) = aV (m)

for a ∈W and m ∈M . Note that we do not require that M be finitely generated or torsion-free.

A Cartier or Dieudonné moduleM is derived V-complete if the natural mapM→R limnM//V n

is an equivalence, where M//V n is the cofiber of V n : M →M in the derived category of abelian

groups. Let Ĉartp denote the abelian category of derived V -complete Cartier modules, and let

D̂ieuk denote the abelian category of derived V -complete Dieudonné modules over k.

The full subcategory of CycSpp of p-typical cyclotomic spectra X such that πiX = 0 for
i < 0 defines the connective part of a t-structure on CycSpp and similarly for CycSpTHH(k).
The main theorem of [AN21] identifies the heart.

Theorem 3.3 ([AN21]). Let k be a perfect field of positive characteristic p. There are equiva-

lences of abelian categories CycSp♥
p ' Ĉartp and CycSp♥

THH(k) ' D̂ieuk.
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With a p-typical cyclotomic spectrum X, we can associate a new spectrum TR(X) with S1-
action and with natural endomorphisms F and V making the homotopy groups of TR(X) into
Cartier modules. The construction of TR(X) was introduced by Hesselholt in [Hes96]. It is proven
in [AN21] that πiTR(X) ∼= πcyc

i (X) as Cartier modules under the equivalence of Theorem 3.3,
where πcyc

i (X) denotes the ith homotopy object ofX with respect to the t-structure on cyclotomic
spectra. In the case of a scheme X, we let TR(X) = TR(Perf(X)). If k is a perfect field of
positive characteristic p, then for any cyclotomic spectrum X ∈ CycSpTHH(k), the homotopy
groups TRi(X) = πiTR(X) are equipped with differentials

TRi(X)
d
−→ TRi+1(X)

coming from the S1-action making TR∗(X) into anR-module, whereR is the Cartier–Dieudonné–
Raynaud ring; see Section 4.

Example 3.4. When k is a perfect field of positive characteristic p, the object THH(k) is in the
heart CycSp♥

THH(k) and corresponds to the ring of Witt vectors W = W (k) with its Witt vec-

tor Frobenius and Vershiebung maps. In this language, the result is due to [AN21, Theorem 2],
but the underlying computation that π∗TR(k) ∼= W is due to Hesselholt–Madsen [HM97, Theo-
rem 5.5]. The fact should be compared to the fundamental computation of Bökstedt which says
that π∗THH(k) ∼= k[b], where |b| = 2 (see [Bök85] for the case k = Fp and [HM97, Corollary 5.5]
for the general case).

Let A be a smooth commutative k-algebra, where k is a perfect field of positive charac-
teristic p. The homotopy groups of THH(A) are computed in [Hes96], where it is shown that
π∗THH(A) ∼= Ω∗

A/k⊗kk[b], where |b| = 2 and Ωi
A/k lives in homological degree i. This is analogous

to the HKR isomorphism for Hochschild homology but more complicated thanks to Bökstedt’s
class b.

However, when working with TR instead, Hesselholt proved in [Hes96] an exact de Rham–
Witt analog of the HKR isomorphism: there is a graded isomorphism TR∗(A) ∼= WΩ∗

A compatible
with the F , V , and d operations, where WΩ•

A is the de Rham–Witt complex of A as studied
in [Ill79], and we write WΩ∗

A for the graded abelian group underlying the complex WΩ•
A.

Now, we can define the topological or crystalline analogs of the four spectral sequences from
Section 2.

Definition 3.5. Let X be a smooth proper scheme over a perfect field k of positive characteris-
tic p, and let C be a smooth proper dg category over k.

(i) Using Hesselholt’s local calculation, the descent spectral sequence for TR is

Es,t
2 = Ht

(
X,WΩs

X

)
⇒ TRs−t(X) . (5)

With this indexing, the differentials dr have bidegree (r−1, r). This is the topological analog
of (1).

(ii) There is a Tate spectral sequence

Es,t
2 = Ĥs

(
CP∞,TRt(C)

)
⇒ TPt−s(C) (6)

computing TP(C), with differentials dr of bidegree (r, r − 1). This is the TP analog of (2).
It was constructed in [AN21, Corollary 10]. See Figure 3. By analogy with (2), this spectral
sequence could be called the “noncommutative slope spectral sequence.”
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(iii) There is a crystalline–TP spectral sequence

Es,t
2 = Hs−t

crys(X/W )⇒ TP−s−t(X) , (7)

with differentials dr of bidegree (r, 1 − r). This is the topological analog of (3) and is due
to [BMS19].

(iv) The Hodge–de Rham spectral sequence (4) is replaced by the slope spectral sequence

Es,t
1 = Ht

(
X,WΩs

X

)
⇒ Hs+t

crys(X/W ) (8)

of [Ill79]; it has differentials dr of bidegree (r, 1− r).

Figure 2 gives the topological analog of Figure 1.

TR∗(X)

H∗(X,WΩ∗
X) TP∗(X)

H∗(X/W )

Tatedescent

slope crystalline–TP

Figure 2. Four spectral sequences associated with a smooth proper scheme X over a perfect
field k of positive characteristic

Remark 3.6. As in the case of Hochschild homology, the Tate spectral sequence is a noncommu-
tative invariant, but a priori the other three spectral sequences are not.

Remark 3.7. The W -modules appearing in Figure 2 are equipped with various extra structures,
and the interactions of these structures with the four spectral sequences will be critical in our
analysis. Specifically, we have the following:

(i) The groups H∗(WΩ∗
X) and TR∗(X) are Dieudonné modules, and the descent spectral se-

quence (5) takes place in the abelian category of derived V -complete Dieudonné modules.
In particular, the differentials on each page commute with F and V .

(ii) The groups H∗(X/K) = H∗(X/W ) ⊗W K and TP∗(X) ⊗W K are F -isocrystals (see De-
finition 5.9), and up to certain Tate twists, the crystalline–TP spectral sequence (7) is
compatible with these F -isocrystal structures.

(iii) The differentials in the slope (8) and Tate (6) spectral sequences do not commute with F
and V . Rather, they satisfy Relations 4.2.

We will need the following proposition.

Proposition 3.8. If X is smooth and proper over a perfect field of positive characteristic p,
then the four spectral sequences of Definition 3.5 degenerate rationally.

Proof. For the slope spectral sequence, this is due to Illusie–Raynaud [IR83]. For the crystalline–
TP spectral sequence, it is proved by Elmanto in [Elm18] using an argument of Scholze. The
other two cases follow by counting dimensions.

Remark 3.9. Suppose that C is a smooth proper dg category over a perfect field k, and suppose
that C lifts to a smooth proper dg category C̃ over W . Then, TP(C) is equivalent to HP

(
C̃/W

)

by an unpublished argument of Scholze. In this way, one might view TP as a noncommutative
version of crystalline cohomology. See also work of Petrov and Vologodsky [PV19].
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...
...

...

· · · TRt+1(C) 0 TRt+1(C) 0 TRt+1(C) · · ·

· · · TRt(C) 0 TRt(C) 0 TRt(C) · · ·

· · · TRt−1(C) 0 TRt−1(C) 0 TRt−1(C) · · ·

...
...

...

Figure 3. A portion of the E2-page of the Tate spectral sequence (6) computing TP. The Tate
spectral sequence is 2-periodic in the columns, and for C smooth and proper over a perfect field
of characteristic p it is bounded in the rows by [AN21, Corollary 5].

4. Compatibility of the descent and slope spectral sequences

For the remainder of the paper, we use the following notation.

Notation 4.1. Unless otherwise stated, k denotes a perfect field of characteristic p > 0. We write
W = W (k) for the ring of Witt vectors of k and K = W

[
p−1

]
for the field of fractions of W . We

let σ denote the Frobenius on W .

LetX be a smooth proper scheme over k. The Hodge–Witt cohomology groups H∗(WΩ∗
X) and

the homotopy groups TR∗(X) are modules overW and are equipped with σ-linear operators F , V ,
which satisfy the relations FV = V F = p. That is, they are Dieudonné modules in the sense
of Definition 3.2. The differentials Hj

(
WΩi

X

)
→ Hj

(
WΩi+1

X

)
and TRi(X) → TRi+1(X) do not

commute with F and V but instead satisfy Relations 4.2. Following Illusie–Raynaud [IR83], we
formalize these properties using the Cartier–Dieudonné–Raynaud algebra relative to k, which is
the graded ring

R = R0 ⊕R1 (9)

generated by W and by operations F and V in degree 0 and by d in degree 1, subject to
Relations 4.2.

Relations 4.2. The following relations hold in the Raynaud ring:

– FV = V F = p;

– Fa = σ(a)F , V σ(a) = aV , and da = ad for all a ∈W ;

– d2 = 0 and FdV = d.

Note that V F = p = FV and FdV = d imply the standard relations V d = pdV and
dF = pFd. In particular, R0 = Wσ[F, V ] is the usual Raynaud algebra. Note also that a (left)
module over R0 is the same thing as a Dieudonné module in the sense of Definition 3.2. We will
use the terms interchangeably. A graded left R-module is a complex

M• =
[
· · · →M i−1 d

−→M i d
−→M i+1 → · · ·

]

of W -modules whose terms are R0-modules and whose differential d satisfies FdV = d. We will
refer to such an object simply as an R-module.
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Remark 4.3. A similar structure is studied by Bhatt–Lurie–Mathew in [BLM21]. They introduce
the notion of a Dieudonné complex. A saturated Dieudonné complex in the sense of [BLM21,
Definition 2.2.1] is naturally an R-module for the Raynaud algebra relative to Fp by [BLM21,
Proposition 2.2.4].

If M is an R-module, we denote by M [n] the graded module with degree shifted by n so that
M [n]i = M i−n. Note that this notation is not consistent with that of [Eke86, Eke84], although
we will use the sign conventions from op. cit.

