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Deligne [9] showed that every K3 surface over an algebraically closed field of positive
characteristic admits a lift to characteristic 0. We show the same is true for a twisted
K3 surface. To do this, we study the versal deformation spaces of twisted K3 surfaces,
which are particularly interesting when the characteristic divides the order of the
Brauer class. We also give an algebraic construction of certain moduli spaces of twisted
K3 surfaces over Spec Z and apply our deformation theory to study their geometry. As
an application of our results, we show that every derived equivalence between twisted

K3 surfaces in positive characteristic is orientation preserving.

1 Introduction

A twisted K3 surface is a pair (X, ap,) where X is a K3 surface and ap, € Br(X). We will

show that every twisted K3 surface in characteristic p lifts to characteristic 0.

Theorem 1.1. Let (X, ay,) be a twisted K3 surface over an algebraically closed field k
of characteristic p > 0. Let « € H2(X, i,,) be a class whose image in the Brauer group is
ap, and let L be an ample line bundle on X. There exists a discrete valuation ring (DVR) R
with residue field k and field of fractions of characteristic 0 and a triple (}?, &',E), where
X is a K3 surface over R such that)?@R k=X,ae Hz()N(, W,) is a class such that o|y = «,

and L is a line bundle on X such that L[ = L.
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4338 D. Bragg

In particular, the image @, of @ in Br(X) satisfies ap, |y = ag,. Thus, (X,dg,) is a
twisted K3 surface over R lifting (X, ag,).

Without the Brauer class, this result is due to Deligne [9], with further refine-
ments by Ogus [27]. We also consider the more general problem of the existence of lifts
of a twisted K3 surface together with a collection of line bundles. In the non-twisted
case this problem was considered by Lieblich-Olsson [23] and Lieblich—-Maulik [22].
For both these problems, we give conditions under which the appropriate universal
deformation space is formally smooth, which implies that such a lift exists over the
ring of Witt vectors W = W(k). We defer the precise statements of these results: the
existence of lifts with multiple line bundles is given in Theorem 7.10, and the question
of smoothness is considered in Theorem 6.12 (for twisted K3 surfaces with one line
bundle) and Corollary 6.19 (for twisted K3 surfaces with multiple line bundles). Even
forgetting the twisting, our methods yield stronger results for the existence of lifts of
K3 surfaces together with collections of line bundles than we have seen in the literature
(see Corollary 6.18).

We outline the basic strategy behind the proof of Theorem 1.1. The usual
procedure for producing a lift consists of two steps: first, using formal deformation
theory one constructs lifts to every finite order, and second, one shows that the resulting
formal system algebraizes. This strategy is carried out by Deligne [9] in his study of the
lifting problem for K3 surfaces. In this case, a key input is the result of Rudakov and
Shafarevich [33] that HO(X, T}) = O (this result has been subsequently reproved using
cohomological methods, see Lang—Nygaard [19] and Nygaard [25]). This result is equiv-
alent to the vanishing of H?(X, T}{), which implies that the formal deformation problem
is essentially trivial: any K3 surface X deforms over any infinitesimal thickening. More
precisely, the universal deformation space Defy is smooth over W, and moreover we

have
DefX = Spf W[[tl AR tzo]]-

However, the resulting systems will generally not algebraize. Thus, Deligne considers
instead deformations of a pair (X,L), where L is an ample line bundle on X. The
algebraization of systems of such pairs is guaranteed by a theorem of Grothendieck.
However, such pairs are no longer unobstructed in general, and so the deformation

theoretic step requires a further analysis. Deligne first shows that the inclusion

Defx 1) C Defy = Spf WIlt,, ..., ty]]
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Lifts of Twisted K3 Surfaces 4339

is a closed formal subscheme of dimension 19 over W defined by one equation. By
analyzing de Rham and crystalline cohomology, he then shows that Def y ;, is flat over
W, and hence the desired formal system exists. This last step was improved upon by
Ogus [27], who showed that in fact Def y ;) is frequently smooth over W.

We consider a twisted K3 surface (X, o). We show that, as a consequence of the
vanishing of H3 (X, Ox), such objects are unobstructed. Thus, the universal deformation

space Def(X #Br) is smooth over W, and moreover we have

Def iy oy, = SPE WLt ..., £y, sl

Hence, as before, there are many formal systems over Spf W. The difficulty again lies in
the algebraization step. To algebraize the underlying system of K3 surfaces, we might
carry along an ample line bundle on X. However, even if the underlying system of K3
surfaces algebraizes, a formal system of Brauer classes will typically not algebraize
(this is the essential reason why the Brauer group functor is not representable). To
remedy this, we need to include some extra data related to the class ag,.. We will consider

triples (X, «, L), where « is a lift of o, along the map

H%(X, u,,) — Br(X)

for some n. Here, H?(X, i,,) denotes the second flat (fppf) cohomology of the sheaf u,,
of nth roots of unity on X. In §2 we show that if X is a smooth proper surface then
formal families of such triples (X, «, L) algebraize (Proposition 2.8). The idea is to show
that every formal family of flat cohomology classes is induced by a formal family of
Azumaya algebras, whose algebraization follows from Grothendieck’s existence theorem
for coherent sheaves. Moreover, such a choice of « is the minimal amount of extra data
needed to ensure algebraization. We mention that this section is largely independent of
the rest of the paper, and might be skipped on a first reading.

With this motivation, we then study the universal deformation spaces associated
to a triple (X, «,L). For technical reasons, it turns out to be useful to consider also
deformations of u, and G,,-gerbes. Lacking a suitable reference, we include some

abstract results along these lines in Appendix A. We show that the inclusion

Def x o) C Defx . = Spf Wity ..., 150, s]]
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4340 D. Bragg

of deformation functors is a closed formal subscheme defined by one equation. It
follows that

Def x o) C Def(x opy = SPE WIlEy, ..., Ty, S]]

is a closed subscheme defined by two equations. We analyze these deformation spaces
using obstruction classes associated to classes in H?(X, ty,). We show that if n is
coprime to p, then such classes deform uniquely along any thickening of X. Thus, in this
case our main result follows quickly from [9] and is well known to experts. However,
if p divides n, there are additional obstructions to deforming such classes, and it is
therefore this case that is the main contribution of this paper.

We analyze these obstructions in §3 and compute them in terms of cup product
with the Kodaira-Spencer class. In §6 we study the interaction between deformations
of a line bundle L on X and deformations of classes o ¢ HZ(X,un). Using this
analysis, we give conditions under which the deformation space Defy , ;) is smooth
over W. This requires some precise computations in the de Rham cohomology of K3
surfaces, particularly in the supersingular case. Combined with the algebraization
result of Proposition 2.8, these results imply Theorem 1.1 outside of a small locus of
exceptional cases. We also consider in §6.14 deformations with multiple line bundles.
Even neglecting the twisting, our results in this section seem to be new in some cases.

To obtain results in the case when the universal deformation space is not
smooth, we use global methods. We define in §7 a certain moduli stack .#} over Spec Z
parametrizing tuples (X, «,L), where X is a K3 surface, « € H2(X, i), and L is an ample
line bundle on X of degree 2d. The proof that this stack is algebraic is a consequence
of the following result (proved in §2), which may be of independent interest. Given
a morphism f : X — S of algebraic spaces, we let R™f,, denote the mth higher
pushforward from the big flat site of X to that of S. Equivalently, R™f, u,, is the flat

sheafification of the functor on the category of S schemes defined by

T+ H™"X xg T, 1y,)

where the right side denotes cohomology in the flat topology.

Theorem 1.2. Let f : X — S be a smooth proper morphism of algebraic spaces of

relative dimension 2 with geometrically connected fibers. Let n be a positive integer.
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Lifts of Twisted K3 Surfaces 4341

Assume that R!f,u,, = 0 and that for all geometric points s € S we have H! (X, Ox,) =0.

The sheaf R%f,u,, is a group algebraic space of finite presentation over S.

If n is invertible on S, this follows from fundamental theorems of étale
cohomology [8, Th. finitude, Théoréme 1.1] (and no vanishing assumptions are needed).
When n is not invertible the result is more subtle. When S has equal characteristic p,
more general representability results are proven in [5]. However, in this paper, we are
particularly interested in the case when S has mixed characteristic. Our proof instead
generalizes the method of proof of [4, Theorem 2.1.6] and relies on de Jong and Lieblich’s
solution of the period index problem for function fields of surfaces and Lieblich's study
of asymptotic properties of moduli spaces of twisted sheaves.

We make a few observations on the geometric structure of these moduli stacks;

for instance, we show that the morphism
MG — Spec Z

is flat and a local complete intersection of relative dimension 19. We deduce
Theorem 1.1 as a consequence. In §7.5, we consider the analogous moduli spaces for
twisted K3 surfaces equipped with multiple line bundles and deduce similar geometric
results.

We also consider in §7.11 a certain refined moduli stack
M}, — Spec Z

over the integers parametrizing tuples (X, «, L) where X is a K3 surface, L is a primitive
ample class of degree 2d, and o € H?(X, Uy,) is a class that is primitive with respect to L,
in a certain sense. The fiber M}®C over the complex numbers recovers the moduli stack
of twisted complex K3 surfaces constructed by Brakkee [6] using analytic methods. We
show that these stacks have some advantageous geometric properties; for instance, they
are smooth over Spec Z[ﬁ], and the fibers M7 ® F, are generically smooth. We give
a brief description of their singular loci. The geometry of the moduli stacks M} ® F,
seems particularly interesting when p divides n, and we think are deserving of further
study.

We hope that our lifting results will be of general utility in the study of twisted

K3 surfaces in positive characteristic. We record in §8 one instance where this is the case
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4342 D. Bragg

by resolving the last open cases of the conjecture that derived equivalences of twisted
K3 surfaces are orientation preserving.

Summary: In §2, we show that formal families of flat cohomology classes on a surface
algebraize (Proposition 2.8). We also prove Theorem 1.2. This section is independent of
the rest of the paper. In §3, we discuss obstruction classes for flat cohomology classes
and their relation with Kodaira—-Spencer classes. We then specialize to K3 surfaces in
positive characteristic. In §4 we recall some relevant definitions and cohomological
invariants. In §5 we consider the universal deformation spaces associated to gerbes
over K3 surfaces. We prove that they are prorepresentable and describe them in explicit
coordinates. In §6 we make some computations in the de Rham cohomology of K3
surfaces and derive conditions under which formal deformation spaces are formally
smooth. Combined with the algebraization result of Proposition 2.8, this implies our
main lifting results in many cases. In §7 we define global moduli spaces of twisted K3
surfaces and complete the proof of Theorem 1.1. We also define some refined moduli
spaces, extending those defined by Brakkee over the complex numbers [6]. Finally, in
§8, we give an application to twisted derived equivalences. In Appendix A, we consider
deformations of gerbes. Our main results are the definition of obstruction classes and a
criterion for prorepresentability (generalizing results of Artin—-Mazur [1]), both of which
are used in §5.

Conventions: We work throughout over an algebraically closed field k of characteristic
p > 0 with ring of Witt vectors W = W(k). If X is a scheme, H™(X, u,,) will always
denote cohomology with respect to the flat (fppf) topology. We will frequently write «

for a class in H2(X, i1,,) and let oy, denote the image of « under the map

H?(X, 1) — HAX(X, G

-

2 Algebraization of Flat Cohomology Classes on a Surface

In this section we will show that formal families of classes in the flat cohomology
group H%(X, t,,) of a family of surfaces algebraize (Proposition 2.8). We will also prove
Theorem 1.2, which is the stronger statement that the relative H?(X, ty,) of a family of

surfaces is representable. This section is independent of the rest of the paper.

2.1 Deformations of Azumaya algebras

We describe the deformation theory of Azumaya algebras, with particular attention

to the case when the degree is divisible by the characteristic. We begin by briefly
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Lifts of Twisted K3 Surfaces 4343

recalling some of the theory of Azumaya algebras. For more details, we refer the reader
to [14, Chapter 18], and the associated references. Let X be a scheme and let n be a
positive integer. An Azumaya algebra on X of degree n is a sheaf & of associative
(possibly noncommutative) unital 0x-algebras on X, which is étale locally isomorphic
to the matrix algebra M, (). Thus, </ has rank n? as an Ox-module. Consider the

commutative diagram

1 1
1 L SL, PGL, ——1
1 G, GL, PGL, 1
(2.1.1)
n det
Gm = Gm
1 1

of group schemes on X, which has exact rows and columns. By the Skolem-Noether
theorem, the automorphism sheaf of M,, (%) is isomorphic to PGL,,, and so an Azumaya
algebra </ of degree n gives rise to a class [¢/] in the nonabelian cohomology H! (X, PGL,))
which (by definition) classifies PGL,-torsors. An Azumaya algebra </ of degree n has an

associated class in H2(X, iy,), which is the image 9([.7]) of [«/] under the boundary map

9 : H'(X,PGL,)) — H3(X, u,,) (2.1.2)

induced by the top row of (2.1.1).

Azumaya algebras can be understood in terms of twisted sheaves on gerbes (see
§A.2). A coherent sheaf & on a u,, or G,,-gerbe is said to be m-twisted if the inertial
action is via the character A — A™ (see e.g., [29, Definition 12.3.2]). We refer to a

1-twisted sheaf simply as a twisted sheaf.

Lemma 2.2. Letrw: 2 — X be a u,-gerbe representing a class « € H?(X, t,). There is
a natural bijection between the set of isomorphism classes of Azumaya algebras on X of
degree n such that d([«/]) = o and the set of isomorphism classes of locally free twisted

sheaves on 2" with rank n and trivial determinant.
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4344 D. Bragg

Proof. If & is a locally free twisted sheaf on 27, then & := n,énd(&) is an Azumaya
algebra on X. If & has rank n and trivial determinant, then we have d([#/]) = « (see
[20, Proposition 3.1.2.1]). Conversely, if &7 is an Azumaya algebra on X of degree n such
that 9([¢/]) = «, then & = 7,énd(&) for a unique locally free twisted sheaf & of rank n

and trivial determinant. n
Let o/ be an Azumaya algebra on X of degree n. There is a trace map
tr: o — Oy (2.2.1)

defined by gluing the usual trace maps M,(0x) — Ox on an étale cover. We set

s/ = ker(tr), so that we have a short exact sequence

0> s > o5 6, —0. (2.2.2)
We define p#/ := &/ /Oy by the short exact sequence

0— ﬁ’X—i>ﬂ—>p£{—>0 (2.2.3)

where i is the canonical inclusion defining the algebra structure on /. Consider the
pairing &/ ® & — Oy defined by s ® s’ — tr(ss’). This induces a perfect pairing s« ®
po/ — Ox, and hence a canonical isomorphism so/ = (p7)”. As a consequence, using
the canonical isomorphism & = &7V, the composition

i\/

~ \%
o =" — O
is the trace map tr, and the composition
trY V o~

is i. The composition troi : 0y — Oy is multiplication by n. It follows that if n
is invertible in k, then both (2.2.2) and (2.2.3) are split, by %i and %tr, respectively.
Furthermore, the composition s« — & — p</ gives an isomorphism s« = po/. If n
is not invertible, there may not exist such an isomorphism (see Remark 2.4).

Our interest in the sheaves s« and p« is due to their relationship with
deformations of «/. Let X C X’ be a closed immersion defined by an ideal I C Oy
such that I = 0. As explained by de Jong [7, §3], the sheaf p.</ is isomorphic to the

20z 1890100 L€ UO Josn MeT yeln Jo AUsIeAun Ad 80v L LG9/ EEH/G/EZ0Z/B10IME/UIY/WOD dNO"0lWapEse)/:SARY WO} POPEOIUMOQ



Lifts of Twisted K3 Surfaces 4345

sheaf of derivations @erﬁx («f, /), and thus controls the deformation theory of <7, in the
following sense: there exists a functorial obstruction class o(<//X’) € H?>(X,p«/ ® I)
which vanishes if and only if there exists an Azumaya algebra <’ on X’ such that
PAEY2

We will consider the refined deformation problem of finding a lift of & with
prescribed class in HZ(X, i,). We will show that, under certain assumptions, this

problem is controlled by s.&/. More precisely, define
H{(X, o ®I), := ker(tr : H(X, o ® I) - H\(X, I)).
There is a map
H?(X, s/ @ I) - HX(X, o/ ®I),. (2.2.4)

We will only consider the case when this map is an isomorphism. This holds for instance
if the degree of <7 is invertible in 0y (by the splitting of (2.2.2)), or if H} (X, %) = 0 (eg.
if X is an infinitesimal deformation of a X3 surface). Without this assumption a more

subtle analysis is required.

Proposition 2.3. Let o/ be an Azumaya algebra on X of degree n such that (2.2.4) is
an isomorphism. Set « = 3(l«/]) € H*(X, Uy). Let o’ € HZ(X’,;L”) be a class such that

o'|x = a. There exists a functorial obstruction class
o(o/ Ja') € B3 (X, s/ QI),

which vanishes if and only if there exists an Azumaya algebra &’ on X’ such that
Ay = o and 3([/']) = o'.

