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Chemical randomness and the associated energy fluctuation are essential features of multi-principal ele-
ment alloys (MPEAs). Due to these features, nanoscale stacking fault energy (SFE) fluctuation is a natural
and independent contribution to strengthening MPEAs. However, existing models for conventional alloys
(i.e., alloys with one principal element) cannot be applied to MPEAs. The extreme values of SFEs required

by such models are unknown for MPEAs, which need to calculate the nanoscale volume relevant to the
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SFE fluctuation. In the present work, we developed an analytic model to evaluate the strengthening ef-
fect through the SFE fluctuation, profuse in MPEAs. The model has no adjustable parameters, and all
parameters can be determined from experiments and ab initio calculations. This model explains available
experimental observations and provides insightful guidance for designing new MPEAs based on the SFE
fluctuation. It generally applies to MPEAs in random states and with chemical short-range order.

© 2023 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science &

Technology.

1. Introduction

Energy fluctuations due to chemical randomness are profuse in
multi-principal element alloys (MPEAs), one group of extensively
studied alloys [1-9]. The observations of chemical short-range or-
der (CSRO) in MPEAs render their chemical disorder an interesting
topic [10-12]. Hitherto there is a lack of analytic models to quanti-
tatively evaluate the various contributions to the mechanical prop-
erties, such as the strengthening effect due to the stacking fault
energy (SFE) fluctuation in MPEAs.

The strengthening effect through SFE (yspg) has been investi-
gated for decades in conventional face-centered-cubic (fcc) alloys
(i.e., alloys with one principal element) [13,14]. Driven by thermo-
dynamics, solutes usually segregate at cores of partial dislocations
and the stacking faults (SFs). When dislocations move, they have
to escape from the trapping of these solutes, which increases the
energy cost to move dislocations and thus strengthens the alloys.
The solute-dislocation interaction is a key quantity in almost all
classic dislocation models. It consists of elastic and chemical inter-
actions between solutes and SFs. The chemical interaction is de-

* Corresponding author.
E-mail addresses: peizongrui@gmail.com, zp2137@nyu.edu (Z. Pei).

https://doi.org/10.1016/j.jmst.2023.01.042

scribed by a parameter espp = dIn(yspg)/dcs|c,—o (cs is the solute
concentration) [14,15]. This effect is attributed to the change of
SFE upon alloying, common in conventional alloys. In MPEAs, the
roles of solutes and solvents are not well defined for constituting
atoms, which makes it difficult to define espz for MPEAs. Nonethe-
less, the strengthening effect introduced by the change of the av-
eraged SFE can still be considered using density functional theory
(DFT), and multiscale models [16]. At the same time, another in-
dependent contribution to the yield stresses becomes more sig-
nificant, i.e., the strengthening through the nanoscale SFE fluctu-
ation. This feature is signified by the varying distances between
two Shockley partials and the curved dislocation lines [see Fig. 1
(a, b)]. Although some studies have shown SFE fluctuations play a
role in strengthening alloys [17,18], there is a lack of full models to
quantify the strengthening effect in MPEAs analytically.

The nanoscale SFE fluctuation finds its origin in the diverse in-
teratomic interactions. The multiple origins that lead to these fluc-
tuations, e.g., CSRO and lattice distortion, have been widely ac-
knowledged [5,10,19-21]. The CSRO effect on mechanical properties
recently has become one of the main foci in high-entropy solid so-
lutions (Fig. 1 (c)) [10,12,22-30]. This contribution may not be es-
sential for conventional alloys. The SFE fluctuation in such alloys is
usually weaker than in MPEAs, due to their less complex bond-
ing characters and fewer allowable configurations. Thus, in con-
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Fig. 1. Dislocations in multi-principal element alloys. (a) A dissociated dislocation with both Shockley partials visible under weak beam dark field scanning transmission
electron microscopy (WB DF STEM) in NiCoCr [24]; (b) The curved dislocation line is extracted from the STEM image for better visualization; (c) A curved dislocation in
NiCoCr with CSRO by molecular dynamics at 300K [8]. The CSRO of the nearest-neighbor Co-Cr pair acoc; is adopted to color the atoms. The green lines circle the slipped

areas.

ventional alloys, one of the main contributions to yielding is the
strengthening effect through the SFE difference caused by precipi-
tation [17,31,32].

It is not straightforward to determine the extreme values of the
SFE fluctuation in precipitate-free solid solutions. We will demon-
strate that the classic strengthening models are still useful, with
appropriate adjustments, once we can find the SFE distribution as
a function of the alloy system, temperature (it affects CSRO), etc.
Our theoretical framework consists of several models, including
two recently developed theories. The first theory is Pei’s statistical
method to evaluate the fluctuation of SFEs [21], which is based on
the third law of thermodynamics; the second one is the Varvenne
model that provides a pathway to calculate the relevant volume
for the SFE fluctuation [33]. It is worth mentioning the Varvenne
model is adopted only as a technique to calculate the volume and
the model framework is not used here and different from this
study. In this framework, the physically relevant volume is deter-
mined by a box whose three dimensions are at the nanoscale. The
fluctuation of SFE is naturally determined without any adjustable
parameters. The model is able to calculate the magnitude of the
strengthening effect through nanoscale energy fluctuations, and it
can help to understand the underlying physical mechanisms in ex-
perimental observations and provide guidance for alloy design.

2. Computational details

Spin-polarized and non-spin-polarized density functional the-
ory (DFT) [34,35] simulations are carried out using Vienna Ab-initio
Simulation Package (VASP) [36] to obtain the total energies for
the stacking fault energy (SFE) calculations. The generalized gradi-
ent approximation (GGA) parametrized by Perdew-Burke-Ernzerhof
(PBE) [37] is used to calculate the electronic exchange-correlation
interaction, and the Kohn-Sham equation is solved employing the
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projector augmented wave (PAW) method [38], where the Brillouin
zone is sampled using Monkhorst-Pack scheme [39]. The atomic
configurations of elements in the pseudo potentials used in our
calculations are Co [Ar]3d®4s!, Cr [Ar]3d°4s!, Ni [Ar]3d84s2, Mn
[Ar]3d®4s!, Fe[Ar]3d74s!, and V [Ne3s2|3p63d34s2. Supercells of 72
atoms are employed to calculate SFEs for Ni, VCoNi, NiCoCr, and
CoCrFeNiMn. The stacking fault is introduced by shifting the upper
half supercell along the Burgers vector of the Shockley partial dis-
location relative to the lower half. Once the lattice constants are
optimized, only the ionic positions are relaxed in the SFE calcu-
lations, the supercell shape and volume are fixed (ISIF=2). This is
sufficient since we are interested in the trend of SFE changes. The
relaxation stops when the energy difference between ionic steps is
smaller than 10~ eV. A plane wave cutoff of 350 eV and the k-
point meshes of 6 x 4 x 4 for Brillouin zone are used. An increase
of k-point meshes by 8 times (2 x 2 x 2), the change in total en-
ergy is less than 2 meV or 0.028 meV/atom.

The elastic constants and Burgers vectors for NiCoCr and CoCr-
FeNiMn are adopted from Ref. [33]. We obtained these parameters
for VCoNi from our DFT calculations based on a single-crystal su-
percell of 72 atoms, i.e., G = 77.7 GPa, b = 2.53 A; Poisson ratio v
is taken as 0.33, which is an average of the experimental values of
the pure elements. These numbers are in good agreement with the
experimentally measured values [40], i.e, G=72 GPa, b=2.55 A,
and Poisson ratio v = 0.33.

3. Model development and results
3.1. Strengthening model for the SFE fluctuation in MPEAs
The development of our model starts with the classic model

for alloy strengthening through the variance of averaged SFE. The
model was frequently mentioned in the literature, such as the
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seminal paper of Hirsch and Kelly [31]. It applies to the presence
of precipitates, by assuming the SFEs of precipitates and the ma-
trix are different. Here the SFEs of the matrix and the precipi-
tate particles are well defined. This is essentially different from
MPEAs, which is a single-phase solid solution. The SFE fluctuates
and varies locally, but the magnitude of this fluctuation is un-
known. Here we will generalize this approach to treat the effect
generated by the latter.