For each j, the differentials in the de Rham–Witt complex make the complex

Hj
(
WΩ•

X

) def
=

[
0→ Hj(WOX)

d
−→ Hj

(
WΩ1

X

) d
−→ Hj

(
WΩ2

X

) d
−→ · · ·

]
(10)

into an R-module, where Hj
(
WΩi

X

)
is placed in degree i (see [Ill79]).2 Similarly, by [AN21,

Section 6.2], the S1-action on TR(X) gives rise to a complex

TR•(X)
def
=

[
· · ·

d
−→ TRt−1(X)

d
−→ TRt(X)

d
−→ TRt+1(X)

d
−→ · · ·

]
, (11)

which is an R-module, where TRt(X) is placed in degree t.

The E1-page of the slope spectral sequence (8) is the same as the E2-page of the descent
spectral sequence (5) and is depicted in Figure 4.

...
...

...

· · · Ht+3
(
WΩs−1

X

)
Ht+3

(
WΩs

X

)
Ht+3

(
WΩs+1

X

)
· · ·

· · · Ht+2
(
WΩs−1

X

)
Ht+2

(
WΩs

X

)
Ht+2

(
WΩs+1

X

)
· · ·

· · · Ht+1
(
WΩs−1

X

)
Ht+1

(
WΩs

X

)
Ht+1

(
WΩs+1

X

)
· · ·

· · · Ht
(
WΩs−1

X

)
Ht

(
WΩs

X

)
Ht

(
WΩs+1

X

)
· · ·

...
...

...

Figure 4. The E1-page of the slope spectral sequence (8) (with horizontal differentials) and the
E2-page of the descent spectral sequence for TR (5) (with diagonal differentials)

Let F?TR(X) = RΓ(X, τ>?TR(OX)) be the filtration giving rise to the descent spectral
sequence. The differentials in the slope and descent spectral sequences are compatible in the
following sense.

Lemma 4.4. Let X be a smooth proper variety over a perfect field k of positive characteristic.

The de Rham–Witt differential Ht
(
WΩs

X

)
→ Ht

(
WΩs+1

X

)
is compatible with the descent spectral

sequence (5). Specifically,

2In [Eke84], this complex is denoted by RjΓ
(

X,WΩ•

X

)

(see Section 0, p. 190). We will avoid this notation due to
its potential for confusion with the jth hypercohomology of WΩ•

X .
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(i) there is a self-map Es,t
∗ → Es+1,t

∗ of degree (1, 0) of the descent spectral sequence which on

the E2-page is the de Rham–Witt differential;

(ii) for each r > 2, the resulting complexes

E•,t
r =

[
· · · → Es−1,t

r → Es,t
r → Es+1,t

r → · · ·
]

are naturally R-modules;

(iii) for each t ∈ Z, the differential dr in the descent spectral sequence is a map of R-modules

E•,t
r → E•,t+r

r [r − 1];

(iv) the filtration on TR∗(X) coming from the spectral sequence may be interpreted as a filtra-

tion by R-modules

0 = F
dim(X)+1
• ⊆ F

dim(X)
• ⊆ · · · ⊆ F 1

• ⊆ F 0
• = TR•(X) ,

where

F t
i = im

(
πiF

i+tTR(X)→ TRi(X)
)

with isomorphisms

F t
•/F

t+1
•
∼= E•,t

∞ [t] .

Note that for each i, the filtration on TRi(X) induced by the F t
i is a shift of the usual

filtration coming from the descent spectral sequence.

Proof. Consider the sheaf TR(OX) of spectra with S1-action on the Zariski site of X and the fil-
tration F?TR(OX) = τ>?TR(OX) arising from the Postnikov tower in sheaves of spectra with S1-
action. The graded piece grtTR(OX) is equivalent to WΩt

X [t]. Taking global sections, we obtain a
filtration F?TR(X) = F?RΓ(X,TR(OX)) with graded pieces grtTR(X) = RΓ(X,WΩt

X)[t]. The
descent spectral sequence is by definition the spectral sequence of this filtration (with a commonly
used reindexing so that it begins with the E2-page). Now, consider the S1-action on TR(OX).
This induces a map TR(OX)→ TR(OX)[−1] which automatically respects the filtration since it
is just the canonical Postnikov filtration. In particular, this means that TR(X) → TR(X)[−1]
induces a filtered map

F?TR(X)→ F?+1TR(X)[−1] .

It follows that there is a map of spectral sequences associated with the two filtrations. But the
spectral sequence coming from F?+1TR(X)[−1] is just a regrading of spectral sequence com-
ing from F?TR(X). In particular, we can view the differential as a self-map of the spectral
sequence (5) of degree (1, 0). On the graded pieces of the filtrations, we get maps

RΓ
(
X,WΩt

X

)
[t]→ RΓ

(
X,WΩt+1

X

)
[t] .

Hesselholt checks in [Hes96, Theorem C] that this map is induced by the de Rham–Witt differ-
ential WΩt

X → WΩt+1
X . In particular, on the E2-page, we see the de Rham–Witt differential.

This proves part (i).

We have already remarked that the spectral sequence (5) takes places in the abelian category
of Dieudonné modules; in other words, the differentials in the descent spectral sequence commute
with F and V . But, by part (i), the differentials in the descent spectral sequence also commute
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with the de Rham–Witt differential d in the sense that for all t and r > 2, the diagram

Es,t
r

//

��

Es+1,t
r

��

Es+r−1,t+r
r

// Es+r,t+r
r

commutes. Now, parts (ii) and (iii) follow by induction, where the base case is the R-module (10).

Finally, to prove part (iv), it is enough to note that the filtered map d : F?TR(X) →
F?+1TR(X)[−1] implies that the inclusion F t

• ⊆ TR•(X) is compatible with the differential.
Since it is also compatible with F and V and since TR•(X) is an R-module, it follows that F t

•

is an R-submodule. This completes the proof.

To investigate the fine structure of the Hodge–Witt cohomology groups, Illusie and Ray-
naud [IR83] introduced a certain subcategory of the category of R-modules, which we briefly
review. Forgetting the F and V operations, an R-module gives rise to a complex of W -modules
with cohomology groups H∗(M). This complex comes equipped with a canonical decreasing
(V + dV )-filtration given by FilnM i = V nM i + dV nM i−1 ⊆ M i. We say that M is complete
if each M i is complete and separated for the (V + dV )-topology. We say that a complete R-
module M is profinite if M i/FilnM i has finite length as a W (k)-module for each i and n. An
R-module M is coherent if it is bounded (that is, M i = 0 for |i| sufficiently large), profinite, and
Hi(M) is a finitely generated W -module for all i (see [IR83, Théorème I.3.8 et Définition I.3.9]).

Illusie and Raynaud showed in [IR83, Théorème II.2.2] that the Hodge–Witt complex
Hj

(
WΩ•

X

)
is coherent for each j.3 In the derived setting, we consider the R-module TR•(X)

from (11).

Proposition 4.5. If X is a smooth proper k-scheme, then TR•(X) is a coherent R-module.

Proof. As recorded in [Eke84, Section 0, p. 191], the category of coherent R-modules is closed
under kernels, cokernels, and extensions in the category of all R-modules. As remarked above,
the Hodge–Witt complex Hj

(
WΩ•

X

)
is coherent for each j. It follows from the compatibility of

Lemma 4.4 that the R-modules E•,t
r appearing as the rows of the pages in the descent spectral

sequence for X are coherent for each r > 2. The descent spectral sequence degenerates at
some finite stage for degree reasons, so the E•,t

∞ are also coherent. But TR•(X) admits a finite
filtration by R-submodules whose successive quotients are isomorphic to the E•,t

∞ by Lemma 4.4.
The category of coherent R-modules is closed under extensions, so it follows inductively that
each piece of the filtration is coherent. In particular, TR•(X) is coherent, as desired.

Using results of Illusie–Raynaud and Ekedahl, we obtain the following consequences for the
structure of the R-module TR•(X).

Proposition 4.6. IfX is a smooth proper k-scheme of dimension d over a perfect field of positive

characteristic, then for each i > d− 2,

(i) TRi(X) is finitely generated over W , and

(ii) the differential d : TRi−1(X)→ TRi(X) vanishes.

3Note that this implies that while some Hj
(

WΩi
X

)

might be non-finitely generated as a W -module, the terms
appearing in the E2-page of the slope spectral sequence (8) are all finitely generated W -modules.
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Proof. As explained in [Ill83, Section 3.1], the domino numbers T i,j(X) of X are zero if j 6 1
or i > d − 1, and therefore Hj

(
WΩi

X

)
is finitely generated over W if j 6 1 or i = d (we review

the definition of the domino numbers in Section 5.3). The descent spectral sequence then gives
claim (i). Claim (ii) then follows from Proposition 4.5 and Lemma 4.7.

Lemma 4.7. Let M• be a coherent R-module. For each i, the following are equivalent:

(i) The module M i is finitely generated over W .

(ii) The differentials M i−1 →M i and M i →M i+1 vanish.

Proof. That part (ii) implies part (i) follows from the definition of coherence. For the converse,
see [IR83, Corollaires II.3.8 et II.3.9] for the case of the de Rham–Witt complex and [IR83,
Section II.3.1(f)] for a general coherent R-module.

5. Derived invariants of varieties

Let X be a smooth proper variety over k of dimension d. By construction, the Dieudonné modules
TR∗(X) together with their differentials are derived invariants of X. Our goal in the following
sections is to relate their structure to that of the crystalline and Hodge–Witt cohomology groups
of X. Our main tool is the descent spectral sequence (5), which relates the TR∗(X) to the
Hodge–Witt cohomology groups H∗(WΩ∗

X) of X.

We begin with the observation that the descent spectral sequence induces natural isomor-
phisms

TR−d(X) ∼= Hd(WOX) and TRd(X) ∼= H0
(
WΩd

X

)
.

It follows that the Dieudonné modules Hd(WOX) and H0
(
WΩd

X

)
are derived invariants. We

record a few easy consequences of this. Recall that ifX is a d-fold such that h0,d−1 = Hd−1(X,OX)
= 0, then Artin–Mazur’s functor Φd(X,Gm) is a smooth formal group of dimension h0,d (see
[AM77, Corollary 4.2 and further]). Furthermore, by [AM77, Corollary 4.3], the Dieudonné mod-
ule of Φd(X,Gm) is Hd(WOX).