Proof. Using Lemma 2.2, we rephrase the problem in terms of twisted sheaves. Let
7: 4 - Xandn': 2’ — X be u,-gerbes corresponding to « and «’. Let & be a locally
free twisted sheaf on 2 of rank n and trivial determinant such that =, énd(&) = .
There is an obstruction class o(&) € H%(2', &nd(&) ® n*I), which vanishes if and only if
there exists a locally free sheaf &’ on 2" such that &’| - = &. Any such deformation &’

is necessarily also twisted. The trace map

tr: H2(2, &nd(&) @ n*T) — H2(2, 7*I) (2.3.1)
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4346 D. Bragg

sends o(&) to the obstruction to deforming the determinant of &, which by assumption
is trivial. It follows that o(&) is contained in the kernel H2(.2", &nd(&) ® 7*I)g of (2.3.1).

Fix an isomorphism ¢ : det&—&,. There is a refined obstruction class
o(&,¢) € H3(Z ,sénd(&) @ m*T) whose vanishing is equivalent to the existence of a tuple
(&',7,¢"), where &’ is a locally free sheaf on 27, 7 : é"’|gg:>éa is an isomorphism, and
¢ det(o@’);ﬁgp is a trivialization of the determinant of £’ such that ¢'| ,- is identified
via det r with ¢. The class o(&) is the image of 0o(&, ¢) under the map

H2(Z,s6nd(&) @ n*T) — H2(Z', nd(&) @ n*1),. (2.3.2)
Via pushforward, this map is identified with the isomorphism
H?(X, s/ @ )>HA(X, o/ @1),.

In particular, (2.3.2) is an isomorphism, and so the class 0(&/¢) does not depend on the
choice of ¢. We define o(</ /a’) to be the image of 0(&/¢) in H2(X, s/ ® I).

We claim that o(<7/a’) has the desired properties. Indeed, if o(<//a’) vanishes,
then there exists a deformation &’ of & with trivial determinant, and /' = n,énd(&”)
is an Azumaya algebra on X’ of degree n such that 3([<']) = o’. Conversely, suppose
that there exists such an Azumaya algebra, and let &’ be the corresponding locally free
sheaf on 2”. We have that &’| - = &. It follows that o(&) = 0, and because (2.3.2) is an
isomorphism, also o(&’, ¢) = 0. We conclude that o(#/a’) = 0. |

Remark 2.4. Let us say that an Azumaya algebra o/ of degree n is unobstructed
if H2(X,p</) = 0 and relatively unobstructed if H?>(X,s</) = 0. An unobstructed
Azumaya algebra deforms automatically along any square zero thickening of X, while
a relatively unobstructed Azumaya algebra deforms provided we have a deformation
of the corresponding flat cohomology class. If p does not divide n, then s& and p«/
are isomorphic, so &/ is unobstructed if and only if it is relatively unobstructed. If p
divides n, then they are not equivalent. Indeed, suppose that X is a smooth projective
surface. As observed by de Jong [7, §3], because there is an inclusion Oy C s</, if
HO(X, wy) # 0 then we have HOX, s ® wy) # 0. This group is Serre dual to H?(X,p<),
which is therefore also nonzero. On the other hand, it may simultaneously be the case
that H2(X, s</) = 0. An example is given by taking </ to be an Azumaya algebra on a K3
surface such that H(X, &) = k (e.g., & = &nd(&) for a simple locally free sheaf & of
rank p). Because H! (X, Ox) = 0 we then have HO(X,p</) = 0. This group is Serre dual to
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H%(X,s9/ @ wx) = H?(X,s</), which therefore vanishes. In particular, in this case, s/

and p.o/ are not isomorphic.

2.5 Existence of relatively unobstructed Azumaya algebras on surfaces

We will use the following existence result for Azumaya algebras on surfaces. It is a
consequence of the solution of the period-index problem for function fields of surfaces,
due to de Jong [7] (when the degree is coprime to p) and Lieblich [20] (in general),
combined with Lieblich’s results [21] on the asymptotic properties of moduli spaces

of twisted sheaves on surfaces.

Theorem 2.6. Let X be a smooth proper surface over an algebraically closed field k
and let n be a positive integer. For any class « € H?(X, u,,), there exists an Azumaya
algebra < on X of degree n such that d([</]) = « with the property that H?(X, )y =0.

Proof. We begin by explaining the translation of the problem into the language of
twisted sheaves and gerbes. Let 7 : £~ — X be a u1,,-gerbe representing «. If £ is alocally
free twisted sheaf on 27, then & := 7, énd(£) is an Azumaya algebra on X. If & has
rank n and trivial determinant, then we have d([«/]) = « (see [20, Proposition 3.1.2.1]).
Moreover, we have that Ext*(&,&), = H?(X,/), where Ext?*(&, &), = ker(tr
Ext?(&,&) — HA2(Z, 0 4)). Thus, our task is to show that there exists a locally free
twisted sheaf & on .2° with rank n, trivial determinant, and Ext?(&, &)y =0.

The proof of this fact uses two inputs. First, we claim that there is a
w-semistable locally free twisted sheaf ¢ with rank n and trivial determinant. Let
K be the function field of X. We use Lieblich’s characteristic free period index theorem
for surfaces [20, Theorem 4.2.2.3] to find a locally free twisted sheaf .7, on 2% of rank
m, where m is the period of « (the order of the image of « in the Brauer group). Let .#
be the reflexive hull of the pushforward of .#x to Z". The sheaf .# is 1-twisted, locally
free, and u-stable. Taking an appropriate elementary transformation, we may arrange
so that the determinant of .# is trivial (see e.g., the proof of [20, Proposition 3.2.3.4]).
The sheaf ¥ = .#®%/™ ig a twisted sheaf of rank n and trivial determinant. Moreover, ¥
is polystable, and in particular semistable, as desired.

We now wish to produce the desired &. Fix an integer A. Consider the moduli
space M(A) of u-semistable twisted sheaves on 2 with rank n, discriminant A,
and trivialized determinant (denoted Tw®*(n, & 4-, A) in [21, Notation 4.2.2]). By [21,
Theorem 5.3.1], if A is sufficiently large, then any irreducible component of M(A)
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4348 D. Bragg

contains a point corresponding to a twisted sheaf that is locally free and satisfies
Ext2(£,£)o (here, we note that while the reference [21] is written under the blanket
assumption that n is coprime to the characteristic, this assumption is not needed for
the proof of the cited result). It remains to show that the spaces M(A) are nonempty for
sufficiently large A. This follows from the existence of the sheaf ¢4 above: we have that
the moduli space M(A) is nonempty for some A, which implies their nonemptiness for
all sufficiently large A (see e.g., the proof of [20, Proposition 3.2.3.4]). We conclude the
result. |

Remark 2.7. For our applications to lifting Brauer classes in this paper, we only
need the special case of Theorem 2.6 when X is a K3 surface and o« € H2(X,u,) is
a class having order n. In this case, the proof of 2.6 may be significantly shortened,
and in particular we may avoid the analysis of asymptotic properties of moduli
spaces of twisted sheaves in [21]. Indeed, as in the proof of 2.6, let 2 be a pu,-
gerbe representing «. Using [20, Theorem 4.2.2.3] and taking the reflexive hull and an
elementary transformation we find a locally free twisted sheaf on 2  of rank n and
trivial determinant. As the period of « is n, such a sheaf is simple, in the sense that
k = End(&). Consider the Azumaya algebra & := n,&nd(&). The map i induces an

isomorphism

k=HX, 0x)>H(X, o) (2.7.1)
on global sections. Because X is K3, (2.7.1) is Serre dual to the trace map

tr: H3(X, o) — H2(X, Oy).

It follows that the trace map is injective, so H(X, o)y =0.

Let k be an algebraically closed field and let (R,m) be a complete noetherian

local ring with residue field k. Let n be a positive integer.

Proposition 2.8. Let X be a smooth proper surface over R and write X; = X ®p
R/m'*!. Suppose that H'(X,, Oy ) = 0. If {o; € H3(X;, iu,,)},., is a compatible system of
cohomology classes, then there exists a unique class @ € H2(X, u,,) such that aly, = o

for all i.
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Proof. We first note that, using flatness and filtering by powers of m, the assumption
that H' (X, Ox,) implies that H'(X;, Ox,) and H' (X;, mi“ﬁxi) vanish for all i > 0.

By Theorem 2.6, we may find an Azumaya algebra &/ on X of degree n such
that 3(l/]) = ay and such that H?(X, ), = 0. Set </, = /. Applying Proposition 2.3
repeatedly, we find for each i > 1 an Azumaya algebra < on X; such that #|y, = <,
and such that 9([#]) = «;. By Grothendieck’s existence theorem there exists an Azumaya
algebra «/ on X restricting to </ on X;. The class @ := d(l</]) € H?(X, u,,) restricts to o;
for each i.

We now show the uniqueness. By subtracting, we are reduced to showing that
if a € Hz(%,un) is a class such that &'|Xi =0 foralli > O0Othena = 0. Let 2 — X
be a corresponding u,-gerbe. A trivialization of the restriction of the gerbe to X; gives
an R/mit!-point of the Weil restriction f. %, where f : X — SpecR is the structure
morphism. By assumption, we may find a compatible system of such trivializations,
and hence a compatible family of R/m*!-points of f,2". By Theorem 1.5 of [30], f,.2 is
algebraic, so this family comes from an R-point of f, .2". We conclude that 2~ — X is a

trivial gerbe, and hence @ = 0. |

2.9 A representability result

We now prove Theorem 1.2. We recall the notation. Let f : X — S be a morphism of
algebraic spaces. Let n be a nonzero integer. We let Rf, denote the derived pushforward
from the category of sheaves of abelian groups on the big flat (fppf) site of X to that of
S. In [4, Theorem 2.1.6], it is shown that if X — S is a family of K3 surfaces and p is a
prime then sz*up is an algebraic space. Theorem 1.2 is a generalization of this result,

and the idea of proof is the same.

Proof of Theorem 1.2. We follow closely the proof of [4, Theorem 2.1.6]. Write
% = R?f,u,,. We first claim that the diagonal .¥ — . x5 .7 is representable by closed
immersions of finite presentation. In the case when f is a family of X3 surfaces and
n = p is a prime, this is shown in [4, Proposition 2.17]. Replacing p with n and using our
assumption that RLf,u,, = 0, the proof of loc. cit. applies unchanged to give the result.
Let Az be the stack on S whose objects over an S-scheme T — S are Azumaya
algebras </ on X; such that for every geometric point ¢ — T the restriction 7, := |,

has degree n and the map

tr: H(X,, o) - H%(X,, Oy,)
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is injective. As described in the proof of [4, Theorem 2.1.6], Az is an Artin stack locally
of finite presentation over S, and the nonabelian boundary map d (2.1.2) gives rise to a

map

x Az - .

Arguing as in [4, Proposition 2.1.10] and using Proposition 2.3 (and our assumption on
the vanishing of H! (X,, Oy,)), we deduce that the map x is representable by smooth Artin
stacks. Furthermore, by Theorem 2.6, x is surjective on geometric points.

Now, any smooth cover of Az by a scheme gives rise to a smooth cover of . by
a scheme. We have shown that the diagonal of . is representable, so . is an Artin
stack of finite presentation over S. But . is a sheaf, so by [35, 04SZ] .# is an algebraic

space. |

3 Deformations of Cohomology Classes for 1, and G,,

Let X be a scheme and let n be a positive integer. We are interested in the flat
cohomology groups of the group schemes G,, and p,. These groups are related by the

Kummer sequence

1 - u, > G, —> G, — 1, (3.0.1)

which is exact in the flat topology. If A is a sheaf of abelian groups on X, we let A(n)

denote the complex

An) =14 3 4] (3.0.2)

where the right hand side has terms in degrees 0 and 1. With this notation, we interpret
the Kummer sequence (3.0.1) as a quasi-isomorphism pu,, 5 G,,(n) of complexes of
sheaves on the flat site of X. In particular, this gives a canonical resolution of u,, by a
complex of smooth group schemes. By a theorem of Grothendieck [10, Théoréme 11.7],

we have identifications

H™(Xp), 1t,,) = H™(X;1, G,y () = H™(X,,, G, (N)). (3.0.3)

We consider the following deformation situation. Let X < X’ be an infinitesimal
thickening whose defining ideal I satisfies I? = 0. Let o € H?(X, u1,,) be a flat cohomology
class and let ap, € H2(X, G,,) be the image of « under the map H?(X, 1,,) — H%(X,G,,).

We consider the problem of deforming « and «yg, to X’. (We consider such questions in
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a slightly more general setting in Appendix A, where we also consider the more refined
question of deforming gerbes. Here we are only interested in the obstruction classes,
for which a purely cohomological approach suffices). Consider the standard short exact

sequence
0->I—>Gy,x —>G,x—1 (3.0.4)

of étale sheaves, where the left map is the truncated exponential f +— 1 + f. Taking

cohomology, we find an exact sequence
...—> H2X,D) > H3(X',G, x) — H2(X,G,, x) SHEX,D > ...

We define o(ag,./X') := S(ag,) € H3(X,I). This class vanishes if and only if there exists a
class o, € H*(X', G, x) such that o |y = ap,. We similarly define an obstruction class

for « as follows. Multiplication by n on (3.0.4) gives a short exact sequence
0—I(n) — G, x(n) - G, x(n) > 1 (3.0.5)

of complexes. We take cohomology and apply the identifications (3.0.3) to obtain a long

exact sequence
.= HAX,I(n)) > H2(X', o x) — HE(X, 11y, x) 5 (X, I) — ...

We put o(a/X’) := §'(«) € H3(X,I(n)). This class vanishes if and only if there exists a
class o’ € H*(X', ju,, x/) such that o/|y = . These obstructions are compatible: we have a

commuting square

H2(X, ftnx) —o—s H3(X, I(n))

| |

H2(X, Gy x) —>— HY(X, 1)

where the right vertical arrow is induced by the projection I(n) — I onto the degree 0

term. It follows that o(«/X’) > 0(ag,/X’) under the right vertical arrow.

Remark 3.1. The groups H"(X,I(n)) depend strongly on the behavior of multiplication
by n on I. If multiplication by n is invertible on I, then the complex I(n) is quasi-

isomorphic to 0. We therefore have H"(X,I(n)) = 0 for all i, and hence classes in
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H%(X, u,,) deform uniquely over X’. On the other hand, suppose that multiplication by n

on I is zero. We then have
In)=I1-11¢1. (3.1.1)

Therefore, H3(X,I(n)) = H%(X,I) @ H3(X,I), and classes in H?*(X, W,) may (at least a-
priori) be obstructed. On the other hand, the relative deformation problem with respect

to the embedding u,, C G,,, is more uniform in n.
Suppose that nl = 0, and let
m HE X, D) @ H3(X,I) — H*(X,])
be the projection onto the first factor. If « € H2(X, i1,,), then we define
o(a/X") :=m (0(e/X)) = 7, (8 (@)). (3.1.2)

Remark 3.2. The class o(e/X’) has the following geometric interpretation. Let 2~ be
a ,-gerbe on X with cohomology class « and let 25, = 2" A, G, be the induced
G,,-gerbe, which has class ag,. Suppose that o(ag,./X') = 0, and fix a deformation 273,
of 23, over X'. We then have that o(«/X’) is equal to the obstruction class o(Z/23,) €
H?(X,I) defined in Proposition A.12. In particular, o(Z' /| Z%,) depends only on « in this

case. To see the equality, consider the short exact sequence
0—I[-11—>I(n)—1— 0.

Because nI = 0, this sequence is split. Thus, in the long exact sequence on cohomology,

all boundary maps are zero, and we obtain a short exact sequence
0 - H?>X,I) » H%(X,I(n)) > H3(X,I) — 0.

By Remark A.13, we have that o(2"/23,) — o(Z /X') = o(a/X’) under the left arrow. The

claim follows.

3.2 Kodaira-Spencer classes

Let X be a reduced scheme over a field k of characteristic p > 0. Let A be an Artinian

local ring with maximal ideal m satisfying m? = 0 and residue field identified with k.
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Let X’ be a flat scheme over A together with a specified isomorphism X' ®, k = X.
Thus, X C X’ is an infinitesimal thickening defined by the square zero ideal sheaf

mOy = m ®, Ox . These data are summarized in the cartesian diagram

Xe— 3 X'

I

Spec k ——— Spec A (3.3.1)

where the horizontal arrows are closed immersions defined by the square-zero ideals m
and m0Oy.

