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a b s t r a c t 

Chemical randomness and the associated energy fluctuation are essential features of multi-principal ele- 

ment alloys (MPEAs). Due to these features, nanoscale stacking fault energy (SFE) fluctuation is a natural 

and independent contribution to strengthening MPEAs. However, existing models for conventional alloys 

(i.e., alloys with one principal element) cannot be applied to MPEAs. The extreme values of SFEs required 

by such models are unknown for MPEAs, which need to calculate the nanoscale volume relevant to the 

SFE fluctuation. In the present work, we developed an analytic model to evaluate the strengthening ef- 

fect through the SFE fluctuation, profuse in MPEAs. The model has no adjustable parameters, and all 

parameters can be determined from experiments and ab initio calculations. This model explains available 

experimental observations and provides insightful guidance for designing new MPEAs based on the SFE 

fluctuation. It generally applies to MPEAs in random states and with chemical short-range order. 

© 2023 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & 

Technology. 

1. Introduction 

Energy fluctuations due to chemical randomness are profuse in 

multi-principal element alloys (MPEAs), one group of extensively 

studied alloys [1–9] . The observations of chemical short-range or- 

der (CSRO) in MPEAs render their chemical disorder an interesting 

topic [10–12] . Hitherto there is a lack of analytic models to quanti- 

tatively evaluate the various contributions to the mechanical prop- 

erties, such as the strengthening effect due to the stacking fault 

energy (SFE) fluctuation in MPEAs. 

The strengthening effect through SFE ( γSFE ) has been investi- 

gated for decades in conventional face-centered-cubic (fcc) alloys 

(i.e., alloys with one principal element) [13,14] . Driven by thermo- 

dynamics, solutes usually segregate at cores of partial dislocations 

and the stacking faults (SFs). When dislocations move, they have 

to escape from the trapping of these solutes, which increases the 

energy cost to move dislocations and thus strengthens the alloys. 

The solute-dislocation interaction is a key quantity in almost all 

classic dislocation models. It consists of elastic and chemical inter- 

actions between solutes and SFs. The chemical interaction is de- 

∗ Corresponding author. 

E-mail addresses: peizongrui@gmail.com , zp2137@nyu.edu (Z. Pei) . 

scribed by a parameter εSFE = d ln (γSFE ) / d c s | c s =0 ( c s is the solute 

concentration) [14,15] . This effect is attributed to the change of 

SFE upon alloying, common in conventional alloys. In MPEAs, the 

roles of solutes and solvents are not well defined for constituting 

atoms, which makes it difficult to define εSFE for MPEAs. Nonethe- 

less, the strengthening effect introduced by the change of the av- 

eraged SFE can still be considered using density functional theory 

(DFT), and multiscale models [16] . At the same time, another in- 

dependent contribution to the yield stresses becomes more sig- 

nificant, i.e., the strengthening through the nanoscale SFE fluctu- 

ation. This feature is signified by the varying distances between 

two Shockley partials and the curved dislocation lines [see Fig. 1 

(a, b)]. Although some studies have shown SFE fluctuations play a 

role in strengthening alloys [17,18] , there is a lack of full models to 

quantify the strengthening effect in MPEAs analytically. 

The nanoscale SFE fluctuation finds its origin in the diverse in- 

teratomic interactions. The multiple origins that lead to these fluc- 

tuations, e.g., CSRO and lattice distortion, have been widely ac- 

knowledged [5,10,19–21] . The CSRO effect on mechanical properties 

recently has become one of the main foci in high-entropy solid so- 

lutions ( Fig. 1 (c)) [10,12,22–30] . This contribution may not be es- 

sential for conventional alloys. The SFE fluctuation in such alloys is 

usually weaker than in MPEAs, due to their less complex bond- 

ing characters and fewer allowable configurations. Thus, in con- 
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Fig. 1. Dislocations in multi-principal element alloys. (a) A dissociated dislocation with both Shockley partials visible under weak beam dark field scanning transmission 

electron microscopy (WB DF STEM) in NiCoCr [24] ; (b) The curved dislocation line is extracted from the STEM image for better visualization; (c) A curved dislocation in 

NiCoCr with CSRO by molecular dynamics at 300K [8] . The CSRO of the nearest-neighbor Co-Cr pair αCoCr is adopted to color the atoms. The green lines circle the slipped 

areas. 

ventional alloys, one of the main contributions to yielding is the 

strengthening effect through the SFE difference caused by precipi- 

tation [17,31,32] . 

It is not straightforward to determine the extreme values of the 

SFE fluctuation in precipitate-free solid solutions. We will demon- 

strate that the classic strengthening models are still useful, with 

appropriate adjustments, once we can find the SFE distribution as 

a function of the alloy system, temperature (it affects CSRO), etc. 

Our theoretical framework consists of several models, including 

two recently developed theories. The first theory is Pei’s statistical 

method to evaluate the fluctuation of SFEs [21] , which is based on 

the third law of thermodynamics; the second one is the Varvenne 

model that provides a pathway to calculate the relevant volume 

for the SFE fluctuation [33] . It is worth mentioning the Varvenne 

model is adopted only as a technique to calculate the volume and 

the model framework is not used here and different from this 

study. In this framework, the physically relevant volume is deter- 

mined by a box whose three dimensions are at the nanoscale. The 

fluctuation of SFE is naturally determined without any adjustable 

parameters. The model is able to calculate the magnitude of the 

strengthening effect through nanoscale energy fluctuations, and it 

can help to understand the underlying physical mechanisms in ex- 

perimental observations and provide guidance for alloy design. 

2. Computational details 

Spin-polarized and non-spin-polarized density functional the- 

ory (DFT) [34,35] simulations are carried out using Vienna Ab-initio 

Simulation Package (VASP) [36] to obtain the total energies for 

the stacking fault energy (SFE) calculations. The generalized gradi- 

ent approximation (GGA) parametrized by Perdew-Burke-Ernzerhof 

(PBE) [37] is used to calculate the electronic exchange-correlation 

interaction, and the Kohn-Sham equation is solved employing the 

projector augmented wave (PAW) method [38] , where the Brillouin 

zone is sampled using Monkhorst-Pack scheme [39] . The atomic 

configurations of elements in the pseudo potentials used in our 

calculations are Co [Ar]3d 8 4s 1 , Cr [Ar]3d 5 4s 1 , Ni [Ar]3d 8 4s 2 , Mn 

[Ar]3d 6 4s 1 , Fe[Ar]3d 7 4s 1 , and V [Ne3s 2 ]3p 6 3d 3 4s 2 . Supercells of 72 

atoms are employed to calculate SFEs for Ni, VCoNi, NiCoCr, and 

CoCrFeNiMn. The stacking fault is introduced by shifting the upper 

half supercell along the Burgers vector of the Shockley partial dis- 

location relative to the lower half. Once the lattice constants are 

optimized, only the ionic positions are relaxed in the SFE calcu- 

lations, the supercell shape and volume are fixed (ISIF = 2). This is 

sufficient since we are interested in the trend of SFE changes. The 

relaxation stops when the energy difference between ionic steps is 

smaller than 10 −4 eV. A plane wave cutoff of 350 eV and the k- 

point meshes of 6 × 4 × 4 for Brillouin zone are used. An increase 

of k -point meshes by 8 times ( 2 × 2 × 2 ), the change in total en- 

ergy is less than 2 meV or 0.028 meV/atom. 

The elastic constants and Burgers vectors for NiCoCr and CoCr- 

FeNiMn are adopted from Ref. [33] . We obtained these parameters 

for VCoNi from our DFT calculations based on a single-crystal su- 

percell of 72 atoms, i.e., G = 77 . 7 GPa, b = 2 . 53 Å; Poisson ratio ν
is taken as 0.33, which is an average of the experimental values of 

the pure elements. These numbers are in good agreement with the 

experimentally measured values [40] , i.e., G = 72 GPa, b = 2 . 55 Å, 

and Poisson ratio ν = 0 . 33 . 

3. Model development and results 

3.1. Strengthening model for the SFE fluctuation in MPEAs 

The development of our model starts with the classic model 

for alloy strengthening through the variance of averaged SFE. The 

model was frequently mentioned in the literature, such as the 
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seminal paper of Hirsch and Kelly [31] . It applies to the presence 

of precipitates, by assuming the SFEs of precipitates and the ma- 

trix are different. Here the SFEs of the matrix and the precipi- 

tate particles are well defined. This is essentially different from 

MPEAs, which is a single-phase solid solution. The SFE fluctuates 

and varies locally, but the magnitude of this fluctuation is un- 

known. Here we will generalize this approach to treat the effect 

generated by the latter. 