Theorem 5.1. If X and Y are derived equivalent Calabi–Yau d-folds, then Φd(X,Gm) ∼=
Φd(Y,Gm). In particular, the heights of the formal groups of X and Y are the same.

In the case of K3 surfaces over an algebraically closed field, this is well known, being an
easy consequence of the derived invariance of the rational Mukai crystal H̃(X/K) introduced in
[LO15, Section 2.2].

Remark 5.2. In fact, the formal group Φd(X,Gm) is also a twisted derived invariant. Indeed, if
α ∈ Br(X), then TR−d(X,α) ∼= Hd(WOX) as well.

Example 5.3. Theorem 5.1 is especially interesting in light of Yobuko’s result [Yob19] which says
that any finite-height Calabi–Yau variety lifts to W2(k). We see that if X and Y are derived
equivalent Calabi–Yau varieties and if X has finite height, then so does Y and they both lift
to W2(k). This gives some cases in which Question 2.7 has a positive answer.

The relationship between the remaining Hodge–Witt cohomology groups and the TR∗(X) is
subtle in general. There are several difficulties here: First, there may be nontrivial differentials
in the descent spectral sequence, which need to be understood to relate the Hodge–Witt coho-
mology groups to the E∞-page. Second, the E∞-page only determines the graded pieces of the
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induced filtration on TR•(X). Unlike in the case of Hochschild homology, this is not enough to
determine TR•(X) up to isomorphism, as there are nontrivial extensions in the category of R-
modules. Finally, as in the case of Hochschild homology, to compute the E∞-page from TR•(X)
one needs the additional data of the filtration on TR•(X), which is not a derived invariant.

In the remainder of this section, we will attempt to overcome these obstacles in various
situations. We begin in Section 5.1 by analyzing the case of surfaces in detail. Here, the situation
is sufficiently restricted to allows us to (almost) prove that the entire first page of the slope
spectral sequence is a derived invariant.

We then discuss the groups TR∗(X) up to isogeny, that is, after inverting p. This is the
classical theory of slopes. A major simplification occurs here, in that all of the relevant spectral
sequences degenerate after inverting p, by Proposition 3.8. The resulting analysis follows the
well-established patterns involved in extracting derived invariants from Hochschild homology
(see also Remark 5.20).

We then study the torsion in the Hodge–Witt cohomology, which contains information lost
upon inverting p. We focus on the dominoes associated with differentials on the first page of
the slope spectral sequence. These encode in an elegant way the infinitely generated p-torsion
in the Hodge–Witt cohomology groups, which is present in many interesting (and geometrically
well-behaved) examples, such as certain K3 surfaces and abelian varieties. Here we introduce new
nonclassical derived invariants, defined using the differentials in the Tate spectral sequence (6).
We then discuss Hodge–Witt numbers, which combine the information from the slopes of isocrys-
tals and the domino numbers.

We finally apply these results to study the derived invariance of Hodge numbers in positive
characteristic. We note that in order to obtain information on the Hodge numbers from Hodge–
Witt cohomology, it is necessary to remember the infinite p-torsion. The information from the
slopes of the isocrystals, while perhaps more elementary, does not suffice.

We are able to obtain the strongest results for surfaces and threefolds. For future use, we will
record a visualization of the information contained in the slope and descent spectral sequences
in these cases. We record the following lemma.

Lemma 5.4. Let X be a smooth proper k-scheme of dimension d.

(i) If d 6 2, then the descent spectral sequence for X degenerates at E2.

(ii) If d = 3, then the only possibly nonzero differentials on the E2-page of the descent spectral

sequence for X are as pictured in Figure 6.

Proof. Note that, in general, the descent spectral sequence degenerates at Ed+1 for degree rea-
sons. This gives the result for d = 1. If d = 2, the only possible differentials in the E2-page
are H0(WOX)→ H2

(
WΩ1

X

)
and H0

(
WΩ1

X

)
→ H2

(
WΩ2

X

)
. By Proposition 3.8, the differentials

vanish after inverting p. Since H2
(
WΩ2

X

)
is torsion-free, the latter differential is zero. The former

is zero by functoriality and the fact that H0(WOX) ∼= TR0(k). By the same reasoning, when
d = 3, we conclude that the differentials H0(WOX)→ H2

(
WΩ1

X

)
and H1

(
WΩ2

X

)
→ H3

(
WΩ3

X

)

vanish.

Now suppose that X is a smooth proper surface over k. The first page of the slope spectral
sequence for X is given in Figure 5.

The horizontal arrow is the only possibly nonzero differential on the first page of the slope
spectral sequence. All differentials on all pages of the descent spectral sequence vanish (see
Lemma 5.4). The dotted box (the small 1× 1 box on the upper left) indicates the source of the
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H2(WOX) H2
(
WΩ1

X

)
H2

(
WΩ2

X

)

H1(WOX) H1
(
WΩ1

X

)
H1

(
WΩ2

X

)

H0(WOX) H0
(
WΩ1

X

)
H0

(
WΩ2

X

)

Figure 5. The E1-page of the slope spectral sequence and the E2-page of the descent spectral
sequence for TR of a smooth proper surface X over k

only possibly nonzero domino, the dashed box (the 1× 2 box) indicates the possible locations of
nilpotent torsion, and the solid box (the stair-step shaped box) indicates the possible locations
of semisimple torsion (see Remark 5.25).

If X is a smooth proper threefold over k, then the first page of the slope spectral sequence is
given in Figure 6.

H3(WOX) H3
(
WΩ1

X

)
H3

(
WΩ2

X

)
H3

(
WΩ3

X

)

H2(WOX) H2
(
WΩ1

X

)
H2

(
WΩ2

X

)
H2

(
WΩ3

X

)

H1(WOX) H1
(
WΩ1

X

)
H1

(
WΩ2

X

)
H1

(
WΩ3

X

)

H0(WOX) H0
(
WΩ1

X

)
H0

(
WΩ2

X

)
H0

(
WΩ3

X

)

Figure 6. The E1-page of the slope spectral sequence and the E2-page of the descent spectral
sequence for TR of a smooth proper threefold X over k

The horizontal arrows are all possibly nonzero differentials on the first page of the slope
spectral sequence. The diagonal arrows are all possibly nonzero differentials on the second page
of the descent spectral sequence (see Lemma 5.4). The descent spectral sequence degenerates
at E3. The dotted box (the 2 × 2 box) indicates the sources of the possibly nonzero dominoes,
the dashed box (the 2 × 3 box) indicates the possible locations of nilpotent torsion, and the
solid box (the stair-step shaped box) indicates the possible locations of semisimple torsion (see
Remark 5.25).

5.1 Derived invariants of surfaces

Suppose that X is a surface. By Proposition 4.6, the R-module TR•(X) has only one possibly
nonzero differential and so looks like

TR−2(X)
d
−→ TR−1(X)

0
−→ TR0(X)

0
−→ TR1(X)

0
−→ TR2(X) .
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Furthermore, TRi(X) is finitely generated for i > 0. By Lemma 5.4, the descent spectral sequence
degenerates at E2, so by Lemma 4.4, we have a filtration

0 = F 3
• ⊂ F 2

• ⊂ F 1
• ⊂ F 0

• = TR•(X)

by coherent sub-R-modules such that

F i
•/F

i+1
•
∼= Hi

(
WΩ•

X

)
[i] .

This filtration yields short exact sequences

0→ F 2
• → TR•(X)→

TR•

F 2
•

→ 0 and 0→
F 1
•

F 2
•

→
TR•(X)

F 2
•

→
TR•(X)

F 1
• (X)

→ 0 ,

and hence we have commuting diagrams

0 0

H2(WOX) H2
(
WΩ1

X

)
H2

(
WΩ2

X

)

TR−2(X) TR−1(X) TR0(X) TR1(X) TR2(X)

H1(WOX)
(
F 0
• /F

1
•

)
0

TR1(X) TR2(X)

0 0

∼

d 0

d 0 0 0

∼ ∼

0 0 0

(12)

and

0 0

H1(WOX) H1
(
WΩ1

X

)
H1

(
WΩ2

X

)

H1(WOX)
(
F 0
• /F

1
•

)
0

TR1(X) TR2(X)

H0(WOX) H0
(
WΩ1

X

)
H0

(
WΩ2

X

)
,

0 0

∼

0 0

0 0 0

∼

0 0

(13)

where the columns are exact sequences of R-modules and the rows are R-modules.

Theorem 5.5. Let X and Y be smooth proper surfaces over k. If X and Y are FM-equivalent,

then for

(i, j) ∈ {(0, 0), (1, 0), (2, 0), (1, 1), (2, 1), (0, 2), (2, 2)} ,

there exists an isomorphism

Hj
(
WΩi

X

)
∼= Hj

(
WΩi

Y

)
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of Dieudonné modules. Furthermore, there exist isomorphisms

H1(WOX)⊗K ∼= H1(WOY )⊗K ,

H2
(
WΩ1

X

)
⊗K ∼= H2

(
WΩ1

Y

)
⊗K ,

H2
(
WΩ1

X

)
[p∞] ∼= H2

(
WΩ1

Y

)
[p∞]

of R0-modules and a commutative diagram

H2(WOX) H2
(
WΩ1

X

)
[p∞]

H2(WOY ) H2
(
WΩ1

Y

)
[p∞] .

d

∼ ∼

d

Proof. By diagram (13), we have an isomorphism TR2(X) ∼−→ H0
(
WΩ2

X

)
, and by diagram (12),

we have an isomorphism H2
(
WOX

)
∼−→ TR−2(X). This produces the desired isomorphisms for

(i, j) ∈ {(2, 0), (0, 2)}. By Corollary 5.14, the isogeny class of H0
(
WΩ1

X

)
is a derived invariant.

