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ARTICLE INFO ABSTRACT
Keywords: Multi-principal element alloys (MPEAs) demonstrate significant promise as structural materials
Multi-principal element alloys for nuclear energy equipment owing to their exceptional mechanical properties and radiation-
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resistant performances. In these alloys, the grain boundary (GB) serves as a crucial microstruc-
ture that typically mitigates irradiation damage by absorbing the irradiation-induced defect.
However, the micromechanisms governing the anti-irradiation performance of GBs in MPEAs
remain unclear. In this study, we investigate the irradiation defect production during collision
cascade in the model NiCoCr bicrystal system through atomic simulations, aiming to unveil the
atomic-scale origin of GB to resist irradiation damage in MPEAs. The results reveal that GBs
effectively serve as sinks for irradiation defects in NiCoCr. The sink efficiency depends on the GB
energetic state, including GB excess energy and defect segregation energy, as well as the energetic
difference between interstitial and vacancy segregation. Statistical analysis identifies a univer-
sally exponent function between the defect absorption rate at GB and GB energetic state. In
NiCoCr, the GB-disorder-induced-entropy increase leads to a biased reduction in interstitial
segregation energy, narrowing the gap between interstitial and vacancy segregation energies by
approximately 11 % compared to Ni. This improvement enhances the overall resistance of GBs to
irradiation damage. Additionally, preferential segregation of Ni interstitial atoms is notably
enhanced in NiCoCr, contributing to a high defect absorption rate at GBs. This study provides new
insights into the resistance of GBs to irradiation defects in MPEAs and suggests GB engineering as
an effective strategy for developing advanced alloys with enhanced radiation tolerance.

1. Introduction

The rapid expansion of nuclear energy has heightened the demand for improved irradiation resistance in structural materials for
nuclear equipment. However, existing alloys have reached their performance limits (Forty and Karditsas, 2000; Knaster et al., 2016),
presenting challenges in meeting the evolving needs of future nuclear equipment development. This trend makes it urgent to develop
brand-new material systems (Barron et al., 2020; Cui et al., 2018a,b; Cui et al., 2018c; Li et al., 2021; Zhang et al., 2023b). Over the last
few decades, multi-principal element alloys (MPEAs) have garnered widespread attention due to their novel compositional design
concepts and outstanding mechanical properties (Cao et al., 2023; George et al., 2019; