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Developments in genome-wide association studies and the increasing
availability of summary genetic association data have made the application
of two-sample Mendelian Randomization (MR) with summary data increas-
ingly popular. Conventional two-sample MR methods often employ the same
sample for selecting relevant genetic variants and for constructing final causal
estimates. Such a practice often leads to biased causal effect estimates due to
the well-known “winner’s curse” phenomenon. To address this fundamen-
tal challenge, we first examine its consequence on causal effect estimation
both theoretically and empirically. We then propose a novel framework that
systematically breaks the winner’s curse, leading to unbiased association ef-
fect estimates for the selected genetic variants. Building upon the proposed
framework, we introduce a novel rerandomized inverse variance weighted
estimator that is consistent when selection and parameter estimation are con-
ducted on the same sample. Under appropriate conditions, we show that the
proposed RIVW estimator for the causal effect converges to a normal distri-
bution asymptotically and its variance can be well estimated. We illustrate the
finite-sample performance of our approach through Monte Carlo experiments
and two empirical examples.

1. Introduction.

1.1. Motivation. Mendelian Randomization (MR) has become a popular tool for causal
inference in observational studies. Its popularity partially ascribes to a fundamental limita-
tion of observational data, where causation cannot be simply inferred from the association
between an exposure and a disease due to the issue of unmeasured confounders [35]. Since
genetic variants are randomly assorted from parents and are fixed at conception, they provide
a source of exogenous variation in the exposure. MR mitigates unmeasured confounding bias
by incorporating these genetic variants as instrumental variables (IVs) [22]. In MR, the most
commonly used genetic variants are single nucleotide polymorphisms (SNPs).

The proliferation of genome-wide association study (GWAS) data not only improves the
statistical power of MR analyses thanks to the increased sample sizes, but also facilitates
efficient evaluations of causal effects without the need to share information at individual
level [10]. Two-sample MR, a design strategy where genetic associations with the exposure
and the outcome are taken from separate samples in the same population, yields valid causal
estimates even if concomitant data on the SNPs, exposure, and outcome are not available
for any individual, provided that each included SNP is a valid IV [8, 27]. To be precise,
the included SNPs must be (i) associated with the exposure (relevance assumption), (ii) not
associated with any unmeasured confounder (effective random assignment) and (iii) only
associated with the outcome through the exposure (exclusion restriction).
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In practice, to make these assumptions plausible in the summary data setting where the
whole-genome SNPs (about 10 million common variants) are harvested from GWAS, pre-
selection procedures need to be conducted before carrying out the MR analysis. In particular,
because the strength of each SNP can be tested empirically, practitioners routinely select
SNPs that are strongly associated with the exposure to meet the relevance assumption. As
it is well recognized in the literature [15, 21, 33], however, this preselection step can lead
to biased causal effect estimates due to the well-known “winner’s curse” phenomenon. This
winner’s curse bias, which is the result of using the same sample to select the SNPs and to
form the final causal estimate, is also borne out in our simulation and empirical studies (see
Tables 2 and 3).

1.2. Our contributions. Given the issues mentioned above, the primary contribution of
this paper is a novel MR framework and a Rerandomized Inverse Variance Weighted (RIVW)
estimator that break the winner’s curse in the two-sample MR with summary data setting. In
addition, we provide a systematic study of their theoretical properties along with compre-
hensive evaluations of their finite-sample performance in simulation studies and real data
analyses. We further break down our contribution as follows.

On the statistical methodology side, we demonstrate that the winner’s curse pushes the
estimated effect of SNP on exposure away from zero, and such distortion leads to an under-
estimation bias in the classical two-sample Inverse Variance Weighted (IVW) estimator (Sec-
tion 2). To break the winner’s curse, we introduce pseudo SNP-exposure associations into
the selection step, and then use Rao–Blackwellization to recover the correct center of the ef-
fect of selected SNPs on exposure (Section 3). Because Rao–Blackwellization [4] produces
an estimator that is optimal by the mean-squared-error criterion among unbiased estimators,
we make the fullest possible use of data from each SNP without incurring any selection bias
from data re-use in SNP selection and parameter estimation. Moreover, we propose a novel
RIVW estimator that not only eliminates winner’s curse bias but also removes measurement
error bias in the classical IVW approach.

On the theoretical side, we first establish an asymptotic normality result for the proposed
RIVW estimator (Theorem 1). In particular, this result shows that our RIVW estimator is
correctly centered despite the fact that the same data is used for SNP selection and causal
effect estimation. In other words, the RIVW estimator is immune to winner’s curse bias as
well as measurement error bias. As part of this endeavor, we rigorously show that the Rao–
Blackwellized SNP-exposure association is unbiased after selection, and we further provide
an unbiased estimate of its variance (Section 4.2). The latter turns out to be crucial for cor-
recting measurement error bias. Next, we propose a consistent standard error motivated by
the regression interpretation of the RIVW estimator (Theorem 2). Different from other con-
structions in the literature, which can take different forms depending on if balanced horizontal
pleiotropy is present, our standard error remains the same in both cases, alleviating the bur-
den of choosing what type of assumptions should be used for practitioners (Corollary 1 and
Section 5.1). Third, because our theoretical developments require bounding moments of dis-
tributions related to the truncated normal with a diverging truncation threshold, some of the
theoretical results can be of independent interest (see the Supplementary Material [25] for
details).

On the practical side, we illustrate the finite-sample performance of our approach through
Monte Carlo experiments (Section 6) and two empirical examples (Section 7), demonstrat-
ing that the winner’s curse leads to biased causal estimates and such a bias can be corrected
by the RIVW estimator. In particular, when analyzing the causal association between body
mass index (BMI) and COVID-19 illness, our approach, in accordance with existing litera-
ture, confirms that high BMI is a causal risk factor for COVID-19 severity. Moreover, as our
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approach removes the downward bias caused by the winner’s curse, we conjecture that the
effect of high BMI on COVID-19 severity (odds ratio: 1.60) is higher than what the literature
currently believes. Effectively communicating this fact to the general public and persuading
people with obesity to take extra precautions may reduce the number of hospitalized COVID-
19 patients and save lives (Section 7.3).

1.3. Existing literature. The winner’s curse is well recognized in the Mendelian random-
ization and human genomics literature as a fundamental challenge. To avoid this issue, the
most common practice is to use a third independent data set for instrument selection, known
as “three-sample” MR designs. While appealing, finding a third independent sample might
be difficult in practice, as practitioners tend to use the largest GWAS data (meta-analyzed
results from most available cohorts) to improve power, leaving fewer options for the third
independent data set. In two-sample MR analyses with summary data, MR estimators that
break the winner’s curse with rigorous statistical guarantees have been lacking.

Other than the issue of winner’s curse bias, we also face the challenge that all GWAS asso-
ciations are estimated, that is, the associations between the SNPs and the exposure/outcome
are measured with errors. Such a measurement error issue is also known as weak instrument
bias in the MR literature; see [1] and [33] for more discussions and additional references.
Without accounting for this issue, classical MR estimators (such as the IVW estimator) are
often biased downwards. Our proposed RIVW estimator formulated in (4) removes this mea-
surement error bias, making it immune to both sources of biases in the two-sample MR with
summary data framework. See [6, 41, 44] for other recent attempts to tackle measurement
error bias.

By correcting winner’s curse bias and measurement error bias, the proposed RIVW estima-
tor improves upon the classical IVW approach, where the latter often serves as a benchmark
in MR analyses [9]. For instance, in clinical studies (see [2, 20, 23, 28, 34, 38], for example),
researchers use causal effect estimates obtained via IVW as their main results and validate
their findings through sensitivity and robust MR analyses. This practice highlights an urgent
need to provide an unbiased causal effect estimator of the IVW-type, which is our focus here.
In this paper, we also demonstrate that the proposed RIVW estimator is robust to the pres-
ence of balanced horizontal pleiotropy, and we leave general robust MR analyses to future
research.

Some existing approaches use all SNPs for MR analyses (i.e., without instrument selec-
tion). For example, [41] propose a debiased IVW estimator, which incorporates all SNPs into
the estimator to avoid winner’s curse bias. Likelihood-based approaches [43], which are also
robust to measurement error bias, are arguably more complex than our current construction.
Moreover, as mentioned by [43], the likelihood-based estimator may not deliver unique esti-
mates for certain data generating processes. Our RIVW estimator, on the other hand, is easy
to construct and does not require any numerical optimization.

1.4. Two-sample MR with summary data framework. In this section, we introduce two-
sample MR framework with summary data, whereby genetic associations with the exposure
and outcome are gleaned from independent samples to furnish a “two-sample” analysis.

Throughout this paper, we denote by β the causal effect of an exposure variable X on an
outcome variable Y . In the presence of an unmeasured confounder U , Mendelian Random-
ization (MR) analyses incorporate p genetic variants G1, . . . ,Gp as instrumental variables
(IVs). Here, genetic variant Gj ∈ {0,1,2} represents the number of alleles of a SNP j as-
signed to an individual. Existing MR literature starts with the following model:

Y = βX + θY U + EY , X =
p∑

j=1

γjGj + θXU + EX,(1)
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TABLE 1
Two sample MR with summary data illustration. γ̂j is obtained by regressing (X∗

1 , . . . ,X∗
nX

) on

(G∗
1j , . . . ,G∗

nX,j ), and �̂j follows from the regression of (Y1, . . . , YnY ) on (G1j , . . . ,GnY ,j ). The

corresponding standard errors are σXj
and σYj

, respectively

Individual-level data Publicly available summary data

1. Exposure data set {(X∗
i ,G∗

ij )}nX
i=1 {(γ̂j , σXj

)}pj=1
2. Outcome data set {(Yi ,Gij )}nY

i=1 {(�̂j , σYj
)}pj=1

where γ1, . . . , γp, β, θX, θY are unknown parameters. EX and EY are mutually independent
noise variables that are also independent with (G1, . . . ,Gp,U). We later discuss a more
general model setup allowing for direct dependence between Y and Gj in Section 5.1.

Because sharing individual level data is usually impractical due to privacy constraints
[10], two-sample MR with summary data attempts to conduct MR analyses using summa-
rized estimates of SNP-exposure and SNP-outcome associations based on two large and in-
dependent data sets (see an illustration in Table 1). To be more precise, we have access to
the marginal regression coefficients and standard errors for all SNPs, {(γ̂j , σXj

)}pj=1, which
are obtained by regressing the exposure on each SNP separately on the exposure data set
{(X∗

i ,G
∗
ij )}

nX

i=1. Similarly, by regressing the outcome on each SNP separately on the outcome

data set {(Yi,Gij )}nY

i=1, we obtain the marginal regression coefficients and the standard errors,
{(�̂j , σYj

)}pj=1.
To facilitate discussion, we start with the following assumption. We shall demonstrate in

Section 5.1 that the proposed method remains valid under a more general balanced horizon-
tal pleiotropy Assumption 1′ (see Corollary 1). In Section 5.3, we will further extend our
proposed method to allow for correlated SNPs.

ASSUMPTION 1 (Measurement error model). (i) For any j �= j ′, the pairs, (�̂j , γ̂j ) and
(�̂j ′, γ̂j ′) are mutually independent.

(ii) For each j ,
[
�̂j

γ̂j

]
∼N

([
�j

γj

]
,

[
σ 2

Yj
0

0 σ 2
Xj

])
.

In addition, there exists some ν → 0, such that {σYj
/ν, σXj

/ν : 1 ≤ j ≤ p} are bounded and
bounded away from zero.

The normality assumption is plausible and is widely adopted in the MR literature, because
�̂j and γ̂j are estimated from modern GWAS with hundreds of thousands of samples, making
the normal approximation highly accurate. To meet with the mutual independence assump-
tion, one can conduct linkage disequilibrium (LD) pruning [29] on the exposure data set to
pick independent SNPs.1 Because classical LD pruning selects independent SNPs without
using the GWAS summary statistics information, distribution of the selected SNP-exposure
associations remains unchanged. In Section 5.3, we propose a revised sigma-based LD prun-
ing method that improves the efficiency of causal effect estimation. Finally, to simplify the
presentation, we assume that the estimation uncertainties (i.e., σYj

and σXj
) are of the same

order. While it is possible to generalize this condition in our theoretical analysis, it will un-
avoidably lead to more cumbersome notation.

1We note that this is a special case of linear instrumental variable models, in the sense that marginal association
estimates are assumed to be independent. As a result, methods tailored to MR analyses (including ours) cannot be
directly applied to more general instrumental variables models such as those discussed in [3, 13, 14, 16, 26, 45].
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2. Winner’s curse. In this section, we first introduce winner’s curse bias in the two-
sample MR with summary data framework. We then demonstrate how the winner’s curse
leads to the violation of Assumption 1. Lastly, we show empirically that the popular IVW
estimator underestimates the true causal effect due to winner’s curse bias (and measurement
error bias).

In MR analyses, to meet the relevance assumption, practitioners often select a set of ge-
netic instruments (i.e., SNPs) that are strongly associated with the exposure based on hard-
thresholding individual z-scores:

S̃λ =
{
j :

∣∣∣∣
γ̂j

σXj

∣∣∣∣ > λ, j = 1, . . . , p

}
,(2)

where λ is a prespecified cutoff value.2 This exercise casts “winner’s curse” into MR analyses.
Heuristically, the winner’s curse, as discussed here, is caused by the tendency of the

estimates {γ̂j , j ∈ S̃λ} to be more extreme than the underlying true association effects
{γj , j ∈ S̃λ}. It can be further understood from the “file drawer effect,” coined in [32], which
refers to the observation that statistically insignificant results are much less likely to be pub-
lished, and hence they remain in file drawers. To put this classical problem in the MR context,
γ̂j will be employed in the construction of the final causal effect estimator only when it is
statistically significant. As a result, the distribution of γ̂j after surviving the selection step is
a truncated Gaussian. Because the selection step will distort the distribution of γ̂j , it leads
to the violation of Assumption 1. Classical MR estimators (such as two-sample incorporat-
ing instrument selection may suffer from the winner’s curse, rendering both estimation and
statistical inference problematic.

Although there is a general awareness in the MR literature that data-driven instrument se-
lection affects subsequent estimation and inference, it remains pervasive in practice to ignore
the consequence of this selection step. This is primarily due to the fact that, in an attempt to
increase sample size and statistical power, most GWAS tend to meta-analyze results from all
available cohorts, making it challenging to find an independent (third) sample from the same
population for instrument selection. To demonstrate the consequence of performing statistical
inference with the same data set for instrument selection, we examine in a simulation study
the performance of IVW estimators. The IVW estimator employs summary associations ob-
tained from two independent GWAS with SNP selection, and it estimates β by a weighted
regression of �̂j on γ̂j :

β̂λ,IVW =
∑

j∈S̃λ
�̂j γ̂j/σ

2
Yj∑

j∈S̃λ
γ̂ 2
j /σ 2

Yj

.(3)

EXAMPLE 1. We generate 2000 Monte Carlo samples with the true causal effect β =
0.2 and p = 200,000 independent SNPs. The true SNP-exposure associations, γj follow the
mixture distribution:

(
γj

αj

)
∼ πxρ

(
N

(
0, ε2

x

)

δ0

)
+ πx(1 − ρ)

(
N

(
0, ε2

x

)

N
(
0, τ 2)

)

+ πy

(
δ0

N
(
0, τ 2)

)
+ (1 − πx − πy)

(
δ0
δ0

)
,

2The cutoff value, λ, is often chosen to be �−1(1 − α/2), which is the (1 − α/2)th quantile of the standard
normal distribution. A large cutoff value λ is often desired so that the selected SNPs meet the relevance assumption
(e.g., corresponding to α = 5 × 10−8 or 5 × 10−5).
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and the true SNP-outcome associations are �j = βγj + αj . Here, αj captures balanced hor-
izontal pleiotropy (see Assumption 1′), N (0, ε2) represents a normal distribution with mean
0 and variance ε2, and δ0 is the Dirac measure centred at zero. The first two components of
the above mixture distribution correspond to relevant IVs (i.e., having nonzero associations
with the exposure), and 1−ρ controls the fraction of relevant IVs that also exhibit pleiotropic
effects. The third term represents IVs that are only associated with the outcome but not the
exposure, while the last component in the mixture distribution corresponds to SNPs that have
no association with either the outcome or the exposure. Similar data generating models have
been widely used in the literature [30, 42]. For future reference, we define heritability as the
proportion of the phenotypic variance explained by additive effects of all genetic variants
[40]. Because the data has been standardized and the SNPs are assumed to be independent,
the heritability of exposure (h2

x) and outcome (h2
y) can be calculated as

h2
x =V

[ p∑

j=1

γjGj

]
/V[X] =

p∑

j=1

γ 2
j V[Gj ] ≈ pπxε

2
x,

h2
y =V

[ p∑

j=1

�jGj

]
/V[Y ] =

p∑

j=1

�2
jV[Gj ] ≈ β2h2

x + p
(
πx(1 − ρ) + πy

)
τ 2.

For simplicity, we set ρ = 1 in this example. Additional simulation evidence is available
in Section 6 and in the Supplementary Material [25].

As the magnitude of winner’s curse bias changes with the number of IVs around the cutoff
value λ, we vary ε2

x = τ 2 in the set {2 × 10−5,3 × 10−5,5 × 10−5,1 × 10−4,3 × 10−4,5 ×
10−4} and πx = πy in the set {0.005,0.05}.3 We set λ = 5.45 for the IVW estimator β̂λ,IVW.
To generate the SNP-exposure effects γ̂j and SNP-outcome effects �̂j , we set the sample size
nX = nY = 100,000. The standard deviations are set to be σXj

= 1/
√

nX and σYj
= 1/

√
nY .

In Figure 1, we showcase the performance of (i) the three-sample IVW estimator as a
benchmark, (ii) the two-sample IVW estimator with instrument selection and (iii) our pro-
posed RIVW (to be discussed in Section 3), where we report the bias proportion (abso-
lute of Monte Carlo bias divided by the true parameter β = 0.2) of each estimator. Note
that for three-sample IVW, we use a third independent exposure GWAS data with sample
size 100,000 for instrumental variable selection. See Section 6 for other implementation de-
tails.

Results in Figure 1 demonstrate that the bias of β̂λ,IVW is larger if more SNP-exposure
associations are around the selection cutoff λ. On the other hand, our proposed RIVW esti-
mator is not sensitive to the change of such proportions, meaning that it is immune to winner’s
curse bias. Not surprisingly, the three-sample IVW estimator also does not suffer from win-
ner’s curse bias, although as we mentioned earlier, finding a large third independent sample
from the same population for instrument selection might be difficult in practice. In addition,
we still observe a small residual bias for the three-sample IVW estimator. This is caused by
measurement error bias. We also provide mean F statistic (mF) for each simulation setting in
Figure 1. Because instrument selection is employed by all three procedures, observed mean
F statistic is reasonably large. As a result, we only see moderate measurement error bias. We
discuss in Section 4.3 methods for correcting measurement error bias.

3Some combinations are ignored, because we require the heritability to be between 0 and 1, and that at least

three IVs are selected for IVW with commonly used p-value threshold 5 × 10−8.
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FIG. 1. Illustration of winner’s curse and measurement error bias following the simulation setup in Example 1.
The IV proportion (x-axis) is calculated as the number of IVs with p-values lying between 5×10−8 and 5×10−10

divided by the number of selected IVs with p-value < 5 × 10−8. mF is mean F statistic for the instruments used

in the three-sample IVW.

3. Rerandomized IVW estimator. In this section, we first discuss how we lift the win-
ner’s curse after instrument selection and the intuition behind our method. We then introduce
our rerandomized IVW (RIVW) estimator for estimating the true causal effect β . To stream-
line the presentation, theoretical results and their formal statements are presented in Section 4.
Section 5 considers several extensions to our framework, including (i) allowing for balanced
horizontal pleiotropy, (ii) a novel smoothed RIVW estimator constructed via reweighting the
SNP-exposure associations and (iii) an attempt to incorporate correlated IVs.

3.1. Winner’s curse removal. The fact that having a third independent sample for instru-
ment selection lifts the winner’s curse has a direct implication. Recall that γ̂j is the measured
SNP-exposure association in the exposure data set, and suppose γ̂ ′

j is another estimate of
the SNP-exposure association (with standard error σ ′

Xj
) obtained from a third independent

GWAS. Then the three-sample MR estimator is free of winner’s curse bias, because the in-
strument selection event is independent of the SNP-exposure association estimation, that is,

γ̂j ⊥⊥
∣∣∣∣

γ̂ ′
j

σ ′
Xj

∣∣∣∣ > λ

︸ ︷︷ ︸
IV selection event
on a third GWAS

=⇒ E

[
γ̂j |

∣∣∣∣
γ̂ ′
j

σ ′
Xj

∣∣∣∣ > λ

]
= E[γ̂j ] = γj .

Therefore, the post-selection mean of γ̂j is not distorted by instrument selection, and the win-
ner’s curse does not arise. Following this line of reasoning, we can also lift the winner’s curse
in two-sample MRs, as long as we can create an unbiased estimator of γj that is indepen-
dent of the instrument selection event within the same exposure data set. Carrying forward
the heuristic of “creating independence,” we propose a new two-sample MR framework that
fully removes the winner’s curse. We start by introducing a randomized instrument selection
step that deviates from the hard-thresholding rule in (2):
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STEP 1 (Randomized instrument selection). For each SNP j = 1,2, . . . , p, generate a

pseudo SNP-exposure association effect Zj ∼ N (0, η2), and select SNP j if
∣∣∣∣

γ̂j

σXj

+ Zj

∣∣∣∣ > λ.

Also, define the set of selected SNPs as

Sλ = {j : Sj > 0, j = 1,2, . . . , p}, where Sj =
∣∣∣∣

γ̂j

σXj

+ Zj

∣∣∣∣ − λ.

Here, λ > 0 is a cutoff value, and η is a prespecified constant that reflects the noise level of

the pseudo SNPs. Discussions on the choice of λ and η are given in Section 6.1.

It is worth mentioning that although we randomize γ̂j before checking whether it passes
the threshold λ, such randomization will not affect the selection of strong SNPs (i.e., when
|γj/σXj

| 
 0). In other words, the pseudo effects we introduce merely randomize the selec-
tion around the cutoff value λ. The benefit of introducing randomized instrument selection
will be apparent in the following bias removal step.

STEP 2 (Winner’s curse removal by Rao–Blackwellization). For each selected SNP j ∈
Sλ, construct an unbiased estimator of γj as

γ̂j,RB = γ̂j −
σXj

η

φ(Aj,+) − φ(Aj,−)

1 − �(Aj,+) + �(Aj,−)
, where Aj,± = −

γ̂j

σXj
η

±
λ

η
,

and φ(·) and �(·) denote the standard normal density and cumulative distribution functions.

To understand the above construction, consider the crude “initial estimator,” γ̂j,ini =
γ̂j −

σXj

η2 Zj . By standard calculations, it is unbiased for γj , and is also independent of the
IV selection event j ∈ Sλ. As a result, γ̂j,ini is unbiased for γj both before and after IV
selection:

E[γ̂j,ini|j ∈ Sλ] = E[γ̂j,ini] = γj .

Then we employ Rao–Blackwellization to improve the initial estimator (i.e., to reduce its
variance) by projecting it onto the sufficient statistic of the selection likelihood:

γ̂j,RB = E[γ̂j,ini|γ̂j , j ∈ Sλ].
Implied by the Rao–Blackwell theorem, our γ̂j,RB not only is unbiased for the true γj con-
ditioning on the selection event, but also achieves the minimum variance for a given η. A
rigorous justification of our proposal will be given in Section 4. Before proceeding, we note
that the “initial estimator” is introduced only for theoretical discussions and to motivate our
construction. Our approach neither employs this initial estimator nor requires constructing it
explicitly. In a two-stage genome-wide association studies setting, a similar strategy based on
Rao–Blackwellization has been adopted in [7].