But H0
(
WΩ1

X

)
is torsion-free of slope zero, so in fact H0

(
WΩ1

X

)
∼= H0

(
WΩ1

Y

)
. We consider the

short exact sequence

0→ H1
(
WΩ2

X

)
→ TR1(X)→ H0

(
WΩ1

X

)
→ 0 ,

whose terms are finitely generated R0-modules, and similarly for Y . As H0
(
WΩ1

X

)
is torsion-free

of slope zero, this sequence splits, and we conclude that H1
(
WΩ2

X

)
∼= H1

(
WΩ2

Y

)
. We conclude

the result for (i, j) ∈ {(0, 0), (1, 1), (2, 2)} from the derived invariance of TR0(X). Next, consider
the short exact sequence

0→ H2
(
WΩ1

X

)
→ TR−1(X)→ H1(WOX)→ 0

coming from diagram (12). As H1(WOX) is torsion-free, the map H2
(
WΩ1

X

)
→ TR−1(X) induces

an isomorphism on torsion.

Remark 5.6. Theorem 5.5 almost shows that the entire first page of the slope spectral sequence
is a derived invariant.

As a corollary, we recover the following result.

Corollary 5.7 ([Bra21, Corollary 3.4.3]). Suppose thatX and Y are FM-equivalent K3 surfaces

over k. If X is supersingular, then so is Y , and σ0(X) = σ0(Y ).

Proof. The image of the differential

d : H2(WOX)→ H2
(
WΩ1

X

)

is p-torsion. Moreover, the Artin invariant of X is equal to the dimension of the k-vector space
ker d. This follows for instance from the descriptions given in [Ill79, Section II.7.2]. The result
follows from Theorem 5.5.

We also find another proof of the following result of Tirabassi [Tir18] on derived equivalences
of Enriques surfaces. Recall from [BM76] that an Enriques surface X in characteristic 2 is either
classical, singular, or supersingular, depending on whether the Picard scheme PicX/k is Z/2, µ2,
or α2, respectively. We call this the type of the Enriques surface.

Corollary 5.8 (Tirabassi). If X is an Enriques surface over an algebraically closed field of

characteristic 2, then the type of X is a derived invariant.
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Proof. The E1-pages of the slope spectral sequences of Enriques surfaces in characteristic 2 are
recorded in [Ill79, Proposition II.7.3.6]. In particular, we see by Theorem 5.5 that in this case
the first page of the slope spectral sequence is a derived invariant, and this is more than enough
to recover the type of X.

5.2 Slopes and isogeny invariants

In this section, we investigate derived invariants arising from topological Hochschild homology
after inverting p. Recall that k is a perfect field of characteristic p, W = W (k), and K = W [1/p].
We let σ denote the Frobenius automorphism of k, W , or K.

Definition 5.9. An F -isocrystal is a finite-dimensional K-vector space V equipped with a σ-
linear map Φ: V → V . A morphism of F -isocrystals is a map of vector spaces commuting with
the respective semilinear maps.

By fundamental results of Dieudonné and Manin, it is known that when k is algebraically
closed, the category of F -isocrystals is abelian semisimple, and its simple objects are in bijection
with rational numbers λ ∈ Q (see for example [Dem72]). The slopes of an F -isocrystal (M,Φ)
are the collection (with multiplicities) of the rational numbers appearing in the decomposition of
M ⊗K Kun into simple objects, where Kun = W

(
k
)
[1/p]. Given a subset S ⊂ Q, we write MS for

the sub-isocrystal of M whose slopes are those in the subset S. If (M,Φ) is an isocrystal and j
is an integer, we let M(j) denote the isocrystal

(
M,p−jΦ

)
. We have M(j)λ = Mj+λ.

For a smooth proper k-scheme X, we let RΓ(X/W ) = RΓcrys(X/W ) denote the crystalline
cohomology of X over W , and we let RΓ(X/K) = RΓ(X/W ) ⊗W K. Each rational crystalline
cohomology group Hi(X/K) of X comes with an endomorphism Φ induced by the absolute
Frobenius of X, and the pair

(
Hi(X/K),Φ

)
is an F -isocrystal. Given a rational number λ, we

define the slope number of the ith crystalline cohomology of X by

hicrys,λ(X) = dimK Hi(X/K)[λ] . (14)

There are two facts which allow us to get some control over the slope numbers. The first is that
Poincaré duality implies the existence of a perfect pairing

Hi(X/K)⊗K H2d−i(X/K)→ H2d(X/K) ∼= K(−d)

of isocrystals, where K(−d) is the 1-dimensional isocrystal of slope d. It follows that for each
λ ∈ Q, we have a perfect pairing

Hi(X/K)[λ] ⊗K H2d−i(X/K)[d−λ] → K(−d) .

This implies

hicrys,λ = h2d−i
crys,d−λ . (15)

Suppose that X is projective. The hard Lefschetz theorem in crystalline cohomology (see [KM74]
for the finite field case and [Mor19, Corollary A.10] for the general case) implies that if u =
c1(L) ∈ H2(X/K) is the rational crystalline Chern class of an ample line bundle, then cupping
with powers of u gives isomorphisms

ui : Hd−i(X/K) ∼= Hd+i(X/K) .

Since u generates a 1-dimensional subspace of H2(X/K) which is closed under Frobenius and
has pure slope 1, it follows that ui induces isomorphisms

ui : Hd−i(X/K)[λ] ∼= Hd+i(X/K)[i+λ](i) . (16)
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This implies

hd−i
crys,λ = hd+i

crys,i+λ

or, equivalently,

hicrys,λ = hicrys,i−λ . (17)

In fact, by [Suh12, Corollary 2.2.4], the relation (17) still holds under only the assumption that X
is smooth and proper.

The Frobenius endomorphism on rational crystalline cohomology comes from an endomor-
phism of complexes RΓ(X/W ). In particular, there is a Frobenius-fixed W -lattice Hi(X/W )/ tors
inside Hi(X/K). This implies that the slopes λ appearing in crystalline cohomology are all
nonnegative. Equation (15) implies that the slopes are additionally bounded above by d, and
finally (17) implies that the slopes of Hi(X/K) are bounded above by i.

The Hodge–Witt cohomology groups Hj
(
WΩi

X

)
also come with a σ-linear operator, denoted

by F . Again, writing Hj
(
WΩi

X

)
K

= Hj
(
WΩi

X

)
⊗W K, the pair

(
Hj

(
WΩi

X

)
K
, F

)
is an F -

isocrystal, and given a rational number λ > 0, we write

hi,jdRW,λ(X) = dimK

(
Hj

(
X,WΩi

X

)
K
, F

)
[λ]

. (18)

By [Ill79, Corollaire II.3.5], we have a canonical isomorphism

Hj−i
(
WΩi

X

)
K
(−i) ∼= Hj(X/K)[i,i+1) (19)

of F -isocrystals, and hence a canonical decomposition

Hj(X/K) ∼=
⊕

i

Hj−i
(
WΩi

X

)
K
(−i) . (20)

In particular, hi,jdRW,λ is nonzero only if λ ∈ [0, 1), in which case

hi,jdRW,λ = hi+j
crys,i+λ . (21)

It follows from (17) that

hi,jdRW,λ = hi+j
crys,i+λ = h

d−(d−i−j)
crys,i+λ = h2d−i−j

crys,d−j+λ = hd−j,d−i
dRW,λ , (22)

which we will use below. This last equality is a crystalline analog of Hodge symmetry, which we
do not have access to in de Rham cohomology.

We now discuss these invariants under FM-equivalence.

Theorem 5.10. IfX and Y are FM-equivalent smooth proper k-schemes, then there are canonical

isomorphisms
⊕

j

H2j(X/K)(j) ∼=
⊕

j

H2j(Y/K)(j) and
⊕

j

H2j+1(X/K)(j) ∼=
⊕

j

H2j+1(Y/K)(j) .

Proof. By Proposition 3.8, the crystalline–TP spectral sequence (7) degenerates rationally. More-
over, by an argument of Scholze, the induced filtration on each TPn ⊗W K is canonically split
by Adams operations; see [Elm18]. Introducing the appropriate Tate twists, we obtain canonical
isomorphisms of isocrystals

TP0(X)K ∼=
⊕

j

H2j(X/K)(j) and TP1(X)K ∼=
⊕

j

H2j+1(X/K)(j) . (23)

We deduce the result from the derived invariance of TP.
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We record the following result, which is entirely analogous to Theorem 2.2 (note, however,
that we need no restrictions on p).

Theorem 5.11. If X and Y are FM-equivalent smooth proper k-schemes, then for each integer i,
there is an isomorphism

⊕

j

Hj−i
(
WΩj

X

)
K
∼=

⊕

j

Hj−i
(
WΩj

Y

)
K

of F -isocrystals. In particular, for any i and any λ, we have the equality
∑

j

hj,j−i
dRW,λ(X) =

∑

j

hj,j−i
dRW,λ(Y ) .

Proof. Combining (23) with the decomposition (20) and reindexing, we obtain for each integer l
canonical isomorphisms of isocrystals

(TP0(X)K)[l,l+1)(l) ∼=
⊕

j

Hj−2l
(
WΩj

X

)
K

and (TP1(X)K)[l,l+1)(l) ∼=
⊕

j

Hj−2l+1
(
WΩj

X

)
K
,

and similarly for Y . Using the derived invariance of TP, the former gives the desired isomorphism
for even values of i, and the latter gives the desired isomorphism for odd values of i.

We recall the following result of Popa–Schnell (extended to positive characteristic in [Hon18,
Theorem A.1] by Achter, Casalaina-Martin, Honigs, and Vial).

Theorem 5.12. If X and Y are FM-equivalent smooth proper varieties over an arbitrary field k,
then

(
Pic0X

)
red

is isogenous to
(
Pic0Y

)
red

.

Remark 5.13. The theorem is stated in [Hon18] only for smooth projective varieties. But, the
only place projectivity is used in the proof is to guarantee the existence of a FM-equivalence,
which we assume to exist.

Equivalently, the isogeny class of the Albanese variety is a derived invariant. This has the
following immediate consequence.

Corollary 5.14. If X and Y are FM-equivalent smooth proper varieties over our perfect

field k of positive characteristic, then there exists an isomorphism H1(X/K) ∼= H1(Y/K) of

F -isocrystals, and we have the equality h1crys,λ(X) = h1crys,λ(Y ) of slope numbers for all λ ∈ [0, 1].

Remark 5.15. In any characteristic, the tangent space to Pic0X at the origin is naturally iden-
tified with H1(X,OX). If the characteristic of k is zero, then Pic0X is automatically reduced, so
Theorem 5.12 implies that the Hodge number h0,1 is a derived invariant in characteristic zero.
Similarly, in characteristic zero, the Hodge number h1,0 is determined by the dimension of the
Albanese of X and hence is also a derived invariant. In positive characteristic, the isogeny class
of the Albanese does not, in general, determine the Hodge numbers h0,1 and h1,0, and therefore
Theorem 5.12 does not imply the invariance of h0,1 or h1,0 under derived equivalence.

In dimension d 6 3, combining Theorem 5.11 and Corollary 5.14 with the constraints (15)
and (17) give us complete control of the slopes of the isocrystals Hi(X/K) and Hj

(
WΩi

X

)
K
.

Theorem 5.16. If X and Y are FM-equivalent smooth projective k-schemes of dimension d 6 3,
then for each i and j, there exist isomorphisms

Hj
(
WΩi

X

)
K
∼= Hj

(
WΩi

Y

)
K

and Hi(X/K) ∼= Hi(Y/K)
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of F -isocrystals. In particular, we have

hi,jdRW,λ(X) = hi,jdRW,λ(Y ) and hicrys,λ(X) = hicrys,λ(Y )

for all i, j, and λ.

Proof. Via (19), the isocrystals coming from crystalline cohomology determine the Hodge–Witt
isocrystals. Thus, it will suffice to prove the derived invariance of the rational crystalline coho-
mology. We have H0(X/K) ∼= K and H6(X/K) ∼= K(−3), and similarly for Y . By Corollary
5.14, we have H1(X/K) ∼= H1(Y/K). By (16), we have H1(X/K) ∼= H5(X/K)(2), and similarly
for Y . We conclude that Hi(X/K) ∼= Hi(Y/K) for i ∈ {0, 1, 5, 6}.

To obtain the desired isomorphism for the remaining values of i, we consider the decomposi-
tions (23). On the one hand, we have that

TP1(X)K ∼= H1(X/K)⊕H3(X/K)(1)⊕H5(X/K)(2)

is a derived invariant. It follows from the Krull–Schmidt theorem [Ati56, Theorem 1] that
H3(X/K)(1) ∼= H3(Y/K)(1). We also have that

TP0(X)K ∼= H0(X/K)⊕H2(X/K)(1)⊕H4(X/K)(2)⊕H6(X/K)(3)

is a derived invariant. By (16), we have H2(X/K)(1) ∼= H4(X/K)(2), and similarly for Y . Again
by the Krull–Schmidt theorem, we deduce that H2(X/K)(1) ∼= H2(Y/K)(1) ∼= H4(X/K)(2) ∼=
H4(Y/K)(2). This completes the proof.

Remark 5.17. If X and Y are only assumed smooth and proper, then the conclusions of Theo-
rem 5.16 regarding the equality of slope numbers still hold. To see this, run the same argument
as Theorem 5.16 with slope numbers instead of isocrystals, and replace (16) with the weaker
slope number relation (17).

We obtain another proof of the following result of Honigs [Hon18].

Theorem 5.18. Suppose that X and Y are smooth projective schemes over a finite field Fq of

dimension d 6 3. If X and Y are FM-equivalent, then ζ(X) = ζ(Y ).

Proof. We will verify that #X(Fqn) = #Y (Fqn) for all n > 1. We use the Lefschetz trace formula

#X(Fqn) =
∑

i

(−1)itr
(
ϕn|Hi(X/K)

)

(see, for example, [Kat81, Section I, p. 169]). Here, ϕ = Φm denotes the mth power of the
Frobenius operator Φ on Hi(X/K), wherem is the integer such that q = pm (note that ϕ is linear).
The traces of powers of ϕ on the Hi(X/K) are determined by the isocrystals

(
Hi(X/K),Φ

)
, which

by Theorem 5.16 are derived invariants in dimensions d 6 3.

Recall that the Betti numbers of X are defined to be bn(X) = dimK Hn(X/K) for X smooth
and proper over k. In general, we have only an inequality bn(X) 6 dimk H

n
dR(X/k), with equality

if and only if Hn(X/W ) and Hn+1(X/W ) are torsion-free.

Corollary 5.19. If X and Y are FM-equivalent smooth proper k-schemes of dimension d 6 3,
then bn(X) = bn(Y ) for each n.

Proof. This follows from the equality of slope numbers hicrys,λ(X) = hicrys,λ(Y ) in Theorem 5.16
(see Remark 5.17 for the proper case).
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Remark 5.20. Given a Fourier–Mukai equivalence ΦP : Db(X) → Db(Y ), the crystalline Mukai
vector v(P ) of P gives rise to a correspondence H∗(X/K) → H∗(Y/K). The usual formalism
shows that this correspondence is an isomorphism of K-vector spaces. The results of Section 5.2
can be proven by an analysis of the Künneth components of v(P ). In particular, via this approach
one can access the information contained in the Hodge–Witt and crystalline cohomology groups
up to isogeny without using TP and TR. However, we do not know how to control the torsion in
the Hodge–Witt cohomology groups without using the topological constructions. Remembering
this information is crucial in order to access the Hodge numbers.

5.3 Domino numbers

To control the infinitely generated p-torsion in the Hodge–Witt cohomology groups, Illusie and
Raynaud introduce in [IR83] certain structures called dominoes and domino numbers. We review
their definition and prove that the domino numbers are derived invariants in low dimensions. If
M is an R-module, we set

V −∞ZiM =
{
x ∈M i | dV n(x) = 0 for all n > 0

}
and

F∞BiM =
{
x ∈M i |x ∈ Fnd

(
M i−1

)
for some n > 0

}
.

Definition 5.21. A coherent R-module M is a domino if there exists an integer i such that
Mn = 0 for n 6∈ {i, i+ 1}, V −∞Zi = 0, and F∞Bi+1 = M i+1.

For a further explication of this definition, we refer the reader to [IR83, Définition 2.16] and
the surrounding material, as well as [Ill83, Section 2.5]. Given any R-module M , each differential
M i →M i+1 of M factors as

M i M i+1

M i/V −∞Zi F∞Bi+1 ,

d

(24)

and if M is coherent, then the R-module

Domi(M) =
[
M i/V −∞Zi → F∞Bi+1

]

is a domino. We sometimes refer to this as the domino associated with the differentialM i →M i+1

of M .

Definition 5.22. If D is a domino supported in degrees i and i+ 1, then

T (D) = dimk

(
Di/V Di

)
(25)

is finite. We refer to it as the dimension of the domino D. If M is a coherent R-module, we let
T i(M) = T

(
Domi(M)

)
.

Illusie and Raynaud define in [IR83, Section 1.2.D] certain simple 1-dimensional dominoes Uσ

depending on an integer σ. By [IR83, Proposition 1.2.15], every domino is a finite iterated
extension of the Uσ. We will use the notation

Domi,j(X)
def
=Domi

(
Hj

(
WΩ•

X

))
, (26)

T i,j(X)
def
= T i

(
Hj

(
WΩ•

X

))
. (27)

Example 5.23. If X is a K3 surface over a perfect field, then the differential

d : H2(WOX)→ H2
(
WΩ1

X

)
(28)
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is nonzero if and only ifX is supersingular, in which case it is a domino of dimension 1, isomorphic
to Uσ0

, where σ0 is the Artin invariant of X (see [Ill79, Section II.7.2]).

In [Eke84, Theorem IV.3.5], Ekedahl showed that Domi,j(X) and Domd−i−2,d−j+2(X) are
naturally dual (in a certain sense); as a consequence, we have the equality

T i,j = T d−i−2,d−j+2 (29)

of domino numbers [Eke84, Corollary IV.3.5.1].

Remark 5.24. The domino associated with an R-module supported in two degrees whose differ-
ential is zero is zero. Thus, we have T i,j = 0 if i > d or j > d. By (29), this implies the vanishing
of various other domino numbers which are not obviously zero. For instance, if X is a surface,
then we see that the only possible nontrivial domino number of X is T 0,2, the dimension of the
domino associated with the differential (28) in the slope spectral sequence.

Remark 5.25. Ekedahl studies in [Eke84] a certain canonical filtration of a coherent R-module M ,
one piece of which is composed of the dominoes defined above (see also [Ill83]). From this filtra-
tion, Ekedahl shows how to partition the torsion of M according to its behavior under V and F :
semisimple torsion, nilpotent torsion, and dominoes. For surfaces and threefolds, the possible
degrees in which each of these types of torsion may appear are indicated in Figures 5 and 6.
We will study only the domino torsion in this document, although the semisimple and nilpotent
torsion are undoubtedly interesting as well.

Let X be a smooth and proper k-scheme. We now consider the complex TR•(X), which by
Proposition 4.5 is a coherent R-module. We define

Domcyc
i (X)

def
=Domi(TR•(X)) , (30)

T cyc
i (X)

def
= T i(TR•(X)) . (31)

By construction, the T cyc
i are derived invariants of X, and we refer to them as the derived

domino numbers of X. We will use the spectral sequence (5) to relate them to the usual domino
numbers T i,j of X. We note the following lemma.

Lemma 5.26. If 0 → L → M → N → 0 is an exact sequence of coherent R-modules, then for

each i, we have T i(M) = T i(L) + T i(N).

Proof. See [MR15, Lemma 2.5].

Proposition 5.27. If X is a smooth proper k-scheme of dimension d, then T 0,d(X) = T cyc
−d (X).

In particular, T 0,d(X) is a derived invariant.