Let n be a positive integer. We consider the exact sequence
Gm,X = Gm,X - Gm,X/G;;lnX — 1 (3.3.2)

of étale sheaves on X. Here, the right term denotes the quotient sheaf in the étale
topology. The corresponding quotient in the flat topology vanishes. If n is coprime to p,

then the étale quotient also vanishes. The sequence (3.3.2) corresponds to a map
Gy, x (M) = Gy x /G [—1] (3.3.3)
of complexes of étale sheaves. Let
T H2 Xy, ) = H' Xy, Gy x /Gy (3.3.4)

be the map obtained by taking cohomology of (3.3.3) and using the identification (3.0.3).
We remark that if n is a power of p, then because X is reduced, the left map of (3.3.2)
is injective, (3.3.3) is a quasi-isomorphism, and (3.3.4) is an isomorphism. Let p” be the

largest power of p, which divides n. We then have a commuting square

HQ(Xvﬂn) 2 ’ HI(X’ Gm/G;?(in)

~n/prl I

H2(X, ptpr) — HY(X, Gy x /G Py (3.3.5)

where the right vertical arrow is induced by the natural quotient map. This map is an
isomorphism because, for any m coprime to p, multiplication by m on G,, is surjective
in the étale topology.

Assume that nm = 0 (equivalently, p"m = 0). As X is reduced, the restriction map

Mnx' —> In x Of étale sheaves is surjective. Applying the snake lemma to (3.0.5) yields an
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exact sequence
0 =m0y — G, x/Gy = G x/Gyx — 1. (3.3.6)
Taking cohomology, we get an exact sequence
H' (X, Gy /G) = HU(X, Gy /G 2> HE(X, mO%). (3.3.7)

Proposition 3.4. Suppose that nm = 0. If « € H?(X, u,,) is a flat cohomology class, then
S(a/X) = 38" o Y(a).

Proof. Because nm = 0O, there is a map of complexes m&yx(n) — mOx[—1] given by the
identity in degree 1. Combining this map with (3.0.5), (3.3.6), and the maps (3.3.3) we

find a commutative diagram

00— mOx(n) —— Grxr(n) —————— Grux(n) ——— 1

J J |

0—— mﬁx[fl] E— Gm,X’/G;::X/[*l] E— Gm’X/G;:LX[fl] —1

with exact rows. Taking cohomology gives a commutative diagram

H2(X, ftn.x) —2— H3(X, mOx(n))

d J

H'(X, G x /G ) —2— H2(X, mOy).

By definition, 6(e/X’) is equal to 7 (§(«)), and we obtain the result. [ |

We now assume that X is smooth over k and that A is the ring of dual numbers
kle] := klel/¢2. Thus, (3.3.1) becomes

X— X'

| |

Spec k — Spec kle].
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Consider the exact sequence
de 1 1
0— Ox — Qi jppe) =~ Qx — 0. (3.4.1)

The Kodaira-Spencer class 1y of the deformation X’ is the extension class of this

1

Xk Ox) = HY(X, Ty). There is a canonical cup product pairing

sequence in Ext}(Q
_U_:HY(X, Q) @ HI(X, Ty) — H2(X, Oy) (3.4.2)

and the map
Uty : HY(X, QL) — H2(X, Oy) (3.4.3)

is the boundary map coming from the long exact sequence on cohomology of (3.4.1).

Consider the map
dlog : G,, — Q% (3.4.4)

of étale sheaves on X given on sections by f — df/f. Let n be a positive integer that is

divisible by p. Any pth power is killed by dlog, so (3.4.4) descends to a map
dlog : G,,/G, " — Q) (3.4.5)

where G,,,/G;;" is the quotient sheaf for the étale topology. Composing (3.3.3) with (3.4.5)

and taking cohomology we get a map
dlog : H(X, 1) — HY(X, Q}). (3.4.6)

Fix a class o € H%(X, iy,). The following result computes the class o(a/X’) €
H%(X,e0x) (3.1.2) in terms of the Kodaira-Spencer class 1y, of the deformation X’. This
computation also appears in a paper of Nygaard [24, pg. 223]. The corresponding result

for invertible sheaves is standard (see e.g., [27, Proposition 1.14]).

Proposition 3.5. Suppose that n is divisible by p. For any class « € H2(X, ,,), the class
0(a/X') € H2(X,e0y%) = e¢H?*(X, Oy) is equal to e(dlog(a) U ).
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Proof. We have a commutative diagram

exp

0 e0x Gm,X’/G:ltl)(’ — Gm,X/GanT,LX — 1

e~ IJZ ldlog ldlog

d
0 Ox : Q.lx’/k[e] Q%(/k 0
with exact rows. Taking cohomology we find a commutative diagram
HY(X, G, /GX") — H2(X,c0x)
dlogl ZTE
HY(X, QL) — 2 H2(X, Oy).
We conclude the result from Proposition 3.4. |

4 K3 Surfaces in Positive Characteristic

A K3 surface is a smooth projective surface X over such that wy = 0y and H! (X, 0x) = 0.
In this section we collect some facts about K3 surfaces in positive characteristic and
their cohomology.

We assume that k is algebraically closed of characteristic p > 0 and X is a K3
surface over k. We recall the definition of the height of X (see e.g., [13, §18.3]). The
formal Brauer group of X is the functor ﬁ}X = <I>ém /x on the category of Artinian local

k-algebras, given by
A+ ker (H(X,, G,) — HA(X,G,p))

where X, = X ®; A is the trivial deformation of X over A. Due to the equalities
h3(X, Ox) = 0 and h%(X, Ox) = 1, a result of Artin-Mazur [1, Corollary 2.12] implies that
]/3}X is prorepresentable by a smooth one-dimensional commutative formal group over
k. Such objects are classified up to isomorphism by their height, which is a discrete
invariant h, equal either to a positive integer or to oo. The height is determined as
follows. Fix an isomorphism ﬁfx = Spf kl[s]l. The multiplication by p map [p] : ﬁ}x —
ﬁx corresponds to a map kl[sll] — kl[s]l, which we also denote by [p]. If [pl(s) # 0, we
define the height of ﬁ}x to be the smallest integer h such that

[pl(s) = asP" + (higher order terms)
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for some nonzero A € k. If [pl(s) = 0, we set h = co. The height of the X3 surface X is
defined to be the height of the formal Brauer group E}X.

Let ]/3\rX[n] denote the kernel of multiplication by n on the formal Brauer group.
The height may be equivalently described in terms of the formal scheme prorepresenting

Bry[pl: X has height h < oo if and only if
Bry [pl = Spf kllsll/(s?")
while X has height h = oo if and only if
Bry[pl = Spf kl[s].

We say that X has finite height if h # co. In this case, h must lie in the range
1 < h < 10. If h = 1, we say that X is ordinary. A X3 surface is ordinary if and
only if the map F : H2(X, Oy) — HZ%(X, Oy) induced by the absolute Frobenius of X is
an isomorphism (see [36, §5]). If h = oo, then we say that X is supersingular. In the
ordinary and supersingular cases, we have the following explicit descriptions of the

formal Brauer group:
h(X) =1 & Bry =G, and h(X) = 00 & Bry = G,.
Accordingly, in these two cases, the group structures on ﬁx[p] are given by
h(X) = 1 & Brglpl = p,, and h(X) = 0o & Brylpl = G,.

Suppose that X is supersingular. In this case, there is a further discrete invariant
of X, which may be characterized as follows. The flat cohomology group H?(X, Z,(1):=
l(iLnH2 (X, upn) is a free Zp-module of rank 22 and is equipped with a natural Zp-valued

pairing. The Artin invariant of X is the integer o such that
disc H?(X, Z, (1)) = —p2°.

We have 1 < o5 < 10. We say that X is superspecial if o = 1. The height may only rise
upon specialization, and the Artin invariant can only fall upon specialization. Thus, the
ordinary locus is open in moduli, and the superspecial locus is closed in moduli. In fact,
there is up to isomorphism only one superspecial K3 surface [27]. If X has finite height,

then we formally declare oy(X) = oo.
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4.1 De Rham cohomology

The second de Rham cohomology group H(Z1R (X) has dimension 22 and is equipped with

the Hodge and conjugate filtrations
0 C F& C Fy; C FY = H3x(X) 0 C F4 C F} C F2 = H3z(X).

Both FZ and F2 have dimension 1, and F}; and F} have dimension 21. Under the cup
product pairing on H(X), we have (F)* = F}, and (F2)* = F}. The relative positions
of F}J and F(l; give some information on the invariants of X. We have that X is ordinary
if and only if F2 N F} = 0 if and only if F}, N F2 = 0, and X is superspecial if and only if
F2 = FZ if and only if F}, = F}. (see [36, §8]).

For future use, we list some explicit cohomology groups corresponding to the

intersections of the various pieces of the Hodge and conjugate filtrations. Define
79k =ker(d : Q% — Qi) and BQY 1= im(d : Q%! - Q%).

Lemma 4.2. We have natural identifications
(1) FLNF}=H(X 223,
(2) FLNF2=H'(X BQ)),
(3) FZNFi=HX,BQ%), and
(4) FZNF2=HX,QL/BQ).

Proof. (1) is proven by Ogus in [27, Proposition 1.2]. For (2), consider the short exact

sequence
0— ﬁfé—) ﬁXiBQ}(—)O.
Taking cohomology and using H! (X, 0y) = 0, we obtain a diagram

0 —— HY(X,BQY) —— H*(X, 0%) —— H*(X,0x) —— 0

J J |

0 —— H*(X,75:0%) —— H3G(X) —— H*(X,0x) —— 0

where the vertical arrows are induced by the natural maps of complexes. Here, the
middle verticle arrow is injective because of the degeneration of the conjugate spectral

sequence, which implies the injectivity of the left arrow. The image of the middle arrow
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is Fg, and H?(X, T510%) = H, so we conclude the result. For (3), we take cohomology of

the exact sequence
0-zak — oL £ BaZ - o, (4.2.1)
which gives
0 — H°(X,BQ%) — H'(X,ZQ%) — HI (X, Q)). (4.2.2)

This identifies H(X, BQZ%) with the kernel of the map F}, NF} — F}/F2, which is exactly

FIZI N Fé. Finally, we show (4). Taking cohomology of the exact sequences
0 — BQY — Q) — Q/BQy — 0

and (4.2.1), we find a diagram

0 — HO(X, QL /BQL) —— HY(X, BQL) — H(X, QL)

J J |

0 —— HO(X, BO%) —— H'(X, ZQL) —— H!(X, QL)

We conclude that H(X, Q% /BQL) = (F} N F2) N (FANF}) = F4 NFA. [ ]

5 Formal Deformation Spaces for Cohomology Classes on K3 Surfaces

Let k be an algebraically closed field of positive characteristic p and let W = W(k) be
the ring of Witt vectors of k. Let 6}, be the category of artinian local W-algebras with
residue field identified with k. Let X be a K3 surface over k. A deformation of X over
A € €y is a pair (X,, p), where X, is a family of K3 surfaces over A and p : X, ®, k—X

is an isomorphism. We let
Defy := Defy y

be the functor on %}, whose value on A € ¥}, is the set of isomorphism classes of
deformations of X over A.

Let n be a positive integer, let « € H2(X,pu,) be a cohomology class, and let
ag, € H2(X,G,,) be the image of « in the Brauer group. Let 2" be a j,,-gerbe over X with
cohomology class «, and let 2%, := 2" A, G, be the associated G,,-gerbe, which has
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class ap,. We consider the deformation functors Def 5y, and Def »; ,;; on ¢y, associated
to the gerbes 2" and 2%, (see Definition A.14). Up to isomorphism, these depend only on

the cohomology classes « and «y,, respectively. In an abuse of notation, we write
Def(X,a) = Defe%/w and Def(X:aBr) = Deff%fBr/W‘

We have a commutative diagram of functors

Def(x,a) ——— Def(x.ap,)

x / (5.0.3)

Defx

(see (A.19.1)). The map ¢ is induced by 2, — 2, A, Gy, the map n is induced by
X = | Z,|, where | Z,] is the sheafification (or “underlying K3 surface”) of 2, and ny,

is induced by 23, 4 — |25 4l-

Remark 5.1. Let D_ef(X’a) denote the functor on %}, whose value on A is the set of
isomorphism classes of tuples (X,, p, @,), where (X,, p) is a deformation of X over A and

a, € H3(X,, iuy,) is a class such that oy |y = o. There is a natural map
Def x o) — Def(x 4 (5.1.1)

induced by the association (£}, ¢) — (X,, p,[Z,]), where X, = |2, is the sheafification
of 2,, p = lgl|, and [Z,] € H?(X,,u,) is the cohomology class of %,. Because
H'(X,u,) =0, the map (5.1.1) is an isomorphism (Lemma A.23), and we may without risk
of confusion identify the two functors. In particular, the deformation functors Def -y,
resulting from different choices of u,-gerbe 2" with class « are canonically isomorphic.
With this identification, the map = (5.0.3) is given by (X,, p, ay) — (X4, p).

On the other hand, the analogous map
Def x a5, = Defx ) (5.1.2)

is not an isomorphism. This is because for a general flat deformation X, of X, the

restriction map Pic(X,) — Pic(X) will not be surjective.

Proposition 5.2. The functor Defy .., is prorepresentable and formally smooth over

W, and the map myg, (5.0.3) is formally smooth of relative dimension 1.
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Proof. We have H!(X,0%) = 0 and H°(X,Tyx) = 0O, so Corollary A.20 implies that
Def x 4p,) 18 Prorepresentable. As H3(X, Ox) = 0, the obstruction theory of Proposition
A.6 implies that ng, is formally smooth. Finally, by Lemma A.15, the map T(r) on tangent

spaces induced by =z fits into a short exact sequence
2 T ()
0 — H*(X, Ox) — T(Def(X'aBr)) —— T(Defy) — 0.

As H%(X, Oy) is one dimensional, we conclude that 7y, has relative dimension 1. |

Remark 5.3. By Lemma A.23, the map (5.1.2) exhibits the functor Def(y , ., as a hull
for the naive deformation functor D_ef(X'aBr), which is not prorepresentable (see Remark
A.25).

Proposition 5.4. The deformation functor Defy ,, is prorepresentable.

Proof. We will verify the conditions of Theorem A.19. Let X, be a flat deformation of
X over A € ¢y We will show that the functor ®' = @, o (A.22.1) on ¢ is formally
smooth. As X is K3, we have HO(X, 11,,) = H'(X, 1,,) = 0. It follows that for any B € €, we

have &1 (B) = Hl(XB, i,). The Leray spectral sequence gives an exact sequence
0 — H'(SpecB, i,,)) — H'(Xp, 11,,)) — H°(SpecB, R'fp, 1u,,)

where fp : Xz — SpecB is the structural morphism. We have Rfp, 1, = Picy, pln] =0.1It
follows that the left inclusion is an isomorphism, and so ®!(B) = H!(SpecB, Wy,). Using
the Kummer sequence and the vanishing of H!(SpecB, G,,), we have H!(SpecB, Uy) =
B*/B*"™. (We remark that if n is coprime to p, then this quotient is zero, and hence
®!(B) = 0 for all B. This is not the case however if p divides n.) Consider a surjection

B’ — B in %p,. By the snake lemma, the map ®!(B') — ®!(B) is isomorphic to the map
B*/B*P — B*/B*P.

The map B — B* is surjective, so this map is surjective as well. It follows that ®! is

formally smooth, as desired. [ |

Proposition 5.5. The map ¢ (5.0.3) is a closed formal subscheme defined by one

equation.
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Proof. To show that ¢ is a closed immersion, it suffices to verify that the induced map
T : T(Defxq) — T(Def(x 4, )

on tangent spaces is injective. This follows from Proposition A.12 and the vanishing
H(X, N, G = H!(X,0%) = 0. We now show that ¢ is defined by one equation. This
is a formal consequence of Proposition A.12, which gives an obstruction theory for the
morphism ¢ with values in the one-dimensional k-vector space H?(X, Oy). For lack of an
exact reference, we give the proof. Let (R, m) be a complete local ring prorepresenting
Def x 4p,)- The map ¢ corresponds to a surjection R — R/J for some ideal J C R. Leti > 1

be an integer. Consider the square zero extension
R/(mJ +mb) - R/(J + m})

of Artinian R-algebras, which has kernel I, = (J + mi)/(mJ + mb). As I, is killed by m,
it has a natural k-vector space structure. We will show that I; has dimension 1 over k.

Consider the diagram

Spec R/(J + m') —— Def(x o)

Spec R/(mJ + m’) —— Def (x ay,) -

By Proposition A.12, there is a functorial obstruction class o € H? X, L) = H?(X, Ox)Qy
I, whose vanishing is equivalent to the existence of the dashed arrow. Let t € H2(X, O)
be a generator. The obstruction class o is then equal to v ®J_°i, where fi € I, is the image

of some element f; € J +m'. Consider the square zero extension
R/(mJ + () +m') — R/(J +m),

which has kernel (J + m?)/(mJ + ()_"i) +mb) = Ii/(j_"i). We consider the diagram

Spec R/(J +m') ——————— Def(x 4

Spec R/(mJ + (f;) + m") —— Def(x ap,) -
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By functoriality, the class o’ € H2(X, Oy) ® Ii/(fi) that obstructs the existence of the
dashed arrow vanishes. It follows that J C mJ + (f;) + m‘, and therefore I;/(f;) = 0 and
the left vertical arrow is an isomorphism. In particular, I; is generated by f;, and hence
has dimension 1 over k.

