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Deligne [9] showed that every K3 surface over an algebraically closed field of positive

characteristic admits a lift to characteristic 0. We show the same is true for a twisted

K3 surface. To do this, we study the versal deformation spaces of twisted K3 surfaces,

which are particularly interesting when the characteristic divides the order of the

Brauer class. We also give an algebraic construction of certain moduli spaces of twisted

K3 surfaces over Spec Z and apply our deformation theory to study their geometry. As

an application of our results, we show that every derived equivalence between twisted

K3 surfaces in positive characteristic is orientation preserving.

1 Introduction

A twisted K3 surface is a pair (X, αBr) where X is a K3 surface and αBr ∈ Br(X). We will

show that every twisted K3 surface in characteristic p lifts to characteristic 0.

Theorem 1.1. Let (X, αBr) be a twisted K3 surface over an algebraically closed field k

of characteristic p > 0. Let α ∈ H2(X, μn) be a class whose image in the Brauer group is

αBr and let L be an ample line bundle on X. There exists a discrete valuation ring (DVR) R

with residue field k and field of fractions of characteristic 0 and a triple (X̃, α̃, L̃), where

X̃ is a K3 surface over R such that X̃ ⊗R k ∼= X, α̃ ∈ H2(X̃, μn) is a class such that α̃|X = α,

and L̃ is a line bundle on X̃ such that L̃|X
∼= L.
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4338 D. Bragg

In particular, the image α̃Br of α̃ in Br(X̃) satisfies α̃Br|X = αBr. Thus, (X̃, α̃Br) is a

twisted K3 surface over R lifting (X, αBr).

Without the Brauer class, this result is due to Deligne [9], with further refine-

ments by Ogus [27]. We also consider the more general problem of the existence of lifts

of a twisted K3 surface together with a collection of line bundles. In the non-twisted

case this problem was considered by Lieblich–Olsson [23] and Lieblich–Maulik [22].

For both these problems, we give conditions under which the appropriate universal

deformation space is formally smooth, which implies that such a lift exists over the

ring of Witt vectors W = W(k). We defer the precise statements of these results: the

existence of lifts with multiple line bundles is given in Theorem 7.10, and the question

of smoothness is considered in Theorem 6.12 (for twisted K3 surfaces with one line

bundle) and Corollary 6.19 (for twisted K3 surfaces with multiple line bundles). Even

forgetting the twisting, our methods yield stronger results for the existence of lifts of

K3 surfaces together with collections of line bundles than we have seen in the literature

(see Corollary 6.18).

We outline the basic strategy behind the proof of Theorem 1.1. The usual

procedure for producing a lift consists of two steps: first, using formal deformation

theory one constructs lifts to every finite order, and second, one shows that the resulting

formal system algebraizes. This strategy is carried out by Deligne [9] in his study of the

lifting problem for K3 surfaces. In this case, a key input is the result of Rudakov and

Shafarevich [33] that H0(X, T1
X) = 0 (this result has been subsequently reproved using

cohomological methods, see Lang–Nygaard [19] and Nygaard [25]). This result is equiv-

alent to the vanishing of H2(X, T1
X), which implies that the formal deformation problem

is essentially trivial: any K3 surface X deforms over any infinitesimal thickening. More

precisely, the universal deformation space DefX is smooth over W, and moreover we

have

DefX
∼= Spf W[[t1, . . . , t20]].

However, the resulting systems will generally not algebraize. Thus, Deligne considers

instead deformations of a pair (X, L), where L is an ample line bundle on X. The

algebraization of systems of such pairs is guaranteed by a theorem of Grothendieck.

However, such pairs are no longer unobstructed in general, and so the deformation

theoretic step requires a further analysis. Deligne first shows that the inclusion

Def(X,L) ⊂ DefX
∼= Spf W[[t1, . . . , t20]]
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Lifts of Twisted K3 Surfaces 4339

is a closed formal subscheme of dimension 19 over W defined by one equation. By

analyzing de Rham and crystalline cohomology, he then shows that Def(X,L) is flat over

W, and hence the desired formal system exists. This last step was improved upon by

Ogus [27], who showed that in fact Def(X,L) is frequently smooth over W.

We consider a twisted K3 surface (X, αBr). We show that, as a consequence of the

vanishing of H3(X, OX), such objects are unobstructed. Thus, the universal deformation

space Def(X,αBr)
is smooth over W, and moreover we have

Def(X,αBr)
∼= Spf W[[t1, . . . , t20, s]].

Hence, as before, there are many formal systems over Spf W. The difficulty again lies in

the algebraization step. To algebraize the underlying system of K3 surfaces, we might

carry along an ample line bundle on X. However, even if the underlying system of K3

surfaces algebraizes, a formal system of Brauer classes will typically not algebraize

(this is the essential reason why the Brauer group functor is not representable). To

remedy this, we need to include some extra data related to the class αBr. We will consider

triples (X, α, L), where α is a lift of αBr along the map

H2(X, μn) → Br(X)

for some n. Here, H2(X, μn) denotes the second flat (fppf) cohomology of the sheaf μn

of nth roots of unity on X. In §2 we show that if X is a smooth proper surface then

formal families of such triples (X, α, L) algebraize (Proposition 2.8). The idea is to show

that every formal family of flat cohomology classes is induced by a formal family of

Azumaya algebras, whose algebraization follows from Grothendieck’s existence theorem

for coherent sheaves. Moreover, such a choice of α is the minimal amount of extra data

needed to ensure algebraization. We mention that this section is largely independent of

the rest of the paper, and might be skipped on a first reading.

With this motivation, we then study the universal deformation spaces associated

to a triple (X, α, L). For technical reasons, it turns out to be useful to consider also

deformations of μn and Gm-gerbes. Lacking a suitable reference, we include some

abstract results along these lines in Appendix A. We show that the inclusion

Def(X,α) ⊂ Def(X,αBr)
∼= Spf W[[t1, . . . , t20, s]]
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4340 D. Bragg

of deformation functors is a closed formal subscheme defined by one equation. It

follows that

Def(X,α,L) ⊂ Def(X,αBr)
∼= Spf W[[t1, . . . , t20, s]]

is a closed subscheme defined by two equations. We analyze these deformation spaces

using obstruction classes associated to classes in H2(X, μn). We show that if n is

coprime to p, then such classes deform uniquely along any thickening of X. Thus, in this

case our main result follows quickly from [9] and is well known to experts. However,

if p divides n, there are additional obstructions to deforming such classes, and it is

therefore this case that is the main contribution of this paper.

We analyze these obstructions in §3 and compute them in terms of cup product

with the Kodaira–Spencer class. In §6 we study the interaction between deformations

of a line bundle L on X and deformations of classes α ∈ H2(X, μn). Using this

analysis, we give conditions under which the deformation space Def(X,α,L) is smooth

over W. This requires some precise computations in the de Rham cohomology of K3

surfaces, particularly in the supersingular case. Combined with the algebraization

result of Proposition 2.8, these results imply Theorem 1.1 outside of a small locus of

exceptional cases. We also consider in §6.14 deformations with multiple line bundles.

Even neglecting the twisting, our results in this section seem to be new in some cases.

To obtain results in the case when the universal deformation space is not

smooth, we use global methods. We define in §7 a certain moduli stack M n
d over Spec Z

parametrizing tuples (X, α, L), where X is a K3 surface, α ∈ H2(X, μn), and L is an ample

line bundle on X of degree 2d. The proof that this stack is algebraic is a consequence

of the following result (proved in §2), which may be of independent interest. Given

a morphism f : X → S of algebraic spaces, we let Rmf∗μn denote the mth higher

pushforward from the big flat site of X to that of S. Equivalently, Rmf∗μn is the flat

sheafification of the functor on the category of S schemes defined by

T �→ Hm(X ×S T, μn)

where the right side denotes cohomology in the flat topology.

Theorem 1.2. Let f : X → S be a smooth proper morphism of algebraic spaces of

relative dimension 2 with geometrically connected fibers. Let n be a positive integer.
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Lifts of Twisted K3 Surfaces 4341

Assume that R1f∗μn = 0 and that for all geometric points s ∈ S we have H1(Xs, OXs
) = 0.

The sheaf R2f∗μn is a group algebraic space of finite presentation over S.

If n is invertible on S, this follows from fundamental theorems of étale

cohomology [8, Th. finitude, Théorème 1.1] (and no vanishing assumptions are needed).

When n is not invertible the result is more subtle. When S has equal characteristic p,

more general representability results are proven in [5]. However, in this paper, we are

particularly interested in the case when S has mixed characteristic. Our proof instead

generalizes the method of proof of [4, Theorem 2.1.6] and relies on de Jong and Lieblich’s

solution of the period index problem for function fields of surfaces and Lieblich’s study

of asymptotic properties of moduli spaces of twisted sheaves.

We make a few observations on the geometric structure of these moduli stacks;

for instance, we show that the morphism

M
n
d → Spec Z

is flat and a local complete intersection of relative dimension 19. We deduce

Theorem 1.1 as a consequence. In §7.5, we consider the analogous moduli spaces for

twisted K3 surfaces equipped with multiple line bundles and deduce similar geometric

results.

We also consider in §7.11 a certain refined moduli stack

M
n
d → Spec Z

over the integers parametrizing tuples (X, α, L) where X is a K3 surface, L is a primitive

ample class of degree 2d, and α ∈ H2(X, μn) is a class that is primitive with respect to L,

in a certain sense. The fiber Mn
d⊗C over the complex numbers recovers the moduli stack

of twisted complex K3 surfaces constructed by Brakkee [6] using analytic methods. We

show that these stacks have some advantageous geometric properties; for instance, they

are smooth over Spec Z[ 1
2dn ], and the fibers Mn

d ⊗ Fp are generically smooth. We give

a brief description of their singular loci. The geometry of the moduli stacks Mn
d ⊗ Fp

seems particularly interesting when p divides n, and we think are deserving of further

study.

We hope that our lifting results will be of general utility in the study of twisted

K3 surfaces in positive characteristic. We record in §8 one instance where this is the case
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4342 D. Bragg

by resolving the last open cases of the conjecture that derived equivalences of twisted

K3 surfaces are orientation preserving.

Summary: In §2, we show that formal families of flat cohomology classes on a surface

algebraize (Proposition 2.8). We also prove Theorem 1.2. This section is independent of

the rest of the paper. In §3, we discuss obstruction classes for flat cohomology classes

and their relation with Kodaira–Spencer classes. We then specialize to K3 surfaces in

positive characteristic. In §4 we recall some relevant definitions and cohomological

invariants. In §5 we consider the universal deformation spaces associated to gerbes

over K3 surfaces. We prove that they are prorepresentable and describe them in explicit

coordinates. In §6 we make some computations in the de Rham cohomology of K3

surfaces and derive conditions under which formal deformation spaces are formally

smooth. Combined with the algebraization result of Proposition 2.8, this implies our

main lifting results in many cases. In §7 we define global moduli spaces of twisted K3

surfaces and complete the proof of Theorem 1.1. We also define some refined moduli

spaces, extending those defined by Brakkee over the complex numbers [6]. Finally, in

§8, we give an application to twisted derived equivalences. In Appendix A, we consider

deformations of gerbes. Our main results are the definition of obstruction classes and a

criterion for prorepresentability (generalizing results of Artin–Mazur [1]), both of which

are used in §5.

Conventions: We work throughout over an algebraically closed field k of characteristic

p > 0 with ring of Witt vectors W = W(k). If X is a scheme, Hm(X, μn) will always

denote cohomology with respect to the flat (fppf) topology. We will frequently write α

for a class in H2(X, μn) and let αBr denote the image of α under the map

H2(X, μn) → H2(X, Gm).

2 Algebraization of Flat Cohomology Classes on a Surface

In this section we will show that formal families of classes in the flat cohomology

group H2(X, μn) of a family of surfaces algebraize (Proposition 2.8). We will also prove

Theorem 1.2, which is the stronger statement that the relative H2(X, μn) of a family of

surfaces is representable. This section is independent of the rest of the paper.

2.1 Deformations of Azumaya algebras

We describe the deformation theory of Azumaya algebras, with particular attention

to the case when the degree is divisible by the characteristic. We begin by briefly
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Lifts of Twisted K3 Surfaces 4343

recalling some of the theory of Azumaya algebras. For more details, we refer the reader

to [14, Chapter 18], and the associated references. Let X be a scheme and let n be a

positive integer. An Azumaya algebra on X of degree n is a sheaf A of associative

(possibly noncommutative) unital OX-algebras on X, which is étale locally isomorphic

to the matrix algebra Mn(OX). Thus, A has rank n2 as an OX-module. Consider the

commutative diagram

(2.1.1)

of group schemes on X, which has exact rows and columns. By the Skolem–Noether

theorem, the automorphism sheaf of Mn(OX) is isomorphic to PGLn, and so an Azumaya

algebra A of degree n gives rise to a class [A ] in the nonabelian cohomology H1(X, PGLn)

which (by definition) classifies PGLn-torsors. An Azumaya algebra A of degree n has an

associated class in H2(X, μn), which is the image ∂([A ]) of [A ] under the boundary map

∂ : H1(X, PGLn) → H2(X, μn) (2.1.2)

induced by the top row of (2.1.1).

Azumaya algebras can be understood in terms of twisted sheaves on gerbes (see

§A.2). A coherent sheaf E on a μn or Gm-gerbe is said to be m-twisted if the inertial

action is via the character λ �→ λm (see e.g., [29, Definition 12.3.2]). We refer to a

1-twisted sheaf simply as a twisted sheaf.

Lemma 2.2. Let π : X → X be a μn-gerbe representing a class α ∈ H2(X, μn). There is

a natural bijection between the set of isomorphism classes of Azumaya algebras on X of

degree n such that ∂([A ]) = α and the set of isomorphism classes of locally free twisted

sheaves on X with rank n and trivial determinant.
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4344 D. Bragg

Proof. If E is a locally free twisted sheaf on X , then A := π∗End(E ) is an Azumaya

algebra on X. If E has rank n and trivial determinant, then we have ∂([A ]) = α (see

[20, Proposition 3.1.2.1]). Conversely, if A is an Azumaya algebra on X of degree n such

that ∂([A ]) = α, then A = π∗End(E ) for a unique locally free twisted sheaf E of rank n

and trivial determinant. �

Let A be an Azumaya algebra on X of degree n. There is a trace map

tr : A → OX (2.2.1)

defined by gluing the usual trace maps Mn(OX) → OX on an étale cover. We set

sA := ker(tr), so that we have a short exact sequence

0 → sA → A
tr
−→ OX → 0. (2.2.2)

We define pA := A /OX by the short exact sequence

0 → OX
i

−→ A → pA → 0 (2.2.3)

where i is the canonical inclusion defining the algebra structure on A . Consider the

pairing A ⊗ A → OX defined by s ⊗ s′ �→ tr(ss′). This induces a perfect pairing sA ⊗

pA → OX , and hence a canonical isomorphism sA ∼= (pA )∨. As a consequence, using

the canonical isomorphism A ∼= A ∨, the composition

A ∼= A
∨ i∨

−→ OX

is the trace map tr, and the composition

OX
tr∨

−−→ A
∨ ∼= A

is i. The composition tr ◦ i : OX → OX is multiplication by n. It follows that if n

is invertible in k, then both (2.2.2) and (2.2.3) are split, by 1
n i and 1

n tr, respectively.

Furthermore, the composition sA ↪→ A � pA gives an isomorphism sA ∼= pA . If n

is not invertible, there may not exist such an isomorphism (see Remark 2.4).

Our interest in the sheaves sA and pA is due to their relationship with

deformations of A . Let X ⊂ X ′ be a closed immersion defined by an ideal I ⊂ OX ′

such that I2 = 0. As explained by de Jong [7, §3], the sheaf pA is isomorphic to the
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Lifts of Twisted K3 Surfaces 4345

sheaf of derivations DerOX
(A , A ), and thus controls the deformation theory of A , in the

following sense: there exists a functorial obstruction class o(A /X ′) ∈ H2(X, pA ⊗ I)

which vanishes if and only if there exists an Azumaya algebra A ′ on X ′ such that

A ′|X
∼= A .

We will consider the refined deformation problem of finding a lift of A with

prescribed class in H2(X, μn). We will show that, under certain assumptions, this

problem is controlled by sA . More precisely, define

Hi(X, A ⊗ I)0 := ker(tr : Hi(X, A ⊗ I) → Hi(X, I)).

There is a map

H2(X, sA ⊗ I) → H2(X, A ⊗ I)0. (2.2.4)

We will only consider the case when this map is an isomorphism. This holds for instance

if the degree of A is invertible in OX (by the splitting of (2.2.2)), or if H1(X, OX) = 0 (eg.

if X is an infinitesimal deformation of a K3 surface). Without this assumption a more

subtle analysis is required.

Proposition 2.3. Let A be an Azumaya algebra on X of degree n such that (2.2.4) is

an isomorphism. Set α = ∂([A ]) ∈ H2(X, μn). Let α′ ∈ H2(X ′, μn) be a class such that

α′|X = α. There exists a functorial obstruction class

o(A /α′) ∈ H2(X, sA ⊗ I),

which vanishes if and only if there exists an Azumaya algebra A ′ on X ′ such that

A ′|X
∼= A and ∂([A ′]) = α′.

Proof. Using Lemma 2.2, we rephrase the problem in terms of twisted sheaves. Let

π : X → X and π ′ : X ′ → X ′ be μn-gerbes corresponding to α and α′. Let E be a locally

free twisted sheaf on X of rank n and trivial determinant such that π∗End(E ) ∼= A .