For a general stress state σ , the force on a dislocation b is given 

by the Peach-Koehler equation of F = (σ · b) × s with b and s as 

the Burgers vector and unit vector of the line direction. There are 

force equilibrium equations both for the trailing and leading partial 

dislocations. When SFE is positive, we have 

−
K 

d 12 
+ γ1 + (σ · b 1 ) × s = 0 , (1a) 

K 

d 12 
− γ2 + (σ · b 2 ) × s = 0 . (1b) 

Here the constant K is a combination of elastic constants and 

Burgers vector, i.e., K = 
μb 2 

24 π
2+ ν
1 −ν , where μ, ν are the shear modu- 

lus and Poisson ratio, respectively. γ1 , γ2 are the SFEs experienced 

by partials b 1 , b 2 . Since the random solutes are not uniformly dis- 

tributed, the associated energy fluctuation results in different SFEs 

locally. The strengthening due to the SFE fluctuation is 

τγ = 
[ σ · (b 1 + b 2 )] × s 

b 
= 

γ2 − γ1 

b 
. (2) 

Calculating the difference �γ = γ1 − γ2 is a statistical problem, 

which requires knowledge about the distribution of SFE γ around 

its average γ̄ = γ0 . 

It is not difficult to measure SFE γ0 in experiment or calcu- 

late it theoretically. For NiCoCr and some other MPEAs, γ0 = 20–

30 mJ m −2 [20,41,42] . However, we know very little about its dis- 

tribution, although its existence can be deduced indirectly from 

molecular dynamics [8,33,43] . Thus, we assume a distribution for 

γ , and in view of the limited knowledge, a Gaussian distribution 

N(γ ; γ̄ , σ 2 
γ ) is a natural choice with σ 2 

γ as the variance [see Fig. 2 ]. 

In the presence of precipitates and clustered ordering [10] , the 

strengthening is determined by the maximum �γ , i.e., 

τγ = 
( ̄γ + σγ ) − ( ̄γ − σγ ) 

b 
= 

2 σγ

b 
. (3) 

In homogeneous solid solutions without clustered ordering, the av- 

eraged τ is more relevant, τγ = τ = 
1 
L 

∫ 
τ (l )d l [see Fig. 2 (c) for the 

parameter definitions and the schematic]. We need to determine 

the distribution of �γ to find τ̄ . 
Assuming N(γ ; γ̄ , σ 2 

γ ) is known, one can easily find the 

distribution for �γ , i.e., �γ ∼ N(�γ ; γ̄ − γ̄ , σ 2 
γ + σ 2 

γ ) = 

N(�γ ;0 , 2 σ 2 
γ ) . Since there is a strengthening effect only 

when �γ = γ1 − γ2 > 0 , the SFE fluctuation actually fol- 

lows a half-Gaussian distribution f (�γ ) , i.e., f (�γ ) = 

N(�γ ;0 , 2 σ 2 
γ ) , �γ > 0 ; f (�γ ) = 0 , �γ ≤ 0 . The expectation 

of �γ is �γ = 2 
∫ + ∞ 
0 N(�γ ;0 , 2 σ 2 

γ )�γ d�γ = 
2 √ 
π
σγ and stan- 

dard variance σ ′ 2 
γ = 2(1 − 2 /π ) σ 2 

γ . The average �γ fluctuates 

mainly within a range of [ 2 √ 
π
σγ − σ ′ 

γ , 2 √ 
π
σγ + σ ′ 

γ ] . The relations 

between these parameters are summarized in Table 1 . Then we 

have the following equation to calculate the strengthening effect, 

τγ = 
γ1 − γ2 

b 
= 

1 
√ 

π

2 σγ

b 
. (4) 

The above two cases can be combined as 

τγ = C 0 
2 σγ

b 
, (5) 

where C 0 = 1 / 
√ 

π ≈ 0 . 564 for random solid solutions and C 0 = 1 

when clustered ordering is present. When CSRO forms, a fraction 

Table 1 

Parameters for the distributions. The relations between these parameters provide a 

pathway to accurately calculate them by DFT. 

Quantity Distribution Expectation Variance 

γ Gaussian γ̄ ( γ0 ) σ 2 
γ

γ1 − γ2 Gaussian 0 2 σ 2 
γ

γ1 − γ2 ≥ 0 half-Gaussian 2 σγ / 
√ 

π 2(1 − 2 /π ) σ 2 
γ

of the total energy states is preferred over the others, for which 

the Gaussian distribution can still hold approximately. Strong or- 

dering (e.g., the formation of intermetallics) will even split it into 

two separate Gaussian distributions with average SFEs γ1 and γ2 . 

As a consequence, σγ becomes larger, and the strengthening effect 

becomes stronger. Areas with strong CSRO are similar to precipi- 

tates, where the clustered-ordering model applies ( C 0 = 1 ). Com- 

pared to the model for random solid solutions ( C 0 = 1 / 
√ 

π ), the 

stronger strengthening effect can be attributed to CSRO. Therefore, 

the strengthening effect of CSRO is reflected by both the constant 

C 0 and the standard variance σγ . 

While it is not straightforward to measure or calculate the fluc- 

tuation of γ , we will find the physically relevant value for σγ . 

3.2. Energy fluctuation in MPEAs 

We adopt and adjust a statistical theory developed by us to ap- 

proximate σγ in the random state, which is needed to further de- 

termine the strengthening effect of SFE fluctuations [21] . The the- 

ory was originally developed to evaluate the magnitude of thermo- 

dynamic fluctuation and is adopted here to construct a strengthen- 

ing model. Generally, the standard deviation of energies for a sys- 

tem is given by 

εE = 

√ 

1 

N m − 1 

∑ 

i 

( E i − 〈 E i 〉 ) 2 = 

√ 

〈 E 2 
i 
〉 − 〈 E i 〉 2 , (6) 

where E i is the energy of configuration i out of the total N m con- 

figurations. When N m is sufficiently large, the error bar is indepen- 

dent of N m and becomes a constant that is not necessarily zero. 

Assuming the number of configurations as a function of energy, 

i.e., the configurational density of states (DOS), follows a Gaussian 

distribution N(E;μE , σE ) , we find 

lim 
N m → + ∞ 

εE = σE 
 = 0 . (7) 

Here σE is the standard variance of the entirety and μE is the av- 

erage energy 〈 E〉 . If the sample space is very limited (i.e., a small 

system and large σE ), the energies have a large standard variance 

that cannot be smaller than σE . 

It has been confirmed that the DOS g(E) indeed follows 

a Gaussian distribution, such as in the theoretic studies of 

NiCoCr [21,44] , FeCo [21,45] and CuZn [46] . When g(E) = 

N(E;μE ,σE ) = 1 / 
√ 

2 π (σE / �E) 2 exp (− (E−μE ) 
2 

2 σ 2 
E 

) , ln [ g(E)] must be 

a parabolic function such as ln [ g(E)] = a (E − E random ) 
2 + b (a < 

0 , b > 0) with E random = μE , a = −1 / 2 σ 2 , b = −1 / 2 ln (2 πσ 2 ) + C 0 
and C 0 = ln (
) . Here 
 is the total number of configurations with 

system size N s and �E = E min − E random . The ln (g(E)) of CuZn [46] , 

FeCo and NiCoCr [45] obtained using Wang-Landau Monte Carlo 

method indeed have parabolic shapes. The exact ln [ g(E)] for finite 

systems may be slightly affected by crystal structure, constitution 

(chemical species, and the number of them N c , and concentrations 

{ c i } ), system’s geometric shape and size N s . 

According to the third law of thermodynamics, the lowest 

energy E min corresponds to a unique and ordered state (when 

spatially degenerate states are considered as one state), result- 

ing in ln (g(E min )) = 0 . For an equiatomic N c -component sys- 
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Fig. 2. Gaussian distribution for SFE and its corresponding half distribution. Since both γ1 and γ2 follow the same Gaussian distribution g(γ ) (a), their difference �γ is also 

a Gaussian distribution albeit with a zero average and a different variance 2 σ 2 
γ . The physically meaningful distribution f (�γ ) is a half-Gaussian distribution (b), because a 

negative difference does not have the strengthening effect. (c) Schematic for evaluating the strengthening through SFE fluctuation. 

tem, this equation is equivalent to N s = 
(�E) 2 

2 σ 2 
E ln (N c ) 

+ 
ln (2 π (σE / �E) 2 ) 

2 ln (N c ) 
≈

(�E) 2 

2 σ 2 
E ln (N c ) 

. For a non-equiatomic system of concentrations { c i } , the 
equation can be written as 

σE = 
�E 

√ 

2 N s f ( { c i } ) 
, (8) 

where f ({ c i } ) = −
∑ 

i c i ln (c i ) . This equation is derived by Pei and 

validated by the accurate Wang-Landau MC method [21] . Assum- 

ing that the lattice parameters of the random and ordered states 

are the same, we have similar relation for the fluctuation of SFE 

σγ . Thus, the energy fluctuation σE is related to σγ by a constant, 

i.e., the SF area A , which yields the SFE fluctuation σγ = σE /A . The 

assumption that SFE follows a Gaussian distribution is directly con- 

firmed elsewhere using an empirical potential [47] . 

For one specific system, A , f ({ c i } ) and �E are the same. Hence, 

the standard deviations of different system sizes N s 1 , N s 2 have 

a simple relationship σγ 2 = σγ 1 

√ 
N s 1 /N s 2 . This provides a useful 

method to calculate the SFE fluctuation from DFT, 

σγ = σγ , DFT 

√ 

N DFT 

N s 
. (9) 

Eq. (9) is a special case of Eq. (8) . Both Eq. (8) and Eq. (9) can 

be used to evaluate σγ , depending on the physical quantities that 

are readily available for calculations. Note that we need to ran- 

domly sample the system and not use special quasirandom struc- 

tures(SQS) [ 48 ]. The SQS method picks the most random struc- 

tures, which makes the sampling biased and σγ , DFT smaller than 

its actual value . The averaged SFE and the SFE fluctuation σγ , DFT 

are calculated and plotted in Fig. 3 for the example of NiCoCr. Mul- 

tiple random configurations for the calculations of one SFE, which 

allows us to evaluate the average and variance of the SFE. The av- 

eraged SFEs for NiCoCr become converged with a sufficiently large 

number of calculations. One key message we utilize to develop our 

method is that the standard variance depends on system size. The- 

oretically, any sufficiently large system can be used to calculate the 

standard variance [21] , assisted by Eq. 9 . When σγ , DFT is converged, 
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Fig. 3. Dependence of the standard variance of SFEs on the number of calcula- 

tions/configurations (NiCoCr). The standard deviation converges as the number of 

calculations increases. The converged standard deviation is not an error bar but a 

property that reflects the supercell size used in the calculations. 

our model prediction will not be affected, which is confirmed in 

Fig. 3 for the case of NiCoCr. 

We can calculate a particular σ from DFT but we do not know 

the system size N (i.e., N s, 2 in the above equation) that is relevant 

to the actual SFE fluctuation. We need to determine a physically 

relevant N s or its volume size for the strengthening effect. 

Volume size relevant to SFE fluctuation— One natural method to 

determine N s is through a volume V a defined in Fig. 4 , which is 

basically the volume around one typical kink. Once we know the 

volume, we can calculate the number of atoms that it includes by 

N s = 2 N ( 111 ) ×
ξc √ 
3 b 

×
d 12 
b 

, (10) 

where N (111) is the number of (111) planes in which solutes con- 

tribute significantly to the dislocation-solute interaction. The factor 

2 comes from the number of atoms in the area 
√ 
3 b × b. d 12 is the 

SF width, and ξc is the length of the straight dislocation segment, 

which is equivalent to the critical length in Varvenne model deter- 

mined by the variational principle [33] . 

From the classic dislocation theory, we know that the interac- 

tion between solute and dislocation is nearsighted [49–52] . This 

has been demonstrated by the predictive solute-solution strength- 

ening model of Ma et al. [49] and the convergence test of Leyson 

et al. [50] Nonetheless it will be shown later that the number of 

layers perpendicular to the SF plane is not important, and we only 

need to keep the chosen layers the same as the sampled layers in 

DFT . The key parameter is the SF area that determines the num- 

ber of atoms along the other two directions. The second term that 

we need to know in the equation of V a is the SF width between 

Shockley partials, which can be approximated by d 12 = 
Gb 
γ0 

b 
24 π

2+ ν
1 −ν . 

Here γ0 is the SFE at finite temperatures that can be determined 

both from DFT calculations or experimentally. 