Proof. We interpret the rows of the pages of the descent spectral sequence for X as R-modules
by Lemma 4.4. We have an exact sequence

Hd−2
(
WΩ•

X

)
[−1]

d2−→ Hd
(
WΩ•

X

)
→ E•,d

3 → 0 .

The image of d2 is a coherent R-submodule im(d2) ⊆ Hd
(
WΩ•

X

)
, and Dom0(im(d2)) = 0 for

degree reasons. Hence, T 0,d(X) = T 0
(
Hd

(
WΩ•

X

))
= T 0

(
E•,d
3

)
. The first two terms of E•,d

3 do not
see any further differentials, and so

T 0,d(X) = T 0
(
E•,d
3

)
= T 0

(
E•,d
∞

)
. (32)
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Consider the filtration F i
• of TR•(X) from Lemma 4.4. It follows inductively from Lemma 5.26

and the isomorphisms of Lemma 4.4(iv) that T−d
(
TR•(X)/F i

•

)
= 0 for all i. Combining this

with (32), we obtain

T 0,d(X) = T 0
(
E•,d
∞

)
= T−d

(
F d
•

)
= T−d(TR•(X)) = T cyc

−d (X) ,

as desired.

Definition 5.28. LetX be a smooth proper k-scheme. We say that the descent spectral sequence
for X is degenerate at the level of dominoes if for each i and j, we have T i,j(X) = T i

(
E•,j
r

)
for all

r > 2, where E•,j
r denotes the coherent R-module from Lemma 4.4 arising in the descent spectral

sequence.

In low dimensions, this condition is automatic.

Lemma 5.29. Let X be a smooth proper k-scheme. If X has dimension d 6 3, then the descent

spectral sequence for X is degenerate at the level of dominoes.

Proof. If d 6 2, the descent spectral sequence is degenerate. Suppose d = 3. The only possibly
nonzero dominoes of X are depicted in Figure 6. The result follows immediately from Lem-
ma 5.26.

Proposition 5.30. Let X be a smooth proper k-scheme. If the descent spectral sequence for X
is degenerate at the level of dominoes, then for each i, we have

T cyc
i (X) =

∑

j>0

T i+j,j(X) .

Proof. We have

T i
(
F j
• /F

j+1
•

)
= T i

(
E•,j
∞ [j]

)
= T i+j

(
E•,j
∞

)
= T i+j,j(X) .

The result follows from Lemma 5.26.

Theorem 5.31. If X and Y are FM-equivalent smooth proper k-schemes of dimension d 6 3,
then for all i, j, we have T i,j(X) = T i,j(Y ).

Proof. If X and Y are surfaces, the result follows from Proposition 5.27. The only possibly
nonzero domino numbers of a threefold are T 0,2, T 0,3, T 1,2, and T 1,3. By Proposition 5.27, the
number T 0,3 = T cyc

−3 is a derived invariant. By duality (29), the number T 1,2 = T 0,3 is also a
derived invariant. By Lemma 5.29, the descent spectral sequence of a threefold is degenerate
at the level of dominoes, so by Proposition 5.30, we have that T cyc

−2 = T 0,2 + T 1,3 is a derived
invariant. But, by duality again, T 0,2 = T 1,3, and hence both terms are themselves derived
invariants.

5.4 Hodge–Witt numbers

We recall certain p-adic invariants introduced by Ekedahl in [Eke86, Section IV]. We also refer
the reader to Crew’s article [Cre85] and Illusie’s article [Ill83]. Let X be a smooth and proper
k-scheme. We define the Hodge–Newton numbers of X by

mi,j =
∑

λ∈[i,i+1)

(i+ 1− λ)hi+j
crys,λ +

∑

λ∈[i−1,i)

(λ− i+ 1)hi+j
crys,λ . (33)
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One can show that the mi,j are in fact nonnegative integers, and by [Eke86, Lemma VI.3.1], they
satisfy the relations

mi,j = mj,i , (34)

mi,j = md−i,d−j . (35)

The Hodge–Witt numbers of X are defined as

hi,jW = mi,j + T i,j − 2T i−1,j+1 + T i−2,j+2 . (36)

By [Eke86, Propositions VI.3.2 and VI.3.3], these satisfy

hi,jW = hd−i,d−j
W , (37)

and if X has dimension d 6 3, one has

hi,jW = hj,iW . (38)

By [Ill83, Equations (6.3.10.2), (6.3.5), and (6.3.2)], the Hodge–Witt numbers are related to the
Hodge numbers hi,j = hj(X,Ωi

X) by the inequalities

hi,jW 6 hi,j (39)

and by Crew’s formula, which states that
∑

j

(−1)jhi,jW =
∑

j

(−1)jhi,j = χ
(
Ωi
X

)
. (40)

Finally, we have

bn =
∑

i+j=n

hi,jW (41)

for each n.

As an immediate consequence of Theorems 5.16 and 5.31, we have the following result.

Theorem 5.32. If X and Y are FM-equivalent smooth proper k-schemes of dimension d 6 3,
then for all i, j, we have hi,jW (X) = hi,jW (Y ).

5.5 Hodge numbers

Let us turn to the question of whether the Hodge numbers hi,j are derived invariants of smooth
proper k-schemes. The answer to this is known to be yes up to dimension 3 in characteristic
zero by [PS11]. For curves (in any characteristic), it is an easy consequence of the Hochschild–
Kostant–Rosenberg (HKR) theorem. For surfaces in characteristic zero, it follows from the HKR
theorem together with Hodge symmetry and Serre duality; for threefolds in characteristic zero,
it follows with the additional input of the theorem of Popa and Schnell (Theorem 5.12).

These arguments fail in several places in positive characteristic. First, the HKR isomorphism
is only known to hold in general if d 6 p. Second, Hodge symmetry fails in general already for
surfaces. Finally, in positive characteristic, the isogeny class of the Albanese does not determine
the Hodge numbers h0,1 or h1,0 (see Remark 5.15).

In the case of surfaces, we are able to overcome these difficulties with the additional input
of our results on Hodge–Witt numbers from Section 5.4, which in turn rely on the results on
domino numbers of Section 5.3. Despite its elementary statement, we do not know a direct proof
of Theorem 5.33 avoiding topological Hochschild homology machinery.
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Theorem 5.33. Suppose that X and Y are smooth proper surfaces over an arbitrary field k.
If X and Y are FM-equivalent, then hi,j(X) = hi,j(Y ) for all i, j.

Proof. As described in Theorem 2.2, the HKR isomorphism implies that h2,0, h1,1, and h0,2 are
derived invariants, as are the sums h0,1 + h1,2 and h1,0 + h2,1. If k has characteristic zero, Serre
duality and Hodge symmetry give the result. Suppose that k has positive characteristic. We can
assume that k is perfect since passage to the perfection does not change the Hodge numbers.
Theorem 5.32 and (40) give that χ

(
Ωi
X

)
is a derived invariant for each i. It follows that h0,1 and

h1,0 are derived invariants. By the HKR isomorphism, h1,2 and h2,1 are derived invariants.

Note that the proof of Theorem 5.33 does not use the characteristic p Popa–Schnell result
of [Hon18].

Remark 5.34. For the positive characteristic case of Theorem 5.33, we may alternatively argue as
follows. As observed in the beginning of Section 5.1, the cohomology group H2(WOX), together
with its R0-module structure (that is, with its action of F and V ), is a derived invariant. The
length of the V -torsion of H2(WOX) is equal to the dimension of the tangent space at the origin of
Pic0X minus the dimension of the tangent space at the origin of

(
Pic0X

)
red

(see for instance [Ill79,
Remarque II.6.4]). By Theorem 5.12, the latter is a derived invariant as well. It follows that the
dimension of the tangent space of Pic0X at the origin, which is equal to the Hodge number h0,1,
is a derived invariant. We then conclude by Serre duality and the HKR theorem, as before.

We next consider threefolds in positive characteristic. To ensure that the HKR spectral se-
quence degenerates, we might restrict our attention to characteristic p > 3.4 Even with this
restriction, the failure of Hodge symmetry and of Popa–Schnell to determine h0,1 means that
we do not have enough control to prove derived invariance of Hodge numbers of threefolds in
general (see, however, Theorem 5.39). We record the following consequence of Theorem 5.32.

Theorem 5.35. Suppose that X and Y are smooth proper schemes of dimension 3 over an

arbitrary field k. If X and Y are FM-equivalent, then χ
(
Ωi
X

)
= χ

(
Ωi
Y

)
for each 0 6 i 6 3.

Proof. If k has characteristic zero, the result follows as in [PS11] (and, in fact, all Hodge numbers
are derived invariants). Suppose that k has positive characteristic. We may then assume moreover
that k is perfect, and the result follows immediately from Theorem 5.32 and (40).

Remark 5.36. Suppose that k has characteristic p > 3, so that the spectral sequence (1) associated
with a threefold X degenerates. The HKR isomorphism then gives that certain sums of Hodge
numbers of X are derived invariants, as described in Theorem 2.2. Combining this with Serre
duality and the obvious Hodge number h0,0 = 1, we obtain 13 linearly independent relations
which are preserved by derived equivalences on the total 16 Hodge numbers.

It is not hard to check that the relations in the conclusion of Theorem 5.35 are not in the
span of these relations. Precisely, the result of Theorem 5.35 gives exactly one new linear relation
on Hodge numbers that is preserved under derived equivalence.

5.6 Mazur–Ogus and Hodge–Witt varieties

In this section, we prove the derived invariance of certain conditions on de Rham and Hodge–Witt
cohomology. We keep using Notation 4.1, so that k is a perfect field of positive characteristic p.

Following Joshi [Jos20, Section 2.31], we make the following definition.

4The examples of [ABM21] of varieties with nondegenerate HKR spectral sequence are 2p-dimensional. We do not
know an example of a threefold in characteristic 2 with nondegenerate HKR spectral sequence.
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Definition 5.37. Let X be a smooth proper k-scheme. We say that X is Mazur–Ogus if

(i) the Hodge–de Rham spectral sequence for X degenerates at E1, and

(ii) the crystalline cohomology groups of X are torsion-free.