There is an obstruction class o(E ) ∈ H2(X , End(E ) ⊗ π∗I), which vanishes if and only if

there exists a locally free sheaf E ′ on X ′ such that E ′|X
∼= E . Any such deformation E ′

is necessarily also twisted. The trace map

tr : H2(X , End(E ) ⊗ π∗I) → H2(X , π∗I) (2.3.1)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
3
/5

/4
3
3
7
/6

5
1
1
4
0
8
 b

y
 U

n
iv

e
rs

ity
 o

f U
ta

h
 L

a
w

 u
s
e
r o

n
 3

1
 O

c
to

b
e
r 2

0
2
4



4346 D. Bragg

sends o(E ) to the obstruction to deforming the determinant of E , which by assumption

is trivial. It follows that o(E ) is contained in the kernel H2(X , End(E ) ⊗ π∗I)0 of (2.3.1).

Fix an isomorphism ϕ : det E
∼
−→OX . There is a refined obstruction class

o(E , ϕ) ∈ H2(X , sEnd(E )⊗π∗I) whose vanishing is equivalent to the existence of a tuple

(E ′, τ , ϕ′), where E ′ is a locally free sheaf on X ′, τ : E ′|X
∼
−→E is an isomorphism, and

ϕ′ : det(E ′)
∼
−→OX ′ is a trivialization of the determinant of E ′ such that ϕ′|X is identified

via det τ with ϕ. The class o(E ) is the image of o(E , ϕ) under the map

H2(X , sEnd(E ) ⊗ π∗I) → H2(X , End(E ) ⊗ π∗I)0. (2.3.2)

Via pushforward, this map is identified with the isomorphism

H2(X, sA ⊗ I)
∼
−→H2(X, A ⊗ I)0.

In particular, (2.3.2) is an isomorphism, and so the class o(E /ϕ) does not depend on the

choice of ϕ. We define o(A /α′) to be the image of o(E /ϕ) in H2(X, sA ⊗ I).

We claim that o(A /α′) has the desired properties. Indeed, if o(A /α′) vanishes,

then there exists a deformation E ′ of E with trivial determinant, and A ′ = π ′
∗End(E ′)

is an Azumaya algebra on X ′ of degree n such that ∂([A ′]) = α′. Conversely, suppose

that there exists such an Azumaya algebra, and let E ′ be the corresponding locally free

sheaf on X ′. We have that E ′|X
∼= E . It follows that o(E ) = 0, and because (2.3.2) is an

isomorphism, also o(E , ϕ) = 0. We conclude that o(A /α′) = 0. �

Remark 2.4. Let us say that an Azumaya algebra A of degree n is unobstructed

if H2(X, pA ) = 0 and relatively unobstructed if H2(X, sA ) = 0. An unobstructed

Azumaya algebra deforms automatically along any square zero thickening of X, while

a relatively unobstructed Azumaya algebra deforms provided we have a deformation

of the corresponding flat cohomology class. If p does not divide n, then sA and pA

are isomorphic, so A is unobstructed if and only if it is relatively unobstructed. If p

divides n, then they are not equivalent. Indeed, suppose that X is a smooth projective

surface. As observed by de Jong [7, §3], because there is an inclusion OX ⊂ sA , if

H0(X, ωX) �= 0 then we have H0(X, sA ⊗ ωX) �= 0. This group is Serre dual to H2(X, pA ),

which is therefore also nonzero. On the other hand, it may simultaneously be the case

that H2(X, sA ) = 0. An example is given by taking A to be an Azumaya algebra on a K3

surface such that H0(X, A ) = k (e.g., A = End(E ) for a simple locally free sheaf E of

rank p). Because H1(X, OX) = 0 we then have H0(X, pA ) = 0. This group is Serre dual to

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
3
/5

/4
3
3
7
/6

5
1
1
4
0
8
 b

y
 U

n
iv

e
rs

ity
 o

f U
ta

h
 L

a
w

 u
s
e
r o

n
 3

1
 O

c
to

b
e
r 2

0
2
4



Lifts of Twisted K3 Surfaces 4347

H2(X, sA ⊗ ωX) = H2(X, sA ), which therefore vanishes. In particular, in this case, sA

and pA are not isomorphic.

2.5 Existence of relatively unobstructed Azumaya algebras on surfaces

We will use the following existence result for Azumaya algebras on surfaces. It is a

consequence of the solution of the period-index problem for function fields of surfaces,

due to de Jong [7] (when the degree is coprime to p) and Lieblich [20] (in general),

combined with Lieblich’s results [21] on the asymptotic properties of moduli spaces

of twisted sheaves on surfaces.

Theorem 2.6. Let X be a smooth proper surface over an algebraically closed field k

and let n be a positive integer. For any class α ∈ H2(X, μn), there exists an Azumaya

algebra A on X of degree n such that ∂([A ]) = α with the property that H2(X, A )0 = 0.

Proof. We begin by explaining the translation of the problem into the language of

twisted sheaves and gerbes. Let π : X → X be a μn-gerbe representing α. If E is a locally

free twisted sheaf on X , then A := π∗End(E ) is an Azumaya algebra on X. If E has

rank n and trivial determinant, then we have ∂([A ]) = α (see [20, Proposition 3.1.2.1]).

Moreover, we have that Ext2(E , E )0 = H2(X, A )0, where Ext2(E , E )0 = ker(tr :

Ext2(E , E ) → H2(X , OX )). Thus, our task is to show that there exists a locally free

twisted sheaf E on X with rank n, trivial determinant, and Ext2(E , E )0 = 0.

The proof of this fact uses two inputs. First, we claim that there is a

μ-semistable locally free twisted sheaf G with rank n and trivial determinant. Let

K be the function field of X. We use Lieblich’s characteristic free period index theorem

for surfaces [20, Theorem 4.2.2.3] to find a locally free twisted sheaf FK on XK of rank

m, where m is the period of α (the order of the image of α in the Brauer group). Let F

be the reflexive hull of the pushforward of FK to X . The sheaf F is 1-twisted, locally

free, and μ-stable. Taking an appropriate elementary transformation, we may arrange

so that the determinant of F is trivial (see e.g., the proof of [20, Proposition 3.2.3.4]).

The sheaf G = F⊕n/m is a twisted sheaf of rank n and trivial determinant. Moreover, G

is polystable, and in particular semistable, as desired.

We now wish to produce the desired E . Fix an integer 
. Consider the moduli

space M(
) of μ-semistable twisted sheaves on X with rank n, discriminant 
,

and trivialized determinant (denoted Twss(n, OX , 
) in [21, Notation 4.2.2]). By [21,

Theorem 5.3.1], if 
 is sufficiently large, then any irreducible component of M(
)
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4348 D. Bragg

contains a point corresponding to a twisted sheaf that is locally free and satisfies

Ext2(E , E )0 (here, we note that while the reference [21] is written under the blanket

assumption that n is coprime to the characteristic, this assumption is not needed for

the proof of the cited result). It remains to show that the spaces M(
) are nonempty for

sufficiently large 
. This follows from the existence of the sheaf G above: we have that

the moduli space M(
) is nonempty for some 
, which implies their nonemptiness for

all sufficiently large 
 (see e.g., the proof of [20, Proposition 3.2.3.4]). We conclude the

result. �

Remark 2.7. For our applications to lifting Brauer classes in this paper, we only

need the special case of Theorem 2.6 when X is a K3 surface and α ∈ H2(X, μn) is

a class having order n. In this case, the proof of 2.6 may be significantly shortened,

and in particular we may avoid the analysis of asymptotic properties of moduli

spaces of twisted sheaves in [21]. Indeed, as in the proof of 2.6, let X be a μn-

gerbe representing α. Using [20, Theorem 4.2.2.3] and taking the reflexive hull and an

elementary transformation we find a locally free twisted sheaf on X of rank n and

trivial determinant. As the period of α is n, such a sheaf is simple, in the sense that

k = End(E ). Consider the Azumaya algebra A := π∗End(E ). The map i induces an

isomorphism

k = H0(X, OX)
∼
−→H0(X, A ) (2.7.1)

on global sections. Because X is K3, (2.7.1) is Serre dual to the trace map

tr : H2(X, A ) → H2(X, OX).

It follows that the trace map is injective, so H2(X, A )0 = 0.

Let k be an algebraically closed field and let (R,m) be a complete noetherian

local ring with residue field k. Let n be a positive integer.

Proposition 2.8. Let X be a smooth proper surface over R and write Xi = X ⊗R

R/mi+1. Suppose that H1(X0, OX0
) = 0. If

{
αi ∈ H2(Xi, μn)

}
i≥0

is a compatible system of

cohomology classes, then there exists a unique class α̃ ∈ H2(X, μn) such that α̃|Xi
= αi

for all i.
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Proof. We first note that, using flatness and filtering by powers of m, the assumption

that H1(X0, OX0
) implies that H1(Xi, OXi

) and H1(Xi,m
i+1OXi

) vanish for all i ≥ 0.

By Theorem 2.6, we may find an Azumaya algebra A on X of degree n such

that ∂([A ]) = α0 and such that H2(X, A )0 = 0. Set A0 = A . Applying Proposition 2.3

repeatedly, we find for each i ≥ 1 an Azumaya algebra Ai on Xi such that Ai|Xi−1
∼= Ai−1

and such that ∂([Ai]) = αi. By Grothendieck’s existence theorem there exists an Azumaya

algebra Ã on X restricting to Ai on Xi. The class α̃ := ∂([Ã ]) ∈ H2(X, μn) restricts to αi

for each i.

We now show the uniqueness. By subtracting, we are reduced to showing that

if α̃ ∈ H2(X, μn) is a class such that α̃|Xi
= 0 for all i ≥ 0 then α̃ = 0. Let X → X

be a corresponding μn-gerbe. A trivialization of the restriction of the gerbe to Xi gives

an R/mi+1-point of the Weil restriction f∗X , where f : X → SpecR is the structure

morphism. By assumption, we may find a compatible system of such trivializations,

and hence a compatible family of R/mi+1-points of f∗X . By Theorem 1.5 of [30], f∗X is

algebraic, so this family comes from an R-point of f∗X . We conclude that X → X is a

trivial gerbe, and hence α̃ = 0. �

2.9 A representability result

We now prove Theorem 1.2. We recall the notation. Let f : X → S be a morphism of

algebraic spaces. Let n be a nonzero integer. We let Rf∗ denote the derived pushforward

from the category of sheaves of abelian groups on the big flat (fppf) site of X to that of

S. In [4, Theorem 2.1.6], it is shown that if X → S is a family of K3 surfaces and p is a

prime then R2f∗μp is an algebraic space. Theorem 1.2 is a generalization of this result,

and the idea of proof is the same.

Proof of Theorem 1.2. We follow closely the proof of [4, Theorem 2.1.6]. Write

S = R2f∗μn. We first claim that the diagonal S → S ×S S is representable by closed

immersions of finite presentation. In the case when f is a family of K3 surfaces and

n = p is a prime, this is shown in [4, Proposition 2.17]. Replacing p with n and using our

assumption that R1f∗μn = 0, the proof of loc. cit. applies unchanged to give the result.

Let Az be the stack on S whose objects over an S-scheme T → S are Azumaya

algebras A on XT such that for every geometric point t → T the restriction At := A |Xt

has degree n and the map

tr : H2(Xt, At) → H2(Xt, OXt
)
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4350 D. Bragg

is injective. As described in the proof of [4, Theorem 2.1.6], Az is an Artin stack locally

of finite presentation over S, and the nonabelian boundary map ∂ (2.1.2) gives rise to a

map

χ : Az → S .

Arguing as in [4, Proposition 2.1.10] and using Proposition 2.3 (and our assumption on

the vanishing of H1(Xt, OXt
)), we deduce that the map χ is representable by smooth Artin

stacks. Furthermore, by Theorem 2.6, χ is surjective on geometric points.

Now, any smooth cover of Az by a scheme gives rise to a smooth cover of S by

a scheme. We have shown that the diagonal of S is representable, so S is an Artin

stack of finite presentation over S. But S is a sheaf, so by [35, 04SZ] S is an algebraic

space. �

3 Deformations of Cohomology Classes for μn and Gm

Let X be a scheme and let n be a positive integer. We are interested in the flat

cohomology groups of the group schemes Gm and μn. These groups are related by the

Kummer sequence

1 → μn → Gm
·n
−→ Gm → 1, (3.0.1)

which is exact in the flat topology. If A is a sheaf of abelian groups on X, we let A(n)

denote the complex

A(n) = [A
·n
−→ A] (3.0.2)

where the right hand side has terms in degrees 0 and 1. With this notation, we interpret

the Kummer sequence (3.0.1) as a quasi–isomorphism μn
∼
−→ Gm(n) of complexes of

sheaves on the flat site of X. In particular, this gives a canonical resolution of μn by a

complex of smooth group schemes. By a theorem of Grothendieck [10, Théorème 11.7],

we have identifications

Hm(Xfl, μn) = Hm(Xfl, Gm(n)) = Hm(Xét, Gm(n)). (3.0.3)

We consider the following deformation situation. Let X ↪→ X ′ be an infinitesimal

thickening whose defining ideal I satisfies I2 = 0. Let α ∈ H2(X, μn) be a flat cohomology

class and let αBr ∈ H2(X, Gm) be the image of α under the map H2(X, μn) → H2(X, Gm).

We consider the problem of deforming α and αBr to X ′. (We consider such questions in
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a slightly more general setting in Appendix A, where we also consider the more refined

question of deforming gerbes. Here we are only interested in the obstruction classes,

for which a purely cohomological approach suffices). Consider the standard short exact

sequence

0 → I → Gm,X ′ → Gm,X → 1 (3.0.4)

of étale sheaves, where the left map is the truncated exponential f �→ 1 + f . Taking

cohomology, we find an exact sequence

. . . → H2(X, I) → H2(X ′, Gm,X ′) → H2(X, Gm,X)
δ
−→ H3(X, I) → . . . .

We define o(αBr/X ′) := δ(αBr) ∈ H3(X, I). This class vanishes if and only if there exists a

class α′
Br ∈ H2(X ′, Gm,X ′) such that α′

Br|X = αBr. We similarly define an obstruction class

for α as follows. Multiplication by n on (3.0.4) gives a short exact sequence

0 → I(n) → Gm,X ′(n) → Gm,X(n) → 1 (3.0.5)

of complexes. We take cohomology and apply the identifications (3.0.3) to obtain a long

exact sequence

. . . → H2(X, I(n)) → H2(X ′, μn,X ′) → H2(X, μn,X)
δ′

−→ H3(X, I(n)) → . . . .

We put o(α/X ′) := δ′(α) ∈ H3(X, I(n)). This class vanishes if and only if there exists a

class α′ ∈ H2(X ′, μn,X ′) such that α′|X = α. These obstructions are compatible: we have a

commuting square

where the right vertical arrow is induced by the projection I(n) → I onto the degree 0

term. It follows that o(α/X ′) �→ o(αBr/X ′) under the right vertical arrow.

Remark 3.1. The groups Hm(X, I(n)) depend strongly on the behavior of multiplication

by n on I. If multiplication by n is invertible on I, then the complex I(n) is quasi-

isomorphic to 0. We therefore have Hm(X, I(n)) = 0 for all i, and hence classes in
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4352 D. Bragg

H2(X, μn) deform uniquely over X ′. On the other hand, suppose that multiplication by n

on I is zero. We then have

I(n) = I[−1] ⊕ I. (3.1.1)

Therefore, H3(X, I(n)) = H2(X, I) ⊕ H3(X, I), and classes in H2(X, μn) may (at least a-

priori) be obstructed. On the other hand, the relative deformation problem with respect

to the embedding μn ⊂ Gm is more uniform in n.

Suppose that nI = 0, and let

π1 : H2(X, I) ⊕ H3(X, I) → H2(X, I)

be the projection onto the first factor. If α ∈ H2(X, μn), then we define

õ(α/X ′) := π1(o(α/X ′)) = π1(δ′(α)). (3.1.2)

Remark 3.2. The class õ(α/X ′) has the following geometric interpretation. Let X be

a μn-gerbe on X with cohomology class α and let XBr = X ∧μn
Gm be the induced

Gm-gerbe, which has class αBr. Suppose that o(αBr/X ′) = 0, and fix a deformation X ′
Br

of XBr over X ′. We then have that õ(α/X ′) is equal to the obstruction class o(X /X ′
Br) ∈

H2(X, I) defined in Proposition A.12. In particular, o(X /X ′
Br) depends only on α in this

case. To see the equality, consider the short exact sequence

0 → I[−1] → I(n) → I → 0.

Because nI = 0, this sequence is split. Thus, in the long exact sequence on cohomology,

all boundary maps are zero, and we obtain a short exact sequence

0 → H2(X, I) → H2(X, I(n)) → H3(X, I) → 0.

By Remark A.13, we have that o(X /X ′
Br) �→ o(X /X ′) = o(α/X ′) under the left arrow. The

claim follows.

3.2 Kodaira–Spencer classes

Let X be a reduced scheme over a field k of characteristic p > 0. Let A be an Artinian

local ring with maximal ideal m satisfying m
2 = 0 and residue field identified with k.
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Let X ′ be a flat scheme over A together with a specified isomorphism X ′ ⊗A k ∼= X.

Thus, X ⊂ X ′ is an infinitesimal thickening defined by the square zero ideal sheaf

mOX = m ⊗A OX ′ . These data are summarized in the cartesian diagram

(3.3.1)

where the horizontal arrows are closed immersions defined by the square-zero ideals m

and mOX .

Let n be a positive integer. We consider the exact sequence

Gm,X
·n
−→ Gm,X → Gm,X/G×n

m,X → 1 (3.3.2)

of étale sheaves on X. Here, the right term denotes the quotient sheaf in the étale

topology. The corresponding quotient in the flat topology vanishes. If n is coprime to p,

then the étale quotient also vanishes. The sequence (3.3.2) corresponds to a map

Gm,X(n) → Gm,X/G×n
m,X [−1] (3.3.3)

of complexes of étale sheaves. Let

ϒ : H2(Xfl, μn) → H1(Xét, Gm,X/G×n
m,X) (3.3.4)

be the map obtained by taking cohomology of (3.3.3) and using the identification (3.0.3).