EXAMPLE 2. To illustrate how instrument selection affects the distributions of γ̂j , and
to demonstrate the performance of our bias-corrected γ̂j,RB, we provide a simulation study
in which we generate γ̂j/σXj

from the normal distribution N (γj/σXj
,1). We vary the true

normalized instrument effect, γj/σXj
, in the set {0.1λ, λ, 4λ}, representing weak, moder-

ately strong, and strong instruments, respectively. We set λ = �−1(1 − 5 × 10−5/2). From
the three histograms in Figure 2, we observe that the naïve estimator is generally biased since
it does not account for selection (unless the given SNP is a very strong instrument). On the
other hand, our Rao–Blackwellized estimator remains correctly centered regardless of the
strength of the instrument.
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FIG. 2. Comparison between γ̂j,RB and γ̂j after SNP selection. Panel (A): the weak IV scenario with

γj /σXj
= 0.1λ. Panel (B): the moderately strong IV scenario with γj /σXj

= λ. Panel (C): the strong IV sce-

nario with γj /σXj
= 4λ. The true instrument effect, γj , is represented by red dotted lines.

3.2. Rerandomized IVW estimator. Given the unbiased estimate of γj in the previous
section, we propose our final estimator using γ̂j,RB. Because Mendelian randomization is the
term applied to the random assortment of alleles at the time of gamete formation, and our
approach further randomizes instrument/SNP selection, we name β̂RIVW in the following the
rerandomized IVW (RIVW) estimator.

STEP 3 (Rerandomized IVW estimator). Construct the RIVW estimator as

β̂RIVW =
∑

j∈Sλ
�̂j γ̂j,RB/σ

2
Yj∑

j∈Sλ
(γ̂ 2

j,RB − σ̂ 2
Xj ,RB)/σ

2
Yj

,(4)

where

σ̂ 2
Xj ,RB = σ 2

Xj

(
1 −

1

η2

Aj,+φ(Aj,+) − Aj,−φ(Aj,−)

1 − �(Aj,+) + �(Aj,−)
+

1

η2

(
φ(Aj,+) − φ(Aj,−)

1 − �(Aj,+) + �(Aj,−)

)2)
,

and Aj,± are defined in Step 2.

The specific form of our estimator deviates from the classical IVW estimator defined in (3).
Such deviation is motivated by the consideration that γ̂j,RB are random quantities measured
with errors. We subtract from γ̂ 2

j,RB a variance estimate, σ̂ 2
Xj ,RB, to correct this measurement

error bias.
We are now ready to present our final step, statistical inference in two-sample MR with

summary data accounting for both instrument selection bias and measurement error bias.

STEP 4 (Statistical inference). Let the estimated variance be

V̂RIVW =
∑

j∈Sλ
(�̂j γ̂j,RB − β̂RIVW(γ̂

2
j,RB − σ̂ 2

Xj ,RB))
2/σ 4

Yj

(
∑

j∈Sλ
(γ̂ 2

j,RB − σ̂ 2
Xj ,RB)/σ

2
Yj

)2
,(5)

then a level 1 − α confidence interval can be constructed as
[

β̂RIVW − �−1
(

1 −
α

2

)√
V̂RIVW , β̂RIVW + �−1

(
1 −

α

2

)√
V̂RIVW

]
.

Because our RIVW estimator resembles the “slope coefficient” obtained from a regression
of �̂j on γ̂j,RB, the proposed variance estimator can be motivated from the use of “regression
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residuals” (See Section 4.3 for detailed discussion). Thanks to the regression interpretation of
the RIVW estimator, and because the presence of balanced horizontal pleiotropy simply adds
centered noise to the SNP-outcome association estimates �̂j , we shall demonstrate in Sec-
tion 5.1 that our RIVW estimator remains asymptotically unbiased and normally distributed
under the more general Assumption 1′, and our variance estimator is valid without further
modification.

In Section 5.2, we consider an extension to our RIVW estimator, where we fur-
ther “smooth” over the random IV selection, leading to an estimator that reweights the
SNP-exposure association estimates. Finally, Section 5.3 provides a first attempt to cor-
rect LD clumping bias by generalizing our randomized instrument selection and Rao–
Blackwellization to a correlated instrumental variables setting.

4. Theoretical investigations. In this section, we first provide theoretical justifications
for our winner’s curse removal procedure. We then demonstrate the statistical validity of
our inference approach by showing that the RIVW estimator is asymptotically normally dis-
tributed under mild conditions (Theorem 1). Finally, we show that our variance estimator is
consistent for the leading variance of the RIVW estimator (Theorem 2).

4.1. Notation and assumptions. Before discussing the theoretical results in detail, we re-
visit and introduce some notation and assumptions adopted in the paper. Recall that the j th
genetic instrument/SNP is selected if and only if Sj = | γ̂j

σXj
+ Zj | − λ > 0. The collection

of selected instruments is denoted by Sλ = {j : Sj > 0}. The asymptotic regime we consider
involves p → ∞ and λ → ∞. This captures the phenomena of “many instruments/SNPs” in
MR studies. On the other hand, the requirement that nX, nY → ∞ is implicit, as we follow
the literature and assume that the estimated SNP-exposure and SNP-outcome associations
are normally distributed (Assumption 1). We also introduce the following notation for prob-
abilistic ordering. For two (sequences) of random variables, A and B , write A �p B if the
ratio A/B is asymptotically bounded in probability. The strict relation, A ≺p B , implies that

A/B
p→ 0. Finally, A �p B indicates both A�p B and B �p A.

To facilitate discussion, we introduce two additional quantities: the number of selected
instruments as pλ = |Sλ|, and an overall measure of instrument strength after selection:

κλ =
1

pλ

∑

j∈Sλ

(
γj

σXj

)2
.

We note that both pλ and κλ are random, as they depend on the set of selected instruments.
In addition, κλ is typically unknown, because it depends on the unobserved SNP-exposure
associations, γj .

In addition to Assumption 1, we employ the following conditions.

ASSUMPTION 2 (Instrument selection). The cutoff value satisfies λ → ∞.

ASSUMPTION 3 (No dominant instrument). The true instrument effect satisfies

max
j∈Sλ

γ 2
j

/ ( ∑

j∈Sλ

γ 2
j

)
p→ 0.

Assumption 2 requires the cutoff value to diverge, which is quite plausible given that λ

is usually of the order
√

logp to account for multiple testing; see footnote 2. Assumption 3
requires that, after selection, no instrument has a “dominating effect.” It helps rule out the
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extreme scenario where only a handful of genetic variants are relevant. We will employ this
condition when establishing the asymptotic normality of our estimator.4

4.2. Properties of the Rao–Blackwellized estimator. Our first result verifies that the pro-
posed framework breaks the winner’s curse: the construction, γ̂j,RB, is unbiased for γj con-
ditional on the selection event j ∈ Sλ.

LEMMA 1 (Instrument selection bias correction). Under Assumption 1, E[γ̂j,RB|j ∈
Sλ] = γj .

As an immediate result of this lemma, γ̂j,RB is preferred to γ̂j since it helps lift the winner’s
curse by correcting instrument selection bias. To provide some intuition, the unbiasedness
of γ̂j,RB stems from properties of the initial estimator, γ̂j,ini, which we introduced in the
previous section. In particular, the initial estimator is unbiased due to its independence from
the selection event. Therefore, because γ̂j,RB = E[γ̂j,ini|γ̂j , j ∈ Sλ], iterated expectation
implies E[γ̂j,RB|j ∈ Sλ] = E[γ̂j,ini|j ∈ Sλ] = γj . Finally, the specific expression of γ̂j,RB

can be found by explicit calculation, which is available in the Supplementary Material [25].
On a related note, γ̂j,RB also has an advantage over the initial estimator: although the initial
estimator is unbiased, γ̂j,RB has a smaller variance thanks to Rao–Blackwellization.