By the Artin-Rees lemma [35, 00IN], we have m’ N J c mJ for i sufficiently large.
We therefore have that

I = (J+m)/mJ +md) =J/(mJ +m'NJ) =J/mJ

for i sufficiently large. We conclude that J/mJ has dimension one over k. If f € J
is any element whose image in J/mJ is nonzero, then by Nakayama's lemma we have

J = (f). n

We will describe the deformation spaces (5.0.3) in explicit coordinates. By
Proposition 5.2, the map mz,. may be represented in suitable coordinates by the pro-

jection
Spf WIlt,, ..., tyq, Sl = Spf WIlty, ..., tyll.

By Proposition 5.5, the diagram (5.0.3) may then be represented by

ShW[[th . ,t207 S]]/(g) ‘% ShW[[th . ,t207 S]]

x o (5.5.1)

ShWHtl, Ce ,ton
for some function g € WIlt,, ..., ty, sll.

Proposition 5.6. We may choose g so that g is congruent modulo (p, t;, ..., t,q) to either
sP™ (if X has finite height h) or to O (if X is supersingular), where p” is the largest power

of p dividing n. If p does not divide n, then we may even take g = s.

Proof. Restricting (5.0.3) to the closed point O € Defy, we get a map

to : Def(x 4)lo = Def(x 40 lor (5.6.1)
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which is represented by
Spf kllsll/(g) < Spf kllsll (5.6.2)
where g is the image of g modulo (p, t;, ..., tyy). Write ﬁz (X, u,,) for the functor
A > ker(H* (X, ju,) > HA(X, p1y,))

on 4. For any A € %, the inclusion iy, : X — X, is split. It follows that we have

ﬁx = Def(x ¢,,lo and a2 (X, 1) = Def(x g lo- There is an isomorphism
~ =2
Def(x o) lo—>H (X, 11y,)

defined by @, — a, — p;(a), where p, : X, — X is the projection. We similarly define
an isomorphism Defyx , |o— Bry. Thus, we may assume without loss of generality that

both « and «p, are zero, in which case the map (5.6.1) is identified with the natural map
B*(X, 11,) — Bry (5.6.3)
induced by the inclusion u,, C G,,. Consider the commutative diagram

H2(X, ppr) — Brx[p']

S

H2(X, ) —=> Brx|n].

Here, the horizontal arrows are induced by the natural maps (5.6.3), which are injective
because the Picard scheme of X is discrete. The left vertical arrow is induced by the
inclusion pp,r C ,, and is an isomorphism because " (X, Knpr) = 0forallmasn/p”is
coprime to p.

We conclude that the inclusion (5.6.1) is isomorphic to the inclusion /B?X[pr] C

E\rX. If X has finite height h, then this map is represented by the closed immersion
Spf Kllsll/(s?"") < Spf klsl].
If X is supersingular, then E}X = éa, SO ﬁ}x[pr] = ]/3})( as long as r > 1. Finally, suppose

moreover that n is coprime to p. In this case, 7 is an isomorphism, and so g is equal to

a unit times s. Hence, we may take g = s. |
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Remark 5.7. Proposition 5.6 implies that the forgetful map Defy,, — Defy will
frequently be non-flat. Nevertheless, we will see that Def y , itself is always flat over
w.

We consider the maps on tangent spaces induced by (5.0.3). We have a canonical
identification T'(Defy) = H!(X, Tx). Comparing the exact sequences of Lemma A.15 and
using the vanishing H°(X, Tx) = H(X, Ox) = H3(X, Ox) = 0, we obtain a diagram

0 —— H(X, Ox(n)) — T(Def(xa)) — s HU(X, Ty) % H3(X, O ()

J T(L)J H l (5.7.1)

0 H(X, Ox) —— T(Defxan) 5 HU(X, Ty) ——— 0

with exact rows, where ob is the map that sends vy to the obstruction class o(«/X’).
We can be more explicit. If n is coprime to p, then the complex 0 (n) is quasi-
isomorphic to 0. The diagram (5.7.1) becomes

T(Def (x.0)) —s H'(X, Tx)

J J (5.7.2)

0 —— H*(X, Ox) —— T(Def(x ay,)) — HY(X, Tx) —— 0.

In particular, T(Def(Xla)) has dimension 20.

On the other hand, suppose that p divides n. We then have 0y (n) = 0x ® Ox[—1l.
As H' (X, Oyx) = 0, the left vertical arrow of (5.7.1) is an isomorphism. Given v € H!'(Xx, QL )
write Ann(v) ¢ H(X, Tx) for the subspace of elements v such that v Ut = 0. By

Proposition 3.5, we have a commutative diagram

H3(X, Ox(n

/ \ (5.7.3)

dlog(a X Oy )

HY(X, Ty)

The map 7, is an isomorphism, and it follows that the kernel of ¢ lob is equal to

Ann(dlog(w)). The diagram (5.7.1) becomes

0 —— H*(X, Ox) — T'(Def(x 4)) — Ann(dloga) — 0

| j j

0 —— H*(X, Ox) — T(Def(x,ay,)) — HYX,Tx) —— 0.
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Because X is K3, the cup product pairing (3.4.2) is perfect, and therefore the map
H! (X, QL)—>Hom(H! (X, Ty), H3(X, O)) (5.7.5)

is an isomorphism. Thus, the above diagram shows in particular that T(Defy ,,) has

dimension 20 if dlog(¢) # 0 and has dimension 21 otherwise.

Remark 5.8. Note that when p divides n, the group H?(X, Ox) plays two distinct roles:
it appears as both the relative tangent space to = (in the top row of (5.7.4)), and as the

obstruction group for the morphism ¢ (in (5.7.3)).
We deduce some consequences for universal deformation spaces.

Proposition 5.9. Consider a class o € H2(X, u,,). If n is coprime to p, then Def x ) is
formally smooth over W. If p divides n and dlog(«) # 0, then Def x ) is formally smooth

over W.

Proof. Consider the Jacobian ideal

a ag
J._(_g g 99

= S, ——, c Wllt,,...,ty, S
dt, 3ty as) lit 20- 1

of the formal subscheme Defy ,) C Def(y ,. . Under the given conditions, the tangent
space to Def x ,) ®k at the closed point has dimension 20. It follows that J/pJ is the unit
ideal. By Nakayama's lemma, J is the unit ideal, and hence Def y ,, is formally smooth
over W. |

We now incorporate a line bundle on X.
Let L be a line bundle on X. We let Def y ;) denote the functor on 4}, sending A
to the set of isomorphism classes of tuples (X,, p,L,), where (X4, p) is a deformation of

X over A and L, is a line bundle on X, whose restriction to X is isomorphic to L. We put
Def(X'a'L) = Def(X'a) XDefX Def(X'L).

By Remark 5.1, we may equivalently define Def y , ;) to be the functor sending A € ¢y,
to the set of isomorphism classes of tuples (X4, p,a,,L,), Where (X,, p) is a deformation
of X over A, a, € H%(X,, i) is a class such that a,|y = @, and L, is a line bundle such

that L, |y is isomorphic to L.
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Given a collection of line bundles L,,...,L,,, we similarly define Defx; ;.
and Defx 7, 1 ).

We write

Pic(X) = H'(X,G,,) = H' (X, Q}) (5.10.1)

for the map induced by dlog (3.4.4).

Proposition 5.11. Consider a class « € H%(X, t,) and a line bundle L on X. If n is
coprime to p and ¢, (L) is nonzero, then Def y , ;) is formally smooth over W. If p divides
n and ¢, (L) and dlog(«) are linearly independent in HI(X, Q}(), then Def x , , is formally

smooth over W.

Proof. By Proposition 5.5, the inclusion Defx,;, C Defx,. , is a closed formal
subscheme defined by two equations. Under the assumed conditions, the tangent space
to Def(x , 1) ® k at the closed point has dimension 19. As in Proposition 5.9, we conclude

that Def(y , 1, is formally smooth over W. |

Remark 5.12. If n is coprime to p, Proposition 5.11 follows from a result of Ogus

[27, Proposition 2.2] and Proposition 5.9.

6 The dlog Map and de Rham Cohomology

Motivated by Proposition 5.11, we seek conditions under which the classes dlog(«) and
c;(L) are linearly independent. We will study the interaction between the images of the

various dlog maps in de Rham cohomology. We consider the dlog map (3.4.4)

dlog : G,, — Q-

As the target is p-torsion, dlog kills the subsheaf G, of pth powers. Furthermore,
the image of dlog is contained in the subsheaf ZQj; C Q. To distinguish between the

resulting maps on cohomology, we will use the notation in the following commutative
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diagram.
PIC(X) C1

R

HY(X, ZQL) — HY(X, QL). (6.0.1)

M
H! (X, Gm/G:;p) dlog

Here, the vertical map is induced by the quotient and the horizontal map is induced by

d

the inclusion. We will also use cf R and dlogdR to denote the respective compositions of

these maps with the inclusion H! (X, ZQ}) C H3; (X). Let
C:2QkL — Q%

denote the Cartier operator, which satisfies C(fPw) = fC(w) and C(fP~1df) = df for any
local sections f € Oy and » € ZQ%. As a consequence, if f is invertible, then C(df/f) =
df/f. By [18, Corollaire 0.2.1.18], we have a short exact sequence

xp dlog

156G, /6P 2% zol =5 ql 0 (6.0.2)

where 1 denotes the inclusion. Taking cohomology, we find an exact sequence
0— H'(X, Gm/GXp) H!(x,z0k) =5 H'(X, QL) (6.0.3)

where the injectivity on the left follows from the vanishing of H(X, Q}(). Under the

identifications of Lemma 4.2, the sequence (6.0.3) becomes

dl
<y W8 g1 gL 16 gl g2

0 — H (X, G,,/Gy]
where the right hand map is given by the difference of the map
1: Fy NFi C Fiy — Fi/F3,

and the Cartier operator C, which factors as the composition

FLNF. C F} — Fs/F%2 5 FY/F2,
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Thus, the kernel of the map 1 is F4 N F}, and the kernel of C is F}, N FA.

We are interested in the injectivity of the various maps induced by dlog (6.0.1).
Note that the maps c‘liR and c; (6.0.1) have p-torsion codomain, and hence kill pPic(X).
They therefore descend to maps on Pic(X)/p = Pic(X) ®, Fp. The following result is due
to Ogus [27, Corollary 1.3, Proposition 1.4]. We include the proof.

Proposition 6.1. If X is any K3 surface, then the maps

dR
. ¢ ®Fp 1 1 xp dlog
Pic(X) ®, F, —— H (X, ZQy) and H'(X,G,,/GyY) —— H'(X,ZQ%),
are injective. If X is not superspecial, then also the maps
. c1®Fp 1 xp
Pic(X) ®, F, —> H'(X, ) and H'(X,G,,/G) y 28 ik, Qb),

are injective.
Proof. Consider the short exact sequence
1—>Gm£>Gm—>Gm/G,an—>1
Taking cohomology, we deduce that the map
Pic(X) ®; F, —> H' (X, G,,/GY)

is injective. By the exactness of (6.0.3), dlogdR is injective. This proves the first two
claims. For the second two, suppose that dlog is not injective. We then have a nonzero
element o € F%, which is killed by 1 — C. It follows that o € FZ%, and therefore F4 = F2.
We conclude that X is superspecial. |

We now consider the maps CfR ® k and c; ® k obtained by tensoring with k. We

record the following result.
Proposition 6.2. If X has finite height, then the maps
. offek 4 1 i Ak H1 L
Pic(X) @, k —— H (X, ZQ%) and Pic(X) ®; k — H (X, Qx)

are injective.
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Proof. This follows from the Newton-Hodge decomposition on the second crys-
talline cohomology of X. See [27, Remark 1.9]. A different proof is given in
[36, Proposition 10.3]. [ |

We strengthen this slightly in the following.
Proposition 6.3. If X has finite height, then the map

R ® k : Pic(X) ®, k — H2(X) (6.3.1)

is injective, and its image has trivial intersection with the subspace F% + Fg @ HﬁR(X).

Proof. Consider the commutative diagram

Pic(X) ®z k

C?R®kl w
0 — s HO(X, BQ%) —% s H'(X, ZQ}) — HI(X, Q)

]

H'(X, BQY)

where the row is exact and b and c are induced by the natural inclusions of sheaves.
Under the identifications of Lemma 4.2, we have H! (X, ZQ}) = Fj; NF}, the image of a is
F% N F}, and the image of b is F}, N FA.

We now use the assumption that h < oo. By 6.2, C?R ® k and c; ® k are injective.
Furthermore, by [36, Proposition 10.2], the image of ¢; ® k has trivial intersection with
the image of c. We conclude that the image of ch ® k has trivial intersection with
F3 + FZ. [

Remark 6.4. If X has finite height, then one can strengthen 6.2 to show that the maps
dlog®® ® k and dlog ® k are injective. It is also true that the image of dlog®® ® k has

trivial intersection with F3 + F2.
6.5 The supersingular case

The preceding results 6.2 and 6.3 are false if X is supersingular. In fact, in this case, the
map C?R ® k is never injective, and furthermore the subspace FZ + F2 is even contained

in the image of C‘liR ® k. To explain this situation, we recall some results of Ogus [27].
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Suppose that X is supersingular with Artin invariant o,. By the Tate conjecture
for supersingular X3 surfaces, Pic(X) is a Z-lattice of rank 22. (If we wish to avoid the
use of the Tate conjecture, we may replace Pic(X) with H?(X, Z,(1)) and replace C?R ®k
with the natural map H*(X, Z,,(1)) ® k - H3;(X).) Write ¢ : Pic(X) ® k — Pic(X) ® k for
the bijective map given by v ® A — v ® AP. The map c¢® ® k factors through F} N F},
and thus for dimension reasons cannot be injective. Its kernel is equal to ¢(K) for some

subspace K C Pic(X) ® k. We have an exact sequence

. Rk 9
0 - ¢(K) — Pic(X) ® k —— Hjz(X/k).

The subspace K is the characteristic subspace associated to X and plays a central role

in the theory of supersingular X3 surfaces. The following result is due to Ogus.

Lemma 6.6. The subspace K C Pic(X) ® k has the following properties.
(1) dim, K =0y,
(2) dimg K+ ¢(K) =0y +1
(3) dimy X ;o ¢'(K) = 20,

Proof. This follows from [27, Proposition 3.12.2, 3.12.3]. We note that, while loc.
cit. has a standing assumption that p # 2, this is not used in the proof of the cited

result. |
Remark 6.7. We mention two other approaches to the characteristic subspace K,
complementing Ogus’s crystalline methods. Nygaard [26] has given an interpretation
for K using de Rham-Witt cohomology. Katsura-Van der Geer give an elementary
proof of the above properties for K [36, §11] (in the notation of loc. cit., the subspace

U; CPic(X) @ kisequal top(K)N---N o'(K) if i > 1, and Uy =K + ¢(K)).

Lemma 6.8. For each 0 <1i < o, we have
dimy (K + ¢(K) + - - + ¢/ (K)) = 0 +
and

dim, (K N oK) N --- N ¢ (K)) = 0 — i.
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Proof. We prove the first claim. Write Z; = K + ¢o(K) + --- + ¢'(K). We induct on i. The
case i = 0 is true by assumption. For the induction step, consider the quotient Z;, ,/Z;.
We will show that if i < oy then dim(Z;,,/Z;) = 1. We have dim(¢!(K) +¢'T1(K)) = og+1,
so dimy(Z;,,/Z;) is either 0 or 1. In the former case, we have Z; = Z; ;, so ¢'*}(K) C Z;,
and therefore V® k = > ;. ¢/ (K) = Z;. By induction, Z; has dimension oy + i, 50 i = 0y,.

Thus, if i < oy, we have dimy(Z;,,/Z;) = 1. The second claim is similar. n

The subspace »; ¢'(K) is fixed by ¢, and hence is equal to M ® k for some
F,-subspace M C Pic(X) ® F,. In making computations, it is helpful to choose a basis
of M ® k which is adapted to K. By Lemma 6.8, the subspace ¢ %t (K) N ... N K has
dimension 1. Let e be a generator, and set e; = (pi(e). It follows that, for each 0 < b < oy,

the vectors

{0 €opip1}

are linearly independent and form a basis for K + ¢(K) + --- + ¢P(K). In particular,
{eog €1, .,ego_l} is a basis for K, and {e,, e, .. .,ezgo_l} is a basis for M ® k. We refer
to such a vector e as a characteristic vector for K. This construction is due to Ogus; see
[27, pg. 33I.