We remark that if n is a power of p, then because X is reduced, the left map of (3.3.2)

is injective, (3.3.3) is a quasi-isomorphism, and (3.3.4) is an isomorphism. Let pr be the

largest power of p, which divides n. We then have a commuting square

(3.3.5)

where the right vertical arrow is induced by the natural quotient map. This map is an

isomorphism because, for any m coprime to p, multiplication by m on Gm is surjective

in the étale topology.

Assume that nm = 0 (equivalently, pr
m = 0). As X is reduced, the restriction map

μn,X ′ → μn,X of étale sheaves is surjective. Applying the snake lemma to (3.0.5) yields an
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4354 D. Bragg

exact sequence

0 → mOX → Gm,X ′/G×n
m,X ′ → Gm,X/G×n

m,X → 1. (3.3.6)

Taking cohomology, we get an exact sequence

H1(X ′, Gm,X ′/G×n
m,X ′) → H1(X, Gm,X/G×n

m,X)
δ′′

−→ H2(X,mOX). (3.3.7)

Proposition 3.4. Suppose that nm = 0. If α ∈ H2(X, μn) is a flat cohomology class, then

õ(α/X ′) = δ′′ ◦ ϒ(α).

Proof. Because nm = 0, there is a map of complexes mOX(n) → mOX [−1] given by the

identity in degree 1. Combining this map with (3.0.5), (3.3.6), and the maps (3.3.3) we

find a commutative diagram

with exact rows. Taking cohomology gives a commutative diagram

By definition, õ(α/X ′) is equal to π1(δ(α)), and we obtain the result. �

We now assume that X is smooth over k and that A is the ring of dual numbers

k[ε] := k[ε]/ε2. Thus, (3.3.1) becomes
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Consider the exact sequence

0 → OX
dε
−→ �1

X ′/k[ε] → �1
X/k → 0. (3.4.1)

The Kodaira–Spencer class τX ′ of the deformation X ′ is the extension class of this

sequence in Ext1
X(�1

X/k, OX) = H1(X, TX). There is a canonical cup product pairing

_ ∪ _ : H1(X, �1
X) ⊗ H1(X, TX) → H2(X, OX) (3.4.2)

and the map

_ ∪ τX ′ : H1(X, �1
X) → H2(X, OX) (3.4.3)

is the boundary map coming from the long exact sequence on cohomology of (3.4.1).

Consider the map

dlog : Gm → �1
X (3.4.4)

of étale sheaves on X given on sections by f �→ df /f . Let n be a positive integer that is

divisible by p. Any pth power is killed by dlog, so (3.4.4) descends to a map

dlog : Gm/G×n
m → �1

X (3.4.5)

where Gm/G×n
m is the quotient sheaf for the étale topology. Composing (3.3.3) with (3.4.5)

and taking cohomology we get a map

dlog : H2(X, μn) → H1(X, �1
X). (3.4.6)

Fix a class α ∈ H2(X, μn). The following result computes the class õ(α/X ′) ∈

H2(X, εOX) (3.1.2) in terms of the Kodaira–Spencer class τX ′ of the deformation X ′. This

computation also appears in a paper of Nygaard [24, pg. 223]. The corresponding result

for invertible sheaves is standard (see e.g., [27, Proposition 1.14]).

Proposition 3.5. Suppose that n is divisible by p. For any class α ∈ H2(X, μn), the class

õ(α/X ′) ∈ H2(X, εOX) ∼= εH2(X, OX) is equal to ε(dlog(α) ∪ τX ′).
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Proof. We have a commutative diagram

with exact rows. Taking cohomology we find a commutative diagram

We conclude the result from Proposition 3.4. �

4 K3 Surfaces in Positive Characteristic

A K3 surface is a smooth projective surface X over such that ωX
∼= OX and H1(X, OX) = 0.

In this section we collect some facts about K3 surfaces in positive characteristic and

their cohomology.

We assume that k is algebraically closed of characteristic p > 0 and X is a K3

surface over k. We recall the definition of the height of X (see e.g., [13, §18.3]). The

formal Brauer group of X is the functor B̂rX := �2
Gm/X on the category of Artinian local

k-algebras, given by

A �→ ker
(
H2(XA, Gm) → H2(X, Gm)

)

where XA = X ⊗k A is the trivial deformation of X over A. Due to the equalities

h3(X, OX) = 0 and h2(X, OX) = 1, a result of Artin–Mazur [1, Corollary 2.12] implies that

B̂rX is prorepresentable by a smooth one-dimensional commutative formal group over

k. Such objects are classified up to isomorphism by their height, which is a discrete

invariant h, equal either to a positive integer or to ∞. The height is determined as

follows. Fix an isomorphism B̂rX
∼= Spf k[[s]]. The multiplication by p map [p] : B̂rX →

B̂rX corresponds to a map k[[s]] → k[[s]], which we also denote by [p]. If [p](s) �= 0, we

define the height of B̂rX to be the smallest integer h such that

[p](s) = λsph
+ (higher order terms)
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Lifts of Twisted K3 Surfaces 4357

for some nonzero λ ∈ k. If [p](s) = 0, we set h = ∞. The height of the K3 surface X is

defined to be the height of the formal Brauer group B̂rX .

Let B̂rX [n] denote the kernel of multiplication by n on the formal Brauer group.

The height may be equivalently described in terms of the formal scheme prorepresenting

B̂rX [p]: X has height h < ∞ if and only if

B̂rX [p] ∼= Spf k[[s]]/(sph
)

while X has height h = ∞ if and only if

B̂rX [p] ∼= Spf k[[s]].

We say that X has finite height if h �= ∞. In this case, h must lie in the range

1 ≤ h ≤ 10. If h = 1, we say that X is ordinary. A K3 surface is ordinary if and

only if the map F : H2(X, OX) → H2(X, OX) induced by the absolute Frobenius of X is

an isomorphism (see [36, §5]). If h = ∞, then we say that X is supersingular. In the

ordinary and supersingular cases, we have the following explicit descriptions of the

formal Brauer group:

h(X) = 1 ⇔ B̂rX
∼= Ĝm and h(X) = ∞ ⇔ B̂rX

∼= Ĝa.

Accordingly, in these two cases, the group structures on B̂rX [p] are given by

h(X) = 1 ⇔ B̂rX [p] ∼= μp and h(X) = ∞ ⇔ B̂rX [p] ∼= Ĝa.

Suppose that X is supersingular. In this case, there is a further discrete invariant

of X, which may be characterized as follows. The flat cohomology group H2(X, Zp(1)) :=

lim
←−

H2(X, μpn) is a free Zp-module of rank 22 and is equipped with a natural Zp-valued

pairing. The Artin invariant of X is the integer σ0 such that

disc H2(X, Zp(1)) = −p2σ0 .

We have 1 ≤ σ0 ≤ 10. We say that X is superspecial if σ0 = 1. The height may only rise

upon specialization, and the Artin invariant can only fall upon specialization. Thus, the

ordinary locus is open in moduli, and the superspecial locus is closed in moduli. In fact,

there is up to isomorphism only one superspecial K3 surface [27]. If X has finite height,

then we formally declare σ0(X) = ∞.
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4358 D. Bragg

4.1 De Rham cohomology

The second de Rham cohomology group H2
dR(X) has dimension 22 and is equipped with

the Hodge and conjugate filtrations

0 ⊂ F2
H ⊂ F1

H ⊂ F0
H = H2

dR(X) 0 ⊂ F2
C ⊂ F1

C ⊂ F0
C = H2

dR(X).

Both F2
H and F2

C have dimension 1, and F1
H and F1

C have dimension 21. Under the cup

product pairing on H2
dR(X), we have (F2

H)⊥ = F1
H and (F2

C)⊥ = F1
C. The relative positions

of Fi
H and Fi

C give some information on the invariants of X. We have that X is ordinary

if and only if F2
H ∩ F1

C = 0 if and only if F1
H ∩ F2

C = 0, and X is superspecial if and only if

F2
H = F2

C if and only if F1
H = F1

C (see [36, §8]).

For future use, we list some explicit cohomology groups corresponding to the

intersections of the various pieces of the Hodge and conjugate filtrations. Define

Z�i
X := ker(d : �i

X → �i+1
X ) and B�i

X := im(d : �i−1
X → �i

X).

Lemma 4.2. We have natural identifications

(1) F1
H ∩ F1

C = H1(X, Z�1
X),

(2) F1
H ∩ F2

C = H1(X, B�1
X),

(3) F2
H ∩ F1

C = H0(X, B�2
X), and

(4) F2
H ∩ F2

C = H0(X, �1
X/B�1

X).

Proof. (1) is proven by Ogus in [27, Proposition 1.2]. For (2), consider the short exact

sequence

0 → O
p
X → OX

d
−→ B�1

X → 0.

Taking cohomology and using H1(X, OX) = 0, we obtain a diagram

where the vertical arrows are induced by the natural maps of complexes. Here, the

middle verticle arrow is injective because of the degeneration of the conjugate spectral

sequence, which implies the injectivity of the left arrow. The image of the middle arrow
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Lifts of Twisted K3 Surfaces 4359

is F2
C, and H2(X, τ≥1�•

X) = F1
H , so we conclude the result. For (3), we take cohomology of

the exact sequence

0 → Z�1
X → �1

X
d
−→ B�2

X → 0, (4.2.1)

which gives

0 → H0(X, B�2
X) → H1(X, Z�1

X) → H1(X, �1
X). (4.2.2)

This identifies H0(X, B�2
X) with the kernel of the map F1

H ∩ F1
C → F1

H/F2
H , which is exactly

F2
H ∩ F1

C. Finally, we show (4). Taking cohomology of the exact sequences

0 → B�1
X → �1

X → �1
X/B�1

X → 0

and (4.2.1), we find a diagram

We conclude that H0(X, �1
X/B�1

X) = (F1
H ∩ F2

C) ∩ (F2
C ∩ F1

H) = F2
H ∩ F2

C. �

5 Formal Deformation Spaces for Cohomology Classes on K3 Surfaces

Let k be an algebraically closed field of positive characteristic p and let W = W(k) be

the ring of Witt vectors of k. Let CW be the category of artinian local W-algebras with

residue field identified with k. Let X be a K3 surface over k. A deformation of X over

A ∈ CW is a pair (XA, ρ), where XA is a family of K3 surfaces over A and ρ : XA ⊗A k
∼
−→X

is an isomorphism. We let

DefX := DefX/W

be the functor on CW whose value on A ∈ CW is the set of isomorphism classes of

deformations of X over A.

Let n be a positive integer, let α ∈ H2(X, μn) be a cohomology class, and let

αBr ∈ H2(X, Gm) be the image of α in the Brauer group. Let X be a μn-gerbe over X with

cohomology class α, and let XBr := X ∧μn
Gm be the associated Gm-gerbe, which has
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4360 D. Bragg

class αBr. We consider the deformation functors DefX /W and DefXBr/W on CW associated

to the gerbes X and XBr (see Definition A.14). Up to isomorphism, these depend only on

the cohomology classes α and αBr, respectively. In an abuse of notation, we write

Def(X,α) := DefX /W and Def(X,αBr)
:= DefXBr/W .

We have a commutative diagram of functors

(5.0.3)

(see (A.19.1)). The map ι is induced by XA �→ XA ∧μn
Gm, the map π is induced by

XA �→ |XA|, where |XA| is the sheafification (or “underlying K3 surface”) of XA, and πBr

is induced by XBr,A �→ |XBr,A|.

Remark 5.1. Let Def(X,α) denote the functor on CW whose value on A is the set of

isomorphism classes of tuples (XA, ρ, αA), where (XA, ρ) is a deformation of X over A and

αA ∈ H2(XA, μn) is a class such that αA|X = α. There is a natural map

Def(X,α) → Def(X,α) (5.1.1)

induced by the association (XA, ϕ) �→ (XA, ρ, [XA]), where XA = |XA| is the sheafification

of XA, ρ = |ϕ|, and [XA] ∈ H2(XA, μn) is the cohomology class of XA. Because

H1(X, μn) = 0, the map (5.1.1) is an isomorphism (Lemma A.23), and we may without risk

of confusion identify the two functors. In particular, the deformation functors DefX /W

resulting from different choices of μn-gerbe X with class α are canonically isomorphic.

With this identification, the map π (5.0.3) is given by (XA, ρ, αA) �→ (XA, ρ).

On the other hand, the analogous map

Def(X,αBr)
→ Def(X,αBr)

(5.1.2)

is not an isomorphism. This is because for a general flat deformation XA of X, the

restriction map Pic(XA) → Pic(X) will not be surjective.

Proposition 5.2. The functor Def(X,αBr)
is prorepresentable and formally smooth over

W, and the map πBr (5.0.3) is formally smooth of relative dimension 1.
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Lifts of Twisted K3 Surfaces 4361

Proof. We have H1(X, OX) = 0 and H0(X, TX) = 0, so Corollary A.20 implies that

Def(X,αBr)
is prorepresentable. As H3(X, OX) = 0, the obstruction theory of Proposition

A.6 implies that πBr is formally smooth. Finally, by Lemma A.15, the map T(π) on tangent

spaces induced by π fits into a short exact sequence

0 → H2(X, OX) → T(Def(X,αBr)
)

T(π)
−−→ T(DefX) → 0.

As H2(X, OX) is one dimensional, we conclude that πBr has relative dimension 1. �

Remark 5.3. By Lemma A.23, the map (5.1.2) exhibits the functor Def(X,αBr)
as a hull

for the naive deformation functor Def(X,αBr)
, which is not prorepresentable (see Remark

A.25).

Proposition 5.4. The deformation functor Def(X,α) is prorepresentable.

Proof. We will verify the conditions of Theorem A.19. Let XA be a flat deformation of

X over A ∈ CW . We will show that the functor �1 = �1
μn/XA

(A.22.1) on CA is formally

smooth. As X is K3, we have H0(X, μn) = H1(X, μn) = 0. It follows that for any B ∈ CA we

have �1(B) = H1(XB, μn). The Leray spectral sequence gives an exact sequence

0 → H1(SpecB, μn) → H1(XB, μn) → H0(SpecB, R1fB∗μn)

where fB : XB → SpecB is the structural morphism. We have R1fB∗μn = PicXB/B[n] = 0. It

follows that the left inclusion is an isomorphism, and so �1(B) = H1(SpecB, μn). Using

the Kummer sequence and the vanishing of H1(SpecB, Gm), we have H1(SpecB, μn) ∼=

B×/B×n. (We remark that if n is coprime to p, then this quotient is zero, and hence

�1(B) = 0 for all B. This is not the case however if p divides n.) Consider a surjection

B′
� B in CW . By the snake lemma, the map �1(B′) → �1(B) is isomorphic to the map

B
′×/B

′×p → B×/B×p.

The map B
′× → B× is surjective, so this map is surjective as well. It follows that �1 is

formally smooth, as desired. �

Proposition 5.5. The map ι (5.0.3) is a closed formal subscheme defined by one

equation.
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4362 D. Bragg

Proof. To show that ι is a closed immersion, it suffices to verify that the induced map

T(ι) : T(Def(X,α)) → T(Def(X,αBr)
)

on tangent spaces is injective. This follows from Proposition A.12 and the vanishing

H1(X, nμn/Gm
) = H1(X, OX) = 0. We now show that ι is defined by one equation. This

is a formal consequence of Proposition A.12, which gives an obstruction theory for the

morphism ι with values in the one-dimensional k-vector space H2(X, OX). For lack of an

exact reference, we give the proof. Let (R,m) be a complete local ring prorepresenting

Def(X,αBr)
. The map ι corresponds to a surjection R → R/J for some ideal J ⊂ R. Let i ≥ 1

be an integer. Consider the square zero extension

R/(mJ + m
i) � R/(J + m

i)

of Artinian R-algebras, which has kernel Ii = (J + m
i)/(mJ + m

i). As Ii is killed by m,

it has a natural k-vector space structure. We will show that Ii has dimension 1 over k.

Consider the diagram

By Proposition A.12, there is a functorial obstruction class o ∈ H2(X, f ∗Ii) = H2(X, OX)⊗k

Ii whose vanishing is equivalent to the existence of the dashed arrow. Let τ ∈ H2(X, OX)

be a generator. The obstruction class o is then equal to v ⊗ f i, where f i ∈ Ii is the image

of some element fi ∈ J + m
i. Consider the square zero extension

R/(mJ + (fi) + m
i) � R/(J + m

i),

which has kernel (J + m
i)/(mJ + (f i) + m

i) = Ii/(f i). We consider the diagram
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By functoriality, the class o′ ∈ H2(X, OX) ⊗ Ii/(f i) that obstructs the existence of the

dashed arrow vanishes. It follows that J ⊂ mJ + (fi) + m
i, and therefore Ii/(f i) = 0 and

the left vertical arrow is an isomorphism. In particular, Ii is generated by f i, and hence

has dimension 1 over k.

By the Artin–Rees lemma [35, 00IN], we have m
i ∩ J ⊂ mJ for i sufficiently large.

We therefore have that

Ii = (J + m
i)/(mJ + m

i) = J/(mJ + m
i ∩ J) = J/mJ

for i sufficiently large. We conclude that J/mJ has dimension one over k. If f ∈ J

is any element whose image in J/mJ is nonzero, then by Nakayama’s lemma we have

J = (f ). �

We will describe the deformation spaces (5.0.3) in explicit coordinates. By

Proposition 5.2, the map πBr may be represented in suitable coordinates by the pro-

jection

Spf W[[t1, . . . , t20, s]] → Spf W[[t1, . . . , t20]].

By Proposition 5.5, the diagram (5.0.3) may then be represented by

(5.5.1)

for some function g ∈ W[[t1, . . . , t20, s]].

Proposition 5.6. We may choose g so that g is congruent modulo (p, t1, . . . , t20) to either

sprh
(if X has finite height h) or to 0 (if X is supersingular), where pr is the largest power

of p dividing n. If p does not divide n, then we may even take g = s.

Proof. Restricting (5.0.3) to the closed point 0 ∈ DefX we get a map

ι0 : Def(X,α)|0 ↪→ Def(X,αBr)
|0, (5.6.1)
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4364 D. Bragg

which is represented by

Spf k[[s]]/(g) ↪→ Spf k[[s]] (5.6.2)

where g is the image of g modulo (p, t1, . . . , t20). Write Ĥ
2
(X, μn) for the functor

A �→ ker(H2(XA, μn) → H2(X, μn))

on Ck. For any A ∈ Ck, the inclusion iA : X ↪→ XA is split. It follows that we have

B̂rX = Def(X,0Br)
|0 and Ĥ

2
(X, μn) = Def(X,0)|0. There is an isomorphism

Def(X,α)|0
∼
−→Ĥ

2
(X, μn)

defined by αA �→ αA − ρ∗
A(α), where ρA : XA → X is the projection. We similarly define

an isomorphism Def(X,αBr)
|0

∼
−→B̂rX . Thus, we may assume without loss of generality that

both α and αBr are zero, in which case the map (5.6.1) is identified with the natural map

Ĥ
2
(X, μn) → B̂rX (5.6.3)

induced by the inclusion μn ⊂ Gm. Consider the commutative diagram

Here, the horizontal arrows are induced by the natural maps (5.6.3), which are injective

because the Picard scheme of X is discrete. The left vertical arrow is induced by the

inclusion μpr ⊂ μn and is an isomorphism because Ĥ
m

(X, μn/pr ) = 0 for all m as n/pr is

coprime to p.

We conclude that the inclusion (5.6.1) is isomorphic to the inclusion B̂rX [pr] ⊂

B̂rX . If X has finite height h, then this map is represented by the closed immersion

Spf k[[s]]/(sphr
) ↪→ Spf k[[s]].

If X is supersingular, then B̂rX = Ĝa, so B̂rX [pr] = B̂rX as long as r ≥ 1. Finally, suppose

moreover that n is coprime to p. In this case, π is an isomorphism, and so g is equal to

a unit times s. Hence, we may take g = s. �
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Remark 5.7. Proposition 5.6 implies that the forgetful map Def(X,α) → DefX will

frequently be non-flat. Nevertheless, we will see that Def(X,α) itself is always flat over

W.

We consider the maps on tangent spaces induced by (5.0.3). We have a canonical

identification T(DefX) = H1(X, TX). Comparing the exact sequences of Lemma A.15 and

using the vanishing H0(X, TX) = H1(X, OX) = H3(X, OX) = 0, we obtain a diagram

(5.7.1)

with exact rows, where ob is the map that sends τX ′ to the obstruction class o(α/X ′).

We can be more explicit. If n is coprime to p, then the complex OX(n) is quasi-

isomorphic to 0. The diagram (5.7.1) becomes

(5.7.2)

In particular, T(Def(X,α)) has dimension 20.

On the other hand, suppose that p divides n. We then have OX(n) = OX ⊕OX [−1].

As H1(X, OX) = 0, the left vertical arrow of (5.7.1) is an isomorphism. Given v ∈ H1(X, �1
X)

write Ann(v) ⊂ H1(X, TX) for the subspace of elements τ such that v ∪ τ = 0. By

Proposition 3.5, we have a commutative diagram

(5.7.3)

The map π1 is an isomorphism, and it follows that the kernel of ε−1ob is equal to

Ann(dlog(α)). The diagram (5.7.1) becomes

(5.7.4)
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4366 D. Bragg

Because X is K3, the cup product pairing (3.4.2) is perfect, and therefore the map

H1(X, �1
X)

∼
−→Hom(H1(X, TX), H2(X, OX)) (5.7.5)

is an isomorphism. Thus, the above diagram shows in particular that T(Def(X,α)) has

dimension 20 if dlog(α) �= 0 and has dimension 21 otherwise.

Remark 5.8. Note that when p divides n, the group H2(X, OX) plays two distinct roles:

it appears as both the relative tangent space to π (in the top row of (5.7.4)), and as the

obstruction group for the morphism ι (in (5.7.3)).

We deduce some consequences for universal deformation spaces.

Proposition 5.9. Consider a class α ∈ H2(X, μn). If n is coprime to p, then Def(X,α) is

formally smooth over W. If p divides n and dlog(α) �= 0, then Def(X,α) is formally smooth

over W.

Proof. Consider the Jacobian ideal

J :=

(
∂g

∂t1

, . . . ,
∂g

∂t20

,
∂g

∂s

)
⊂ W[[t1, . . . , t20, s]]

of the formal subscheme Def(X,α) ⊂ Def(X,αBr)
. Under the given conditions, the tangent

space to Def(X,α) ⊗k at the closed point has dimension 20. It follows that J/pJ is the unit

ideal. By Nakayama’s lemma, J is the unit ideal, and hence Def(X,α) is formally smooth

over W. �

We now incorporate a line bundle on X.

Let L be a line bundle on X. We let Def(X,L) denote the functor on CW sending A

to the set of isomorphism classes of tuples (XA, ρ, LA), where (XA, ρ) is a deformation of

X over A and LA is a line bundle on XA whose restriction to X is isomorphic to L. We put

Def(X,α,L) := Def(X,α) ×DefX
Def(X,L).

By Remark 5.1, we may equivalently define Def(X,α,L) to be the functor sending A ∈ CW

to the set of isomorphism classes of tuples (XA, ρ, αA, LA), where (XA, ρ) is a deformation

of X over A, αA ∈ H2(XA, μn) is a class such that αA|X = α, and LA is a line bundle such

that LA|X is isomorphic to L.
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Lifts of Twisted K3 Surfaces 4367

Given a collection of line bundles L1, . . . , Lm, we similarly define Def(X,L1,...,Lm)

and Def(X,α,L1,...,Lm).

We write

Pic(X) = H1(X, Gm)
c1
−→ H1(X, �1

X) (5.10.1)

for the map induced by dlog (3.4.4).

Proposition 5.11. Consider a class α ∈ H2(X, μn) and a line bundle L on X. If n is

coprime to p and c1(L) is nonzero, then Def(X,α,L) is formally smooth over W. If p divides

n and c1(L) and dlog(α) are linearly independent in H1(X, �1
X), then Def(X,α,L) is formally

smooth over W.

Proof. By Proposition 5.5, the inclusion Def(X,α,L) ⊂ Def(X,αBr)
is a closed formal

subscheme defined by two equations. Under the assumed conditions, the tangent space

to Def(X,α,L) ⊗ k at the closed point has dimension 19. As in Proposition 5.9, we conclude

that Def(X,α,L) is formally smooth over W. �

Remark 5.12. If n is coprime to p, Proposition 5.11 follows from a result of Ogus

[27, Proposition 2.2] and Proposition 5.9.

6 The dlog Map and de Rham Cohomology

Motivated by Proposition 5.11, we seek conditions under which the classes dlog(α) and

c1(L) are linearly independent. We will study the interaction between the images of the

various dlog maps in de Rham cohomology. We consider the dlog map (3.4.4)

dlog : Gm → �1
X .

As the target is p-torsion, dlog kills the subsheaf G
×p
m of pth powers. Furthermore,

the image of dlog is contained in the subsheaf Z�1
X ⊂ �1

X . To distinguish between the

resulting maps on cohomology, we will use the notation in the following commutative
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4368 D. Bragg

diagram.

(6.0.1)

Here, the vertical map is induced by the quotient and the horizontal map is induced by

the inclusion. We will also use cdR
1 and dlogdR to denote the respective compositions of

these maps with the inclusion H1(X, Z�1
X) ⊂ H2

dR(X). Let

C : Z�1
X → �1

X

denote the Cartier operator, which satisfies C(f pω) = fC(ω) and C(f p−1df ) = df for any

local sections f ∈ OX and ω ∈ Z�1
X . As a consequence, if f is invertible, then C(df /f ) =

df /f . By [18, Corollaire 0.2.1.18], we have a short exact sequence

1 → Gm/G
×p
m

dlog
−−→ Z�1

X
1−C
−−→ �1

X → 0 (6.0.2)

where 1 denotes the inclusion. Taking cohomology, we find an exact sequence

0 → H1(X, Gm/G
×p
m )

dlogdR

−−−−→ H1(X, Z�1
X)

1−C
−−→ H1(X, �1

X) (6.0.3)

where the injectivity on the left follows from the vanishing of H0(X, �1
X). Under the

identifications of Lemma 4.2, the sequence (6.0.3) becomes

0 → H1(X, Gm/G
×p
m )

dlogdR

−−−−→ F1
H ∩ F1

C
1−C
−−→ F1

H/F2
H

where the right hand map is given by the difference of the map

1 : F1
H ∩ F1

C ⊂ F1
H � F1

H/F2
H ,

and the Cartier operator C, which factors as the composition

F1
H ∩ F1

C ⊂ F1
C � F1

C/F2
C

∼
−→ F1

H/F2
H .
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Lifts of Twisted K3 Surfaces 4369

Thus, the kernel of the map 1 is F2
H ∩ F1

C, and the kernel of C is F1
H ∩ F2

C.

We are interested in the injectivity of the various maps induced by dlog (6.0.1).

Note that the maps cdR
1 and c1 (6.0.1) have p-torsion codomain, and hence kill pPic(X).

They therefore descend to maps on Pic(X)/p = Pic(X) ⊗Z Fp. The following result is due

to Ogus [27, Corollary 1.3, Proposition 1.4]. We include the proof.

Proposition 6.1. If X is any K3 surface, then the maps

Pic(X) ⊗Z Fp

cdR
1 ⊗Fp

−−−−→ H1(X, Z�1
X) and H1(X, Gm/G

×p
m )

dlogdR

−−−−→ H1(X, Z�1
X),

are injective. If X is not superspecial, then also the maps

Pic(X) ⊗Z Fp

c1⊗Fp
−−−−→ H1(X, �1

X) and H1(X, Gm/G
×p
m )

dlog
−−→ H1(X, �1

X),

are injective.

Proof. Consider the short exact sequence

1 → Gm
·p
−→ Gm → Gm/G

×p
m → 1.

Taking cohomology, we deduce that the map

Pic(X) ⊗Z Fp → H1(X, Gm/G
×p
m )

is injective. By the exactness of (6.0.3), dlogdR is injective. This proves the first two

claims. For the second two, suppose that dlog is not injective. We then have a nonzero

element σ ∈ F2
H , which is killed by 1 − C. It follows that σ ∈ F2

C, and therefore F2
H = F2

C.

We conclude that X is superspecial. �

We now consider the maps cdR
1 ⊗ k and c1 ⊗ k obtained by tensoring with k. We

record the following result.

Proposition 6.2. If X has finite height, then the maps

Pic(X) ⊗Z k
cdR

1 ⊗k
−−−−→ H1(X, Z�1

X) and Pic(X) ⊗Z k
c1⊗k
−−−→ H1(X, �1

X)

are injective.
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4370 D. Bragg

Proof. This follows from the Newton–Hodge decomposition on the second crys-

talline cohomology of X. See [27, Remark 1.9]. A different proof is given in

[36, Proposition 10.3]. �

We strengthen this slightly in the following.

Proposition 6.3. If X has finite height, then the map

cdR
1 ⊗ k : Pic(X) ⊗Z k → H2

dR(X) (6.3.1)

is injective, and its image has trivial intersection with the subspace F2
H + F2

C ⊂ H2
dR(X).

Proof. Consider the commutative diagram

where the row is exact and b and c are induced by the natural inclusions of sheaves.

Under the identifications of Lemma 4.2, we have H1(X, Z�1
X) = F1

H ∩ F1
C, the image of a is

F2
H ∩ F1

C, and the image of b is F1
H ∩ F2

C.

We now use the assumption that h < ∞. By 6.2, cdR
1 ⊗ k and c1 ⊗ k are injective.

Furthermore, by [36, Proposition 10.2], the image of c1 ⊗ k has trivial intersection with

the image of c. We conclude that the image of cdR
1 ⊗ k has trivial intersection with

F2
H + F2

C. �

Remark 6.4. If X has finite height, then one can strengthen 6.2 to show that the maps

dlogdR ⊗ k and dlog ⊗ k are injective. It is also true that the image of dlogdR ⊗ k has

trivial intersection with F2
H + F2

C.

6.5 The supersingular case

The preceding results 6.2 and 6.3 are false if X is supersingular. In fact, in this case, the

map cdR
1 ⊗ k is never injective, and furthermore the subspace F2

H + F2
C is even contained

in the image of cdR
1 ⊗ k. To explain this situation, we recall some results of Ogus [27].
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Lifts of Twisted K3 Surfaces 4371

Suppose that X is supersingular with Artin invariant σ0. By the Tate conjecture

for supersingular K3 surfaces, Pic(X) is a Z-lattice of rank 22. (If we wish to avoid the

use of the Tate conjecture, we may replace Pic(X) with H2(X, Zp(1)) and replace cdR
1 ⊗ k

with the natural map H2(X, Zp(1)) ⊗ k → H2
dR(X).) Write ϕ : Pic(X) ⊗ k → Pic(X) ⊗ k for

the bijective map given by v ⊗ λ �→ v ⊗ λp. The map cdR
1 ⊗ k factors through F1

H ∩ F1
C,

and thus for dimension reasons cannot be injective. Its kernel is equal to ϕ(K) for some

subspace K ⊂ Pic(X) ⊗ k. We have an exact sequence

0 → ϕ(K) → Pic(X) ⊗ k
cdR

1 ⊗k
−−−−→ H2

dR(X/k).

The subspace K is the characteristic subspace associated to X and plays a central role

in the theory of supersingular K3 surfaces. The following result is due to Ogus.

Lemma 6.6. The subspace K ⊂ Pic(X) ⊗ k has the following properties.

(1) dimk K = σ0

(2) dimk K + ϕ(K) = σ0 + 1

(3) dimk

∑
i≥0 ϕi(K) = 2σ0

Proof. This follows from [27, Proposition 3.12.2, 3.12.3]. We note that, while loc.

cit. has a standing assumption that p �= 2, this is not used in the proof of the cited

result. �

Remark 6.7. We mention two other approaches to the characteristic subspace K,

complementing Ogus’s crystalline methods. Nygaard [26] has given an interpretation

for K using de Rham–Witt cohomology. Katsura–Van der Geer give an elementary

proof of the above properties for K [36, §11] (in the notation of loc. cit., the subspace

Ui ⊂ Pic(X) ⊗ k is equal to ϕ(K) ∩ · · · ∩ ϕi(K) if i ≥ 1, and U0 = K + ϕ(K)).

Lemma 6.8. For each 0 ≤ i ≤ σ0, we have

dimk(K + ϕ(K) + · · · + ϕi(K)) = σ0 + i

and

dimk(K ∩ ϕ(K) ∩ · · · ∩ ϕi(K)) = σ0 − i.
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4372 D. Bragg

Proof. We prove the first claim. Write Zi = K + ϕ(K) + · · · + ϕi(K). We induct on i. The

case i = 0 is true by assumption. For the induction step, consider the quotient Zi+1/Zi.

We will show that if i < σ0 then dimk(Zi+1/Zi) = 1. We have dim(ϕi(K)+ϕi+1(K)) = σ0 +1,

so dimk(Zi+1/Zi) is either 0 or 1. In the former case, we have Zi = Zi+1, so ϕi+1(K) ⊂ Zi,

and therefore V ⊗ k =
∑

j≥0 ϕj(K) = Zi. By induction, Zi has dimension σ0 + i, so i = σ0.

Thus, if i < σ0, we have dimk(Zi+1/Zi) = 1. The second claim is similar. �

The subspace
∑

i ϕi(K) is fixed by ϕ, and hence is equal to M ⊗ k for some

Fp-subspace M ⊂ Pic(X) ⊗ Fp. In making computations, it is helpful to choose a basis

of M ⊗ k which is adapted to K. By Lemma 6.8, the subspace ϕ−σ0+1(K) ∩ · · · ∩ K has

dimension 1. Let e be a generator, and set ei = ϕi(e). It follows that, for each 0 ≤ b ≤ σ0,

the vectors

{
e0, . . . , eσ0+b−1

}

are linearly independent and form a basis for K + ϕ(K) + · · · + ϕb(K). In particular,
{
e0, e1, . . . , eσ0−1

}
is a basis for K, and

{
e0, e1, . . . , e2σ0−1

}
is a basis for M ⊗ k. We refer

to such a vector e as a characteristic vector for K. This construction is due to Ogus; see

[27, pg. 33].

We define a sequence of subspaces

0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ H2
dR(X)

by setting V0 = 0 and

Vi := Im(K + ϕ(K) + · · · + ϕi(K)
cdR

1 ⊗k
−−−−→ H2

dR(X/k))

for i ≥ 1. Thus, cdR
1 ⊗ k induces an isomorphism

(K + ϕ(K) + · · · + ϕi(K))/ϕ(K)
∼
−→Vi.

By Lemma 6.8, we have dimk Vi = i for 1 ≤ i ≤ σ0, and Vσ0
= Vσ0+j for all j ≥ 0.
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Lifts of Twisted K3 Surfaces 4373

The following result gives a cohomological interpretation for V1 and V2. We will

use the commuting squares

Lemma 6.9. We have V1 = F2
H and V2 = F2

H + F2
C.

Proof. Let e be an element of ϕ(K), which is not in ϕ2(K). We then have cdR
1 ⊗ k(e) = 0.

Using the above commuting square involving C, we have c1 ⊗ k(ϕ−1(e)) = 0. Because

ϕ−1(e) /∈ ϕ(K), cdR
1 ⊗ k(ϕ−1(e)) is a nonzero element of the kernel of the projection

H1(X, Z�1
X) → H1(X, �1

X), which is F2
H . It follows that V1 = F2

H . Similarly, let f be an

element of ϕ2(K), which is not in ϕ(K). We have that cdR
1 ⊗ k(f ) is a nonzero element of

the kernel of C : H1(X, Z�1
X) → H1(X, �1

X), which is F2
C. We conclude that c1 ⊗ k induces

an isomorphism

(ϕ(K) + ϕ2(K))/ϕ(K)
∼
−→F2

C.

Thus, we have V2 = F2
H + F2

C. �

We have the following result.

Proposition 6.10. Let X be a supersingular K3 surface with σ0(X) ≥ 3. Let L be a line

bundle on X. If cdR
1 (L) is contained in F2

H + F2
C, then L is a pth power.

Proof. If cdR
1 (L) is in F2

H + F2
C, then using Lemma 6.9, we deduce that [L] ∈ K +

ϕ(K) + ϕ2(K). Let e be a characteristic vector for K. Write [L] as a linear combination

of e0, . . . , eσ0+1. Applying ϕ to both sides, we find a linear relation between the vectors

e0, . . . , eσ0+2. As σ0 ≥ 3, this relation must be trivial, which implies [L] = 0 as an element

of Pic(X) ⊗ k. �

We now incorporate a flat cohomology class. Let n be a positive integer. In (3.4.6)

we defined a map

dlog : H2(X, μn) → H1(X, �1
X). (6.10.1)
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4374 D. Bragg

If n is coprime to p, this map is zero. If n is divisible by p, then it fits into the commuting

diagram

(6.10.2)

where the right vertical arrow is induced by the natural quotient map.

Proposition 6.11. Suppose that X has finite height, or that X is supersingular with

Artin invariant σ0 ≥ 3. Let n be a positive integer that is divisible by p. If α ∈ H2(X, μn)

is a class such that p does not divide n
ord(αBr)

and L is a line bundle on X that is not a pth

power, then dlog(α) and c1(L) are nonzero and linearly independent in H1(X, �1
X).

Proof. Here, as usual, αBr denotes the image of α in Br(X) = H2(X, Gm), and ord(αBr) is

the order of αBr. Suppose that dlog(α) = λc1(L) ∈ H1(X, �1
X) for some scalar λ. We have

dlogdR(α) = λcdR
1 (L) + σ

as elements of H1(X, Z�1
X) = F1

H ∩ F1
C ⊂ H2

dR(X), for some σ ∈ F2
H ∩ F1

C (here, dlogdR is the

evident lift of (6.10.1) to a map with target H1(X, Z�1
X)). We have a commuting diagram

with exact rows. By the commutativity of the right hand square, we deduce that

(λ − λ1/p)c1(L) = C(σ ), and thus C((λp − λ)cdR
1 (L) − σ) = 0. The kernel of C is F1

H ∩ F2
C,

so this implies that

(λp − λ)cdR
1 (L) ∈ F2

H + F2
C.

Applying 6.3 or 6.10, we have (λp −λ)cdR
1 (L) = 0. As L is not a pth power, 6.1 implies that

cdR
1 (L) is nonzero. Hence, λp − λ = 0, and therefore λ ∈ Fp. Consider the commutative
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Lifts of Twisted K3 Surfaces 4375

diagram

(6.11.1)

where the left columns are fragments of the long exact sequences induced by the

Kummer sequences for n and p. Using the commutative diagram (6.10.2), we see that

the horizontal composition H2(X, μn) → H1(X, �1
X) is the dlog map (3.4.6). Let s ∈ Z be

a lift of λ. We have dlog(α) = c1([L⊗s]). Because X is not superspecial, the map dlog

in (6.11.1) is injective (Proposition 6.1). It follows that n
p α = δ([L⊗s]), and therefore the

image of n
p α in the Brauer group vanishes. This implies that p divides n

ord(αBr)
, contrary

to our assumption. �

Combined with Proposition 5.11, we obtain the following result on the smooth-

ness of universal deformation spaces.

Theorem 6.12. Let X be a K3 surface over k. Let α ∈ H2(X, μn) be a class and let L be a

line bundle on X which is not a pth power. Assume that one of the following holds.

(1) n is coprime to p and either h < ∞ or h = ∞ and σ0 ≥ 2.

(2) p divides n, p does not divide n
ord(αBr)

, and either h < ∞ or h = ∞ and σ0 ≥ 3.

The formal deformation space Def(X,α,L) is smooth over W.

Combined with the algebraization result of Proposition 2.8, Theorem 6.12

implies the existence of lifts (even over W) outside of a small locus of exceptional

cases. We will treat the general case when Def(X,α,L) is not smooth using global methods

in §7.

6.14 Generalization to the case of multiple line bundles

We generalize the preceding results to the case of multiple line bundles. Let X be a

supersingular K3 surface.

Proposition 6.14. Let L1, . . . , Lm be line bundles on X whose classes in Pic(X) ⊗ Fp

generate a subspace of dimension m. Let Q ⊂ Pic(X)⊗ k be the k-vector space generated
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4376 D. Bragg

by the classes [L1], . . . , [Lm]. If i is a non-negative integer such that σ0 ≥ m + i, then the

subspace Q has trivial intersection with K + ϕ(K) + · · · + ϕi(K).

Proof. Assume that σ0 ≥ m + i and that the intersection of Q and K +ϕ(K)+ · · · +ϕi(K)

is nonzero. Let e be a characteristic vector for K. We then find a relation of the form

m∑

j=1

λj[Lj] =

σ0+i−1∑

j=1

μjej. (6.14.1)

Let N be the number of nonzero λj. We have 1 ≤ N ≤ m. By dividing, we may assume

that λj = 1 for some j. Applying ϕ − 1 to both sides of (6.14.1), we find a relation of the

form

m∑

j=1

λ′
j[Lj] =

σ0+i∑

j=1

μ′
jej. (6.14.2)

We have N′ < N, where N′ is the number of nonzero λ′
j. Moreover, as we assume σ0 ≥ m+i,

the vectors e0, . . . , eσ0+i are linearly independent. Thus, the sum on the right hand side

of (6.14.2) is necessarily nonzero, because if μjej is a nonzero term in the right hand side

of (6.14.1) with the largest index, then μ′
j+1 = μ

p
j . We continue in this manner until all

of the λj are zero. We are then left with a nontrivial linear relation between the vectors

e0, . . . , eσ0+m+i−1. But σ0 ≥ m + i implies that these vectors are linearly independent, so

this is a contradiction. �

Proposition 6.15. Let L1, . . . , Lm be line bundles on X whose classes in Pic(X) ⊗ Fp

generate a subspace of dimension m. Let P ⊂ H2
dR(X) be the k-vector space generated by

the classes cdR
1 (L1), . . . , cdR

1 (Lm). If σ0 ≥ m + i for some i ≥ 0, then P has dimension m

and has trivial intersection with the subspace Vi. In particular,

(1) if σ0 ≥ m, then P has dimension m,

(2) if σ0 ≥ m + 1, then P has dimension m and has trivial intersection with F2
H ,

and

(3) if σ0 ≥ m + 2, then P has dimension m and has trivial intersection with

F2
H + F2

C.

Proof. By Proposition 6.14, the k-subspace Q ⊂ Pic(X) ⊗ k generated by the classes

[L1], . . . , [Lm] has trivial intersection with the subspace K+ϕ(K)+· · ·+ϕi(K). As Q = ϕ(Q),

this implies that Q has trivial intersection with ϕ(K) (even when i = 0). The kernel of the
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Lifts of Twisted K3 Surfaces 4377

map

cdR
1 ⊗ k : Pic(X) ⊗ k → H2

dR(X)

is ϕ(K), and so cdR
1 ⊗ k maps Q isomorphically to P. We conclude that P has dimension

m, and has trivial intersection with Vi. �

In particular, we obtain the following result.

Proposition 6.16. With the assumptions of Proposition 6.15, let P ⊂ H1(X, �1
X) be the

k-vector space generated by the classes c1(L1), . . . , c1(Lm). If σ0 ≥ m + 1, then P has

dimension m.

The following result generalizes Proposition 6.11.

Proposition 6.17. Let X be a K3 surface. Let L1, . . . , Lm be line bundles on X whose

classes in Pic(X) ⊗ Fp generate a subspace of dimension m. Let n be an integer that is

divisible by p and let α ∈ H2(X, μn) be a class such that p does not divide n
ord(αBr)

. If X

has finite height or is supersingular with Artin invariant σ0 ≥ m + 2, then the classes

dlog(α), c1(L1), . . . , c1(Lm) in H1(X, �1
X) are linearly independent and generate a subspace

of dimension m + 1.

Proof. By Proposition 6.16, the classes c1(L1), . . . , c1(Lm) are linearly independent. We

now reason as in Proposition 6.11: suppose that there is a relation

dlog(α) =
∑

i

λic1(Li)

for some λi ∈ k. We then have

dlog(α) =
∑

i

λic
dR
1 (Li) + σ

for some σ ∈ F2
H ∩ F1

C. As before, we deduce that

∑

i

(λ
p
i − λi)c

dR
1 (Li) ∈ F2

H + F2
C.
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4378 D. Bragg

Using 6.3 (if h < ∞) or 6.15 (if h = ∞), we conclude that λ
p
i − λi = 0 for all i. Hence,

λi ∈ Fp for all i. Choose lifts si ∈ Z of the λi. We obtain

n

p
α =

∑

i

δ([L⊗si
i ])

and therefore the image of n
p α in the Brauer group is trivial, a contradiction. �

We record the following consequences for formal deformation spaces.

Corollary 6.18. Let X be a K3 surface over k. Let L1, . . . , Lm be a collection of line

bundles on X whose classes in Pic(X)⊗Fp generate a subspace of dimension m. If X has

finite height or is supersingular with Artin invariant σ0 ≥ m + 1, then Def(X,L1,...,Lm) is

formally smooth over W.

Corollary 6.19. Let X be a K3 surface over k. Let L1, . . . , Lm be a collection of line

bundles on X whose classes in Pic(X) ⊗ Fp generate a subspace of dimension m. Let n

be a positive integer and let α ∈ H2(X, μn) be a flat cohomology class. Assume one of the

following holds.

(1) n is coprime to p and either h < ∞ or h = ∞ and σ0 ≥ m + 1.

(2) p divides n, p does not divide n
ord(αBr)

, and either h < ∞ or h = ∞ and

σ0 ≥ m + 2.

The universal deformation space Def(X,α,L1,...,Lm) is formally smooth over W.

7 Arithmetic Moduli of Twisted K3 Surfaces

In this section we introduce some global moduli spaces of twisted polarized K3 surfaces

over Spec Z and describe some of their basic geometric properties.

Definition 7.1. Fix positive integers n and d. Define M n
d to be the stack over Spec Z

whose objects over a scheme S are tuples (X, α, L), where f : X → S is a family of K3

surfaces, α ∈ H0(S, R2f∗μn), and L ∈ H0(S, PicX/S) is a section whose restriction to every

geometric fiber of X → S is a primitive ample class of degree 2d.

If k is an algebraically closed field and f : X → Speck is a K3 surface, we have

H2(X, μn) = H0(Speck, R2f∗μn).
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Lifts of Twisted K3 Surfaces 4379

Thus, the k-points of M n
d are tuples (X, α, L) where X is a K3 surface over

k, α ∈ H2(X, μn), and L ∈ Pic(X) is an ample class of degree 2d.

Let Md denote the usual moduli stack of polarized K3 surfaces of degree 2d.

There is a morphism

π : M
n
d → Md (7.1.1)

given by forgetting the class α. If n = 1 this map is an isomorphism.

Proposition 7.2. The moduli stack M n
d is Deligne–Mumford.

Proof. It is well known that Md is Deligne–Mumford (see e.g., [13, Ch. 5, Proposition

4.10] or [32, 4.3.3]). Let f : X → Md be the universal polarized K3 surface. We have

M n
d = R2f∗μn as functors on the category of schemes over Md. By Theorem 1.2, the map

M n
d → Md is representable by algebraic spaces. We conclude that M n

d is a Deligne–

Mumford stack. �

If f : X → S is a morphism, then R2f∗μn may be computed as the flat

sheafification of the functor T �→ H2(X ×S T, μn) on the category of S-schemes. The

following result shows that if f is a family of K3 surfaces then this sheafification

may be taken instead in the étale topology. This simplification will be important in

our discussion of the geometry of M n
d .

Lemma 7.3. Let f : X → S be a family of K3 surfaces.

(1) If α ∈ H0(S, R2f∗μn) is any class, then there exists an étale cover S′ → S such

that α is in the image of the map H2(X ×S S′, μn) → H0(S′, R2fS′∗μn).

(2) If α ∈ H2(X, μn) is a class and there exists an fppf cover S′ → S such that

α|X×SS′ = 0, then there exists an étale cover S′ → S such that αX×SS′ = 0.

Proof. We have R0f∗μn = μn and R1f∗μn = PicX/S[n] = 0. The Leray spectral sequence

therefore gives an exact sequence

0 → H2(S, μn) → H2(X, μn) → H0(X, R2f∗μn) → H3(S, μn).

It follows from the Kummer sequence that if m ≥ 2 then any class in Hm(S, μn) may be

killed by an étale cover of S. This implies (1). For (2), we note that a class α ∈ H2(X, μn)

is killed by an fppf cover of S if and only if α maps to 0 in H0(X, R2f∗μn). �
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4380 D. Bragg

The following gives some basic geometric properties of M n
d → Spec Z and is

the main result of this section. As an immediate consequence of this result, we obtain

Theorem 1.1.

Theorem 7.4. The morphism M n
d → Spec Z is flat and is a local complete intersection

of relative dimension 19.

Proof. Let k be an algebraically closed field of characteristic p, and consider a k-point

x ∈ M n
d (k) corresponding to a K3 surface X with an ample class L of degree 2d and a

class α ∈ H2(X, μn). Let M̂x be the category cofibered in groupoids over CW whose fiber

over A ∈ CW is the groupoid of 2-commutative diagrams

By Lemma 7.3, if A is an Artinian local ring with residue field k and fA : XA → Spec A is a

relative K3 surface, then the map H2(XA, μn) → H0(SpecA, R2fA∗μn) is an isomorphism.

It follows that the natural map

Def(X,α,L) → M̂x (7.4.1)

of categories cofibered in groupoids over CW is an isomorphism.

To show the result, it will therefore suffice to check that Def(X,α,L) is flat and lci

of relative dimension 19 over Spf W. By definition, we have a Cartesian square

(7.4.2)

By Proposition 5.5 and [9, 1.6], the inclusion Def(X,α,L) ⊂ Def(X,αBr)
is a closed immersion

cut out by two equations. As in (5.5.1), we choose coordinates so that the diagram (7.4.2)

is represented by

(7.4.3)
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Lifts of Twisted K3 Surfaces 4381

for some functions f ∈ W[[t1, . . . , t20]] and g ∈ W[[t1, . . . , t20, s]]. Let f0, g0 denote the

images of f and g modulo p. It will suffice to show that f0, g0 ∈ R0 = k[[t1, . . . , t20, s]] is a

regular sequence.

If n is coprime to p, then by Proposition 5.6 we may assume g = s. On the

other hand, if p divides n, then it follows from [28, Proposition 14] that the closed

formal subscheme of Def(X,α,L) ⊗k parametrizing deformations whose underlying K3 has

infinite height has dimension at most 10. Therefore, the generic point of any irreducible

component of M n
d ⊗Fp has finite height. So, in this case, it will suffice to show the result

when X has finite height h. By Proposition 5.6, we may assume that g is congruent to

sk modulo (p, t1, . . . , t20) for some positive integer k. We conclude that, in either case, it

suffices to prove that f0, g0 is a regular sequence under the additional assumption that

g0 = g′
0 + sk for some positive integer k and some g′

0 ∈ (t1, . . . , t20) ⊂ R0.

To prove this, we first recall that by [9, 1.6] f0 is not a zero divisor in R0. It

remains to show that the image of g0 in R0/(f0) is not a zero divisor. Suppose that

g0h0 ∈ (f0) for some h0 ∈ R0. Then f0 divides g0h0 = (g′
0 + sk)h0. Note that f0 is contained

in the subring k[[t1, . . . , t20]], and also in the ideal (t1, . . . , t20) of R0. The same is true

for any irreducible factor of f0. But no such element can divide g′
0 + sk. Hence, every

irreducible factor of f0 divides h0, so f0 divides h0. This completes the proof. �

We record a few remarks regarding the forgetful morphism π : M n
d → Md

(7.1.1). The restriction of π to Spec Z
[

1
n

]
is étale. Over geometric points whose residue

characteristics divide n, we can describe the fibers of π as follows. Given a K3 surface

X over an algebraically closed field k, write H2(X, μn) for the functor R2f∗μn, where

f : X → Speck is the structural morphism. Thus, H2(X, μn) is a group scheme over

k whose group of k-points is H2(X, μn), and the fiber of π over a geometric point

[(X, L)] ∈ Md(k) is exactly H2(X, μn). Let U2(X, μn) ⊂ H2(X, μn) denote the connected

component of the identity, and let D2(X, μn) be the quotient, so that we have a short

exact sequence

0 → U2(X, μn) → H2(X, μn) → D2(X, μn) → 0.

If n is invertible in k, then U2(X, μn) is trivial, and D2(X, μn) ∼= (Z/nZ)⊕22. Suppose that

k has characteristic p > 0. Let pr be the largest power of p dividing n and set m = n/pr.

The completion of U2(X, μn) at the identity is isomorphic to the pr torsion in the formal

Brauer group B̂rX . This determines U2(X, μn) up to isomorphism. In particular, if X has

finite height, then U2(X, μn) is a purely infinitesimal group scheme of length prh, and if
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4382 D. Bragg

h = 1, then

U2(X, μn) ∼= μpr .

If h = ∞, then as long as r ≥ 1 we have

U2(X, μn) ∼= Ga.

The étale quotient D2(X, μn) can also be computed explicitly. If h < ∞, then

D2(X, μn) ∼= (Z/mZ)⊕22 ⊕ (Z/prZ)⊕22−2h

and if h = ∞ then

D2(X, μn) ∼= (Z/mZ)⊕22 ⊕ (Z/prZ)⊕22−2σ0 .

In particular, if p divides n, then the forgetful morphism

πp : M
n
d ⊗ Fp → Md ⊗ Fp

is not flat, and the height–Artin invariant stratification provides a flattening stratifica-

tion. Furthermore, the generic geometric fiber of πp is nonreduced, and so the forgetful

map is inseparable.

Corollary 7.5. If p divides n, then the stack M n
d ⊗ Fp has an irreducible component

that is everywhere nonreduced.

Proof. The morphism πp has a section

σ : Md ⊗ Fp → M
n
d ⊗ Fp

defined on S-points by (X, L) �→ (X, δ(L), L), where

δ : H0(S, R1f∗Gm) → H0(S, R2f∗μn)

is the boundary map coming from the Kummer sequence. Let W be an irreducible

component of Md ⊗ Fp, and let Z be the irreducible component of M n
d ⊗ Fp, which

contains σ(W). We claim that Z is everywhere nonreduced. To see this, let W1 ⊂ W

be the open dense subset parametrizing ordinary K3 surfaces. Let Z1 = π−1
p (W1) ∩ Z ⊂ Z

be its preimage in Z. Every geometric fiber of Z1 → W1 is a disjoint union of copies of
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Lifts of Twisted K3 Surfaces 4383

μp. The subscheme σ(W1) ⊂ Z1 is reduced and is not equal to Z1. It follows that Z1, and

hence Z, is everywhere nonreduced. �

7.5 Multiple line bundles

We indicate the extension of the preceding results to the case of multiple line bundles.

The proofs are essentially the same, so we shall be brief.

Definition 7.7. Let � be a lattice. Let M� be the moduli stack over Spec Z whose

objects over a scheme S are pairs (X, ι), where f : X → S is a family of K3 surfaces and

ι : �S ↪→ PicX/S is an isometric embedding whose image contains a primitive ample

class.

Let n be a positive integer. We let M n
� be the moduli stack parametrizing tuples

(X, ι, α), where X and ι are as before, and α ∈ H0(S, R2f∗μn).

Both M� and M n
� are Deligne–Mumford stacks over Spec Z. Write m = rk(�).

Proposition 7.8. Suppose that m ≤ 10. The map M� → Spec Z is a flat local

complete intersection of relative dimension 20 − m. Every irreducible component of

every geometric fiber of M� → Spec Z is generically smooth of dimension 20 − m.

Proof. Let p be a prime and consider an irreducible component Z ⊂ M� ⊗ Fp. We have

dim(Z) ≥ 20 − m. By [28, Proposition 14], the supersingular locus in Z has dimension

at most 9, so Z contains a geometric point x parametrizing a K3 surface say X of finite

height. By Proposition 6.2, the image of � in H1(X, �1
X) has dimension m, and hence

the tangent space to M� at x has dimension 20 − m. It follows that Z is smooth at x of

dimension 20 − m. Hence, Z is generically smooth of dimension 20 − m.

We know that the local deformation space to M� at any geometric point is

a subscheme of Spf W[[t1, . . . , t20]] cut out by m equations. Our computation of the

dimension of Z therefore implies that M� is flat and lci over Spec Z of relative dimension

20 − m. �

Proposition 7.9. Let n be a positive integer. If m ≤ 9, then the map M n
� → Spec Z is a

flat local complete intersection of relative dimension 20 − m. If m ≤ 10, then the same

conclusion holds for the restriction M n
� ⊗ Z

[
1
n

]
→ Spec Z

[
1
n

]
.

Proof. The local deformation space of any geometric point of M n
� is a closed

subscheme of Spf W[[t1, . . . , t20, s]] cut out by m + 1 equations. As in the proof of 7.8, to

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
3
/5

/4
3
3
7
/6

5
1
1
4
0
8
 b

y
 U

n
iv

e
rs

ity
 o

f U
ta

h
 L

a
w

 u
s
e
r o

n
 3

1
 O

c
to

b
e
r 2

0
2
4



4384 D. Bragg

show the first claim it will suffice to show that if p is a prime and Z is an irreducible

component of M n
� ⊗ Fp then dim(Z ) = 20 − m. To show this, consider the forgetful map

π : M n
� → M�. The fibers of this map have dimension at most one. Let Z ⊂ M� ⊗ Fp

be an irreducible component containing the image of Z . By [28, Proposition 14] the

supersingular locus in Z has dimension at most 9, and therefore the supersingular locus

in Z has dimension at most 10. Because m ≤ 9, we deduce that Z contains a geometric

point x parametrizing a K3 surface of finite height. By 7.8 Z has dimension 20 − m, and

by 5.6, the fiber of Z → Z containing x is zero-dimensional. We conclude that Z has

dimension 20 − m. This gives the first claim.

For the second, we note that the map M n
� ⊗Z

[
1
n

]
→ Spec Z

[
1
n

]
is étale. The result

therefore follows from 7.8. �

We highlight the following consequence for the existence of liftings of twisted

K3 surfaces together with a collection of line bundles. In the non-twisted case, this

problem has been considered by Lieblich–Olsson [23] and Lieblich–Maulik [22].

Theorem 7.10. Let X be a K3 surface over an algebraically closed field k of charac-

teristic p > 0 and let αBr ∈ Br(X) be a Brauer class. Let α ∈ H2(X, μn) be a class whose

image in the Brauer group is αBr. Let V ⊂ Pic(X) be a saturated sublattice of rank m

containing an ample class. Suppose that at least one of the following holds.

(A) X has finite height.

(B) m ≤ 9.

(C) n is coprime to p and m ≤ 10.

There exists

(1) a DVR R with fraction field K of characteristic 0 and residue field k,

(2) a K3 surface X̃ over R and an isomorphism X ⊗R k ∼= X,

(3) a class α̃ ∈ H2(X̃, μn) such that α̃|X = α, and

(4) a sublattice V ⊂ Pic(X̃), which over k specializes to the inclusion V ⊂ Pic(X)

and which for every algebraically closed field L containing K induces an

isomorphism V |X̃L
= Pic(X̃L).

7.11 Moduli of primitive twisted K3 surfaces

Note that in the definition of M n
d we allow the class α to have order smaller than n, and

in particular to vanish. Furthermore, we have imposed no restriction on the relationship

between L and α. As a consequence, the stack M n
d has some undesirable behavior (e.g.,
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Lifts of Twisted K3 Surfaces 4385

Corollary 7.5). Inspired by Brakkee [6], we will consider a variant of the stack M n
d in

which we require the class α to be primitive (in a certain sense) with respect to L (for

the precise relation with Brakkee’s definitions, we refer to Remark 7.14). This stack will

turn out to have some better properties.

Let (X, L) be a polarized K3 surface over an algebraically closed field. We set

H2(X, μn)prim = H2(X, μn)/〈δ(L)〉

where δ : Pic(X) → H2(X, μn) is the boundary map from the Kummer sequence, and

〈δ(L)〉 = Z/nZ · δ(L) is the cyclic subgroup generated by δ(L). By the exactness of the

Kummer sequence, the map H2(X, μn) → Br(X) descends to a map

H2(X, μn)prim → Br(X),

which we will denote by α �→ αBr, as before.

We make a similar definition in families. Consider a pair (X, L) where f : X → S

is a family of K3 surfaces and L ∈ H0(S, PicX/S) is a class whose restriction to every

geometric fiber is primitive. Consider the boundary map δ : R1f∗Gm → R2f∗μn coming

from the Kummer sequence. The global section L induces a map of group schemes

ZS → R1f∗Gm. We define (R2f∗μn)prim to be the quotient of the composition of this map

with δ. Thus, we have a short exact sequence

0 → ZS/nZS
1 �→δ(L)
−−−−→ R2f∗μn → (R2f∗μn)prim → 0. (7.11.1)

For the motivation behind this notation we refer to Remark 7.14.

Definition 7.12. Let Md[n] be the stack over Spec Z whose objects over a scheme S are

triples (X, α, L) where f : X → S is a family of K3 surfaces, L ∈ H0(S, PicX/S) is a section

whose restriction to each geometric fiber of X → S is a primitive ample class of degree

2d, and α ∈ H0(S, (R2f∗μn)prim).

Let Mn
d ⊂ Md[n] be the substack such that for all geometric points s ∈ S the

class αs has order n.

Proposition 7.13. The stacks Md[n] and Mn
d are Deligne–Mumford.

Proof. Let f : X → Md be the universal polarized K3 surface. The map Z/nZ → R2f∗μn

is injective. As Z/nZ is flat over Md, the quotient sheaf (R2f∗μn)prim = Md[n] is
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4386 D. Bragg

representable over Md. As Md is Deligne–Mumford, we conclude the same for Md[n].

The inclusion Mn
d ⊂ Md[n] is open, so Mn

d is Deligne–Mumford as well. �

The fiber of Mn
d over the complex numbers has been studied by Brakkee [6]

(see Remark 7.14). Note that the stack Mn
d is large enough to still allow for interesting

variation in the Brauer class αBr. In particular, it admits a reasonable notion of Noether–

Lefschetz loci.

The stacks we have defined are related by maps

M
n
d → Md[n] ⊃ M

n
d (7.13.1)

where the left arrow is an n-fold cyclic étale cover (corresponding to the short exact

sequence (7.11.1) of sheaves) and the right map is an open inclusion.

Remark 7.14. Brakkee [6, Definition 2.1] studies a functor on schemes over the

complex numbers whose C-points are isomorphism classes of tuples (X, α, L), where

(X, L) is a primitively polarized K3 surface of degree 2d and α ∈ Hom(H2(X, Z)prim, Z/nZ),

as well as the subfunctor of tuples such that α has order n. Brakkee shows that these

functors admit coarse moduli spaces [6, Theorem 1], which are moreover constructed

explicitly in terms of the period domain for complex K3 surfaces.

As explained in [6, §2.1], there is a canonical isomorphism

Hom(H2(X, Z)prim, Z/nZ) ∼= H2(X, μn)/〈δ(L)〉.

Thus, Brakkee’s functors are exactly the functors of isomorphism classes associated to

the fibers Md[n] ⊗ C and Mn
d ⊗ C of our moduli stacks over the complex numbers. Our

results in this section therefore give a natural extension of Brakkee’s moduli spaces to

spaces defined over the integers. In particular, Proposition 7.13 gives a purely algebraic

proof of Theorem 1 of [6, Theorem 1].

We consider the singular locus of the fiber Mn
d ⊗Fp. It is convenient to make the

following definition. Suppose that (X, αBr) is a twisted K3 surface over an algebraically

closed field k of characteristic p > 0. If X is supersingular of Artin invariant σ0, we
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Lifts of Twisted K3 Surfaces 4387

define the Artin invariant of (X, αBr) by

σ0(X, αBr) =

⎧
⎨
⎩

σ0(X) + 1, if αBr �= 0

σ0(X), if αBr = 0.

For a more motivated approach to this definition we refer to [4, Section 3.4]. One

consequence of this convention is that if p divides n then for any 1 ≤ σ ≤ 11 the locus in

M n
d ⊗ Fp or in Mn

d ⊗ Fp parametrizing tuples (X, α, L) such that (X, αBr) is supersingular

of Artin invariant ≤ σ has dimension σ − 1, as in the untwisted case.

Proposition 7.15. The fiber Mn
d ⊗ Q is regular. Furthermore, if p is a prime, then we

have the following descriptions of the singular loci of the fiber Mn
d ⊗ Fp.

(1) If p does not divide 2dn, then Mn
d ⊗ Fp is regular.

(2) If p divides 2d but not n, then Mn
d ⊗ Fp is non-singular away from the locus

of supersingular points with Artin invariant σ0 = 1.

(3) If p divides n, then Mn
d ⊗ Fp is non-singular away from the locus of

supersingular points with Artin invariant σ0 ≤ 3.

Proof. Let k be an algebraically closed field, and consider a k-point x ∈ Mn
d(k)

corresponding to a K3 surface X with an ample class L of degree 2d and a class

α ∈ H2(X, μn)prim of order n. Let α′ ∈ H2(X, μn) be a lift of α, and let x′ = (X, α′, L)

be the resulting point of M n
d . As the quotient map M n

d → Md[n] is étale and Mn
d is open

in Md[n], we have that Mn
d is regular at x if and only if M n

d is regular at x′. In particular,

this shows that Mn
d ⊗ Q is regular.

Suppose that k has characteristic p. Arguing as in Theorem 7.4, we have that

M n
d is regular at x′ if and only if the universal deformation space Def(X,α′,L) is formally

smooth over W.

Suppose that p does not divide 2d. Then L2 is nonzero modulo p, so cdR
1 (L)2 �= 0.

As F2
H is isotropic, we have cdR

1 (L) /∈ F2
H , and so c1(L) is nonzero. If also p does not divide

n, then Proposition 5.11 implies that Def(X,α′,L) is formally smooth, which gives (1) (see

also [32, Lemma 4.1.3]).

Now, suppose that p does not divide n, but possibly p divides 2d. By Theorem

6.12, if M n
d is singular at x′ then X is superspecial. The Brauer group of a supersingular

K3 surface is p-torsion [2, Theorem 4.3], so αBr = 0, and hence σ0(X, αBr) = 1. This

gives (2).
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4388 D. Bragg

Finally, suppose that p divides n. We consider two cases. Suppose first that p

does not divide n
ord(α′

Br)
. By Theorem 6.12, if M n

d is singular at x′ then X is supersingular

and σ(X) ≤ 2, which implies σ0(X, α′
Br) ≤ 3. Suppose that p divides n

ord(α′
Br)

, or

equivalently that n
p α′ ∈ H2(X, μp) has trivial Brauer class. By Proposition 5.11, M n

d is

nonsingular at x′ if the classes dlog(α′) and c1(L) are nonzero and linearly independent

in H1(X, �1
X) (in fact, as M d

n has relative dimension 19, this is an if and only if). These

classes are the images of n
p · α′ and δ(L) under the map

dlog : H2(X, μp) → H1(X, �1
X).

As n
p ·α′ has trivial Brauer class, we have α′ = δ(M) for some M ∈ Pic(X). By assumption,

α′ has order n modulo 〈δ(L)〉. It follows that n
p α′ has order p modulo 〈δ(L)〉. Hence, the

images L and M of L and M in Pic(X) ⊗ Fp are linearly independent. By Proposition 6.16,

we conclude that if the classes c1(L) and c1(M) = dlog(α′) are not linearly independent in

H1(X, �1
X), then X is supersingular with σ0(X) ≤ 2. As before, this implies σ0(X, αBr) ≤ 3,

and we obtain (3). �

Theorem 7.16. The morphism Mn
d → Spec Z is flat and a local complete intersection

of relative dimension 19. For each prime p, every connected component of Mn
d ⊗ Fp is

reduced and irreducible and is generically smooth of dimension 19.

Proof. By Theorem 7.4, we have an étale cover M n
d → Md[n] of Md[n] by a flat local

complete intersection of relative dimension 19. These properties are étale local on the

source (see [35, 069P]) and so descend to Md[n] → Spec Z. The inclusion Mn
d ⊂ Md[n] is

open, and hence these properties also hold for Mn
d → Spec Z.

Fix a prime p and let Z ⊂ Mn
d ⊗ Fp be an irreducible component. By

[28, Proposition 14] there is a dense open subset of Z parametrizing K3 surfaces of

finite height. Proposition 7.15 implies in particular that Z is generically smooth, and

hence reduced. The same is true for the intersection of any two irreducible components.

We conclude that every irreducible component is reduced and generically smooth of

dimension 19, and that no two irreducible components intersect. �

8 An Application to Twisted Derived Equivalences

In this section we give an application of our results to a problem concerning derived

equivalences of twisted K3 surfaces. Suppose that (X, αBr) and (Y, βBr) are twisted

K3 surfaces over an algebraically closed field k. Given a Fourier–Mukai equivalence
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�P : D(X, αBr)
∼
−→ D(Y, βBr) one can ask if the induced cohomological transform is

orientation preserving (sometimes also called “signed”). (Over the complex numbers, this

notion is usually phrased in terms of the Hodge structure on singular cohomology (see

e.g., [15]). However, it extends without difficulty to a field of arbitrary characteristic by

instead using the extended Néron–Severi groups, as recorded in [3, Definition 3.4.6].) It

is conjectured that this should always be the case. If k = C (or more generally if the

characteristic of k is zero) then this was shown in the untwisted case by Huybrechts–

Macrì–Stellari [15]. An alternative proof, which extends to the twisted case, was given

by Reinecke [31]. If k has positive characteristic, various special cases were treated in

[3, Appendix B]. Using a combination of standard techniques and Theorem 1.1, we can

complete the proof of this conjecture in arbitrary characteristic.