For a general stress state g, the force on a dislocation b is given
by the Peach-Koehler equation of F = (¢ -b) x s with b and s as
the Burgers vector and unit vector of the line direction. There are
force equilibrium equations both for the trailing and leading partial
dislocations. When SFE is positive, we have

_T+Vl+(”‘b‘)xs:0’ (1a)

12

K

— — 1+ (0-by) xs=0. (1b)
2

d
Here the constant K is A combination of elastic constants and
Burgers vector, i.e., K = %ff—“j where w, v are the shear modu-
lus and Poisson ratio, respectively. y1, y, are the SFEs experienced
by partials by, b,. Since the random solutes are not uniformly dis-
tributed, the associated energy fluctuation results in different SFEs
locally. The strengthening due to the SFE fluctuation is
_lo-(hi+b)lIxs y2—-n @)
B b b
Calculating the difference Ay =y; —y, is a statistical problem,
which requires knowledge about the distribution of SFE y around
its average y = .

It is not difficult to measure SFE y;, in experiment or calcu-
late it theoretically. For NiCoCr and some other MPEAs, y, =20-
30 mJ m~2 [20,41,42]. However, we know very little about its dis-
tribution, although its existence can be deduced indirectly from
molecular dynamics [8,33,43]. Thus, we assume a distribution for
y, and in view of the limited knowledge, a Gaussian distribution
N(y; vy, 03) is a natural choice with 0,} as the variance [see Fig. 2].
In the presence of precipitates and clustered ordering [10], the
strengthening is determined by the maximum Ay, i.e.,
_()7—}—0’),)—()_/—0‘},)_& 3)
= 5 =
In homogeneous solid solutions without clustered ordering, the av-
eraged t is more relevant, 7, =T = %fr(l)dl [see Fig. 2(c) for the
parameter definitions and the schematic]. We need to determine
the distribution of Ay to find 7.

Assuming N(y; ¥, 0}2) is known, one can easily find the
distribution ~ for Ay, ie, Ay ~N(Ay;y-y.00+0}) =
N(Ay:0, 203). Since there is a strengthening effect only
when Ay =y -y, >0, the SFE fluctuation actually fol-
lows a half-Gaussian distribution f(Ay), ie, f(Ay)=
N(Ay:;0, 205), Ay >0; f(Ay)=0,Ay <0. The expectation
of Ay is Ay =2 [f*N(Ay:0,20})AydAy = 2.0, and stan-
dard variance a)//z =2(1- 2/7{)0;. The average Ay fluctuates

-~ 0y +0)]. The relations

; s 2 ’
mainly within a range of [ﬁoy -0y, =
between these parameters are summarized in Table 1. Then we

have the following equation to calculate the strengthening effect,

Ty

Ty

- 1 20
e @
The above two cases can be combined as
20
Ty = COTV, (5)

where Cy = 1//m ~ 0.564 for random solid solutions and Cy =1
when clustered ordering is present. When CSRO forms, a fraction
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Table 1
Parameters for the distributions. The relations between these parameters provide a
pathway to accurately calculate them by DFT.

Quantity Distribution Expectation Variance

y Gaussian v (vo) o2

Vi—V2 Gaussian 0 20}

Y- >0 half-Gaussian 20, /VT 2(1-2/m)o}

of the total energy states is preferred over the others, for which
the Gaussian distribution can still hold approximately. Strong or-
dering (e.g., the formation of intermetallics) will even split it into
two separate Gaussian distributions with average SFEs y; and y».
As a consequence, 0}, becomes larger, and the strengthening effect
becomes stronger. Areas with strong CSRO are similar to precipi-
tates, where the clustered-ordering model applies (C; = 1). Com-
pared to the model for random solid solutions (Cy = 1//7), the
stronger strengthening effect can be attributed to CSRO. Therefore,
the strengthening effect of CSRO is reflected by both the constant
Co and the standard variance oy .

While it is not straightforward to measure or calculate the fluc-
tuation of y, we will find the physically relevant value for o, .

3.2. Energy fluctuation in MPEAs

We adopt and adjust a statistical theory developed by us to ap-
proximate o in the random state, which is needed to further de-
termine the strengthening effect of SFE fluctuations [21]. The the-
ory was originally developed to evaluate the magnitude of thermo-
dynamic fluctuation and is adopted here to construct a strengthen-
ing model. Generally, the standard deviation of energies for a sys-
tem is given by

o 1
E= Nm—1

where E; is the energy of configuration i out of the total Ny, con-
figurations. When Ny, is sufficiently large, the error bar is indepen-
dent of N, and becomes a constant that is not necessarily zero.
Assuming the number of configurations as a function of energy,
i.e,, the configurational density of states (DOS), follows a Gaussian
distribution N(E; g, o), we find

Z(Ei —(EN)? =/ (E2) — (E)°, (6)