We view this as a rather mild set of assumptions, which still allow for a lot of interesting
behaviors in the Hodge–Witt cohomology of X. For instance, K3 surfaces, abelian varieties, and
complete intersections in projective space are Mazur–Ogus.

Lemma 5.38. If X is a smooth proper k-scheme, then the following conditions are equivalent:

(i) The scheme X is Mazur–Ogus.

(ii) We have bn(X) =
∑

i+j=n h
i,j(X) for all n.

(iii) We have hi,j(X) = hi,jW (X) for all i, j.

Proof. In general, we have inequalities

bn(X) 6 dimHn
dR(X/k) 6

∑

i+j=n

hi,j(X) .

The first of these is an equality if and only if Hn(X/W ) and Hn+1(X/W ) are torsion-free, and the
second is an equality if and only if the Hodge–de Rham spectral sequence in degree n degenerates
at E1. This shows (i)⇐⇒ (ii). Using (39) and (41), we deduce (ii)⇐⇒ (iii).

Theorem 5.39. Suppose p > 3. Let X be a smooth proper k-scheme of dimension d 6 3. If
X is Mazur–Ogus and Y is a smooth proper k-scheme such that Db(X) ∼= Db(Y ), then Y is

Mazur–Ogus and we have hi,j(X) = hi,j(Y ) for all i, j.

Proof. Using Lemma 5.38, Theorem 5.32, and (39), we have

hi,j(X) = hi,jW (X) = hi,jW (Y ) 6 hi,j(Y )

for each i, j. Using the assumption p > 3, by Theorem 2.2, we have
∑

j

hj,j−i(X) =
∑

j

hj,j−i(Y )

for each i. We conclude that hi,j(X) = hi,j(Y ) for all i, j and hence hi,jW (Y ) = hi,j(Y ) for all i
and j. By Lemma 5.38, we conclude that Y is Mazur–Ogus.

Definition 5.40. Following [IR83, Section IV.4], we say that a smooth proper k-scheme is
Hodge–Witt if Hj

(
X,WΩi

X

)
is finitely generated as a W -module for all i, j. We say that X is

derived Hodge–Witt if TRi(X) is finitely generated as a W -module for all i.

Hodge–Witt is implied by ordinarity but is weaker than it. For example, a K3 surface is
Hodge–Witt if and only if it is nonsupersingular, whereas it is ordinary if and only if the associated
formal group has height 1 (see the [Ill79, Section II.7.2]).

Proposition 5.41. Let X be a smooth proper k-scheme. The following are equivalent:

(i) The scheme X is Hodge–Witt.

(ii) The slope spectral sequence for X degenerates at E1.

(iii) We have T i,j(X) = 0 for all i, j.
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Proof. By [IR83, conditions (IV.4.6.2)], the scheme X is Hodge–Witt if and only if the slope
spectral sequence for X degenerates at E1, and so we have (i)⇐⇒ (ii). We have (i)⇐⇒ (iii) by,
for instance, [Ill83, Section 3.1.4].

Theorem 5.42. Let X be a smooth proper k-scheme. If X is of dimension d 6 3, then X is

Hodge–Witt if and only if it is derived Hodge–Witt.

Proof. By [Ill83, Section 3.1.4], we have that for j ∈ {0, 1}, the Hodge–Witt cohomology groups
Hj

(
WΩi

X

)
are finitely generated for each i. The differentials in the descent spectral sequence

have vertical degree 2 (with our conventions), and hence X is Hodge–Witt if and only if the
terms Ei,j

∞ appearing on the E∞-page of the descent spectral sequence are finitely generated for
all i, j.

Furthermore, each of the TRi(X) admits a filtration whose successive quotients are given by
terms appearing on the E∞-page of the descent spectral sequence for X. In particular, we see
that all of the TRi(X) are finitely generated W -modules if and only if Ei,j

∞ is finitely generated
for all i, j.

Corollary 5.43. Let X and Y be smooth proper threefolds over k. If Db(X) ' Db(Y ) and if X
is Hodge–Witt, then so is Y .

In particular, the equivalent conditions recorded in Proposition 5.41 are all derived invariants
in dimension d 6 3.

Example 5.44. Joshi shows in [Jos07, Corollary 6.2] that if X is an F -split threefold, then it is
Hodge–Witt. Thus, Corollary 5.43 applies to F -split threefolds. This has recently been extended
to quasi-F -split threefolds by Nakkajima [Nak19, Corollary 1.8] and in particular then applies
to all finite-height Calabi–Yau threefolds by [Yob19].

Remark 5.45. Using the equivalent conditions of Proposition 5.41, one can give a less direct proof
of Theorem 5.42 using Proposition 5.30.

6. Twisted K3 surfaces

In this section, we will study some examples with interesting behavior in the slope and descent
spectral sequences. Specifically, we will completely compute TR and TP for twisted K3 surfaces.
This will give a different perspective on the twisted K3 crystals defined and studied in [BL18]. For
the remainder of this section, we let k be an algebraically closed field of positive characteristic p.

While we have only discussed derived invariants of varieties so far, much of our discussion
carries over unchanged to twisted varieties. For instance, TR and TP are defined for an abstract
dg category. Given α ∈ Br(X), a Brauer class on a smooth proper variety X, we let TR∗(X,α)
and TP∗(X,α) denote their application to the natural enhancement of the bounded derived
category of α-twisted coherent sheaves on X. There is a descent spectral sequence

Es,t
2 = Ht

(
X,WΩs

X

)
⇒ TRs−t(X,α) , (42)

which computes the TR∗(X,α) in terms of the Hodge–Witt cohomology groups of the underlying
variety X. We remark that the Hodge–Witt cohomology groups of a K3 surface are determined
very explicitly in [Ill79, Section II.7.2]. We will see that although the objects appearing on the
E2-page of (42) are the same as those on the E2-page of the descent spectral sequence for X, the
differentials may be different. We let dαr denote the differentials in the α-twisted descent spectral
sequence.
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LetX be a K3 surface over k. We begin by computing the topological periodic cyclic homology
groups TP∗(X) of X in terms of crystalline cohomology. Since the crystalline cohomology groups
of X are all torsion-free, the crystalline–TP spectral sequence (7) degenerates; the corresponding
filtration splits canonically and gives an isomorphism of W -modules

TP2i(X) ∼= H0(X/W )⊕H2(X/W )⊕H4(X/W )

for each i. In general, the K-vector spaces obtained by tensoring TPi with Q admit a natural
Frobenius operator coming from the cyclotomic Frobenius and are thus endowed with a structure
of F -isocrystal. However, after inverting p, this isomorphism does not carry the Frobenius on the
left-hand side to the natural Frobenius operator Φ on crystalline cohomology. Rather, consider
the Mukai crystal as introduced in [LO15]:

H̃(X/W ) = H0(X/W )(−1)⊕H2(X/W )⊕H4(X/W )(1) .

The above can then be upgraded to isomorphisms TP2i(X)Q ∼= H̃(X/K)(i+ 1) of F -isocrystals

for each i, where H̃(X/K) = H̃(X/W ) ⊗W K. In fact, for any (possibly twisted) surface, the
Frobenius is defined integrally5 on TPi(X,α) for i 6 −2. The filtration on TP can even be split
integrally, and so we obtain an isomorphism

TP2i(X) ∼= H̃(X/W )(i+ 1) (43)

of F -crystals for each i 6 −1.

6.1 Finite height

Let (X,α) be a twisted K3 surface over k, and suppose that X has finite height. By the compu-
tation of the Hodge–Witt cohomology groups of X in [Ill79, Section II.7.2], we see that the slope
spectral sequence for X and the descent spectral sequences for X and (X,α) are all degenerate
for degree reasons. Hence, both TR0(X) and TR0(X,α) admit a filtration by R0-submodules
with graded pieces H0(WOX), H1

(
WΩ1

X

)
, and H2

(
WΩ2

X

)
. As these groups are all torsion-free,

this filtration certainly splits at the level of W -modules. In fact, by computing the appropriate
Ext groups, one can show that it even splits at the level of R0-modules. We conclude that there
exist (noncanonical) isomorphisms

TRi(X) ∼= TRi(X,α) ∼=





H2(WOX) if i = −2 ,

H0(WOX)⊕H1
(
WΩ1

X

)
⊕H2

(
WΩ2

X

)
if i = 0 ,

H0
(
WΩ2

X

)
if i = 2

(44)

of R0-modules, and TRi(X) = TRi(X,α) = 0 otherwise.

We next compute TP. Because TR is concentrated in even degrees, the Tate spectral sequences
for X and (X,α) degenerate and TP is also concentrated in even degrees. We have a filtration
on TP2i(X,α) with graded pieces H0

(
WΩ2

X

)
, TR0(X,α), and H2(WOX). Moreover, for i 6 −1,

keeping track of the appropriate Tate twists, this yields a filtration by F -crystals,6 whose graded
pieces are H0

(
WΩ2

X

)
(i− 1), TR0(X,α)(i), and H2(WOX)(i+ 1).

In particular, this determines the TP2i(X,α) as F -isocrystals. To determine their structure
as F -crystals, one needs some additional input. This can be done by comparison with the B-
field constructions of [BL18], from which one can compute the Hodge polygon of TP2i(X,α).

5To see this, one must use the Nygaard filtration.
6By [Ill79, Section II.7.2(a)], the Hodge–Witt cohomology groups of X are finitely generated and torsion-free.
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Using Katz’s Newton–Hodge decomposition [Kat79, Theorem 1.6.1], one then deduces that the
filtration on TP2i(X,α) in fact splits canonically, and so we have a canonical isomorphism

TP2i(X,α) = H2(WOX)(i+ 1)⊕ TR0(X,α)(i)⊕H0
(
WΩ2

X

)
(i− 1)

of F -crystals for each i 6 −1. In particular, by (44), we see that TP2i(X) ∼= TP2i(X,α) as
F -crystals for each i 6 −1, although not canonically.