Theorem 8.1. Let (X, αBr) and (Y, βBr) be twisted K3 surfaces over an algebraically

closed field k. If �P : D(X, αBr)
∼
−→ D(Y, βBr) is a Fourier–Mukai equivalence, then the

induced cohomological transform �v(P) is orientation preserving.

Proof. As discussed above, if the characteristic of k is 0, this is shown in [15,

31]. Suppose that the characteristic of k is positive. Using now standard techniques

introduced in [23], to prove the result it suffices to show that every twisted K3 surface

admits a lift to characteristic 0, which reduces the problem to the case considered in

[15, 31] (this strategy is outlined for instance in [3, Appendix B]). Thus, the result follows

from Theorem 1.1. �

A. Deformations of Gerbes and Flat Cohomology Classes

In this appendix we record some results on deformations of gerbes, particularly those

banded by a possibly non-smooth group scheme.

Let S be a scheme. Let G be a flat commutative group scheme over S which is

locally of finite presentation. The co-Lie complex of G is

�G/S := Le∗
GLG/S ∈ D(OS)

where eG : S → G is the identity section and LG/S is the cotangent complex of the

morphism G → S. The Lie complex of G is its derived dual

�∨
G/S := RHomOS

(�G/S, OS).
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4390 D. Bragg

The complex �G/S is supported in degrees [−1, 0] and �∨
G/S is supported in degrees [0, 1]

[16, 3.1.1.3]. We set

tG/S := H
0(�∨

G/S) and nG/S := H
1(�∨

G/S).

We may omit the base scheme S from the notation if it is clear from context. We will

also use a version of these definitions relative to a homomorphism G → H of flat

commutative lfp group schemes: we define �G/H := Le∗
GLG/H, we let �∨

G/H be its derived

dual, and we let tG/H and nG/H be the 0th and 1st cohomology sheaves of �∨
G/H.

The co-Lie complex is contravariantly functorial with respect to maps of group

schemes over S, and the Lie complex is covariantly functorial. We refer to Illusie [16,

3.1.1] for further discussion of these objects and some of their basic properties (see also

[17, 2.5.1]).

We mention two situations in which we can explicitly compute the Lie complex

of G. If G is smooth, then there is a canonical identification �G = ωG := e∗
G�1

G, and hence

�∨
G = ω∨

G = tG is the Lie algebra of G. Suppose that G is not necessarily smooth and

that we are given a closed immersion G ↪→ H where H is a smooth commutative group

scheme over S. Let J be the ideal sheaf of G in H. The cotangent complex of G is then

given by

LG/S = [J/J2 → �1
H/S]

where the terms on the right hand side are in degrees -1 and 0. We have LG/H =

(J/J2)[1] = N∨
G/H[1], where N is the normal bundle of G in H. It follows that �∨

G/H =

nG/H = e∗
GNG/H and the Lie complex of G is given by

�∨
G = [tH → nG/H] (A.0.1)

(terms in degrees 0 and 1).

Example A.1. Let n be a positive integer. The co-Lie complex of the group scheme

G = μn can be computed using the Kummer sequence

1 → μn → Gm
·n
−→ Gm → 1.

We have tGm
∼= OX , nμn/Gm

∼= OX , and �∨
μn

∼= [OX
·n
−→ OX ] = OX(n).

We now consider a closed immersion i : S ↪→ S′, which is defined by a sheaf of

ideals I ⊂ OS′ that satisfies I2 = 0. We may regard I also as a module over OS. Let G′ be

a flat commutative lfp group scheme on S′. Let G′ ↪→ H′ be an embedding into a smooth

commutative group scheme H′ on S′. We let Q′ denote the quotient, so that we have a
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short exact sequence

1 → G′ → H′ → Q′ → 1 (A.1.1)

of flat commutative group schemes on S′. We write G = G′|S, H = H′|S, and Q = Q′|S. By

flat descent, Q′ is also smooth. Consider the commutative diagram

(A.1.2)

of sheaves on the big fppf site of S′, which has exact rows and columns. Incorporating

the identification tQ = nG/H, the diagram (A.1.2) gives a quasi-isomorphism

[G′ → i∗G] ∼= �∨
G ⊗L

OX
I (A.1.3)

of complexes of fppf sheaves.

A.2 Gerbes

Let X be an algebraic space. We will use the notion of a gerbe over X [35, 06QC]. If G

is a commutative group scheme over X, then a G-gerbe is a gerbe X → X equipped

with an isomorphism G|X
∼
−→IX . A morphism of G-gerbes on X is a morphism of

algebraic stacks over X which is compatible with these isomorphisms. The set of

G-gerbes over X forms a 2-groupoid GerbX(G), and there is a natural bijection between

the set of isomorphism classes of G-gerbes over X and the cohomology group H2(X, G)

[29, Theorem 12.2.8].

An absolute gerbe is an algebraic stack X , which is locally nonempty and locally

connected. By [35, 06QJ], X is an absolute gerbe if and only if the inertia stack IX → X

is flat. If X is an absolute gerbe, then by [35, 06QD] the sheafification X = |X | of X is

an algebraic space, and the map X → X makes X into a gerbe over X, in the sense of

[35, 06QC].
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4392 D. Bragg

Let S be an algebraic space and let G be a commutative group scheme on S. An

absolute G-gerbe over S is an absolute gerbe X equipped with a morphism X → S and

an isomorphism G|X
∼
−→IX . There is an induced factorization

X → X → S

where X = |X |, and the map X → X is a G|X-gerbe. A morphism of absolute G-gerbes

over S is a map of algebraic stacks over S compatible with the given isomorphisms.

A.3 Gerbes and torsors for two-term complexes

Let G → H be a homomorphism of commutative group schemes on X, which we regard as

a complex supported in degrees [0, 1]. A torsor for [G → H] is a G-torsor T on X equipped

with a G → H-equivariant map T → H. Equivalently, a torsor for [G → H] consists of a

G-torsor T equipped with a trivialization of the induced H-torsor T ∧GH. The collection

of torsors for [G → H] forms a groupoid, which we denote by TorsX([G → H]), and there

is a natural bijection between the set of isomorphism classes of torsors for [G → H] and

the cohomology group H1(X, [G → H]).

There is a similar notion for gerbes. A gerbe for [G → H] consists of a G-gerbe X

over X and a G → H-equivariant map X → BH of gerbes, or equivalently a G-gerbe X

equipped with a trivialization of the induced H-gerbe X ∧G H. The collection of gerbes

for [G → H] forms a 2-groupoid, which we denote by GerbX([G → H]), and there is a

natural bijection between the set of isomorphism classes of gerbes for [G → H] and the

cohomology group H2(X, [G → H]).

A.4 Deformations of gerbes

We consider the following deformation situation. Let S be an algebraic space and let

i : S ↪→ S′ be a closed immersion whose defining sheaf of ideals I is locally nilpotent.

Let G′ be a flat commutative lfp group scheme on S′ and write G = G′|S. We assume that

G′ embeds in a smooth commutative group scheme over S′, so that we have a short exact

sequence (A.1.1). Let X be an absolute G-gerbe over S. A deformation of X over S′ is a

2-cartesian diagram
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Lifts of Twisted K3 Surfaces 4393

where X ′ is an absolute G′-gerbe flat over S′ and ι is a map of absolute G′-gerbes.

Equivalently, a deformation is a pair (X ′, ϕ) where X ′ is an absolute G′-gerbe flat over

S′ and ϕ : X ′ ×S′ S
∼
−→X is an isomorphism of absolute G-gerbes over S. The collection of

deformations of X over S′ has a natural structure of a 2-groupoid.

Definition A.2. We let Def(X /S′) denote the 2-groupoid of deformations of X over S′.

We let Def(X /S′) be the set of isomorphism classes of objects of Def(X /S′).

Let X := |X | be the sheafification of X , and consider the factorization

X → X → S.

Let X ′ be a deformation of X over S′, with sheafification X ′ = |X ′|. The map X ′ → X ′

is faithfully flat. As X ′ → S′ is flat, so is X ′ → S′. Thus, the association (X ′, ϕ) �→

(|X ′|, |ϕ|) defines a functor

Def(X /S′) → Def(X/S′). (A.5.1)

The homotopy fiber of this map over a deformation (X ′, ρ) of X is Def(X /X ′). We consider

this latter 2-groupoid in more detail. To simplify notation, we omit pullbacks along

X → S. We wish to interpret the groupoid Def(X /X ′) cohomologically. To do this, we

need to prove that deformations of X exist fppf locally on X ′. This is implied by the

following result. We define

�m(G/X ′) := Hm(X ′, [G′ → i∗G])

Proposition A.3.

(1) If α ∈ Hm(X, G) is a flat cohomology class and m ≥ 1, there exists an fppf

cover V → X ′ such that the cover V ×X ′ X → X kills α.

(2) The natural map Hm(X ′, i∗G) → Hm(X, G) is an isomorphism for all m ≥ 0.

Proof. Consider a class α ∈ Hm(X, G). Suppose that m = 1. Let T → X be a G-torsor

with class α. As G → X is a syntomic cover, so is T → X, and moreover we have α|T = 0.

By [35, 04E3] there exists a syntomic cover V → X ′ such that V ×X ′ X → X factors

through T → X. In particular, V ×X ′ X → X kills α. Suppose m ≥ 2. We assume G

embeds in a smooth group scheme, so we may find an étale cover of X, which kills α. We

then conclude as before. This proves (1). It follows that the higher direct image Rmi∗G

vanishes for all m ≥ 1, which implies (2). �
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4394 D. Bragg

Let TG denote the trivial G-torsor over X.

Proposition A.4. We have canonical isomorphisms

GerbX ′([G′ → i∗G])
∼
−→Def(BG/X ′)

and

TorsX ′([G′ → i∗G])
∼
−→Def(TG/X ′).

Proof. We construct the first isomorphism. We have 2-functors

GerbX ′(i∗G) → GerbX(i−1i∗G) → GerbX(G)

the first being pullback along i and the second induced by the canonical map

i−1i∗G → G. On isomorphism classes of objects (resp. isomorphism classes of

1-automorphisms, resp. isomorphism classes of 2-automorphisms) this composition

corresponds to the natural map Hm(X ′, i∗G) → Hm(X, G) for m = 2 (resp. m = 1, resp.

m = 0). By Proposition A.3, these maps are isomorphisms for all m ≥ 0, and so the

composition is an equivalence of 2-groupoids. The second equivalence is constructed

similarly. �

As a consequence of Proposition A.4, we have natural identifications �2(G/X ′) =

Def(BG/X ′) and �1(G/X ′) = Def(TG/X ′).

Proposition A.5.

(1) The set of isomorphism classes of deformations of X over X ′ is a pseudo-

torsor under �2(G/X ′).

(2) The group of isomorphism classes of automorphisms of any deformation of

X over X ′ is �1(G/X ′).

(3) The group of 2-automorphisms of any 1-morphism of deformations of

X over X ′ is �0(G/X ′).

Proof. Taking tensor products of gerbes defines an action of Def(BG/X ′) = �2(G/X ′)

on Def(X /Y ′). If the latter is nonempty, this action is simply transitive, giving (1). The

groupoid of invertible self 1-morphisms of any object of Def(X /X ′) is equivalent to

TorsX ′([G′ → i∗G]), which by Proposition A.4 is equivalent to the groupoid of torsors for

the 2-term complex [G′ → i∗G], which implies (2) and (3). �
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Lifts of Twisted K3 Surfaces 4395

Suppose now that I2 = 0. We describe a tangent–obstruction theory for the

groupoid Def(X /X ′).

Proposition A.6. Suppose that I2 = 0, and let X be a G-gerbe over X.

(1) There exists a functorial class o(X /X ′) ∈ H3(X, �∨
G ⊗L

OX
I) whose vanishing is

necessary and sufficient for the existence of a deformation of X over X ′.

(2) If o(X /X ′) = 0, then the set of isomorphism classes of deformations of X

over X ′ is a torsor under H2(X, �∨
G ⊗L

OX
I).

(3) The group of isomorphism classes of automorphisms of any deformation of

X over X ′ is H1(X, �∨
G ⊗L

OX
I).

(4) The group of 2-automorphisms of any 1-morphism of deformations of X

over X ′ is H0(X, �∨
G ⊗L

OX
I).

Proof. The quasi-isomorphism (A.1.3) gives isomorphisms

�m(G/X ′) = Hm(X, �∨
G ⊗L

OX
I).

Taking cohomology of the short exact sequence

1 → i∗G[−1] → [G′ → i∗G] → G′ → 1 (A.9.1)

and using Proposition A.3 we obtain a long exact sequence

. . . → H1(X, G) → H2(X, �∨
G ⊗L

OX
I) → H2(X ′, G′) → H2(X, G)

δ
−→ H3(X, �∨

G ⊗L
OX

I) → . . . .

(A.9.2)

We put o(X /X ′) := δ(α). It is immediate that this class has the properties claimed in (1).

The remaining claims follow from Proposition A.5. �

Note that the obstruction class o(X /X ′) depends only on the cohomology class

α = [X ] ∈ H2(X, G) of X . We may sometimes write o(α/X ′) = o(X /X ′).

Remark A.7. More conceptually, the assertions of Proposition A.6 may be summarized

in the statement that the 2-stack Def(X /X ′) on the small étale site of X defined by

U �→ Def(XU/U ′) (where U ′ is the unique étale X ′-scheme such that U ′ ×X ′ X = U) is a

2-gerbe banded by the 2-term complex [tH → nG/H].

We compare deformations of X with deformations of its cohomology class

α = [X ] ∈ H2(X, G). There is a map Def(X /X ′) → H2(X ′, G′) induced by (X ′, ϕ) �→ [X ′].
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4396 D. Bragg

The image of this map is the set of classes α′ ∈ H2(X ′, G′) such that α′|X = α, which we

denote by Def(α/X ′).

Lemma A.8. The map

Def(X /X ′) → Def(α/X ′). (A.11.1)

is surjective. It is bijective if and only if the map H1(X ′, G′) → H1(X, G) is surjective.

Proof. There is a natural action of the group H1(X, G) on the set Def(X /X ′), which

descends to a free action of the quotient H1(X ′, G′)/H1(X, G). Furthermore, the quotient

of Def(X /X ′) by this action is exactly Def(α/X ′). �

We visualize this situation as an “exact sequence”

H1(X ′, G′) → H1(X, G) � Def(X /X ′) → H2(X ′, G′)
r−α
−−→ H2(X, G)

where the squiggly arrow denotes a group action and r is the restriction map. If α = 0,

this is just the long exact sequence on cohomology coming from (A.9.1).

Remark A.9. Given an isomorphism X
∼
−→Z of G-gerbes on X, there is an induced

equivalence Def(X /X ′)
∼
−→Def(Z /X ′). In particular, up to noncanonical isomorphism, the

2-groupoid Def(X /X ′) and hence the set Def(X /X ′) depends only on the cohomology

class [X ] ∈ H2(X, G) of the gerbe X .

If the map H1(X ′, G′) → H1(X, G) is surjective (eg. if H1(X, G) = 0), then (A.11.1)

is an isomorphism. Thus, in this case, there is a canonical isomorphism Def(X /X ′) ∼=

Def(Z /X ′) for any X and Z with class α.

A.12 Deformations relative to an embedding into a smooth group scheme

We will consider a relative deformation problem with respect to the embedding G ↪→ H.

Let Y = X ∧G H be the H-gerbe associated to X . Fix a deformation (Y ′, ψ) of Y over

X ′. We let Def(X /Y ′) be the groupoid whose objects are 2-cartesian diagrams

(A.13.1)

where X ′ is an absolute G′-gerbe, ιX is a map of absolute G′-gerbes, and g′ is a G′ → H′-

equivariant map of gerbes. Because G′ → H′ is a monomorphism, the maps g and g′ are

representable. It follows that Def(X /Y ′) has a natural structure of a groupoid. We let
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Lifts of Twisted K3 Surfaces 4397

Def(X /Y ′) denote the stack on the small étale site of X defined by

U �→ Def(XU/Y ′
U ′)

where U ′ → X ′ is the unique étale morphism such that U ′ ×X ′ X = U.

Lemma A.10. There is a canonical equivalence of stacks

Def(TQ/X ′) ∼= Def(BG/BH′).

Proof. There is a canonical equivalence between the groupoid of Q′-torsors on X ′

and the groupoid whose objects are G′-gerbes on X ′ equipped with a map of gerbes

to BH′. Explicitly, given a Q′-torsor T ′, we may consider the associated G′-gerbe

of trivializations X (T ′), which is equipped with a map X (T ′) → BH′ of gerbes.

Conversely, given a G′-gerbe X ′ and a map X ′ → BH′ of gerbes, the restriction of

X ′ along the canonical section of BH′ → X ′ is a Q′-torsor on X ′. These equivalences

are compatible with restriction to X and induce the desired equivalence of groupoids.

They are furthermore compatible with étale localization, and we obtain the claimed

equivalence of stacks. �

Proposition A.11. The stack Def(X /Y ′) is a gerbe on the small étale site of X, which

is canonically banded by nG/H ⊗ I.

Proof. We first show that Def(X /Y ′) is locally nonempty and locally connected. As H′

and Q′ are smooth, we may find an étale cover of X ′, which trivializes both X and

Y ′. It therefore suffices to show the claim for Def(BG/BH′), which by Lemma A.10

is isomorphic to the stack Def(TQ/X ′). The group Def(TQ/X ′) is nonempty, because

it contains the trivial deformation and is isomorphic to �1(Q/X ′). We have an exact

sequence

H0(X ′, Q′) → H0(X, Q) → �1(Q/X ′) → H1(X ′, Q′).

Because Q′ is smooth, the map Q′ → i∗Q is surjective in the étale topology. Furthermore,

we may trivialize classes in H1(X ′, Q′) by étale covers. It follows that any two elements

of �1 are locally equal to 0.