The Varvenne model provides a variational method to approxi- 

mate ξc (or N) [33] . The basic idea of the model is to find a bal- 

ance between (i) the line tension � of a dislocation that tends 

to shorten its length and (ii) the solute-dislocation interaction 

that tends to increase it. This results in a zigzag dislocation [see 

Fig. 4 (a)]. The key quantity is the relative total energy for a dislo- 

cation 

�E tot ( ξ , w ) = 

[ 

�
w 2 

2 ξ
−

(

ξ
√ 
3 b 

)
1 
2 

� ˜ E p ( w ) 

] 
(

L 

2 ξ

)

, (11) 

where � ˜ E p (w ) is the energy associated with the solute-dislocation 

interaction, which is a function of the glide distance w . Minimizing 

�E tot (ξ , w ) gives the critical length ξc (w c ) 

ξc ( w c ( d 12 ) ) = 

(

4 
√ 
3 

�2 w 4 c b 

� ˜ E 2 p ( w c ) 

)
1 
3 

. (12) 

The involved parameters are illustrated in Fig. 4 . It is worth men- 

tioning that this analytical technique is just one of the possible 

methods to calculate ξc that appeared in Eq. (10) . We can choose a 

different method to evaluate the parameter. To avoid potential con- 

fusion, we also want to point out that our model is not based on 

the model of Varvenne et al.. Instead, the theoretical framework of 

this work is based on the seminal paper of Hirsch and Kelly [31] . 

We follow the procedure described in Varvenne et al. [33] to ob- 

tain ξc . More technical details are referred to in this literature. 

We use NiCoCr as an example to show the calculation of ξc . 
After minimizing the total energy �E tot [see Fig. 5 (a)], we can 

determine the critical dislocation glide width w c and length ξc 
( Fig. 5 (b)). For NiCoCr, we find ξc is about 20–35 units of 

√ 
3 b, 

which is overall approximately 25 ×
√ 
3 b. At a large SF width (or 

low SFE), the critical length converges to 29 ×
√ 
3 b. Similar criti- 

cal lengths are obtained for VCoNi ( 26 ×
√ 
3 b) and the Cantor alloy 

( 31 ×
√ 
3 b) (see the supplementary material). 

3.3. Full model and reduced model 

The full model consists of a series of coupled equations through 

the SFE γ . A simplified version of these equations is 

τγ = 
2 C 0 σγ

b 
; (13a) 

σγ = σγ , DFT 

√ 

N DFT 

N s 
or σγ = 

�E 

A 
√ 

2 N s f ( { c i } ) 
; (13b) 

N s = 2 N ( 111 ) 
ξc √ 
3 b 

d 12 
b 

; (13c) 

ξc = ξc ( d 12 ) ; (13d) 

d 12 (γ ) ≈
Gb 

γ

b 

24 π

2 + ν

1 − ν
. (13e) 

As stated above, these equations correspond to (i) the newly 

developed strengthening theory for SFE fluctuation; (ii) the energy 

fluctuation theory [21] adjusted for SFE; (iii) the definition of the 

physically relevant volume to SFE fluctuation; (iv) the Varvenne 

model [33] and (v) Peierls-Nabarro model [54] . The strengthening 

effect can be calculated following these equations without much 

computational effort. The full model is complicated to apply due to 

the coupling of these equations. For example, the number of atoms 

N s determines the distribution of SFE; while SFE (its average) is 

also determined by N s , leading to non-linear dependencies. These 

equations need to be solved self-consistently. As a reasonable ap- 

proximation, we can consider N s as a constant that is determined 

by the SFE at the experimental temperature γ0 . This removes some 

of the couplings. For NiCoCr and some other MPEAs, γ0 = 20–30 mJ 

m m −2 [20,41,42] . A value of 25mJ m −2 can be adopted to estimate 

the order of magnitude for strengthening through SFE fluctuation. 

One of the key quantities to be firstly determined is N s = 

2 N (111) ×
ξc √ 
3 b 

× d 12 
b 
, with N (111) = 2 . The critical length ξc = 20 −

35(×
√ 
3 b) (see Fig. 5 (b) for NiCoCr and supplementary material 

for VCoNi and CoCrFeNiMn). For a general discussion, we take 
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Fig. 4. Definition of the relevant region for the SFE fluctuation. (a) The geometric configuration of a typical dislocation in MPEAs, characterized by its critical glide distance 

on the slip plane w c and critical segment of the length ξc that moves as a unit. (b) The supercell geometry for a dislocation segment. The energy fluctuation within the 

supercell is relevant to the stacking fault strengthening. d (111) is the distance between neighboring (111) planes, and d 12 is the SF width. For the three MPEAs considered 

here, the larger two dimensions are about 8 nm and 10 nm. 