We define a sequence of subspaces
0=V, CV,CV,C--- CHGX)
by setting V; = 0 and
V:=ImEK + oK) + -+ + ¢ (K) ilii@i]; HﬁR(X/k))
fori > 1. Thus, C‘liR ® k induces an isomorphism
K+oEK)+---+ Wi(K))/w(K);Vi-

By Lemma 6.8, we have dim; V; =ifor 1 <i < gy, and Voo = Voot forallj > 0.
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The following result gives a cohomological interpretation for V; and V,. We will

use the commuting squares

-1

Pic(X) ® k —% Pic(X) ® k Pic(X) @ k —— Pic(X) @ k
SR @ 1{ lcl ®k SR @ 1{ lcl ®k
H!(X, zQL) —1— HY(X, QL) HY(X, Z0L) —C— H(X,QL).

Lemma 6.9. We have V; = F4 and V, = F% + F2.

Proof. Let e be an element of ¢(K), which is not in ¢?(K). We then have C?R ® k(e) = 0.
Using the above commuting square involving C, we have ¢; ® k(p~!(e)) = 0. Because
o le) ¢ oK), c® ® k(p~!(e)) is a nonzero element of the kernel of the projection
H'(X,ZQL) — HY(X,QL), which is FZ. It follows that V; = FZ. Similarly, let f be an
element of ¢?(K), which is not in ¢(K). We have that C(}R ® k(f) is a nonzero element of
the kernel of C : H' (X, ZQ}) — H! (X, Q}), which is F2. We conclude that ¢; ® k induces

an isomorphism
(9(K) +¢*(K)) /9 (K)—Fp.
Thus, we have V, = FZ + F2. [
We have the following result.

Proposition 6.10. Let X be a supersingular K3 surface with o,(X) > 3. Let L be a line
bundle on X. If c{®(L) is contained in F% + FZ, then L is a pth power.

Proof. If c{R(L) is in FZ + F2, then using Lemma 6.9, we deduce that [L] € K +

¢(K) + ¢*(K). Let e be a characteristic vector for K. Write [L] as a linear combination

of ey, ..., €,,1- Applying ¢ to both sides, we find a linear relation between the vectors
€gr - -+ 1€qy12- AS 0 > 3, this relation must be trivial, which implies [L] = 0 as an element
of Pic(X) ® k. |

We now incorporate a flat cohomology class. Let n be a positive integer. In (3.4.6)

we defined a map

dlog : H3(X, 1) — H (X, Q)). (6.10.1)
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If n is coprime to p, this map is zero. If n is divisible by p, then it fits into the commuting

diagram
dlog

H2 (X, i) — HY(X, G/ G) —22%, HI(X, QL)

L”/p l m (6.10.2)

H*(X, p,) —— HY(X, G,,/GP)
where the right vertical arrow is induced by the natural quotient map.

Proposition 6.11. Suppose that X has finite height, or that X is supersingular with
Artin invariant o, > 3. Let n be a positive integer that is divisible by p. If « € H%(X, 11,,)

is a class such that p does not divide and L is a line bundle on X that is not a pth

Ordszr)
power, then dlog(e) and ¢, (L) are nonzero and linearly independent in H! (X, Q}).

Proof. Here, as usual, oy, denotes the image of « in Br(X) = HZ(X, G,,), and ord(uy,) is

the order of ap,. Suppose that dlog(e) = Ac; (L) € H' (X, Q}) for some scalar 1. We have
dlong(a) = AC?R(L) +o

as elements of H!(X,ZQ}) = F}; NF. C H5;(X), for some o € F4 N F} (here, dlog®® is the
evident lift of (6.10.1) to a map with target H! (X, ZQ})). We have a commuting diagram

0 —— Pic(X) ® F, ——— Pic(X ®g ic(X)®@k ——0

J Jc‘fp” Rk Jq Rk

0 —— H(X, G /Gy 280 1 Zzak) 229 HI(X, QL)
with exact rows. By the commutativity of the right hand square, we deduce that
(» — AYP)c (L) = C(0), and thus C((AP — A)ciR(L) — o) = 0. The kernel of C is FL N FZ,
so this implies that

(0P —0)c8R(L) e FZ + F2.

Applying 6.3 or 6.10, we have (AP — A)C?R(L) = 0. As L is not a pth power, 6.1 implies that

c‘liR(L) is nonzero. Hence, AY — A = 0, and therefore A € Fp. Consider the commutative
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diagram

Pic(X) —— Pic(X) ——» Pic(X) @z F,

. | ==

H*(X, p,) —— H* (X, p,) —— HY(X, G,,/G)P) —— HY(X, Q%) (6.11.1)

dlog
n l

>

Br(X) —>— Br(X)

where the left columns are fragments of the long exact sequences induced by the
Kummer sequences for n and p. Using the commutative diagram (6.10.2), we see that
the horizontal composition H2(X, 1,,) — H!'(X, Q}) is the dlog map (3.4.6). Let s € Z be
a lift of ». We have dlog(e) = ¢, (IL®]). Because X is not superspecial, the map dlog
in (6.11.1) is injective (Proposition 6.1). It follows that I%a = §([L®5]), and therefore the

image of I%a in the Brauer group vanishes. This implies that p divides contrary

_—_n__
ord(asr) ’
to our assumption. |

Combined with Proposition 5.11, we obtain the following result on the smooth-

ness of universal deformation spaces.

Theorem 6.12. Let X be a K3 surface over k. Let o € H%(X, i,) be aclass and let L be a

line bundle on X which is not a pth power. Assume that one of the following holds.

(1) nis coprime to p and either h < oo or h = o0 and o) > 2.

(2) p divides n, p does not divide and either h < oo or h = co and oy > 3.

S
ord(apr)’

The formal deformation space Def x , ;) is smooth over W.

Combined with the algebraization result of Proposition 2.8, Theorem 6.12
implies the existence of lifts (even over W) outside of a small locus of exceptional
cases. We will treat the general case when Def y , ;) is not smooth using global methods
in §7.

6.14 Generalization to the case of multiple line bundles

We generalize the preceding results to the case of multiple line bundles. Let X be a

supersingular K3 surface.

Proposition 6.14. Let L,,...,L, be line bundles on X whose classes in Pic(X) ® Fp

generate a subspace of dimension m. Let Q C Pic(X) ® k be the k-vector space generated
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by the classes [L,],...,[L,,]. If i is a non-negative integer such that oy > m + i, then the

subspace Q has trivial intersection with K + ¢(K) + - - - + ¢*(K).

Proof. Assume that oy > m +i and that the intersection of Q and K+ ¢(K) +-- - + PH(K)

is nonzero. Let e be a characteristic vector for K. We then find a relation of the form

op+i—1

D ML= D> e (6.14.1)
j=1 j=1

Let N be the number of nonzero Aj. We have 1 < N < m. By dividing, we may assume
that A; = 1 for some j. Applying ¢ — 1 to both sides of (6.14.1), we find a relation of the

form

00+i

m
DML =D ey (6.14.2)
j=1 j=1

We have N’ < N, where N’ is the number of nonzero A}. Moreover, as we assume oy > m+i,

the vectors e, ..., e are linearly independent. Thus, the sum on the right hand side

o00+i
of (6.14.2) is necessarily nonzero, because if i ;e; is a nonzero term in the right hand side
of (6.14.1) with the largest index, then 'LL} = uj.’ . We continue in this manner until all
of the A; are zero. We are then left with a nontrivial linear relation between the vectors

€yr---1€ 1- But 0y > m + i implies that these vectors are linearly independent, so

oo+m+i—
this is a contradiction. |

Proposition 6.15. Let L;,...,L,, be line bundles on X whose classes in Pic(X) ® F,
generate a subspace of dimension m. Let P C H(le(X) be the k-vector space generated by
the classes C‘liR(Ll), e, cilR(Lm). If 0y > m + i for some i > O, then P has dimension m

and has trivial intersection with the subspace V;. In particular,

(1) if oy > m, then P has dimension m,

(2) if oy > m + 1, then P has dimension m and has trivial intersection with F2,
and

(3) if oy > m + 2, then P has dimension m and has trivial intersection with
F3 + F3.

Proof. By Proposition 6.14, the k-subspace Q C Pic(X) ® k generated by the classes
[L,],...,[L,,] has trivial intersection with the subspace K+ ¢(K)+- - +¢'(K). As Q = ¢(Q),

this implies that Q has trivial intersection with ¢(K) (even when i = 0). The kernel of the
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map
R ® k : Pic(X) ® k — H3z(X)

is ¢(K), and so c‘liR ® k maps Q isomorphically to P. We conclude that P has dimension

m, and has trivial intersection with V. [ |
In particular, we obtain the following result.

Proposition 6.16. With the assumptions of Proposition 6.15, let P ¢ H!(X, Q}{) be the
k-vector space generated by the classes c;(L;),...,c;(L,,). If 6, = m + 1, then P has

dimension m.
The following result generalizes Proposition 6.11.

Proposition 6.17. Let X be a K3 surface. Let L;,...,L,, be line bundles on X whose

classes in Pic(X) ® F, generate a subspace of dimension m. Let n be an integer that is
n

ord(any " Ifx

has finite height or is supersingular with Artin invariant o, > m + 2, then the classes

divisible by p and let & € H?(X, u,,) be a class such that p does not divide

dlog(a), c;(Ly),...,c;(L,,) in HI(X, Q}l() are linearly independent and generate a subspace

of dimension m + 1.

Proof. By Proposition 6.16, the classes ¢;(L;), ..., c;(L,,) are linearly independent. We

now reason as in Proposition 6.11: suppose that there is a relation
dlog(e) = D 20 (Ly)
i
for some %; € k. We then have

dlog(e) = D 2,c{(Ly) +o
i

for some o € Fé N Fé As before, we deduce that

> =Ry e Fy + F2.
i
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Using 6.3 (if h < o0) or 6.15 (if = o0), we conclude that Af — A; = 0 for all i. Hence,
A; € Fy, for all i. Choose lifts s; € Z of the A;. We obtain

ga = > s

and therefore the image of Iﬂ)a in the Brauer group is trivial, a contradiction. |
We record the following consequences for formal deformation spaces.

Corollary 6.18. Let X be a K3 surface over k. Let L;,...,L,, be a collection of line
bundles on X whose classes in Pic(X) ® F,, generate a subspace of dimension m. If X has
finite height or is supersingular with Artin invariant oy > m + 1, then Defx; | ) is

formally smooth over W.

Corollary 6.19. Let X be a K3 surface over k. Let L,,...,L,, be a collection of line
bundles on X whose classes in Pic(X) ® F, generate a subspace of dimension m. Let n
be a positive integer and let « € H?(X, u,,) be a flat cohomology class. Assume one of the

following holds.

(1) nis coprime to p and either h < oo or h = oo and oy > m+ 1.

(2) p divides n, p does not divide and either h < oo or h = oo and

_n_
ord(apr) ’

og=m+2.

The universal deformation space Defx, ; ; ,is formally smooth over W.

.....

7 Arithmetic Moduli of Twisted K3 Surfaces

In this section we introduce some global moduli spaces of twisted polarized K3 surfaces

over Spec Z and describe some of their basic geometric properties.

Definition 7.1.  Fix positive integers n and d. Define .# to be the stack over Spec Z
whose objects over a scheme S are tuples (X, o, L), where f : X — S is a family of X3
surfaces, & € H(S, R%f, 11,,), and L € HO(S, Picy s) is a section whose restriction to every

geometric fiber of X — S is a primitive ample class of degree 2d.

If k is an algebraically closed field and f : X — Speck is a K3 surface, we have

H?(X, ) = HO(Speck, sz*un).
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Thus, the k-points of ///g are tuples (X,«,L) where X is a K3 surface over
k,ae HZ(X,un), and L € Pic(X) is an ample class of degree 2d.
Let .#, denote the usual moduli stack of polarized K3 surfaces of degree 2d.

There is a morphism

MY~ My (7.1.1)

given by forgetting the class «. If n = 1 this map is an isomorphism.
Proposition 7.2. The moduli stack .# is Deligne-Mumford.

Proof. It is well known that .#; is Deligne-Mumford (see e.g., [13, Ch. 5, Proposition
4.10] or [32, 4.3.3]). Let f : & — .#; be the universal polarized K3 surface. We have
MY = R?f,u,, as functors on the category of schemes over .#,;. By Theorem 1.2, the map
MY — .My is representable by algebraic spaces. We conclude that ./# is a Deligne-
Mumford stack. |

If f : X — S is a morphism, then R?f,u, may be computed as the flat
sheafification of the functor T — H2(X xg T, u,) on the category of S-schemes. The
following result shows that if f is a family of K3 surfaces then this sheafification
may be taken instead in the étale topology. This simplification will be important in

our discussion of the geometry of .Z.

Lemma 7.3. Letf:X — Sbe afamily of K3 surfaces.

(1) If @ € HO(S, R?f,u,,) is any class, then there exists an étale cover S’ — S such
that « is in the image of the map H?(X x5S, u,,) — HO(S', R%fg, i1,,)-
(2) If @ € H(X, Uy,) is a class and there exists an fppf cover ' — S such that

oly..s = 0, then there exists an étale cover S’ — S such that ay, .o = 0.

Proof. We have ROf, i1, = p,, and R'f,u,, = Picy/s[nl = 0. The Leray spectral sequence

therefore gives an exact sequence

0 — H*(S, uy,) = HX(X, ) > HO(X, R*f 1) — H3(S, ).

It follows from the Kummer sequence that if m > 2 then any class in H™(S, ,,) may be
killed by an étale cover of S. This implies (1). For (2), we note that a class « € H(X, Hy)
is killed by an fppf cover of S if and only if @ maps to 0 in HO(X, R%f,u,,). [ ]
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The following gives some basic geometric properties of .#} — Spec Z and is
the main result of this section. As an immediate consequence of this result, we obtain

Theorem 1.1.

Theorem 7.4. The morphism .#} — Spec Z is flat and is a local complete intersection

of relative dimension 19.

Proof. Let k be an algebraically closed field of characteristic p, and consider a k-point
x € ./} (k) corresponding to a K3 surface X with an ample class L of degree 2d and a
class @ € H?(X, Hy). Let /Z/; be the category cofibered in groupoids over %}, whose fiber

over A € 6y, is the groupoid of 2-commutative diagrams

€T

Speck —— Spec A —— A}

By Lemma 7.3, if A is an Artinian local ring with residue field k and f, : X, — SpecAisa
relative K3 surface, then the map H?(X,, i,,) — H°(SpecA, R?f,,u,,) is an isomorphism.

It follows that the natural map
Def y 1) — My (7.4.1)

of categories cofibered in groupoids over %}, is an isomorphism.
To show the result, it will therefore suffice to check that Def x , ;) is flat and lci

of relative dimension 19 over Spf W. By definition, we have a Cartesian square

Def<X7(¥7L) — Def(X,a)

| j na

Def(X_’L) — Defx .

By Proposition 5.5 and [9, 1.6], the inclusion Def(y , ;) C Def(x . ) is a closed immersion
cut out by two equations. As in (5.5.1), we choose coordinates so that the diagram (7.4.2)

is represented by

Spf W{lty, ..., tao, s|]/(f, g) = Spt W{[t1, ... ta0, s]]/(9)

J J (7.4.3)

Spf W[ty ..., tao]]/(f) ————— Spf W][[t1, . .., t20]]
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for some functions f € WIlt;,..., tyll and g € WIlt,, ..., ty, sll. Let fi, g, denote the
images of f and g modulo p. It will suffice to show that f;), gy € Ry = kllt;, ..., ty,sllis a
regular sequence.

If n is coprime to p, then by Proposition 5.6 we may assume g = s. On the
other hand, if p divides n, then it follows from [28, Proposition 14] that the closed
formal subscheme of Def y , ;) ® k parametrizing deformations whose underlying X3 has
infinite height has dimension at most 10. Therefore, the generic point of any irreducible
component of ///; ®Fp has finite height. So, in this case, it will suffice to show the result
when X has finite height h. By Proposition 5.6, we may assume that g is congruent to
sk modulo (p,t;, ..., tyy) for some positive integer k. We conclude that, in either case, it
suffices to prove that f,, g, is a regular sequence under the additional assumption that
do=9p+ sk for some positive integer k and some 9o € (t;,....ty) CRy.

To prove this, we first recall that by [9, 1.6] f;, is not a zero divisor in R,. It
remains to show that the image of g, in Ry/(f;) is not a zero divisor. Suppose that
9oho € (fy) for some hy € Ry. Then f;, divides gohg = (g) +s*)hg. Note that f; is contained
in the subring kllt,, ..., t5ll, and also in the ideal (¢,...,ty) of Ry. The same is true
for any irreducible factor of f;. But no such element can divide g; + sk. Hence, every

irreducible factor of f; divides hy, so f; divides h. This completes the proof. n

We record a few remarks regarding the forgetful morphism n : 7] — .,
(7.1.1). The restriction of = to Spec Z [%] is étale. Over geometric points whose residue
characteristics divide n, we can describe the fibers of = as follows. Given a X3 surface
X over an algebraically closed field k, write H?(X, u1,,) for the functor R%f,u,, where
f : X — Speck is the structural morphism. Thus, H?(X, u,,) is a group scheme over
k whose group of k-points is H2(X, ty,), and the fiber of = over a geometric point
[(X,D)] € #4(k) is exactly H%(X, Uy,). Let U?(X, y) C H%(X, i,) denote the connected
component of the identity, and let QZ(X . b,,) be the quotient, so that we have a short

exact sequence
0 — U%(X, i) — H2(X, ) — D*(X, i) — 0.

If n is invertible in k, then U%(X, Wy,) is trivial, and D?(X, ) = (Z/nZ)®?2. Suppose that
k has characteristic p > 0. Let p” be the largest power of p dividing n and set m = n/p".
The completion of U2(X, u,,) at the identity is isomorphic to the p” torsion in the formal
Brauer group ]’BI*X. This determines U%(X, i,,) up to isomorphism. In particular, if X has

finite height, then U%(X, ,,) is a purely infinitesimal group scheme of length p™, and if
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h =1, then

UP(X, ) = i

If h = oo, then as long as r > 1 we have

2 ~
H (Xl Mn) = Ga'

The étale quotient D?(X, i1,,) can also be computed explicitly. If h < oo, then

D*(X, u,) = (Z2/m2)®%? @ (z/p’z)®?2~2"

and if h = oo then

DZ(X/ Mn) = (Z/m;)@zz e (Z/prz)eBZZ—ero'

In particular, if p divides n, then the forgetful morphism
. n
7w, MY RF, > MyRF,
is not flat, and the height-Artin invariant stratification provides a flattening stratifica-

tion. Furthermore, the generic geometric fiber of 7, is nonreduced, and so the forgetful

map is inseparable.

Corollary 7.5. If p divides n, then the stack .Z} ® F, has an irreducible component

that is everywhere nonreduced.

Proof. The morphism 7, has a section

o:My®F, > M3 QF,

defined on S-points by (X, L) — (X,8(L), L), where

8 : H(S, RYf,G,,) — HO(S, R*f,11,,)

is the boundary map coming from the Kummer sequence. Let W be an irreducible
component of .#Z; ® F,, and let Z be the irreducible component of ///; ® Fp, which
contains o (W). We claim that Z is everywhere nonreduced. To see this, let W, Cc W
be the open dense subset parametrizing ordinary K3 surfaces. Let Z; = 7rp*1(W1) nNzZcz

be its preimage in Z. Every geometric fiber of Z; — W, is a disjoint union of copies of
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p- The subscheme o (W) C Z; is reduced and is not equal to Z;. It follows that Z;, and

hence Z, is everywhere nonreduced. [ |

7.5 Multiple line bundles

We indicate the extension of the preceding results to the case of multiple line bundles.

The proofs are essentially the same, so we shall be brief.

Definition 7.7. Let A be a lattice. Let .#, be the moduli stack over Spec Z whose
objects over a scheme S are pairs (X, (), where f : X — S is a family of K3 surfaces and
t 1 Ag <> Picy,g is an isometric embedding whose image contains a primitive ample
class.

Let n be a positive integer. We let .#}! be the moduli stack parametrizing tuples
(X, 1, @), where X and : are as before, and o € HO(S, R%f, 1,,).

Both .#, and .#} are Deligne-Mumford stacks over Spec Z. Write m = rk(A).

Proposition 7.8. Suppose that m < 10. The map .#, — Spec Z is a flat local
complete intersection of relative dimension 20 — m. Every irreducible component of

every geometric fiber of .#, — Spec Z is generically smooth of dimension 20 — m.

Proof. Let p be a prime and consider an irreducible component Z C .#, ® Fp. We have
dim(Z) > 20 — m. By [28, Proposition 14], the supersingular locus in Z has dimension
at most 9, so Z contains a geometric point x parametrizing a X3 surface say X of finite
height. By Proposition 6.2, the image of A in H!(X, Q}() has dimension m, and hence
the tangent space to .#, at x has dimension 20 — m. It follows that Z is smooth at x of
dimension 20 — m. Hence, Z is generically smooth of dimension 20 — m.

We know that the local deformation space to .#, at any geometric point is
a subscheme of Spf WIlt,, ..., ty0ll cut out by m equations. Our computation of the
dimension of Z therefore implies that .#, is flat and Ici over Spec Z of relative dimension
20 —m. ]

Proposition 7.9. Let n be a positive integer. If m < 9, then the map .#} — Spec Zis a
flat local complete intersection of relative dimension 20 — m. If m < 10, then the same

conclusion holds for the restriction .#} ® Z[+] — Spec Z[1].

Proof. The local deformation space of any geometric point of .#} is a closed

subscheme of Spf WI[t,,...,ty,, sll cut out by m + 1 equations. As in the proof of 7.8, to
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show the first claim it will suffice to show that if p is a prime and % is an irreducible
component of .Z} ®Fp then dim(%") = 20 — m. To show this, consider the forgetful map
7w MY — M. The fibers of this map have dimension at most one. Let Z C .#, ® Fp
be an irreducible component containing the image of Z. By [28, Proposition 14] the
supersingular locus in Z has dimension at most 9, and therefore the supersingular locus
in 2 has dimension at most 10. Because m < 9, we deduce that 2 contains a geometric
point x parametrizing a K3 surface of finite height. By 7.8 Z has dimension 20 — m, and
by 5.6, the fiber of 2 — Z containing x is zero-dimensional. We conclude that 2 has
dimension 20 — m. This gives the first claim.

For the second, we note that the map .Z ®Z [%] — Spec Z [%] is étale. The result

therefore follows from 7.8. [ |

We highlight the following consequence for the existence of liftings of twisted
K3 surfaces together with a collection of line bundles. In the non-twisted case, this
problem has been considered by Lieblich-Olsson [23] and Lieblich-Maulik [22].

Theorem 7.10. Let X be a X3 surface over an algebraically closed field k of charac-
teristic p > 0 and let oy, € Br(X) be a Brauer class. Let € H?(X, i,) be a class whose
image in the Brauer group is ap,. Let V C Pic(X) be a saturated sublattice of rank m

containing an ample class. Suppose that at least one of the following holds.

(A) X has finite height.
(B) m<29.

(C) nis coprime to p and m < 10.
There exists

(1) a DVR R with fraction field K of characteristic 0 and residue field k,

(2) a K3 surface X over R and an isomorphism 2" ®z k= X,

(3) aclass @ € H3(X, 1,,) such that &@|y = &, and

(4) a sublattice ¥ C Pic(X), which over k specializes to the inclusion ¥V C Pic(X)
and which for every algebraically closed field L containing K induces an

isomorphism “V|)~(L = Pic(}?L).

7.11 Moduli of primitive twisted K3 surfaces

Note that in the definition of .#Z C’i" we allow the class o to have order smaller than n, and
in particular to vanish. Furthermore, we have imposed no restriction on the relationship

between L and «. As a consequence, the stack ///; has some undesirable behavior (e.g.,
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Corollary 7.5). Inspired by Brakkee [6], we will consider a variant of the stack .#Z} in
which we require the class « to be primitive (in a certain sense) with respect to L (for
the precise relation with Brakkee's definitions, we refer to Remark 7.14). This stack will
turn out to have some better properties.

Let (X, L) be a polarized K3 surface over an algebraically closed field. We set

H2(X, ) prim = H2 (X, 11,,)/(8(L))

where § : Pic(X) — H?(X, ty,) is the boundary map from the Kummer sequence, and
(8(L)) = Z/nZ - 5(L) is the cyclic subgroup generated by §(L). By the exactness of the

Kummer sequence, the map H?(X, i) = Br(X) descends to a map
HZ(XI :u’n)prlm - Br(X)r

which we will denote by « — ay,., as before.

We make a similar definition in families. Consider a pair (X,L) where f : X — S
is a family of K3 surfaces and L € HO(S, Picys) is a class whose restriction to every
geometric fiber is primitive. Consider the boundary map § : R'f,G,, — R?f,u,, coming
from the Kummer sequence. The global section L induces a map of group schemes
Zg — R!f,G,,. We define (sz*un)prim to be the quotient of the composition of this map
with 8. Thus, we have a short exact sequence

1—48(L
0 — Zg/nZs ——22% R*f, 11, — (R%f,ttn) prim — O- (7.11.1)

For the motivation behind this notation we refer to Remark 7.14.

Definition 7.12. Let M [n] be the stack over Spec Z whose objects over a scheme S are
triples (X, «, L) where f : X — S is a family of K3 surfaces, L € HO(S,P_icX/S) is a section
whose restriction to each geometric fiber of X — S is a primitive ample class of degree
2d, and « € H(S, (R, 142) prim)-

Let M}, C Myln] be the substack such that for all geometric points s € S the

class ag has order n.
Proposition 7.13.  The stacks M [n] and M} are Deligne-Mumford.

Proof. Letf:X — .#4be the universal polarized K3 surface. The map Z/nZ — R?f,u,,
is injective. As Z/nZ is flat over .#,, the quotient sheaf (Rf,1)prim = Mglnl is
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representable over .#;. As .#; is Deligne-Mumford, we conclude the same for M [nl.

The inclusion MJ C Mylnl is open, so M} is Deligne-Mumford as well. |

The fiber of M over the complex numbers has been studied by Brakkee [6]
(see Remark 7.14). Note that the stack M} is large enough to still allow for interesting
variation in the Brauer class ag,.. In particular, it admits a reasonable notion of Noether-
Lefschetz loci.

The stacks we have defined are related by maps

MY — Mgln] > M (7.13.1)

where the left arrow is an n-fold cyclic étale cover (corresponding to the short exact

sequence (7.11.1) of sheaves) and the right map is an open inclusion.

Remark 7.14. Brakkee [6, Definition 2.1] studies a functor on schemes over the
complex numbers whose C-points are isomorphism classes of tuples (X,«,L), where
(X, L) is a primitively polarized X3 surface of degree 2d and « € Hom(H2(X, Z) prim/ Z/NZ),
as well as the subfunctor of tuples such that o has order n. Brakkee shows that these
functors admit coarse moduli spaces [6, Theorem 1], which are moreover constructed
explicitly in terms of the period domain for complex K3 surfaces.

As explained in [6, §2.1], there is a canonical isomorphism

Hom(H?(X, Z) prim, Z/12) = HA(X, 1y) /(8(L)).

Thus, Brakkee's functors are exactly the functors of isomorphism classes associated to
the fibers M[n] ® C and M[; ® C of our moduli stacks over the complex numbers. Our
results in this section therefore give a natural extension of Brakkee's moduli spaces to
spaces defined over the integers. In particular, Proposition 7.13 gives a purely algebraic

proof of Theorem 1 of [6, Theorem 1].

We consider the singular locus of the fiber M7 ® F,,. It is convenient to make the
following definition. Suppose that (X, ag,) is a twisted K3 surface over an algebraically

closed field k of characteristic p > 0. If X is supersingular of Artin invariant oy, we
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define the Artin invariant of (X, ag,) by

opX)+1, ifoap. #0
(X)), if ag. = 0.

Op X, aBr) =

For a more motivated approach to this definition we refer to [4, Section 3.4]. One
consequence of this convention is that if p divides n then for any 1 < o < 11 the locus in
MY ® F, or in M7 ® F, parametrizing tuples (X, «, L) such that (X, og,) is supersingular

of Artin invariant < o has dimension o — 1, as in the untwisted case.

Proposition 7.15. The fiber Mg ® Q is regular. Furthermore, if p is a prime, then we
have the following descriptions of the singular loci of the fiber M7 ® Fp,.

(1) If p does not divide 2dn, then M} ® F), is regular.

(2) If p divides 2d but not n, then M) ® F, is non-singular away from the locus
of supersingular points with Artin invariant oy = 1.

(3) If p divides n, then MJ ® F, is non-singular away from the locus of

supersingular points with Artin invariant o < 3.

Proof. Let k be an algebraically closed field, and consider a k-point x € MJ(k)
corresponding to a K3 surface X with an ample class L of degree 2d and a class
@ € H*(X, ity)prim Of order n. Let o’ € H*(X,u,) be a lift of «, and let x¥' = (X,d/,L)
be the resulting point of .#Z}. As the quotient map .#} — M,[nl is étale and M} is open
in Myln], we have that M7 is regular at x if and only if ./Z is regular at x'. In particular,
this shows that M/} ® Q is regular.

Suppose that k has characteristic p. Arguing as in Theorem 7.4, we have that
MY is regular at x' if and only if the universal deformation space Def(x o 1) is formally
smooth over W.

Suppose that p does not divide 2d. Then L? is nonzero modulo p, so c8®(L)? # 0.
As FZ is isotropic, we have cd®(L) ¢ FZ, and so ¢, (L) is nonzero. If also p does not divide
n, then Proposition 5.11 implies that Def yx , ;) is formally smooth, which gives (1) (see
also [32, Lemma 4.1.3]).

Now, suppose that p does not divide n, but possibly p divides 2d. By Theorem
6.12, if .Z} is singular at x’ then X is superspecial. The Brauer group of a supersingular
K3 surface is p-torsion [2, Theorem 4.3], so ap. = 0, and hence oy(X, o) = 1. This

gives (2).
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Finally, suppose that p divides n. We consider two cases. Suppose first that p

does not divide —2—. By Theorem 6.12, if .#7 is singular at x’ then X is supersingular
ord(ag,) d

and o(X) < 2, which implies 0y(X,ap) < 3. Suppose that p divides or

n
ord(ag,)’
equivalently that %a’ e H%(X, p) has trivial Brauer class. By Proposition 5.11, .Z} is
nonsingular at x’ if the classes dlog(«’) and c, (L) are nonzero and linearly independent
in H (X, Q)l() (in fact, as L///,‘Li has relative dimension 19, this is an if and only if). These

classes are the images of % -o’ and §(L) under the map
dlog : H*(X, u,) — H' (X, Q).

As 1% -’ has trivial Brauer class, we have o’ = § (M) for some M € Pic(X). By assumption,
o’ has order n modulo (§(L)). It follows that Iﬂ)oz’ has order p modulo (§(L)). Hence, the
images L and M of L and M in Pic(X) ® F, are linearly independent. By Proposition 6.16,
we conclude that if the classes ¢; (L) and ¢; (M) = dlog(e’) are not linearly independent in
H!(X, Qy), then X is supersingular with o4(X) < 2. As before, this implies 04(X, ag,) < 3,
and we obtain (3). |

Theorem 7.16. The morphism MJ; — Spec Z is flat and a local complete intersection
of relative dimension 19. For each prime p, every connected component of M} ® Fp is

reduced and irreducible and is generically smooth of dimension 19.

Proof. By Theorem 7.4, we have an étale cover .Z} — MInl of MIn] by a flat local
complete intersection of relative dimension 19. These properties are étale local on the
source (see [35, 069P]) and so descend to M [nl — Spec Z. The inclusion MJ C Mylnl is
open, and hence these properties also hold for M}, — Spec Z.

Fix a prime p and let Z Cc M} ® Fp be an irreducible component. By
[28, Proposition 14] there is a dense open subset of Z parametrizing K3 surfaces of
finite height. Proposition 7.15 implies in particular that Z is generically smooth, and
hence reduced. The same is true for the intersection of any two irreducible components.
We conclude that every irreducible component is reduced and generically smooth of

dimension 19, and that no two irreducible components intersect. [ |

8 An Application to Twisted Derived Equivalences

In this section we give an application of our results to a problem concerning derived
equivalences of twisted K3 surfaces. Suppose that (X,ap,) and (Y, Sg,) are twisted

K3 surfaces over an algebraically closed field k. Given a Fourier-Mukai equivalence
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®p : D(X,ap) — D(Y,Bg,) one can ask if the induced cohomological transform is
orientation preserving (sometimes also called “signed”). (Over the complex numbers, this
notion is usually phrased in terms of the Hodge structure on singular cohomology (see
e.g., [15]). However, it extends without difficulty to a field of arbitrary characteristic by
instead using the extended Néron—Severi groups, as recorded in [3, Definition 3.4.6].) It
is conjectured that this should always be the case. If k = C (or more generally if the
characteristic of k is zero) then this was shown in the untwisted case by Huybrechts—
Macri-Stellari [15]. An alternative proof, which extends to the twisted case, was given
by Reinecke [31]. If k has positive characteristic, various special cases were treated in
[3, Appendix Bl. Using a combination of standard techniques and Theorem 1.1, we can

complete the proof of this conjecture in arbitrary characteristic.

Theorem 8.1. Let (X,ap,) and (Y, Bg,) be twisted K3 surfaces over an algebraically
closed field k. If ®p : D(X,ap,) — D(Y,Bp,) is a Fourier-Mukai equivalence, then the

induced cohomological transform &, ) is orientation preserving.