(7)

lim € = O # 0.
Nm—+00
Here o is the standard variance of the entirety and g is the av-
erage energy (E). If the sample space is very limited (i.e., a small
system and large o), the energies have a large standard variance
that cannot be smaller than o.
It has been confirmed that the DOS g(E) indeed follows
a Gaussian distribution, such as in the theoretic studies of
NiCoCr [21,44], FeCo [2145] and CuZn [46]. When g(E) =

N(E;,uE,oE)=1/~/2n(oE/AE)2exp(—%), In[g(E)] must be
E

a parabolic function such as In[g(E)] = a(E — Erandom)® +b (a <
0,b > 0) with Engom = Me, @ =—1/202, b=—-1/2In2Qro?) +Cy
and Cy = In($2). Here  is the total number of configurations with
system size Ns and AE = Eqin — Erandom- The In(g(E)) of CuZn [46],
FeCo and NiCoCr [45] obtained using Wang-Landau Monte Carlo
method indeed have parabolic shapes. The exact In[g(E)] for finite
systems may be slightly affected by crystal structure, constitution
(chemical species, and the number of them N, and concentrations
{ci}), system’s geometric shape and size Ns.

According to the third law of thermodynamics, the lowest
energy E., corresponds to a unique and ordered state (when
spatially degenerate states are considered as one state), result-
ing in In(g(Ey;,)) =0. For an equiatomic N.-component sys-
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Fig. 2. Gaussian distribution for SFE and its corresponding half distribution. Since both y; and y; follow the same Gaussian distribution g(y) (a), their difference Ay is also
a Gaussian distribution albeit with a zero average and a different variance 2072. The physically meaningful distribution f(Ay) is a half-Gaussian distribution (b), because a
negative difference does not have the strengthening effect. (c) Schematic for evaluating the strengthening through SFE fluctuation.

. S , (AR InQ27 (0 /AE))

tem, this equation is equivalent to Ns = 207 In(N0) S ~
(AE)? —edui ; i .

202 In(Ne)” For a non-equiatomic system of concentrations {c;}, the

equation can be written as

AE
V2Nf (e’

where f({c;}) = — Y ;¢;iIn(c;). This equation is derived by Pei and
validated by the accurate Wang-Landau MC method [21]. Assum-
ing that the lattice parameters of the random and ordered states
are the same, we have similar relation for the fluctuation of SFE
oy. Thus, the energy fluctuation o is related to o}, by a constant,
i.e, the SF area A, which yields the SFE fluctuation o}, = og/A. The
assumption that SFE follows a Gaussian distribution is directly con-
firmed elsewhere using an empirical potential [47].

For one specific system, A, f({c;}) and AE are the same. Hence,
the standard deviations of different system sizes Ngi, N5, have
a simple relationship oy, = 0,1/Ns1/Ns2. This provides a useful

(8)
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method to calculate the SFE fluctuation from DFT,

| Npr
o, =0 —_
v v .DFT N

Eq. (9) is a special case of Eq. (8). Both Eq. (8) and Eq. (9) can
be used to evaluate o}, depending on the physical quantities that
are readily available for calculations. Note that we need to ran-
domly sample the system and not use special quasirandom struc-
tures(SQS) [48]. The SQS method picks the most random struc-
tures, which makes the sampling biased and o), ppr smaller than
its actual value. The averaged SFE and the SFE fluctuation o, prr
are calculated and plotted in Fig. 3 for the example of NiCoCr. Mul-
tiple random configurations for the calculations of one SFE, which
allows us to evaluate the average and variance of the SFE. The av-
eraged SFEs for NiCoCr become converged with a sufficiently large
number of calculations. One key message we utilize to develop our
method is that the standard variance depends on system size. The-
oretically, any sufficiently large system can be used to calculate the
standard variance [21], assisted by Eq. 9. When o, pfr is converged,

(9)
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Fig. 3. Dependence of the standard variance of SFEs on the number of calcula-
tions/configurations (NiCoCr). The standard deviation converges as the number of
calculations increases. The converged standard deviation is not an error bar but a
property that reflects the supercell size used in the calculations.

our model prediction will not be affected, which is confirmed in
Fig. 3 for the case of NiCoCr.

We can calculate a particular o from DFT but we do not know
the system size N (i.e., N5, in the above equation) that is relevant
to the actual SFE fluctuation. We need to determine a physically
relevant N or its volume size for the strengthening effect.

Volume size relevant to SFE fluctuation— One natural method to
determine N; is through a volume V, defined in Fig. 4, which is
basically the volume around one typical kink. Once we know the
volume, we can calculate the number of atoms that it includes by

dip

J3b b
where Ny is the number of (111) planes in which solutes con-
tribute significantly to the dislocation-solute interaction. The factor
2 comes from the number of atoms in the area +/3b x b. dy, is the
SF width, and & is the length of the straight dislocation segment,
which is equivalent to the critical length in Varvenne model deter-
mined by the variational principle [33].

From the classic dislocation theory, we know that the interac-
tion between solute and dislocation is nearsighted [49-52]. This
has been demonstrated by the predictive solute-solution strength-
ening model of Ma et al. [49] and the convergence test of Leyson
et al. [50] Nonetheless it will be shown later that the number of
layers perpendicular to the SF plane is not important, and we only
need to keep the chosen layers the same as the sampled layers in
DFT. The key parameter is the SF area that determines the num-
ber of atoms along the other two directions. The second term that
we need to know in the equation of V, is the SF width between
Shockley partials, which can be approximated by dj, = %’%%.
Here y; is the SFE at finite temperatures that can be determined
both from DFT calculations or experimentally.

The Varvenne model provides a variational method to approxi-
mate & (or N) [33]. The basic idea of the model is to find a bal-
ance between (i) the line tension I' of a dislocation that tends
to shorten its length and (ii) the solute-dislocation interaction
that tends to increase it. This results in a zigzag dislocation [see
Fig. 4(a)]. The key quantity is the relative total energy for a dislo-

cation
w? £ B

Ns 2N(]11) X (10)

AEi(§, W) = (11)

Rl=
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where AEP (w) is the energy associated with the solute-dislocation
interaction, which is a function of the glide distance w. Minimizing
AEwor (€, w) gives the critical length &:(wc)

1
2wt \*
Ec(We(d2)) <4J§ AR (Wc)> :
The involved parameters are illustrated in Fig. 4. It is worth men-
tioning that this analytical technique is just one of the possible
methods to calculate &. that appeared in Eq. (10). We can choose a
different method to evaluate the parameter. To avoid potential con-
fusion, we also want to point out that our model is not based on
the model of Varvenne et al.. Instead, the theoretical framework of
this work is based on the seminal paper of Hirsch and Kelly [31].
We follow the procedure described in Varvenne et al. [33] to ob-
tain &.. More technical details are referred to in this literature.

We use NiCoCr as an example to show the calculation of &.
After minimizing the total energy AEy: [see Fig. 5(a)], we can
determine the critical dislocation glide width w. and length &
(Fig. 5(b)). For NiCoCr, we find & is about 20-35 units of +/3b,
which is overall approximately 25 x+/3b. At a large SF width (or
low SFE), the critical length converges to 29 x+/3b. Similar criti-
cal lengths are obtained for VCoNi (26 x +/3b) and the Cantor alloy
(31 x +/3b) (see the supplementary material).

(12)

3.3. Full model and reduced model

The full model consists of a series of coupled equations through
the SFE y. A simplified version of these equations is

2Cyo
y == (13a)
Npfr AE
Oy =0y pFTy| —— O 0y = ——n— (13b)
R O S W N et
%-c dlz
N :2N —_— 13C
s ™ 55 h (13¢)
& =&c(dn); (13d)
Gb b 2+v
dlz(y)~7mm~ (13e)

As stated above, these equations correspond to (i) the newly
developed strengthening theory for SFE fluctuation; (ii) the energy
fluctuation theory [21] adjusted for SFE; (iii) the definition of the
physically relevant volume to SFE fluctuation; (iv) the Varvenne
model [33] and (v) Peierls-Nabarro model [54]. The strengthening
effect can be calculated following these equations without much
computational effort. The full model is complicated to apply due to
the coupling of these equations. For example, the number of atoms
Ns determines the distribution of SFE; while SFE (its average) is
also determined by Ns, leading to non-linear dependencies. These
equations need to be solved self-consistently. As a reasonable ap-
proximation, we can consider Ns as a constant that is determined
by the SFE at the experimental temperature y,. This removes some
of the couplings. For NiCoCr and some other MPEAs, ), =20-30 m]
mm~2 [20,41,42]. A value of 25m] m~2 can be adopted to estimate
the order of magnitude for strengthening through SFE fluctuation.

One of the key quantities to be firstly determined is Ns
2N(1]1) X % X dllj , with N(lﬂ) = 2. The critical length SC =20 -

35(x~/3b) (see Fig. 5(b) for NiCoCr and supplementary material
for VCoNi and CoCrFeNiMn). For a general discussion, we take
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d111) {

d12 (~8nm)

Fig. 4. Definition of the relevant region for the SFE fluctuation. (a) The geometric configuration of a typical dislocation in MPEAs, characterized by its critical glide distance
on the slip plane w, and critical segment of the length & that moves as a unit. (b) The supercell geometry for a dislocation segment. The energy fluctuation within the
supercell is relevant to the stacking fault strengthening. d(;11) is the distance between neighboring (111) planes, and dj;, is the SF width. For the three MPEAs considered

here, the larger two dimensions are about 8 nm and 10 nm.

Table 2

The strengthening effect through the SFE fluctuation at the nanoscale. The feature
length is of the order of 10nm. The SFE standard variance by DFT are calculated
with 30 configurations and in mJ m~2.

parameter NiCoCr VCoNi Cantor
y (mJ m-2) (298 K) 22 [42]  ~30([55] 30 [20]
Critical length, & (nm) 12.6 115 13.6
oprr (M) m~2) 72 86 88

o, (m] m~2) 5.0 8.1 7.1
oay (M) m2) 7.1 11.4 10.0
‘Ay (m] m2) 5.7 9.1 8.0

b (A) 2.51 2.56 2.54
7, (G = 1/4/) (MPa) 22.6 35.7 31.5
7,(Co = 1) (MPa) 40.0 63.3 55.7
Mty (G = 1/y/m) (MPa) 69 109 96
M, (G = 1) (MPa) 122 194 171
CSRO effect (theory) (MPa) @ 53 85 75
CSRO effect (experiment) (MPa) [10] ~50 - -

2 The CSRO effect is calculated by the difference Mz, (Co =1) — M1, (G =
1/J7).

& = 25+/3b. The SF width is estimated to be di, =4 — 40b, and
a representative value is 20b. Therefore, Ng ~ 2000.

For a typical ternary equiatomic alloy, f({¢}) =
> ¢iln(c;)=1.099 and usually AE € [0, 100] meV. For our general
discussion we take AE =50 meV. If we know AE for a system,
there is no need to perform DFT calculations to determine o;,. We

can choose to use oy = #}E‘({C}), A = 20b x 25+/3b = 500+/3b,
sf(ci

Ns =2000, so, o0, =14m] m—2. For these values, we find
7y (Co =1) =53 MPa, or 1, (G = 1//7) = 30 MPa. However, since
we usually do not know AE, DFT calculations are needed. Adopt-
ing DFT (Npfr = 24, details are presented in the supplementary
material) to calculate o1, we obtain 70-90 m] m~2 (see Table 2).

So, 0y =75,/24/2000=8.2 m] m~2, 7,(Cp=1) =2 x82/2.5 =
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65 MPa or 7, (Co =1/y/m) =2 x82/2.5x1/y/m = 37 MPa. Con-
sidering the Taylor factor M = 3.06, we can find its contribution to
the yield stresses is around 100 MPa.

3.4. Strengthening through the nanoscale SFE fluctuation in MPEAs

Assisted by the reduced model, the strengthening effects for
the three representative MPEAs are calculated at room temper-
ature (298K). The supercell size adopted in our DFT calculation
is 72 atoms. For each alloy, 30 configurations are calculated to
fully consider the randomness in a finite supercell, and guaran-
tee that the standard variance o, is converged [see supplemen-
tary material]. The number of atoms in the SF area is 12. There-
fore Npgr = 2 x 12=24. Following the equations in our model, the
strengthening effect can be quantitatively determined.

The results are shown in Table 2. The strengthening effect
through the SFE fluctuation is the most significant for VCoNi,
which is 194 MPa, followed by the Cantor alloy with 171 MPa.
These two alloys have comparable SFEs and opgr, but VCoNi has
a much lower shear modulus G resulting in a smaller SF width,
smaller N; and larger o, and Ay. The solute solution strength-
ening effects for several alloys were calculated by Varvenne et al.
[33] Compared to the solute solute strengthening effect without
SFE fluctuations, the SFE strengthening is not small but compara-
ble to the former.

4. Discussion

When SFE is positive and near zero, our model predicts a weak
strengthening effect through SFE fluctuation. Similarly, when SFE
becomes larger, this strengthening effect becomes more significant.
This predicted trend is consistent with that by the model of Var-
venne et al. [33] Note that the above conclusions are based on the
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Fig. 5. The strengthening effect through the SFE fluctuation at the nanoscale. Here we take NiCoCr as an example. (a) Minimizing the total energy AE:y to find the critical
glide width w, and critical length & (w.), for each dy,. (b) The critical length & (w.) as a function of SF width dj,. The critical length converges to a stable value of 12.6 nm
(29+/3b) at large d;,. The experimental half width of 1.23b is adopted for its Shockley partial dislocation [53]. (c) A schematic illustration for the strengthening through SFE
fluctuation. The random state of NiCoCr is illustrated. The key ingredients to calculate the strengthening effect are also demonstrated.

classic configuration of Shockley partial dislocations (Fig. 1(b)), i.e.,
Case O in Ref. [16]. The case for a negative SFE is more compli-
cated. When the two partials have a configuration as in Case O,
their distance is theoretically infinite but experimentally finite in
a non-equilibrium state. It can also be similar to that of the low
SFEs when the two partials have a configuration of Case C, i.e., the
two partials switch their positions. According to the mechanism of
Case C [16], the strengthening effect can still be significant. In our
method, the grain-size effect is not considered. Instead, we assume
grains have sizes larger than the characteristic length of our model,
which is of the order of 10nm. When grain sizes are smaller than
the dimension of the relevant volume in Fig. 4, the smaller num-
bers need to be adopted.

The SFE distribution N(y) is also a function of the tempera-
ture. At low temperatures, CSRO may be present. The bonding pref-
erence of different chemical species promotes the SFE fluctuation
and CSRO. However, no matter whether CSRO appears in a solid
solution or not, the SFE fluctuation always contributes to solid-
solution strengthening (Eq. (5)). CSRO in MPEAs has received sub-
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stantial attention recently [10,12]. Fortunately, when CSRO exists,
the SFE still follows the Gaussian distribution [44]. Hence, its effect
can also be studied straightforwardly by the new model, assisted
by affordable DFT calculations. The work of Zhang et al. shows a
CSRO effect of about 50 MPa in the yield stress [10], which is com-
parable to our prediction of 53 MPa. It is worth mentioning that
what our model predicts is one critical part of the total CSRO ef-
fects on the yield stress. CSRO can also affect the yielding of alloys
through other contributions, such as lattice friction, solid-solution
strengthening, and collaborative dislocation behaviors [10,56,57].
In addition, the important contribution to yield stress from lattice
distortion has been addressed by other models [33,58], which are
not discussed here. Since the model is based on the fluctuation of
the stacking fault energy, when the full dislocation is dominant,
the model is not applicable.

One unique feature of the new analytical model developed here
is that it has no adjustable parameters. The model parameters can
be determined either theoretically or experimentally. This model
explains available experimental observations and provides insight-
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ful guidance for the design of new MPEAs. Therefore it represents
a significant advance in this direction.

5. Conclusions

MPEAs have received extensive attention due to their excel-
lent mechanical properties. An essential feature of MPEAs is their
chemical randomness associated with CSRO at the nanoscale. The
CSRO and its impact on the mechanical properties of MPEAs have
also received extensive attention. Its strengthening effect can be
evaluated through the nanoscale SFE fluctuation within ~10nm
along the dislocation line. However, existing theories for conven-
tional alloys cannot be used to quantify this strengthening effect
in MPEAs, since such models [e.g., the Hirsch and Kelly model] re-
quire the unknown extreme values of SFE. We have developed an
analytic model to quantify the strengthening effect in solid solu-
tions due to this energy fluctuation. The model without adjustable
parameters is generally applicable to solid solutions with various
degrees of order, from random to short-range ordering states. It
provides a pathway to tune the yield stress by increasing SFE fluc-
tuations. It shows chemically very different atoms (such as these in
VCoN:i) offer a more significant fluctuation than similar ones (NiC-
oCr). Also, more principal elements tend to promote fluctuations.
Our theory also shows that non-equiatomic systems have smaller
configurational entropy and stronger fluctuations. These conclu-
sions drawn from our model provide helpful guidance for the de-
sign of MPEAs through CSRO and, essentially, SFE fluctuations.
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