Table 2 

The strengthening effect through the SFE fluctuation at the nanoscale. The feature 

length is of the order of 10nm. The SFE standard variance by DFT are calculated 

with 30 configurations and in mJ m −2 . 

parameter NiCoCr VCoNi Cantor 

γ (mJ m −2 ) (298 K) 22 [42] ∼30 [55] 30 [20] 

Critical length, ξc (nm) 12.6 11.5 13.6 

σDFT (mJ m −2 ) 72 86 88 

σγ (mJ m −2 ) 5.0 8.1 7.1 

σ�γ (mJ m −2 ) 7.1 11.4 10.0 

�γ (mJ m −2 ) 5.7 9.1 8.0 

b ( ̊A) 2.51 2.56 2.54 

τγ (C 0 = 1 / 
√ 

π ) (MPa) 22.6 35.7 31.5 

τγ (C 0 = 1) (MPa) 40.0 63.3 55.7 

Mτγ (C 0 = 1 / 
√ 

π ) (MPa) 69 109 96 

Mτγ (C 0 = 1) (MPa) 122 194 171 

CSRO effect (theory) (MPa) a 53 85 75 

CSRO effect (experiment) (MPa) [10] ∼50 - - 

a The CSRO effect is calculated by the difference Mτγ (C 0 = 1) − Mτγ (C 0 = 

1 / 
√ 

π ) . 

ξc = 25 
√ 
3 b. The SF width is estimated to be d 12 = 4 − 40 b, and 

a representative value is 20 b. Therefore, N s ≈ 20 0 0 . 

For a typical ternary equiatomic alloy, f ({ c i } ) = 
∑ 

i c i ln (c i ) = 1.099 and usually �E ∈ [0, 100] meV. For our general 

discussion we take �E = 50 meV. If we know �E for a system, 

there is no need to perform DFT calculations to determine σγ . We 

can choose to use σγ = 
�E 

A 
√ 

2 N s f ({ c i } ) 
, A = 20 b × 25 

√ 
3 b = 500 

√ 
3 b 2 , 

N s = 20 0 0 , so, σγ = 14 mJ m −2 . For these values, we find 

τγ (C 0 = 1) = 53 MPa, or τγ (C 0 = 1 / 
√ 

π ) = 30 MPa. However, since 

we usually do not know �E, DFT calculations are needed. Adopt- 

ing DFT ( N DFT = 24 , details are presented in the supplementary 

material) to calculate σγ 1 , we obtain 70–90 mJ m −2 (see Table 2 ). 

So, σγ = 75 
√ 
24 / 20 0 0 = 8 . 2 mJ m −2 . τγ (C 0 = 1) = 2 × 8 . 2 / 2 . 5 = 

65 MPa or τγ (C 0 = 1 / 
√ 

π ) = 2 × 8 . 2 / 2 . 5 × 1 / 
√ 

π = 37 MPa. Con- 

sidering the Taylor factor M = 3 . 06 , we can find its contribution to 

the yield stresses is around 100 MPa. 

3.4. Strengthening through the nanoscale SFE fluctuation in MPEAs 

Assisted by the reduced model, the strengthening effects for 

the three representative MPEAs are calculated at room temper- 

ature (298K). The supercell size adopted in our DFT calculation 

is 72 atoms. For each alloy, 30 configurations are calculated to 

fully consider the randomness in a finite supercell, and guaran- 

tee that the standard variance σγ is converged [see supplemen- 

tary material]. The number of atoms in the SF area is 12. There- 

fore N DFT = 2 × 12 = 24. Following the equations in our model, the 

strengthening effect can be quantitatively determined. 

The results are shown in Table 2 . The strengthening effect 

through the SFE fluctuation is the most significant for VCoNi, 

which is 194 MPa, followed by the Cantor alloy with 171 MPa. 

These two alloys have comparable SFEs and σDFT , but VCoNi has 

a much lower shear modulus G resulting in a smaller SF width, 

smaller N s and larger σγ and �γ . The solute solution strength- 

ening effects for several alloys were calculated by Varvenne et al. 

[33] Compared to the solute solute strengthening effect without 

SFE fluctuations, the SFE strengthening is not small but compara- 

ble to the former. 

4. Discussion 

When SFE is positive and near zero, our model predicts a weak 

strengthening effect through SFE fluctuation. Similarly, when SFE 

becomes larger, this strengthening effect becomes more significant. 