We now construct the banding. Given a 2-groupoid G and an object x ∈ G , we

let Aut(x) denote the groupoid whose objects are 1-morphisms in G from x to itself and

whose morphisms are 2-morphisms in G . Fix an object (X ′, g′, ιX ) of Def(X /Y ′). The

map g′ factors uniquely through an isomorphism X ′ ∧G′ H′ ∼
−→Y ′. Conjugating by this
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4398 D. Bragg

isomorphism, we obtain a map Aut(X ′, ιX ) → Aut(Y ′, ιY ). The homotopy fiber of this

map over the identity is equivalent to the group Aut(X ′, g′, ιX ).

The groupoid Aut(X ′, ιX ) may be realized as the groupoid Def(TG/X ′) of

deformations of the trivial G-torsor over X ′, which in turn is isomorphic to the groupoid

of torsors for the 2-term complex [G′ → i∗G]. Via the quasi-isomorphism (A.1.3) induced

by the diagram (A.1.2), this is equivalent to the groupoid of torsors for [tH ⊗I → nG/H ⊗I].

As H is smooth, the groupoid Aut(Y ′, ιY ) is equivalent to the groupoid of torsors for

tH ⊗ I. These maps fit into a commutative diagram

in the homotopy category. Under the bottom composition, the identity map is sent to

the trivial tH ⊗ I-torsor. The homotopy fiber of the right vertical arrow over the trivial

tH ⊗ I-torsor is equivalent to the category of trivializations of the trivial nG/H ⊗ I-torsor,

which is exactly �(X, nG/H ⊗ I). �

As an immediate consequence, we obtain the following result.

Proposition A.12. Let X be a G-gerbe over X, let Y = X ∧G H be the associated

H-gerbe, and let (Y ′, ψ) be a deformation of Y over X ′.

(1) There exists a functorial class o(X /Y ′) ∈ H2(X, nG/H ⊗ I) whose vanishing

is necessary and sufficient for the existence of a deformation of X over X ′

which fits into a 2-cartesian diagram (A.13.1).

(2) If o(X /Y ′) = 0, then the set of isomorphism classes of such diagrams is a

torsor under H1(X, nG/H ⊗ I).

(3) The group of automorphisms of any such diagram is H0(X, nG/H ⊗ I).

Proof. We define o(X /Y ′) to be the class [Def(X /Y ′)] ∈ H2(X, nG/H ⊗ I) of the gerbe

Def(X /Y ′). This class vanishes if and only if there exists a global section of Def(X /Y ′),

or equivalently if and only if Def(X /Y ′) is nonempty. As Def(X /Y ′) is a nG/H ⊗ I-gerbe,

if o(X /Y ′) = 0 then the set of its global sections is a torsor under H1(X, n ⊗ I), and the

automorphism group of any section is identified with H0(X, n ⊗ I). �
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Lifts of Twisted K3 Surfaces 4399

Remark A.13. Consider the short exact sequence

0 → nG/H[−1] → [tH → nG/H] → tH → 0

of complexes. We tensor with I and take H3 to obtain an exact sequence

H2(X, nG/H ⊗ I) → H3(X, [tH ⊗ I → nG/H ⊗ I]) → H3(X, tH ⊗ I).

If X is a G-gerbe over X and Y is the induced H-gerbe, then the right map satisfies

o(X /X ′) �→ o(Y /X ′). If o(X /X ′) = 0 and Y ′ is a fixed deformation of Y over X ′, then

the left hand map satisfies o(X /Y ′) �→ o(X /X ′).

A.14 Deformation functors and prorepresentability

We now consider deformations of a cohomology class or a gerbe simultaneously over

various infinitesimal thickenings. We will follow as much as possible the terminology

of the Stacks Project [35, 06G7]. Let (�,m�) be a noetherian local ring with residue

field k. Let C� be the category whose objects are Artinian local �-algebras A such

that the map � → A is local and induces an isomorphism on residue fields. Via this

isomorphism, we identify the residue field of any object A ∈ C� with k. A morphism in

C� is a homomorphism of �-algebras.

Let S be a k-scheme. Let S� be a flat formal �-scheme equipped with an

isomorphism S� ⊗� k ∼= S of k-schemes. Let G� be a flat commutative formal

group scheme on S�. We assume that G� admits an embedding into a smooth formal

commutative group scheme H� on S�. Given A ∈ C�, we write SA := S� ⊗� A for the base

change of S� to A, and set GA := G�|SA
. We also write G := Gk for the restriction of G�

to S. Let X be an absolute G-gerbe flat over S and let X = |X | be its sheafification. We

have a factorization

X → X → S

where the first map is a GX-gerbe over X and the second is flat. We will assume that

X → S is moreover smooth.

Definition A.14. We let DefX /S�
be the 2-category cofibered in 2-groupoids over C�

whose fiber over A ∈ C� is the 2-groupoid Def(X /SA). We let DefX /S�
be the functor on

C� whose value on A ∈ C� is the set Def(X /SA) of isomorphism classes of objects of

Def(X /SA).
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4400 D. Bragg

Let Y := X ∧G H be the induced absolute H-gerbe. We have a diagram

(A.19.1)

Here, the map πG is given by (XA, ϕ) �→ (|XA|, |ϕ|) (A.5.1) (and similarly for πH), and ι is

given by (XA, ϕ) �→ (XA ∧GA
HA, ϕ ∧G H). The homotopy fiber of πG(A) over a deformation

(XA, ρ) of X over SA is the 2-groupoid Def(X /XA). The homotopy fiber of ι(A) over a

deformation (YA, ψ) of Y over SA is the groupoid Def(X /YA).

We consider deformations over the dual numbers k[ε]. The tangent space to

DefX /S�
is T(DefX /S�

) := DefX /S�
(k[ε]) = Def(X /S[ε]). We let Inf−1(DefX /S�

) be the

group of isomorphism classes of 1-automorphisms of the trivial deformation of X over

S[ε], and we let Inf−2(DefX /S�
) be the group of 2-automorphisms of the identity map of

the trivial deformation. The following result might be compared to [35, 06L5].

Lemma A.15. There is a canonical isomorphism

H0(X, �∨
G)

∼
−→Inf−2(DefX /S�

)

and exact sequence

Proof. The homotopy fiber of the map

Def(X /S[ε]) → Def(X/S[ε])

over the trivial deformation X[ε] of X over S[ε] is exactly Def(X /X[ε]). By Proposition A.6,

the tangent space, group of infinitesimal 1-automorphisms, and group of infinitesimal

2-automorphisms of DefX /X[ε] are, respectively, H2(X, �∨
G), H1(X, �∨

G), and H0(X, �∨
G). The

tangent space and group of infinitesimal 1-automorphisms of DefX/S[ε] are respectively

H1(X, TX/S) and H0(X, TX/S). With these identifications, the construction of the exact

sequence is exactly as in [35, 06L5]. The isomorphism follows from the fact that

Def(X/S[ε]) is 1-truncated. �

We prove the following result about the existence of certain pushouts of gerbes.
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Lifts of Twisted K3 Surfaces 4401

Proposition A.16. Let T be a scheme. Let G be a flat commutative lfp group scheme

over T. Given maps Z
j

←− X
i

−→ X of absolute G-gerbes over T where i is a nilpotent

closed immersion and j is affine, there exists a 2-commutative diagram

(A.21.1)

of absolute G-gerbes over T which is both a 2-pullback and a 2-pushout diagram in the

2-category of G-gerbes over T.

Proof. By [11, Proposition A.2], we find an algebraic stack W and a 2-commutative

diagram (A.21.1) of algebraic stacks over T, which is 2-cartesian and 2-cocartesian.

We will show that W has a canonical structure of a G-gerbe. Let X, Y, and Z be

the sheafifications of X , Y , and Z . The induced map X → Y is a nilpotent closed

immersion, and the induced map X → Z is affine. Let W be the pushout of Z ← X → Y.

We have a 2-commutative diagram

As the top face is 2-cocartesian, there is an induced map W → W. Using that the bottom

face is a pushout, it follows that W → W is initial with respect to maps from W to

sheaves. That is, W is the sheafification of W . As W is an algebraic space, W is a gerbe.

Consider the 2-commutative diagram

(A.21.2)

It follows from [35, 06R5] that (A.21.2) is 2-cartesian. As W is a gerbe, the map IW → W

is flat [35, 06QJ]. It follows from [35, 07W3] that (A.21.2) is also 2-cocartesian. (This

reference refers only to the categories of algebraic spaces over a pushout diagram of

algebraic spaces. The result extends immediately to the categories of spaces over a

pushout diagram of algebraic stacks). The given identifications of the inertia of X ,

Y , and Z with the respective pullbacks of G induce an isomorphism between IW and

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
3
/5

/4
3
3
7
/6

5
1
1
4
0
8
 b

y
 U

n
iv

e
rs

ity
 o

f U
ta

h
 L

a
w

 u
s
e
r o

n
 3

1
 O

c
to

b
e
r 2

0
2
4



4402 D. Bragg

the 2-pushout of G|Z ← G|X → G|Y , which is G|W . This gives W the structure of an

absolute G-gerbe over T. Moreover, the maps i′ and j′ are maps of absolute G-gerbes.

By construction, the diagram (A.21.1) is a 2-pullback and a 2-pushout in the 2-category

of algebraic stacks over T. Because (A.21.2) is also a 2-pullback and a 2-pushout, it

follows that (A.21.1) is a 2-pullback and a 2-pushout in the category of absolute G-gerbes

over T. �

We recall the statement of Schlessinger’s theorem, as formulated in the stacks

project [35, 06JM] (the original reference being [34, Theorem 2.11]). Let F be a covariant

functor on C�. Following the terminology of the Stack project [35, 06G7], we say that F

is a predeformation functor if F(k) is a singleton. We say that F satisfies (RS) if for any

surjection B � A and any morphism C → A in C�, the natural map

F(B ×A C) → F(B) ×F(A) F(C) (A.21.3)

is bijective (see [35, 06J2]). If F is a predeformation functor and satisfies (RS), then the

set T(F) := F(k[ε]) (the tangent space of F) has a natural k-vector space structure, where

k[ε] has the �-algebra structure given by � � k ↪→ k[ε]. Schlessinger’s theorem states

that a predeformation functor F is prorepresentable if and only if it satisfies (RS) and

has finite dimensional tangent space.

Proposition A.17. For any C → A � B as above, the map (A.21.3) with F = DefX /S�
is

surjective. If for any object (XB, ϕ) of DefX /S�
(B) the map AutB(XB, ϕ) → AutA(XA, ϕ) is

surjective, then (A.21.3) is bijective.

Proof. Consider a diagram

where the top row are maps of G�-gerbes over S�, the vertical arrows are flat, and

the squares are 2-cartesian. We let XB×AC be the 2-pushout of XC ← XA → XB as in

Proposition A.16, applied with T = SB×AC and G = GB×AC. This is an absolute GB×AC-

gerbe over SB×AC. By [11, Lemma A.4], XB×AC is flat over SB×AC. This implies surjectivity

of (A.21.3).

We now consider the injectivity. Suppose that (XB×AC, ϕ) and (YB×AC, ψ) are two

objects of Def(X /SB×AC) whose images in Def(X /SB) and in Def(X /SC) are isomorphic,

via isomorphisms say gB : XB → YB and fC : XC → YC. By assumption, we may lift
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the automorphism g−1
A ◦ fA of (XA, ϕ) to an automorphism θB of (XB, ϕ). We obtain a

2-commutative diagram

Being flat base changes of the pushout of SpecC ← SpecA → SpecB, the top and bottom

faces are 2-cocartesian. We therefore find a dashed isomorphism making the diagram

2-commutative. Moreover, by our choice of fC, the composition X ↪→ XC
fC
−→ YC is

isomorphic to X ↪→ YC. It follows that the isomorphism XB×AC
∼
−→YB×AC is compatible

with the maps from X up to 2-isomorphism, and hence the deformations (XB×AC, ϕ) and

(YB×AC, ψ) are isomorphic in Def(X /SB×AC). �

We now give some conditions implying prorepresentability of the functors

DefX /S�
. We first consider the extremal case when X → S is an isomorphism. For ease

of notation, we identify the two, and put X� = S�. The groups �m(G/XA) are covariantly

functorial with respect to maps in C�. We let �m
G/X�

denote the covariant functor on C�

defined by

�m
G/X�

(A) := �m(G/XA) = Hm(XA, [GA → iA∗G]) (A.22.1)

where iA : X ↪→ XA is the inclusion. In particular, we have �2
G/X�

= DefBG/X�
.

Theorem A.18. Let X be a proper k-scheme and let X� be a flat formal scheme over

� equipped with an isomorphism X� ⊗� k
∼
−→X. If the functor �1

G/X�
on C� is formally

smooth, then for any G-gerbe X over X the functor DefX /X�
is prorepresentable.

Proof. We use Schlessinger’s theorem [35, 06JM]. We apply Lemma A.15 with X� = S�

(thus, TX/S = 0). As X is assumed to be proper, we conclude that the tangent space

to DefX /X�
is finite dimensional over k. To verify (RS), we check the condition of

Proposition A.17. Given a surjection B � A in C� and an object (XB, ϕ) of Def(X /XB),

by Proposition A.5 the restriction map on automorphism groups is identified with the

map �1(G/XB) → �1(G/XA). By assumption, �1
G/X�

is formally smooth, so this map is

surjective. �

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
3
/5

/4
3
3
7
/6

5
1
1
4
0
8
 b

y
 U

n
iv

e
rs

ity
 o

f U
ta

h
 L

a
w

 u
s
e
r o

n
 3

1
 O

c
to

b
e
r 2

0
2
4



4404 D. Bragg

We now consider the case when S� = Spf �. We write DefX /� := DefX /Spf �.

Theorem A.19. Let X be a smooth proper k-scheme. Suppose that H0(X, TX) = 0 and

that, for any deformation (XA, ρ) of X over A ∈ C�, the functor �1
G/XA

on CA is formally

smooth. For any G-gerbe X over X, the functor DefX /� is prorepresentable.

Proof. It follows from Lemma A.15 and our assumption that X is proper that the

tangent space to DefX /� is finite dimensional over k. As before, we check (RS) using

Proposition A.17. For any object (XA, ϕ) of Def(X /A), we have an exact sequence

0 → �1(G/XA) → AutA(XA, ϕ) → AutA(XA, ρ)

where (XA, ρ)=(|XA|, |ϕ|). Our assumption that H0(X, TX)= 0 implies that AutA(XA, ρ)=0

(see e.g., the proof of [12, Corollary 18.3]), and so �1(G/XA) ∼= AutA(XA, ϕ). Given a

surjection B � A in C� and an object (XB, ϕ) of Def(X /B), our assumption that �1
G/XB

is formally smooth (where XB = |XB|) implies that �1(G/XB) → �1(G/XA) is surjective,

which gives the result. �

Corollary A.20. Let X be a smooth proper k-scheme such that H0(X, T1
X) = 0 and

H1(X, �∨
G) = 0. For any G-gerbe X over X, the functor DefX /� is prorepresentable.

Proof. The assumption that H1(X, �∨
G) implies that �1(G/XA) = 0 for any deformation

XA of X. The result follows from Theorem A.19. �

A.23 Comparison with cohomological deformations

We compare deformations of X with deformations of its cohomology class α = [X ] ∈

H2(X, G).

Definition A.21. The cohomological deformation functor of α over X� is the (covari-

ant) functor Defα/X�
on C� defined by A �→ Def(α/XA) (the set of classes αA ∈ Hi(XA, GA)

such that αA|X = α).

Remark A.22. Arguing as in [1, Lemma 2.9], one can show that the cohomological

deformation functor Defα/X�
is prorepresentable if the functor A �→ H1(XA, GA) is

formally smooth.
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The maps (A.11.1) induced by (XA, ϕ) �→ [XA] give rise to a map of functors

DefX /X�
→ Defα/X�

. (A.28.1)

Lemma A.23. The map (A.28.1) is formally smooth and induces an isomorphism on

tangent spaces. It is an isomorphism if and only if for all A ∈ C� the restriction map

H1(XA, GA) → H1(X, G) is surjective.

Proof. Let B � A be a surjection in C� whose kernel I has square zero. Let XA be

a deformation of X over XA. The obstruction class o(XA/XB) ∈ H3(X, �∨ ⊗ I) vanishes

if and only if the cohomology class αA of XA lifts to XB. This implies that (A.28.1) is

formally smooth. By Proposition A.6, the tangent space to DefX /X�
is H2(X, �∨

G). As the

map k[ε] → k splits, the sequence

0 → H2(X, �∨
G) → H2(X[ε], Gk[ε]) → H2(X, G) → 0

is exact, and it follows that (A.28.1) is an isomorphism on tangent spaces. The final

claim follows from Lemma A.8. �

Remark A.24. The assumption of Lemma A.23 that the maps H1(XA, GA) → H1(X, G)

are all surjective holds trivially if H1(X, G) = 0. It also holds if the functor

A �→ H1(XA, GA) on C� is formally smooth.

Remark A.25. If DefX /X�
is prorepresentable, then Lemma A.23 shows that it is a

hull for the cohomological deformation functor Defα/X�
, in the sense of Schlessinger

[34, Definition 2.7]. An example where DefX /X�
is prorepresentable but Defα/X�

is not

is when Spf � is the universal deformation space of a K3 surface X, X� is the universal

formal family, G = Gm, and X is any Gm-gerbe on X. Indeed, in this case, the functor

A �→ H1(XA, Gm) = Pic(XA) is not formally smooth. On the other hand, as H1(X, OX) = 0,

the functor �1
Gm/X�

is trivial, and in particular formally smooth.
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