As we will discuss in the next subsection, correcting measurement error bias requires the
variance of the estimated SNP-exposure associations. In conventional MR analyses without
instrument selection or when the selection step is carried out in an independent third sample,
this information is directly available from σ 2

Xj
. In our framework, however, both the selection

step and the subsequent Rao–Blackwellization may affect the variance of the selected instru-
ment effects. That is, V[γ̂j,RB|j ∈ Sλ] �= σ 2

Xj
in general. We characterize this conditional

variance in the following lemma.

LEMMA 2 (Variance of γ̂j,RB). Under Assumption 1, conditioning on the selection event,
the variance of γ̂j,RB is

σ 2
Xj ,RB = σ 2

Xj

(
1 −

1

ηP[Sj > 0]

∫ ∞

−∞
yφ(y)

(
φ

(
Bj,+(y)

)
− φ

(
Bj,−(y)

))
dy

+
1

η2P[Sj > 0]

∫ ∞

−∞
φ(y)

(φ(Bj,+(y)) − φ(Bj,−(y)))2

1 − �(Bj,+(y)) + �(Bj,−(y))
dy

)
,

where we define Bj,±(y) = −(
γj

σXj
η

+ y
η
) ± λ

η
.

The above expression clearly demonstrates that the conditional variance depends on the
true SNP-exposure associations, γj , in a nonlinear and complicated way. As a result, a direct
plug-in estimator of the conditional variance is not expected to perform well.

To provide some intuition for our variance estimator in Step 3, we recall that the Rao–
Blackwellized instrument effects are obtained as conditional expectations. Therefore, instead
of characterizing its variance directly, one can employ the conditional variance decomposition
formula, that is,

σ 2
Xj ,RB =V[γ̂j,ini|j ∈ Sλ] −E

[
V[γ̂j,ini|γ̂j , j ∈ Sλ]|j ∈ Sλ

]
.

4To better explain what Assumption 3 entails, consider the simulation setting in Example 1, and ignore the

instrument selection step for simplicity. Then it is easy to show that max1≤j≤p γ 2
j � ε2

x log(pπx), while on the

other hand
∑p

j=1 γ 2
j � ε2

xpπx .
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Due to independence, the first term on the right-hand side is simply the unconditional variance
of the initial estimator: V[γ̂j,ini|j ∈ Sλ] = V[γ̂j,ini]. The second term, however, is much
more difficult to obtain. In fact, if one computes the outer expectation, then it reduces to the
formula in Lemma 2. Our insight is that we define the variance estimator without explicitly
computing the outer expectation. To be more precise, σ̂ 2

Xj ,RB is defined from

σ̂ 2
Xj ,RB =V[γ̂j,ini] −V[γ̂j,ini|γ̂j , j ∈ Sλ].

Due to iterative expectation, the above is unbiased for σ 2
Xj ,RB (conditional on the selection

event), but is generally inconsistent. Fortunately, for measurement error bias correction, we
only need to estimate the aggregate variance,

∑
j∈Sλ

σ 2
Xj ,RB. We further discuss this issue

below.

4.3. Measurement error bias correction. The preceding section illustrates how our ap-
proach breaks the winner’s curse. We now turn to discussing how our RIVW estimator also
removes measurement error bias, which arises due to the randomness in γ̂j (or γ̂j,RB). The
measurement error bias issue can be heuristically understood by viewing the IVW estimator
as an estimated regression coefficient. In a hypothetical case where γ̂j are measured without
any error (i.e., γ̂j = γj , also referred to as no measurement error assumption in the literature,
[5]), an “oracle” IVW estimator would regress �̂j on γj (after attaching a weight 1/σYj

to
them) and obtain the slope coefficient as an estimator for β . Such an oracle IVW estimator is
unbiased for β . In practice, however, we only observe γj with a random error, which means
that the slope estimate from regressing �̂j on γ̂j will be biased. Such a bias is also referred
to as regression attenuation, or weak instrument bias in the MR literature [33].

Our RIVW removes measurement error bias following a similar logic to the strategy
adopted by [41], who propose to replace γ̂ 2

j with γ̂ 2
j −σ 2

Xj
in the denominator of the conven-

tional IVW estimator. Despite taking a similar form, we propose the use of a different vari-
ance estimator, σ̂ 2

Xj ,RB (Step 3), because the Rao–Blackwellization step can affect the vari-

ance of the instrument effects. That is, V[γ̂j,RB|j ∈ Sλ] �= σ 2
Xj

= V[γ̂j ]. Although Lemma 2
provides a formula for the variance of the Rao–Blackwellized estimator, γ̂j,RB, the result is
not directly amenable to implementation as the variance formula depends on the unknown γj

nonlinearly. Nevertheless, thanks to the special form of the RIVW estimator, we only need
to correctly estimate the “aggregated variance,”

∑
j∈Sλ

σ 2
Xj ,RB, to remove measurement error

bias, as the next lemma demonstrates.

LEMMA 3 (Variance estimation). Assume Assumptions 1 and 2 hold. Then

E[σ̂ 2
Xj ,RB|Sλ] = σ 2

Xj ,RB, and

∣∣∣∣
∑

j∈Sλ

σ̂ 2
Xj ,RB −

∑

j∈Sλ

σ 2
Xj ,RB

∣∣∣∣ �p
√

pλν
2λ.

We will postpone the discussion on the above probabilistic order to the next subsection
after we introduce the main asymptotic normality result.

4.4. Properties of the RIVW estimator. We are now in a position to describe the asymp-
totic behavior of our RIVW estimator.

THEOREM 1. (Asymptotic normality) Assume Assumptions 1, 2 and 3 hold, pλ
p→ ∞

and κλ/λ
2 p→ ∞. Then conditional the selection event Sλ,

V
− 1

2
RIVW(β̂RIVW − β)

D→ N (0,1),
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where

VRIVW =
V[

∑
j∈Sλ

uj,RIVW/σ
2
Yj

|Sλ]

(
∑

j∈Sλ
γ 2
j /σ 2

Yj
)2

�p
1

pλκλ

,

uj,RIVW = γj (uYj
− βuXj ,RB) +

(
uXj ,RBuYj

− β
(
u2

Xj ,RB − σ̂ 2
Xj ,RB

))
,

uYj
= �̂j − �j and uXj ,RB = γ̂j,RB − γj .

We provide a decomposition below to demonstrate the intuition behind the asymptotic un-
biasedness of our RIVW estimator and defer the formal proof to the Supplementary Material
[25]. This decomposition also sheds light on the mechanism of our measurement error bias
correction and how the error from variance estimation features in the asymptotic analysis.

To start, we rewrite our RIVW estimator as

β̂RIVW = β +
∑

j∈Sλ
uj,RIVW/σ

2
Yj∑

j∈Sλ
(γ̂ 2

j,RB − σ̂ 2
Xj ,RB)/σ

2
Yj

.

Then from Lemmas 1 and 2, it should be clear that uj,RIVW has a zero mean, which implies
that our RIVW estimator is asymptotically unbiased. Lemma 3 further helps demonstrate that
the denominator in our RIVW estimator converges to

∑
j∈Sλ

γ 2
j /σ 2

Yj
.

It is not surprising that the asymptotic variance of our RIVW estimator takes a complicated
form, as the variance of uj,RIVW involves higher-order moments of the Rao–Blackwellized

instrument effects, γ̂j,RB. We employ the condition κλ/λ
2 p→ ∞ to simplify the analysis.

In particular, this assumption implies that the leading variance stems from the first term in
the expression of uj,RIVW. This condition seems mild and quite plausible in applications since
instrument selection will help improve the overall IV strength. See the Supplemental Material
for additional discussions and results on the probabilistic order of κλ.

The previous decomposition also motivates our regression residual based variance estima-
tor. In particular, we note that the “error term,” uj,RIVW, can also be written as �̂j γ̂j,RB −
β(γ̂ 2

j,RB − σ̂ 2
Xj ,RB). As a result, in our standard error construction, we replace the unknown

terms by their estimates. The following theorem establishes the consistency of our standard
error.

THEOREM 2. (Consistent variance estimation) Assume Assumptions 1, 2 and 3 hold,

pλ
p→ ∞ and κλ/λ

2 p→ ∞. Then

V̂RIVW

VRIVW

p→ 1.