This predicted trend is consistent with that by the model of Var- 

venne et al. [33] Note that the above conclusions are based on the 
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Fig. 5. The strengthening effect through the SFE fluctuation at the nanoscale. Here we take NiCoCr as an example. (a) Minimizing the total energy �E tot to find the critical 

glide width w c and critical length ξc (w c ) , for each d 12 . (b) The critical length ξc (w c ) as a function of SF width d 12 . The critical length converges to a stable value of 12.6 nm 

( 29 
√ 
3 b) at large d 12 . The experimental half width of 1 . 23 b is adopted for its Shockley partial dislocation [53] . (c) A schematic illustration for the strengthening through SFE 

fluctuation. The random state of NiCoCr is illustrated. The key ingredients to calculate the strengthening effect are also demonstrated. 

classic configuration of Shockley partial dislocations ( Fig. 1 (b)), i.e., 

Case O in Ref. [16] . The case for a negative SFE is more compli- 

cated. When the two partials have a configuration as in Case O, 

their distance is theoretically infinite but experimentally finite in 

a non-equilibrium state. It can also be similar to that of the low 

SFEs when the two partials have a configuration of Case C, i.e., the 

two partials switch their positions. According to the mechanism of 

Case C [16] , the strengthening effect can still be significant. In our 

method, the grain-size effect is not considered. Instead, we assume 

grains have sizes larger than the characteristic length of our model, 

which is of the order of 10nm. When grain sizes are smaller than 

the dimension of the relevant volume in Fig. 4 , the smaller num- 

bers need to be adopted. 

The SFE distribution N(γ ) is also a function of the tempera- 

ture. At low temperatures, CSRO may be present. The bonding pref- 

erence of different chemical species promotes the SFE fluctuation 

and CSRO. However, no matter whether CSRO appears in a solid 

solution or not, the SFE fluctuation always contributes to solid- 

solution strengthening (Eq. (5)) . CSRO in MPEAs has received sub- 

stantial attention recently [10,12] . Fortunately, when CSRO exists, 

the SFE still follows the Gaussian distribution [44] . Hence, its effect 

can also be studied straightforwardly by the new model, assisted 

by affordable DFT calculations. The work of Zhang et al. shows a 

CSRO effect of about 50 MPa in the yield stress [10] , which is com- 

parable to our prediction of 53 MPa. It is worth mentioning that 

what our model predicts is one critical part of the total CSRO ef- 

fects on the yield stress. CSRO can also affect the yielding of alloys 

through other contributions, such as lattice friction, solid-solution 

strengthening, and collaborative dislocation behaviors [10,56,57] . 

In addition, the important contribution to yield stress from lattice 

distortion has been addressed by other models [33,58] , which are 

not discussed here. Since the model is based on the fluctuation of 

the stacking fault energy, when the full dislocation is dominant, 

the model is not applicable. 

One unique feature of the new analytical model developed here 

is that it has no adjustable parameters. The model parameters can 

be determined either theoretically or experimentally. This model 

explains available experimental observations and provides insight- 
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ful guidance for the design of new MPEAs. Therefore it represents 

a significant advance in this direction. 

5. Conclusions 

MPEAs have received extensive attention due to their excel- 

lent mechanical properties. An essential feature of MPEAs is their 

chemical randomness associated with CSRO at the nanoscale. The 

CSRO and its impact on the mechanical properties of MPEAs have 

also received extensive attention. Its strengthening effect can be 

evaluated through the nanoscale SFE fluctuation within ∼10nm 

along the dislocation line. However, existing theories for conven- 

tional alloys cannot be used to quantify this strengthening effect 

in MPEAs, since such models [e.g., the Hirsch and Kelly model] re- 

quire the unknown extreme values of SFE. We have developed an 

analytic model to quantify the strengthening effect in solid solu- 

tions due to this energy fluctuation. The model without adjustable 

parameters is generally applicable to solid solutions with various 

degrees of order, from random to short-range ordering states. It 

provides a pathway to tune the yield stress by increasing SFE fluc- 

tuations. It shows chemically very different atoms (such as these in 

VCoNi) offer a more significant fluctuation than similar ones (NiC- 

oCr). Also, more principal elements tend to promote fluctuations. 

Our theory also shows that non-equiatomic systems have smaller 

configurational entropy and stronger fluctuations. These conclu- 

sions drawn from our model provide helpful guidance for the de- 

sign of MPEAs through CSRO and, essentially, SFE fluctuations. 
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