Proof. As discussed above, if the characteristic of k is 0, this is shown in [15,
31]. Suppose that the characteristic of k is positive. Using now standard techniques
introduced in [23], to prove the result it suffices to show that every twisted X3 surface
admits a lift to characteristic 0, which reduces the problem to the case considered in
[15, 31] (this strategy is outlined for instance in [3, Appendix B]). Thus, the result follows

from Theorem 1.1. [ |

A. Deformations of Gerbes and Flat Cohomology Classes

In this appendix we record some results on deformations of gerbes, particularly those
banded by a possibly non-smooth group scheme.
Let S be a scheme. Let G be a flat commutative group scheme over S which is

locally of finite presentation. The co-Lie complex of G is
ZG/S = Le*GLG/S S D(ﬁs)

where eg : S — G is the identity section and Lg,g is the cotangent complex of the

morphism G — S. The Lie complex of G is its derived dual

Eé/s = R%Omﬁs(éc/s, ﬁs)
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The complex {5 is supported in degrees [-1,0] and Eé/s is supported in degrees [0, 1]
[16, 3.1.1.3]. We set

We may omit the base scheme S from the notation if it is clear from context. We will
also use a version of these definitions relative to a homomorphism G — H of flat

commutative Ifp group schemes: we define {g g := LegLg g, we let £ 4 be its derived

\
G/H"

The co-Lie complex is contravariantly functorial with respect to maps of group

dual, and we let tg i and ng y be the Oth and 1st cohomology sheaves of ¢

schemes over S, and the Lie complex is covariantly functorial. We refer to Illusie [16,
3.1.1] for further discussion of these objects and some of their basic properties (see also
[17,2.5.1]).

We mention two situations in which we can explicitly compute the Lie complex
of G. If G is smooth, then there is a canonical identification ¢ = wg := €;Q¢, and hence
€6 = o = tg is the Lie algebra of G. Suppose that G is not necessarily smooth and
that we are given a closed immersion G < H where H is a smooth commutative group
scheme over S. Let J be the ideal sheaf of G in H. The cotangent complex of G is then
given by

where the terms on the right hand side are in degrees -1 and 0. We have Lgy =
J/J?1] = NE/H[H, where N is the normal bundle of G in H. It follows that EE/H =

ng/m = €gNg/u and the Lie complex of G is given by
g = ltg — ng/gl (A.0.1)
(terms in degrees 0 and 1).
Example A.1. Let n be a positive integer. The co-Lie complex of the group scheme
G = u,, can be computed using the Kummer sequence
1— u, = G, = G, — 1.

We have tg = Oy, n, 6, = Oy, and () =10y L 0yl = Ox(n).

We now consider a closed immersion i : S < S’, which is defined by a sheaf of
ideals I C Oy that satisfies I = 0. We may regard I also as a module over 0. Let G’ be

a flat commutative Ifp group scheme on S'. Let G’ — H’ be an embedding into a smooth

commutative group scheme H' on S’. We let Q" denote the quotient, so that we have a
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short exact sequence
1-G—->H >0 —>1 (A.1.1)

of flat commutative group schemes on S'. We write G = G'|g, H = H'|g, and Q = Q’|g. By

flat descent, Q' is also smooth. Consider the commutative diagram

1 G’ H Q 1
1 i.G iH i.Q 1
1 1 (A.1.2)

of sheaves on the big fppf site of S/, which has exact rows and columns. Incorporating

the identification t = ng g, the diagram (A.1.2) gives a quasi-isomorphism
6 — i,Gl =@ I (A.1.3)

of complexes of fppf sheaves.

A.2 Gerbes

Let X be an algebraic space. We will use the notion of a gerbe over X [35, 06QC]. If G
is a commutative group scheme over X, then a G-gerbe is a gerbe #° — X equipped
with an isomorphism G|%-:>ﬂ%-. A morphism of G-gerbes on X is a morphism of
algebraic stacks over X which is compatible with these isomorphisms. The set of
G-gerbes over X forms a 2-groupoid %erby(G), and there is a natural bijection between
the set of isomorphism classes of G-gerbes over X and the cohomology group H?(X, G)
[29, Theorem 12.2.8].

An absolute gerbe is an algebraic stack 27, which is locally nonempty and locally
connected. By [35, 06QJ], 2" is an absolute gerbe if and only if the inertia stack .%o — 2
is flat. If 2" is an absolute gerbe, then by [35, 06QD] the sheafification X = | 27| of 2" is
an algebraic space, and the map 2 — X makes 2 into a gerbe over X, in the sense of
[35, 06QC].
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Let S be an algebraic space and let G be a commutative group scheme on S. An
absolute G-gerbe over S is an absolute gerbe 2" equipped with a morphism 2~ — S and

an isomorphism G|, —.7,-. There is an induced factorization
2 —->X—>S

where X = | 2|, and the map # — X is a G|y-gerbe. A morphism of absolute G-gerbes

over S is a map of algebraic stacks over S compatible with the given isomorphisms.

A.3 Gerbes and torsors for two-term complexes

Let G — H be a homomorphism of commutative group schemes on X, which we regard as
a complex supported in degrees [0, 1]. A torsor for [G — H] is a G-torsor .7 on X equipped
with a G — H-equivariant map .7 — H. Equivalently, a torsor for [G — H] consists of a
G-torsor .7 equipped with a trivialization of the induced H-torsor .7 AgH. The collection
of torsors for [G — H] forms a groupoid, which we denote by Jorsy(IG — HI), and there
is a natural bijection between the set of isomorphism classes of torsors for [G — H] and
the cohomology group H! (X, [G — H)).

There is a similar notion for gerbes. A gerbe for [G — H] consists of a G-gerbe 2
over X and a G — H-equivariant map 2~ — BH of gerbes, or equivalently a G-gerbe .2
equipped with a trivialization of the induced H-gerbe 2" Ag H. The collection of gerbes
for [G — H] forms a 2-groupoid, which we denote by %erby(IG — HI), and there is a
natural bijection between the set of isomorphism classes of gerbes for [G — H] and the

cohomology group H?(X, [G — HI).

A.4 Deformations of gerbes

We consider the following deformation situation. Let S be an algebraic space and let
i:S < S be a closed immersion whose defining sheaf of ideals I is locally nilpotent.
Let G’ be a flat commutative 1Ifp group scheme on S’ and write G = G'|g. We assume that
G’ embeds in a smooth commutative group scheme over S, so that we have a short exact
sequence (A.1.1). Let 2" be an absolute G-gerbe over S. A deformation of 2 over S’ is a

2-cartesian diagram
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where 27 is an absolute G'-gerbe flat over S’ and : is a map of absolute G'-gerbes.
Equivalently, a deformation is a pair (2", ¢) where 2" is an absolute G’-gerbe flat over
Sandg: 27 xg S— 2 is an isomorphism of absolute G-gerbes over S. The collection of

deformations of 2" over S’ has a natural structure of a 2-groupoid.

Definition A.2. We let Zef(2"/S’) denote the 2-groupoid of deformations of 2" over S'.
We let Def(27/S’) be the set of isomorphism classes of objects of Zef(2"/S’).

Let X := | 2| be the sheafification of 2", and consider the factorization
X —-X—S.

Let 2" be a deformation of 2" over S’, with sheafification X’ = |.2”|. The map 2" — X’
is faithfully flat. As 2’ — S’ is flat, so is X’ — S’. Thus, the association (2", ¢)
(2", l¢]) defines a functor

Zef(X°|S') — Zef(X/S)). (A.5.1)

The homotopy fiber of this map over a deformation (X', p) of X is Zef(2"/X’). We consider
this latter 2-groupoid in more detail. To simplify notation, we omit pullbacks along
X — S. We wish to interpret the groupoid Zef(2"/X’) cohomologically. To do this, we
need to prove that deformations of 2" exist fppf locally on X’. This is implied by the

following result. We define
®"(G/X') :=H™(X,[G' - i,G])

Proposition A.3.

(1) If « € H™(X,G) is a flat cohomology class and m > 1, there exists an fppf
cover V — X’ such that the cover V x5, X — X kills a.

(2) The natural map H™(X’,1,G) - H™(X, G) is an isomorphism for all m > 0.

Proof. Consider a class « € H™(X, G). Suppose that m = 1. Let T — X be a G-torsor
with class «. As G — X is a syntomic cover, so is T — X, and moreover we have «|; = 0.
By [35, 04E3] there exists a syntomic cover V — X’ such that V x5, X — X factors
through T — X. In particular, V x5 X — X kills «. Suppose m > 2. We assume G
embeds in a smooth group scheme, so we may find an étale cover of X, which kills «. We
then conclude as before. This proves (1). It follows that the higher direct image R™i G

vanishes for all m > 1, which implies (2). [ |
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Let J; denote the trivial G-torsor over X.

Proposition A.4. We have canonical isomorphisms
Serbs, (IG' — i,Gl)— Zef(BG/X")
and
Forsy (IG — 1,G) = Zef(T/X).
Proof. We construct the first isomorphism. We have 2-functors
Gerby (i,G) — Yerby(i™1i,G) — Yerby(G)

the first being pullback along i and the second induced by the canonical map
i"1i,G — G. On isomorphism classes of objects (resp. isomorphism classes of
l-automorphisms, resp. isomorphism classes of 2-automorphisms) this composition
corresponds to the natural map H™(X’,i,G) - H"™(X,G) for m = 2 (resp. m = 1, resp.
m = 0). By Proposition A.3, these maps are isomorphisms for all m > 0, and so the
composition is an equivalence of 2-groupoids. The second equivalence is constructed

similarly. ]

As a consequence of Proposition A.4, we have natural identifications ®?(G/X’) =
Def(BG/X') and ®!(G/X') = Def(J;/X’).

Proposition A.5.

(1) The set of isomorphism classes of deformations of 2" over X’ is a pseudo-
torsor under ®2(G/X’).

(2) The group of isomorphism classes of automorphisms of any deformation of
Z over X' is ®1(G/X).

(3) The group of 2-automorphisms of any 1-morphism of deformations of
2 over X' is ®°(G/X").

Proof. Taking tensor products of gerbes defines an action of Def(BG/X') = ®?(G/X’)
on Def(2"/#"). If the latter is nonempty, this action is simply transitive, giving (1). The
groupoid of invertible self 1-morphisms of any object of Zef(2'/X’) is equivalent to
Jorsy (IG' — i,Gl), which by Proposition A.4 is equivalent to the groupoid of torsors for

the 2-term complex [G’ — i,G], which implies (2) and (3). |
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Suppose now that I? = 0. We describe a tangent—obstruction theory for the
groupoid Zef(Z /X').

Proposition A.6. Suppose that I? = 0, and let 2" be a G-gerbe over X.

(1) There exists a functorial class 0(2"/X’) € H3(X, 124 ®]5X I) whose vanishing is
necessary and sufficient for the existence of a deformation of 2" over X'.

(2) If o(2/X’) = 0, then the set of isomorphism classes of deformations of .2
over X’ is a torsor under H?(X, 14 ®15,X I).

(3) The group of isomorphism classes of automorphisms of any deformation of

| L

Z over X' is H' (X, £§ ®g, D-

(4) The group of 2-automorphisms of any 1-morphism of deformations of 2

i 170 L

over X' is H (X, £§ ®g, D-

Proof. The quasi-isomorphism (A.1.3) gives isomorphisms
O™(G/X') = H™(X, 4 ® I).
Taking cohomology of the short exact sequence
1—->iG[-1—-[G —>iGl—>G —>1 (A.9.1)
and using Proposition A.3 we obtain a long exact sequence

...~ H'(X,6) > H*(X, {5 ®p ) - H*(X,G)) > H*(X, G) S m3(x, ¢ ®g, D~ ...
(A.9.2)

We put 0(2"/X’) := §(a). It is immediate that this class has the properties claimed in (1).

The remaining claims follow from Proposition A.5. |

Note that the obstruction class 0(2/X’) depends only on the cohomology class
o =[21 e H?2(X,G) of 2. We may sometimes write o(e/X’) = o(2 /X).

Remark A.7. More conceptually, the assertions of Proposition A.6 may be summarized
in the statement that the 2-stack %(% /X") on the small étale site of X defined by
U +— Zef(Zy/U’) (where U’ is the unique étale X’-scheme such that U’ xy X = U) is a
2-gerbe banded by the 2-term complex [ty — ng gl

We compare deformations of 2  with deformations of its cohomology class
a = [2'] € H*(X, G). There is a map Def(2 /X') — H?(X',G) induced by (27, ¢) — [27].
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The image of this map is the set of classes o’ € H?(X’, G) such that o'|x = a, which we
denote by Def(a/X).

Lemma A.8. The map
Def(2 /X') — Def(a/X’). (A.11.1)

is surjective. It is bijective if and only if the map H! (X', G') — H!(X, G) is surjective.

Proof. There is a natural action of the group H!(X,G) on the set Def(.2"/X’), which
descends to a free action of the quotient H! (X', G’)/H! (X, G). Furthermore, the quotient
of Def(2°/X’) by this action is exactly Def(a/X"). [ ]

We visualize this situation as an “exact sequence”
H'(X',G) > H (X, G) ~ Def(2 /X) - H*(X',G) — H%(X, G)

where the squiggly arrow denotes a group action and r is the restriction map. If « = 0,

this is just the long exact sequence on cohomology coming from (A.9.1).

Remark A.9. Given an isomorphism 2 =% of G-gerbes on X, there is an induced
equivalence Zef(2 /X')— Zef(% /X’). In particular, up to noncanonical isomorphism, the
2-groupoid Zef(Z/X’') and hence the set Def(Z/X’) depends only on the cohomology
class [2'] € H®(X, G) of the gerbe 2.

If the map H!(X’,G) — H!(X, G) is surjective (eg. if H!(X,G) = 0), then (A.11.1)
is an isomorphism. Thus, in this case, there is a canonical isomorphism Def(2 /X")
Def(Z°/X") for any 2" and 2 with class a.

A.12 Deformations relative to an embedding into a smooth group scheme

We will consider a relative deformation problem with respect to the embedding G — H.
Let # = 2 Ag H be the H-gerbe associated to 2. Fix a deformation (%", ) of % over
X'. We let Zef(Z /%) be the groupoid whose objects are 2-cartesian diagrams

gi J{g' (A.13.1)

sy
where 27 is an absolute G'-gerbe, ¢ 5- is a map of absolute G'-gerbes, and g’ isa G’ — H'-
equivariant map of gerbes. Because G’ — H' is a monomorphism, the maps g and g’ are

representable. It follows that Zef(Z /%) has a natural structure of a groupoid. We let
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@‘"{5&’/@’) denote the stack on the small étale site of X defined by
U Zef(Zy/%)

where U’ — X’ is the unique étale morphism such that U’ xx X = U.

Lemma A.10. There is a canonical equivalence of stacks

Zef(T4/X') = Zef(BG/BH).

Proof. There is a canonical equivalence between the groupoid of Q’-torsors on X’
and the groupoid whose objects are G’'-gerbes on X’ equipped with a map of gerbes
to BH'. Explicitly, given a Q'-torsor ', we may consider the associated G’-gerbe
of trivializations 2°(7’), which is equipped with a map 2°(9’) — BH’ of gerbes.
Conversely, given a G'-gerbe 2 and a map 2’ — BH’ of gerbes, the restriction of
2" along the canonical section of BH' — X’ is a Q'-torsor on X’. These equivalences
are compatible with restriction to X and induce the desired equivalence of groupoids.
They are furthermore compatible with étale localization, and we obtain the claimed

equivalence of stacks. ]

Proposition A.11. The stack %(3&”/@/) is a gerbe on the small étale site of X, which
is canonically banded by ng /y ®I.

Proof. We first show that %(.%’/@/) is locally nonempty and locally connected. As H’
and Q' are smooth, we may find an étale cover of X’, which trivializes both 2~ and
%", Tt therefore suffices to show the claim for Zef(BG/BH'), which by Lemma A.10
is isomorphic to the stack @(QQ/X’). The group Def(J,/X’) is nonempty, because
it contains the trivial deformation and is isomorphic to ®!(Q/X’). We have an exact

sequence
H°(X',0) > H°(X,Q) — o'(Q/X) - HI (X, Q).

Because Q' is smooth, the map Q" — i,Q is surjective in the étale topology. Furthermore,
we may trivialize classes in H! (X', Q') by étale covers. It follows that any two elements
of ®! are locally equal to 0.

We now construct the banding. Given a 2-groupoid ¢ and an object x € ¥, we
let «7ut(x) denote the groupoid whose objects are 1-morphisms in ¢ from x to itself and
whose morphisms are 2-morphisms in ¢. Fix an object (27,91 4-) of Zef(Z /#"). The
map g factors uniquely through an isomorphism 27 Ag H > %'. Conjugating by this
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isomorphism, we obtain a map @ut(2”,14) - Fut(¥’,.14). The homotopy fiber of this
map over the identity is equivalent to the group Aut(2”, g, t4-).