5. Extensions.

5.1. Balanced horizontal pleiotropy. Balanced pleiotropy (also known as systematic
pleiotropy) refers to the scenario that the exclusion restriction assumption breaks down and
the genetic variants have equal chances to affect the outcome either positively or negatively
[17, 39]. For this extension, we consider the following model that is commonly adopted in
the literature:

Y = βX +
p∑

j=1

αjGj + θY U + EY , for each j = 1, . . . , p.(6)

In the above, αj captures the pleiotropic effect of SNP j on the outcome Y . Formally, we
require the following.
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ASSUMPTION 1 (Measurement error model under balanced horizontal pleiotropy). (i)
For any j �= j ′, the pairs (�̂j , γ̂j ) and (�̂j ′, γ̂j ′) are mutually independent.

(ii) For each j ,
[
�̂j

γ̂j

]
∼ N

([
βγj + αj

γj

]
,

[
σ 2

Yj
0

0 σ 2
Xj

])
.

In addition, there exists some ν → 0, such that {σYj
/ν, σXj

/ν : 1 ≤ j ≤ p} are uniformly
bounded and bounded away from zero.

(iii) The pleiotropic effects, α1, . . . , αp , are mutually independent and follow a distribution
with mean 0, variance τ 2 and bounded third moment. In addition, τ/ν is bounded.

Because the pleiotropic effects follow a centered distribution, they do not introduce any
additional bias into our RIVW estimator. In fact, as the reader will gather from checking our
proof, the presence of balanced pleiotropic effects merely inflates the variance of the RIVW
estimator. That is, our RIVW estimator remains asymptotically unbiased and normal under
the more general Assumption 1′. Thanks to our regression residual based variance estima-
tor in (5), the statistical inference procedure in Step 4 remains valid in this setting. In other
words, our variance estimator can be directly applied to the balanced horizontal pleiotropy
scenario without any modification. This feature allows practitioners to conduct statistical
analysis without switching among various variance estimators under different assumptions
on the existence of balanced horizontal pleiotropy. We also note that this balanced horizon-
tal pleiotropy assumption can be viewed as a sufficient condition of Instrument Strength
Independent on Direct Effect (InSIDE) assumption, requiring that the exposure effects of
individual SNPs are independent of their pleiotropic effects on the outcome [11].

We summarize this conclusion in the following corollary.

COROLLARY 1. (Validity of the RIVW estimator under balanced horizontal pleiotropy)
The results in Theorems 1 and 2 continue to hold if Assumption 1 is replaced by 1′.

5.2. Smoothing over randomization. Our RIVW estimator is constructed based on the se-
lected instruments. While the selection step might be of interest, as it allows the researcher to
further evaluate the validity of the selected instruments and the underlying causal mechanism,
we do recognize that introducing the pseudo SNP-exposure effects, Zj , into the procedure
may inflate the variance of the RIVW estimator. In this subsection, we consider an exten-
sion where each instrument is weighted by its (conditional) probability of being selected.
Formally, we define

ω̂j = P[j ∈ Sλ|γ̂j ] = 1 − �(Aj,+) + �(Aj,−),

and we consider the following smoothed RIVW (sRIVW) estimator:

β̂sRIVW =
∑p

j=1 �̂j γ̂j,RBω̂j/σ
2
Yj∑p

j=1(γ̂
2
j,RB − σ̂ 2

Xj ,RB)ω̂j/σ
2
Yj

.

To conserve space, formal results, such as asymptotic normality and consistent variance es-
timation, are collected in the Supplementary Material [25]. In what follows, we intuitively
demonstrate the properties of the sRIVW estimator.

To start, we consider the expectations of the numerator and denominator of the sRIVW
estimator. By iterative expectation, it is straightforward to show that

E[γ̂j,RBω̂j ] = E[γ̂j,RB1j∈Sλ] = γjωj , ωj = 1 − �

( λ − γj

σXj√
1 + η2

)
+ �

(−λ − γj

σXj√
1 + η2

)
,
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and ωj is the unconditional probability of the j th instrument being selected. As a result, the
numerator of the sRIVW estimator has expectation β

∑p
j=1 γ 2

j ωj/σ
2
Yj

. From Lemma 3 in

the previous section, σ̂ 2
Xj ,RB is unbiased for σ 2

Xj ,RB conditional on the selection event, which

implies that the denominator of our sRIVW estimator has expectation
∑p

j=1 γ 2
j ωj/σ

2
Yj

. As
a result, we expect that our sRIVW approach also delivers accurate estimates of the causal
parameter. Evidence on its finite sample performance is provided in Section 6.

To close this subsection, we provide in the following an estimator for the variance of the
sRIVW estimator:

V̂sRIVW =
∑p

j=1(�̂j γ̂j,RBω̂j − β̂sRIVW(γ̂
2
j,RB − σ̂ 2

Xj ,RB)ω̂j )
2/σ 4

Yj

(
∑p

j=1(γ̂
2
j,RB − σ̂ 2

Xj ,RB)ω̂j/σ
2
Yj

)2
.

5.3. Correlated instrumental variables. With correlated instruments, we consider two
remedies to relax the independence assumption adopted in Assumption 1. The first remedy
relies on a revised LD pruning procedure (referred to as sigma-based LD pruning), and our
proposed RIVW estimator along with its variance estimator remains valid without further
modification. As opposed to the classical clumping that sorts SNPs with their p-values, sigma-
based LD pruning sorts the correlated genetic variants by their standard deviations, which
are often assumed to be known in two-sample MR with summary data. We then take the
first SNP (i.e., the SNP with the smallest standard deviation) and remove all SNPs in linkage
disequilibrium with this first SNP. Our procedure goes on with the next SNP with the smallest
standard deviation that has not been removed yet. In the end, the sigma-based LD pruning
delivers a collection of independent instruments. In addition, because this revised sigma-
based LD pruning procedure does not touch the information in the estimated SNP-exposure
effect sizes, no additional selection bias is introduced. We compare the performance of this
sigma-based LD pruning with classical LD pruning and p-value based LD clumping in the
Supplementary Material [25].

We propose another remedy relying on a carefully crafted initial estimator that is inde-
pendent with the classical p-value based LD clumping selection event. We then propose an
updated Rao–Blackwellized estimator customized to LD clumping events when IVs are cor-
related. To conserve space in the main paper, we leave the detailed discussion and implemen-
tation of this estimator to the Supplementary Material [25].

6. Simulation.

6.1. Choice of tuning parameters. The RIVW estimator depends on the selection thresh-
old (λ) as well as the level of randomization introduced via the pseudo SNPs (η). In this
section, we discuss practical considerations in choosing these two tuning parameters. To be-
gin with, the choice of the cutoff value λ is subjective but needs to be large enough for the
selected SNPs to be informative IVs. Because the RIVW estimator lifts the winner’s curse
and removes measurement error bias, our framework allows for including more genetic in-
struments with moderate effects compared with traditional MR analyses. Therefore, we rec-
ommend λ = �−1(1−α/2) with α = 5×10−5 as the default setting for our RIVW estimator.

In terms of choosing η, our theory only requires it to be bounded away from infinity and
zero. The reason is quite straightforward: if η tends to zero, the pseudo SNPs are asymptoti-
cally negligible, which defeats their purposes; on the other hand, if η diverges to infinity, the
pseudo SNPs mask the original signals γ̂j/σXj

and all instruments will be selected as a result.
Rather than studying an optimal choice of η via theoretical derivations, extensive simulation
evidence suggests that our procedure is not very sensitive to this choice. In Figure 3, we pro-
vide the Monte Carlo bias and standard deviation of our RIVW estimator for different values
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FIG. 3. Monte Carlo samples are generated following the mixture model in Example 1 with ρ = 1 and

πx = πy = 0.005. We vary ε2
x = τ2 in the set {7 × 10−5,1 × 10−4,3 × 10−4,5 × 10−4}.

of η in the set {0.4, 0.5, 0.6, 0.8, 1}. We observe that the bias is negligible across different
choices of η. This is in line with our theoretical results, since the Rao–Blackwellization Step 2
removes instrument selection bias. Moreover, we observe that the standard deviation of the
RIVW estimator is not sensitive to η either, as the five curves in panel (B) corresponding to
different values of η almost coincide. We fix η = 0.5 as it leads to satisfactory performance
for the RIVW estimator across a range of simulation settings.