6.2 Supersingular

We now consider a twisted K3 surface (X,α) where X is supersingular. We will examine the
descent spectral sequence for (X,α). In particular, we will see that it is not degenerate.

We begin with a few general facts. For any smooth k-scheme X, there is a natural map of
étale sheaves

Gm
dlog
−−→WΩ1

X (45)

given on sections by f 7→ d[f ]/[f ]. There is an induced map on cohomology

dlog : H2(X,Gm)→ H2
(
WΩ1

X

)
. (46)

Lemma 6.1. Let X be a smooth proper k-scheme and let α ∈ H2(X,Gm).

(i) The differential

dα2 : H0(WOX)→ H2
(
WΩ1

X

)

appearing in the E2-page of the α-twisted descent spectral sequence (42) sends the canonical
generator 1 ∈W = H0(WOX) to dlog(α).

(ii) If X is a surface, then all other differentials in the twisted descent spectral sequence are

zero.

Proof. Let Két(X,α) denote the α-twisted étale K-theory of X. There is a descent spectral
sequence

Es,t
2 = Ht

ét(X,Ks(OX))⇒ Két
s−t(X,α) .

We also have natural isomorphisms Z ∼= K0(OX) and Gm
∼= K1(OX). The dα2 -differential

H0
ét(X,Z) → H2

ét(X,Gm) sends 1 to α by [Ant11, Theorem 8.5]. Now, the map K1(OX) ∼=
Gm → TR1(OX) ∼= WΩ1 is given by the dlog map; see [GH99, Lemma 4.2.3].7 Thus, part (i) fol-
lows from the compatibility between the descent spectral sequences for Két(X,α) and TR(X,α)
using the trace map Két(X,α)→ TR(X,α) and especially the commutative diagram

H0
ét(X,Z)

dα
2

//

��

H2(X,Gm)

dlog
��

H0(WOX)
dα
2

// H2
(
WΩ1

X

)
.

For part (ii), note that all of the differentials are torsion but that H2
(
WΩ2

X

)
is torsion-free. Thus,

dα2 : H
0(WOX)→ H2

(
WΩ1

X

)
is the only possible nonzero differential for a surface.

We conclude from the above that the descent spectral sequence for a twisted surface (X,α)
is degenerate at E2 if and only if dlog(α) = 0 and is always degenerate at E3 for degree reasons.

7Note that in [GH99], the map is given by − dlog, but this sign depends on a choice of the HKR isomorphism
TR1(OX) ∼= WΩ1

X , which amounts to a choice of an orientation on the circle.
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Let us now return to the situation where X is a supersingular K3 surface. We record the
following result.

Lemma 6.2. If X is a supersingular K3 surface over an algebraically closed field k of positive

characteristic p, then the sequence

0→ Br(X)
dlog
−−→ H2

(
WΩ1

X

) 1−F
−−−→ H2

(
WΩ1

X

)
→ 0

is exact, where the left arrow is the map on cohomology induced by (45).

Proof. As H1
(
WΩ1

X

)
is finitely generated, its endomorphism 1− F is surjective by [Ill79, Lem-

me II.5.3]. By flat duality, H4(X,Zp(1)) = 0. By [Ill79, Théorème II.5.5], we therefore obtain
a short exact sequence

0→ H3(X,Zp(1))→ H2
(
WΩ1

X

) 1−F
−−−→ H2

(
WΩ1

X

)
→ 0 ,

where as usual we put

H3(X,Zp(1))
def
=lim
←−

H3(X,µpn) .

Artin showed that as a consequence of flat duality, this inverse system is constant, and hence
the natural map

H3(X,Zp(1))
∼−→ H3(X,µp)

is an isomorphism. Furthermore, the boundary map induced by the Kümmer sequence gives an
isomorphism

Br(X) ∼−→ H3(X,µp). (47)

For these facts, see [Art74, Proof of Theorem 4.3, p. 559]. We thus find an isomorphism Br(X) ∼−→
H3(X,Zp(1)). Using the definitions of the maps involved, one checks that the resulting map
Br(X)→ H2

(
WΩ1

X

)
is the map on cohomology induced by (45).

We remark that the isomorphism (47) implies that Br(X) is p-torsion; in fact, as recorded
in [Art74], there is an abstract isomorphism of groups Br(X) ∼= k.

Lemma 6.2 implies in particular that dlog is injective. The Brauer group of a supersingular
K3 surface is nontrivial, so combined with Lemma 6.1, we have produced examples of twisted
surfaces with nondegenerate descent spectral sequence. We record the E2- and E3-pages in the
following figure:

H2(WOX) H2
(
WΩ1

X

)
H2

(
WΩ2

X

)

0 H1
(
WΩ1

X

)
0

H0(WOX) 0 0

d

dα
2

H2(WOX)
H2

(
WΩ1

X

)
dlog(α) H2

(
WΩ2

X

)

0 H1
(
WΩ1

X

)
0

ord(α)W 0 0

d

Figure 7. The E2- and E3 = E∞-pages of the descent spectral sequence for (X,α)

The horizontal arrows are the maps induced by the differentials appearing on the E1-page of
the slope spectral sequence for X. The term ord(α)W is the kernel of the nonzero differential,
which is generated by ord(α) ∈W , where ord(α) = ord(dlog(α)) is the order of α.
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As in the finite-height case, we therefore have noncanonical isomorphisms

TR0(X) ∼= TR0(X,α) ∼= H0(WOX)⊕H1
(
WΩ1

X

)
⊕H2

(
WΩ2

X

)
(48)

of R0-modules, where we use ord(α) to give an isomorphism between W ∼= H0(WOX) and
ord(α)W . We have a commuting diagram

H2(WOX)
H2

(
WΩ1

X

)

dlogα

TR−2(X,α) TR−1(X,α) TR0(X,α) ,

d

∼

∼

d 0

where the vertical arrows are induced by the descent spectral sequence and the right lower
differential vanishes by Lemma 4.7. Finally, we have TR1(X,α) = TR2(X,α) = 0.

The differential d is surjective, and we let K(X,α) denote its kernel, so that we have a short
exact sequence

0→ K(X,α)→ H2(WOX)
d
−→

H2
(
WΩ1

X

)

dlog(α)
→ 0 .

We know that K(X) = K(X, 0) is a k-vector space of dimension σ0(X). Recall from [BL18,
Corollary 3.4.23] that the Artin invariant of a twisted supersingular K3 surface is given by
σ0(X,α) = σ0(X) + 1 if α 6= 0 and σ0(X,α) = σ0(X) otherwise. We conclude that K(X,α)
is a k-vector space of dimension σ0(X,α). In particular, this shows that the Artin invari-
ant σ0(X,α) is a derived invariant of (X,α), which gives another proof of [Bra21, Corolla-
ry 3.4.3].

The topological periodic cyclic homology TP(X,α) is computed by the Tate spectral se-
quence (6), whose E2 and E3 pages are pictured in Figures 8 and 9.

· · · TR0(X,α) 0 TR0(X,α) 0 TR0(X,α) · · ·

· · ·
H2

(
WΩ1

X

)
dlog(α) 0

H2

(
WΩ1

X

)
dlog(α) 0

H2

(
WΩ1

X

)
dlog(α) · · ·

· · · H2(WOX) 0 H2(WOX) 0 H2(WOX) · · ·

0 0

d d

Figure 8. A portion of the E2 page of the Tate spectral sequence for (X,α)

· · · TR0(X,α) 0 TR0(X,α) 0 TR0(X,α) · · ·

· · · 0 0 0 0 0 · · ·

· · · K(X,α) 0 K(X,α) 0 K(X,α) · · ·

Figure 9. A portion of the E3 = E∞ page of the Tate spectral sequence for (X,α)

We therefore find short exact sequences

0→ TR0(X,α)→ TPi(X,α)→ K(X,α)→ 0 (49)
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of W -modules for all even i, and TPi(X,α) = TPi(X) = 0 for i odd. In particular, keeping track
of the respective Frobenius actions as in the previous section, we find for each i 6 −1 a short
exact sequence

0→ TR0(X,α)(−i)→ TP2i(X,α)→ K(X,α)→ 0 (50)

of W -modules, where the left arrow is a map of F -crystals.

If α = 0, then using (43) and (48), one checks that the inclusion TR0(X)(−1) → TP−2(X)
above is isomorphic to the inclusion of the Tate module of H̃(X/W ). The cokernel of this inclusion
is the same as the cokernel of the inclusion of the Tate module of H2(X/W ). Thus, K(X) is
naturally identified with the characteristic subspace associated with X by Ogus [Ogu79].

In general, one can show that for any i 6 −1, there is an isomorphism

TP2i(X,α) ∼= H̃(X/W,B)(i)

of F -crystals, where H̃(X/W,B) is the twisted K3 crystal attached to (X,α) in [Bra21]. As in the
classical setting, the construction of H̃(X/W,B) depends on a noncanonical choice of a B-field
lift of α, although the isomorphism class of the resulting crystal is independent of this choice.
Furthermore, under this isomorphism, the inclusion TR0(X,α)(−1) → TP−2(X,α) is identified
with the inclusion of the Tate module of H̃(X/W,B), so that K(X,α) is identified with the
characteristic subspace associated with (X,α) defined in [Bra21]. In particular, as the dimension
of K(X,α) is determined by the F -crystal structure on TP2i(X,α), we see that if α 6= 0, then
TP2i(X) is not isomorphic to TP2i(X,α) as an F -crystal for any i 6 −1, in contrast to the
finite-height case. We remark that the derived Torelli theorem of [Bra21] states that Db(X,α) is
determined by the F -crystal H̃(X/W,B) together with its Mukai pairing.
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Sup. (4) 10 (1977), no. 1, 87–131; doi:10.24033/asens.1322.

AN21 B. Antieau and T. Nikolaus, Cartier modules and cyclotomic spectra, J. Amer. Math. Soc. 34
(2021), no. 1, 1–78; doi:10.1090/jams/951.
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