The groupoid «ut(Z”’,i9) may be realized as the groupoid Zef(7;/X’) of
deformations of the trivial G-torsor over X’, which in turn is isomorphic to the groupoid
of torsors for the 2-term complex [G' — i,G]. Via the quasi-isomorphism (A.1.3) induced
by the diagram (A.1.2), this is equivalent to the groupoid of torsors for [ty R — ng x®II.
As H is smooth, the groupoid Aut(#”,t4) is equivalent to the groupoid of torsors for

ty ® I. These maps fit into a commutative diagram

Gut(X  1y) —— Torsx([G' = i,G]) —— Torsx([tu ® [ = ng/m @ 1))

J J |

Gut(Y' 1) —— Forsx:([H — i.H]) ————— Jorsx(ta @ I)

in the homotopy category. Under the bottom composition, the identity map is sent to
the trivial ty ® I-torsor. The homotopy fiber of the right vertical arrow over the trivial
ty ® I-torsor is equivalent to the category of trivializations of the trivial ng g ® I-torsor,
which is exactly I'(X, ng /g ® I). |

As an immediate consequence, we obtain the following result.

Proposition A.12. Let 2" be a G-gerbe over X, let # = 2" Ag H be the associated
H-gerbe, and let (#”, ) be a deformation of # over X'.

(1) There exists a functorial class 0(2°/%") € H*(X, ngm ®I) whose vanishing
is necessary and sufficient for the existence of a deformation of 2" over X’
which fits into a 2-cartesian diagram (A.13.1).

(2) If o(Z'/#’) = 0, then the set of isomorphism classes of such diagrams is a
torsor under H! (X, ng/m ® D).

(3) The group of automorphisms of any such diagram is H°(X, neu ®ID).

Proof. We define 0o(2" /%) to be the class [@"(3&”/@/)] e H?(X, ngu ®D of the gerbe
%(%/@’). This class vanishes if and only if there exists a global section of %(3&”/@/),
or equivalently if and only if Zef(2"/#") is nonempty. As Zef(2"/#") is a ng y ® I-gerbe,
if 0(2° /%) = 0 then the set of its global sections is a torsor under H!(X,n ® I), and the

automorphism group of any section is identified with HO(X,n ® I). |
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Remark A.13. Consider the short exact sequence
0 — ng/gl—1l = [tg > nggl > tg > 0
of complexes. We tensor with I and take H® to obtain an exact sequence
H X, ngp®D > H (X, ty ®T — ng /g ® 1) > H3(X, t5 @ D).

If 2 is a G-gerbe over X and # is the induced H-gerbe, then the right map satisfies
o(Z /X)) = o(#/X). If o(Z /X') = 0 and %’ is a fixed deformation of % over X', then
the left hand map satisfies 0(2°/%”) — o(Z /X).

A.14 Deformation functors and prorepresentability

We now consider deformations of a cohomology class or a gerbe simultaneously over
various infinitesimal thickenings. We will follow as much as possible the terminology
of the Stacks Project [35, 06G7]. Let (A, m,) be a noetherian local ring with residue
field k. Let ¢, be the category whose objects are Artinian local A-algebras A such
that the map A — A is local and induces an isomorphism on residue fields. Via this
isomorphism, we identify the residue field of any object A € ¥, with k. A morphism in
¢ is a homomorphism of A-algebras.

Let S be a k-scheme. Let S, be a flat formal A-scheme equipped with an
isomorphism S, ®, k = S of k-schemes. Let G, be a flat commutative formal
group scheme on S,. We assume that G, admits an embedding into a smooth formal
commutative group scheme H, on S,. Given A € ¢, we write S, := S, ®, A for the base
change of S, to A4, and set G, := G,|g,. We also write G := Gy for the restriction of G,
to S. Let 2 be an absolute G-gerbe flat over S and let X = | 27| be its sheafification. We

have a factorization
X —-X—>S

where the first map is a Gy-gerbe over X and the second is flat. We will assume that

X — S is moreover smooth.

Definition A.14. We let Zefy 5, be the 2-category cofibered in 2-groupoids over ¢,
whose fiber over A € ¢, is the 2-groupoid Zef(2°/S,). We let Def 5- 5 be the functor on
¢, whose value on A € ¢, is the set Def(2Z/S,) of isomorphism classes of objects of
Tef( 2 /Sp)-

20z 1890100 L€ UO Josn MeT yeln Jo AUsIeAun Ad 80v L LG9/ EEH/G/EZ0Z/B10IME/UIY/WOD dNO"0lWapEse)/:SARY WO} POPEOIUMOQ



4400 D. Bragg
Let % := 2 A H be the induced absolute H-gerbe. We have a diagram

Def 915, —_— Def w s,

\ / (A.19.1)

‘@efX/SA

Here, the map ng is given by (£, ¢) = (|Z4],l¢]) (A.5.1) (and similarly for my), and ¢ is
given by (24, ¢) = (24 Ag, Ha, ¢ AgH). The homotopy fiber of 75 (A) over a deformation
(X,,p) of X over S, is the 2-groupoid Zef(Z/X,). The homotopy fiber of ((4) over a
deformation (%, ) of % over S, is the groupoid Zef(Z /%,).

We consider deformations over the dual numbers k[¢]. The tangent space to
Tef g s, 18 T(Zef g /s,) = Def gy /g, (Klel) = Def(2/Slel). We let Inffl(.@ef%/sj\) be the
group of isomorphism classes of 1-automorphisms of the trivial deformation of 2" over
Slel, and we let Inf_z(%f%/sl\) be the group of 2-automorphisms of the identity map of
the trivial deformation. The following result might be compared to [35, 06L5].

Lemma A.15. There is a canonical isomorphism
HO(X, ¢4)—>Inf2(Zef 5 s,)

and exact sequence

0 —— HY(X, ) —— Inf " (Zef 5 5,) — HO(X, Tx/s) ?

L H*(X, (%) —— T(Zef )s,) — H'(X, Ty/s) o, H3(X, 0%).

Proof. The homotopy fiber of the map
Pef(Z /Slel) — Zef(X/Sle])

over the trivial deformation X[e] of X over Sl¢] is exactly Zef(:Z"/Xle]). By Proposition A.6,
the tangent space, group of infinitesimal 1-automorphisms, and group of infinitesimal
2-automorphisms of %fx/x[e] are, respectively, H?(X, £8), HY(X, ) ¢) and HO(X, £8). The
tangent space and group of infinitesimal 1-automorphisms of Zefy /sle] are respectively
H(X, TX/S) and H°(X, TX/S). With these identifications, the construction of the exact
sequence is exactly as in [35, 06L5]. The isomorphism follows from the fact that
Zef(X/Sle]) is 1-truncated. |

We prove the following result about the existence of certain pushouts of gerbes.
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Proposition A.16. Let T be a scheme. Let G be a flat commutative Ifp group scheme
over T. Given maps & L 2 L 2 of absolute G-gerbes over T where i is a nilpotent

closed immersion and j is affine, there exists a 2-commutative diagram
Xy
]l lj’ (A.21.1)
¥y
of absolute G-gerbes over T which is both a 2-pullback and a 2-pushout diagram in the
2-category of G-gerbes over T.

Proof. By [11, Proposition A.2], we find an algebraic stack # and a 2-commutative
diagram (A.21.1) of algebraic stacks over T, which is 2-cartesian and 2-cocartesian.
We will show that # has a canonical structure of a G-gerbe. Let X, Y, and Z be
the sheafifications of 27, ¢/, and . The induced map X — Y is a nilpotent closed
immersion, and the induced map X — Z is affine. Let W be the pushout of Z < X — Y.

We have a 2-commutative diagram

As the top face is 2-cocartesian, there is an induced map # — W. Using that the bottom
face is a pushout, it follows that # — W is initial with respect to maps from # to
sheaves. That is, W is the sheafification of #'. As W is an algebraic space, # is a gerbe.

Consider the 2-commutative diagram

fg%fg

l l (A.21.2)

Iy —— Iy
It follows from [35, 06R5] that (A.21.2) is 2-cartesian. As # is a gerbe, the map %, — #
is flat [35, 06QJ]. It follows from [35, 07W3] that (A.21.2) is also 2-cocartesian. (This
reference refers only to the categories of algebraic spaces over a pushout diagram of
algebraic spaces. The result extends immediately to the categories of spaces over a
pushout diagram of algebraic stacks). The given identifications of the inertia of 27,

%, and Z with the respective pullbacks of G induce an isomorphism between .7, and
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the 2-pushout of G|4 <« G|y — G|y, which is GJ,,. This gives % the structure of an
absolute G-gerbe over T. Moreover, the maps i’ and j/ are maps of absolute G-gerbes.
By construction, the diagram (A.21.1) is a 2-pullback and a 2-pushout in the 2-category
of algebraic stacks over T. Because (A.21.2) is also a 2-pullback and a 2-pushout, it
follows that (A.21.1) is a 2-pullback and a 2-pushout in the category of absolute G-gerbes

over T. | |

We recall the statement of Schlessinger’'s theorem, as formulated in the stacks
project [35, 06JM] (the original reference being [34, Theorem 2.11]). Let F be a covariant
functor on ¢, . Following the terminology of the Stack project [35, 06G7], we say that F
is a predeformation functor if F(k) is a singleton. We say that F satisfies (RS) if for any

surjection B — A and any morphism C — A in ¢, the natural map
F(B x, C) = F(B) Xp(4 F(C) (A.21.3)

is bijective (see [35, 06J2]). If F is a predeformation functor and satisfies (RS), then the
set T(F) := F(kle]) (the tangent space of F) has a natural k-vector space structure, where
kle] has the A-algebra structure given by A — k — kle¢l. Schlessinger’s theorem states
that a predeformation functor F is prorepresentable if and only if it satisfies (RS) and

has finite dimensional tangent space.
Proposition A.17. For any C — A « B as above, the map (A.21.3) with F = Def 5 5 is
surjective. If for any object (23, ¢) of Zefy- s, (B) the map Autg(Zg, ) — Auty (2, ¢) is

surjective, then (A.21.3) is bijective.

Proof. Consider a diagram

%c %A < %B
Sc Sa Sp

where the top row are maps of G,-gerbes over S,, the vertical arrows are flat, and
the squares are 2-cartesian. We let 23, . be the 2-pushout of 2, « 2, — 23 asin
Proposition A.16, applied with T = Sp, . and G = Gg, .. This is an absolute Gg, ,¢-
gerbe over Sp, . By [11, Lemma A.4], 23, ¢ is flat over Sp, , . This implies surjectivity
of (A.21.3).

We now consider the injectivity. Suppose that (23, ¢, ¢) and (%3, ¢, V) are two
objects of Zef(2"/Sg, ,¢c) whose images in Zef(2"/Sg) and in Zef(2"/S;) are isomorphic,

via isomorphisms say g : 25 — % and f; : Z; — %,. By assumption, we may lift
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the automorphism g,' o f; of (2},¢) to an automorphism 65 of (2%, ¢). We obtain a

2-commutative diagram

e i

N o~

fa Zo =%B><AC

gpofp |

fe 5
\ \ v

Yo ————— DxcC-

N

Being flat base changes of the pushout of SpecC « SpecA — SpecB, the top and bottom
faces are 2-cocartesian. We therefore find a dashed isomorphism making the diagram
2-commutative. Moreover, by our choice of f, the composition 2" — 2, I, Y is
isomorphic to & — %. It follows that the isomorphism %”BXAC:)@BXAC is compatible
with the maps from 2" up to 2-isomorphism, and hence the deformations (23, ¢, ¢) and
(#y ¢/ ¥) are isomorphic in Zef(2°/Sp, , ¢)- |

We now give some conditions implying prorepresentability of the functors
Def 4 /s, . We first consider the extremal case when X — S is an isomorphism. For ease
of notation, we identify the two, and put X, = S,. The groups ®™(G/X,) are covariantly
functorial with respect to maps in €, . We let &7

c/x, denote the covariant functor on %,
defined by

Ty, (A) 1= D™ (G/X,) = H™(X,,[G, — in,G]) (A.22.1)

where i, : X — X, is the inclusion. In particular, we have d)é/XA = Defgg/x, -

Theorem A.18. Let X be a proper k-scheme and let X, be a flat formal scheme over
A equipped with an isomorphism X, ®, k= X. If the functor <I>1G/XA on ¢, is formally

smooth, then for any G-gerbe 2" over X the functor Def ;- is prorepresentable.

Proof. We use Schlessinger’s theorem [35, 06JM]. We apply Lemma A.15 with X, =S,
(thus, Ty, = 0). As X is assumed to be proper, we conclude that the tangent space
to Defy- XA is finite dimensional over k. To verify (RS), we check the condition of
Proposition A.17. Given a surjection B — A in %, and an object (25, ¢) of Zef(Z /X5z),
by Proposition A.5 the restriction map on automorphism groups is identified with the
map ®'(G/Xp) — ®'(G/X,). By assumption, &gy is formally smooth, so this map is
surjective. |
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We now consider the case when S, = Spf A. We write Zefy- /5 1= Zef 9 jspf -

Theorem A.19. Let X be a smooth proper k-scheme. Suppose that H’(X, Ty) = 0 and
that, for any deformation (X,, p) of X over A € %, the functor CI%/XA on %, is formally

smooth. For any G-gerbe 2" over X, the functor Def 5, is prorepresentable.

Proof. It follows from Lemma A.15 and our assumption that X is proper that the
tangent space to Defy-/, is finite dimensional over k. As before, we check (RS) using

Proposition A.17. For any object (Z,, ¢) of Zef(Z /A), we have an exact sequence

0 — ®1(G/X,) — Auty (2, ¢) — Aut,(X,, p)

where (X, p) = (1241, l¢|). Our assumption that HY(X, T) = 0 implies that Aut, (X,, p) =0
(see e.g., the proof of [12, Corollary 18.3]), and so ®!(G/X,) = Aut,(2),,¢). Given a
surjection B — A in ¥, and an object (23, ¢) of Zef(Z /B), our assumption that @é/XB
is formally smooth (where X = |#%|) implies that <I>1(G/XB) — <I>1(G/XA) is surjective,
which gives the result. |

Corollary A.20. Let X be a smooth proper k-scheme such that H°(X,T;) = 0 and
HI(X,ZCV;) = 0. For any G-gerbe 2" over X, the functor Def,-,, is prorepresentable.

Proof. The assumption that HI(X,EE) implies that ®!(G/X,) = 0 for any deformation
X, of X. The result follows from Theorem A.19. |

A.23 Comparison with cohomological deformations

We compare deformations of 2" with deformations of its cohomology class « = [Z] €
H?(X,G).

Definition A.21. The cohomological deformation functor of a over X, is the (covari-
ant) functor ﬁa/x,\ on %, defined by A > Def(a/X,) (the set of classes a, € H/(X,,G,)

such that ay |y = a).

Remark A.22. Arguing as in [1, Lemma 2.9], one can show that the cohomological
deformation functor D_efoé/XA is prorepresentable if the functor A — H!(X,,G,) is

formally smooth.
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The maps (A.11.1) induced by (Z},, ¢) — [Z,] give rise to a map of functors

Defy-/x, — Def, x, - (A.28.1)

Lemma A.23. The map (A.28.1) is formally smooth and induces an isomorphism on
tangent spaces. It is an isomorphism if and only if for all A € ¥, the restriction map
H'(X,,G,) — H!(X, G) is surjective.

Proof. Let B — A be a surjection in ¥, whose kernel I has square zero. Let 2, be
a deformation of 2" over X,. The obstruction class 0o(Z,/X3) € H3(X, ¢ ® I) vanishes
if and only if the cohomology class a, of %, lifts to Xz. This implies that (A.28.1) is
formally smooth. By Proposition A.6, the tangent space to Defy- , is H?(X, £5). As the

map kl[e] — k splits, the sequence
0 — H2(X, £8) — H2(X[el, Gy, — H(X,G) — 0

is exact, and it follows that (A.28.1) is an isomorphism on tangent spaces. The final

claim follows from Lemma A.8. | |

Remark A.24. The assumption of Lemma A.23 that the maps H!(X,,G,) — H!(X,G)
are all surjective holds trivially if H!(X,G) = 0. It also holds if the functor
A+ H'(X,,G,) on %, is formally smooth.

Remark A.25. If Defy-x, is prorepresentable, then Lemma A.23 shows that it is a
hull for the cohomological deformation functor Def, x, , in the sense of Schlessinger
[34, Definition 2.7]. An example where Def 55 is prorepresentable but Def, , is not
is when Spf A is the universal deformation space of a X3 surface X, X, is the universal
formal family, G = G,,,, and £ is any G,,-gerbe on X. Indeed, in this case, the functor
A HI(XA, G,,) = Pic(X,) is not formally smooth. On the other hand, as H(X, Ox) =0,

the functor CDém /X is trivial, and in particular formally smooth.
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