6.2. Simulations setup and results. In this section, we compare the performance of our
RIVW estimator with the classical two-/three-sample IVW, the debiased IVW (dIVW) [41],
and the two-/three-sample RAPS estimator [44] in simulation studies. We adopt the simu-
lation setup in Example 1. In particular, we set ρ = 1, πx = πy , and ε2

x = τ 2 to reduce the
number of free parameters. Additional simulation results are available in the Supplemen-
tary Material [25]. The parameter values used to generate Monte Carlo samples are given in
corresponding tables. Our results are based on 2000 Monte Carlo repetitions.

Following common practices, the cutoff value λ is either 5.45 (corresponding to the sig-
nificance threshold 5 × 10−8) for the two-sample IVW estimators, or 0 (using all available
SNPs) for the dIVW estimator. As three-sample MR involves a third independent sample
for IV selection and are immune to winner’s curse bias, we also consider the cutoff value
λ = 4.06 (corresponding to the significant threshold 5 × 10−5). Note that in three-sample
MR analyses, we generate a new independent exposure data with the same sample size for
IV selection.

We report our simulation results with six measures: “β̂” (average causal effect estimate
across Monte Carlo samples), “monte SD” (Monte Carlo standard deviation), “SE” (average
standard error across Monte Carlo samples), “CP” (average coverage probability of the 95%
confidence interval), “length” (average length of the 95% confidence interval), and “# IVs”
(number of selected IVs, averaged across Monte Carlo samples). Table 2 summarizes the
performance of various estimators under different settings, which we discuss below.

For the two-sample IVW estimator, our simulation results confirm that it is biased toward
zero due to winner’s curse bias and measurement error bias, resulting in confidence intervals
that undercover the true causal effect. In the Supplementary Material (Table S.8 of [25]), we
further demonstrate that the two-sample IVW estimator with a liberal cutoff value (λ = 4.06)
yields a larger bias than that with a stringent cutoff (λ = 5.45).
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TABLE 2
Simulation results under different settings. We set the true effect β = 0.2. The columns are: estimated effect size

(β̂), Monte Carlo standard deviation (monte SD), average standard error (SE), empirical coverage probability of

95% confidence intervals (CP), average confidence interval length (length) and number of selected instruments

(# IVs). h2
x and h2

y are the heritability of exposure and outcome

β̂ Monte SD SE CP Length # IVs

Low heritability: πx = πy = 0.002, ε2
x = τ2 = 1 × 10−4, h2

x = 0.040, h2
y = 0.042

IVW (λ = 5.45) 0.182 0.023 0.023 0.865 0.090 40
dIVW (λ = 0) 0.209 0.125 0.123 0.959 0.484 200,000
RIVW (λ = 4.06, η = 0.5) 0.200 0.022 0.022 0.951 0.087 148
sRIVW (λ = 4.06, η = 0.5) 0.200 0.021 0.021 0.947 0.082 –
Three-sample IVW (λ = 5.45) 0.196 0.025 0.025 0.950 0.097 40
Three-sample IVW (λ = 4.06) 0.200 0.020 0.021 0.954 0.081 99
Three-sample RAPS (λ = 5.45) 0.200 0.026 0.028 0.962 0.108 40
Three-sample RAPS (λ = 4.06) 0.200 0.021 0.022 0.958 0.085 99
Three-sample dIVW (λ = 5.45) 0.201 0.026 0.026 0.954 0.101 40
Three-sample dIVW (λ = 4.06) 0.200 0.020 0.021 0.954 0.081 99

Medium heritability: πx = πy = 0.01, ε2
x = τ2 = 1 × 10−4, h2

x = 0.200, h2
y = 0.208

IVW (λ = 5.45) 0.182 0.011 0.010 0.566 0.040 200
dIVW (λ = 0) 0.201 0.025 0.024 0.941 0.096 200,000
RIVW (λ = 4.06, η = 0.5) 0.200 0.010 0.009 0.944 0.037 509
sRIVW (λ = 4.06, η = 0.5) 0.200 0.009 0.009 0.947 0.036 –
Three-sample IVW (λ = 5.45) 0.195 0.011 0.011 0.917 0.043 200
Three-sample IVW (λ = 4.06) 0.200 0.009 0.009 0.956 0.036 452
Three-sample RAPS (λ = 5.45) 0.199 0.012 0.012 0.951 0.047 200
Three-sample RAPS (λ = 4.06) 0.200 0.009 0.010 0.955 0.037 452
Three-sample dIVW (λ = 5.45) 0.200 0.011 0.011 0.947 0.045 200
Three-sample dIVW (λ = 4.06) 0.200 0.009 0.009 0.956 0.036 452

High heritability: πx = πy = 0.01, ε2
x = τ2 = 3 × 10−4, h2

x = 0.600, h2
y = 0.624

IVW (λ = 5.45) 0.193 0.005 0.004 0.688 0.017 655
dIVW (λ = 0) 0.200 0.010 0.009 0.928 0.035 200,000
RIVW (λ = 4.06, η = 0.5) 0.200 0.005 0.004 0.952 0.018 993
sRIVW (λ = 4.06, η = 0.5) 0.200 0.005 0.004 0.952 0.017 –
Three-sample IVW (λ = 5.45) 0.197 0.005 0.005 0.908 0.018 655
Three-sample IVW (λ = 4.06) 0.200 0.004 0.004 0.955 0.017 943
Three-sample RAPS (λ = 5.45) 0.200 0.005 0.005 0.959 0.019 655
Three-sample RAPS (λ = 4.06) 0.200 0.005 0.005 0.954 0.018 943
Three-sample dIVW (λ = 5.45) 0.200 0.005 0.005 0.960 0.018 655
Three-sample dIVW (λ = 4.06) 0.200 0.004 0.004 0.955 0.017 943

For the two-sample dIVW estimator, we have followed the recommendation of [41] and
used all available IVs (i.e., λ = 0) to estimate β . While dIVW indeed provides accurate causal
effect estimates when the average IV strength is relatively high (medium and high heritability
cases), it exhibits larger variance among the considered estimators in the presence of too many
weak instruments (e.g., in the low heritability situation).

For the three-sample IVW estimator, we observe that it tends to produce slightly biased
causal effect estimates due to its failure to account for measurement error bias. By correcting
measurement error bias, both the three-sample dIVW estimator and three-sample RAPS es-
timator yield accurate causal effect estimates. Furthermore, three-sample RAPS with liberal
cutoff values (λ = 4.06) yields narrower confidence intervals than that with a stringent cutoff
value (λ = 5.45). This indicates that a more liberal cutoff can be more preferable when both
winner’s curse bias and measurement error bias are fully removed.
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By fully correcting measurement error bias and winner’s curse bias, our RIVW estimator
provides accurate causal effect estimates, and the resulting confidence intervals have coverage
probabilities close to the nominal 95% level. Furthermore, because the RIVW estimator is
able to accommodate a liberal cutoff value (λ = 4.06) and incorporate more IVs to estimate
the causal effect, its confidence intervals have similar lengths to those produced by three-
sample dIVW/RAPS. We also note that standard errors provided by our formula are close to
the Monte Carlo standard deviations, validating our theoretical investigations (Theorem 2).
Finally, the sRIVW estimator (proposed in Section 5.2) that smooths out the effect of IV
selection yields similar results. We do not report the number of selected instruments for the
sRIVW estimator, as it employs a reweighting strategy instead of IV selection.

We provide additional simulation evidence in the Supplementary Material [25] for a wider
range of model specifications, such as different sample sizes for the exposure and outcome
GWAS data (Tables S.5 and S.6), varying the sample size for each SNP (Table S.7), and
β = 0 (i.e., no causal effect between the exposure and the outcome, Table S.9). In Section
VIII.2 of the Supplementary Material, we also conduct simulation studies in the presence of
balanced horizontal pleiotropy (by setting 1−ρ > 0 in Example 1), where we observe that the
proposed RIVW estimator achieves high detection power and does not exhibit noticeable size
distortion. In summary, the simulation results confirm that our RIVW estimator continues to
deliver accurate causal effect estimation and valid statistical inference.

7. Real data applications. We conduct two real data analyses. First, the same-trait type
analysis [44] demonstrates that the performance of the proposed RIVW estimator is in line
with our simulation evidence and theoretical investigations. Second, the study of the relation-
ship between BMI and COVID-19 severity provides new perspectives on the benefit of body
weight management.

7.1. Data harmonization. We harmonize the data through the following steps. First, ge-
netic variants that are not available in the outcome data set are excluded. Second, we select
independent genetic variants that have no linkage disequilibrium (R-Squared < 0.001 with
an extension of 10,000 Kb in the genome, which is suggested by the twosampleMR pack-
age (version 0.5.5; [18]) and has been widely adopted in applied MR studies) with other
selected genetic variants through the revised sigma-based pruning procedure introduced in
Section 5.3. Specifically, when genetic variants are in linkage disequilibrium, we select the
variant with the smallest standard deviation of the SNP-exposure association. We employ
this revised sigma-based pruning procedure because standard clumping, which is based on
p-value comparisons, introduces a different type of selection bias; see [31] for related dis-
cussion, and Tables S.1 and S.2 in the Supplementary Material [25]. Third, by leveraging
allele frequency information, we infer the strand direction of ambiguous SNPs and harmo-
nize exposure-outcome data sets by using the twosampleMR package. We use the default
setting with λ = 4.06 and η = 0.5 for our proposed RIVW estimator, and set λ = 0 and
λ = 5.45 for the dIVW and IVW estimators, respectively.

7.2. Same trait analyses. To investigate the consequences of measurement error bias and
winner’s curse bias in real data applications, we use two separate GWAS data sets on the same
trait as the exposure and outcome. The true causal effect is 1 and, therefore, such analyses
provide opportunities to validate our proposed method. We conduct two same trait analyses:
body mass index (BMI)–BMI analysis and high-density lipoprotein (HDL)–HDL analysis. In
the BMI–BMI analysis, we use two BMI GWAS results from the UK Biobank (sample size
461,460, ID: ukb-b-19953; [12]) and from the GIANT consortium (sample size 339,224, ID:
ieu-a-2; [24]), denoted by BMI-1 and BMI-2, respectively. In the HDL–HDL analysis, we use
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TABLE 3
Same trait analyses results. The true causal effect is β = 1. β̂ , SE, 95% CI, # IVs and F stand for the estimated

effect size, its standard error, the 95% confidence interval, the number of selected IVs and the F statistic,
respectively

β̂ SE 95% CI # IVs F β̂ SE 95% CI # IVs F

BMI-1–BMI-2 analysis HDL-1–HDL-2 analysis
RIVW 1.030 0.024 0.983–1.077 913 21.9 1.022 0.036 0.952–1.092 766 26.8
dIVW 0.981 0.034 0.915–1.048 1811 3.7 0.912 0.048 0.819–1.006 1787 3.6
IVW 0.785 0.015 0.756–0.814 435 42.5 0.915 0.020 0.876–0.953 321 68.1

BMI-2–BMI-1 analysis HDL-2–HDL-1 analysis
RIVW 1.194 0.060 1.076–1.312 401 18.1 1.039 0.048 0.944–1.134 380 20.9
dIVW 1.402 0.070 1.266–1.539 1810 2.1 0.887 0.050 0.789–0.984 1792 2.1
IVW 0.870 0.026 0.820–0.920 82 42.0 0.922 0.022 0.878–0.967 99 58.1

two HDL GWAS results from the UK Biobank (sample size 403,943, ID: ukb-b-109; [12])
and the Global Lipids Genetics Consortium (sample size 94,595, ID: ebi-a-GCST002223;
[37]), denoted by HLD-1 and HDL-2, respectively.

The results are summarized in Table 3. Overall, the RIVW estimator provides accurate esti-
mates of the causal effect β = 1, confirming its ability to remove both measurement error bias
and winner’s curse bias in the two-sample MR framework. In addition, RIVW yields smaller
standard errors compared with the dIVW estimator, indicating that instrument selection may
help improve estimation efficiency. The IVW estimator is biased downwards due to the two
sources of biases. While the dIVW estimator (with λ = 0) generally performs well, we notice
that the corresponding F statistic (average of (γ̂j/σXj

)2 across instruments) is quite small,
suggesting that many of the included IVs are not relevant for estimating the causal effect. We
also observe that reversing the exposure and outcome GWAS leads to quite different numbers
of instruments being selected. This is because the UK Biobank study (BMI-1 and HDL-1)
has a much larger sample size. As a result, associations calculated from the UK Biobank
study tend to have smaller standard errors on average. This should explain why more IVs
are selected in the BMI-1–BMI-2 and HDL-1–HDL-2 analyses. Because both BMI-2–BMI-
1 and HDL-2–HDL-1 analyses employ fewer IVs and the F statistics also become smaller,
our RIVW estimator is more likely to produce noisy estimates in finite samples. Finally, com-
pared with Table S.3 in the Supplementary Material [25], which employs standard pruning
(random instrument selection without the use of any GWAS summary statistic), we note that
the revised sigma-based pruning procedure leads to significant efficiency improvement.

7.3. BMI and Covid-19 severity. Epidemiological studies have reported associations be-
tween BMI and COVID-19 illness [36], and several MR analyses have confirmed that higher
BMI is a causal risk factor (exposure) for COVID-19 severity [23, 28]. However, the causal
effect estimated from these MR analyses may be biased due to measurement error bias and
winner’s curse bias. While identifying causal risk factors is important for the general public
to combat COVID-19, providing accurate causal effect estimates is also important, as it both
facilitates effective communication and offers solid evidence for public health policymak-
ing. We apply our proposed method with BMI from the UK Biobank (sample size 461,460,
ID: ukb-b-19953) as the exposure and COVID-19 severity from the covid-19hg (v6 leave
out UK Biobank samples; [19]) as the outcome data. Detailed information on participating
studies, quality control and analyses have been provided on the COVID-19 HGI website
(http://www.covid19hg.org/results/). In brief, data from 20,980 hospitalized COVID-19 pa-
tients and 1,628,780 population controls were used. The hospitalized COVID-19 cases rep-
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TABLE 4
BMI and COVID-19 severity. β̂ , SE, 95% CI, # IVs and F stand for the estimated effect size (odds ratio), its

standard error, the 95% confidence interval, the number of selected IVs and the F statistic, respectively

β̂ SE 95% CI # IVs F

RIVW 1.60 0.142 1.32–1.88 1025 21.4
dIVW 1.49 0.163 1.17–1.81 1985 4.0
IVW 1.25 0.069 1.11–1.39 477 42.4

resent patients with (i) laboratory confirmed SARS-CoV-2 infection (RNA and/or serology
based) and (ii) hospitalization due to COVID-related symptoms.

Table 4 summarizes our results. First, we confirm that higher BMI is a risk factor for
COVID-19 severity, as all three methods yield odds ratios that are statistically significantly
different from 1. Similar to the same trait analysis, our RIVW approach provides smaller
standard errors compared with the dIVW estimator. Because the proposed RIVW estimator
lifts the winner’s curse and removes measurement error bias, it produces a larger estimated
odds ratio. This larger estimate indicates that BMI is a critical risk factor (maybe even more
important than we originally anticipated), and effectively communicating this finding may
encourage the general public to take extra precautions and reduce COVID-19 related hospi-
talization.

8. Closing remarks. We introduced a new two-sample Mendelian randomization with
summary data framework that breaks the winner’s curse. We further propose the rerandom-
ized inverse variance weighted estimator that eliminates both winner’s curse bias and mea-
surement error bias in the popular IVW estimator. To facilitate statistical hypothesis testing,
we also provide valid standard error construction. Our RIVW estimator is easy to implement
and enjoys rigorous theoretical guarantees. It also remains valid in the presence of balanced
horizontal pleiotropy. We plan to further study winner’s curse removal in the presence of
correlated instruments, and extend our framework to robust MR analyses.
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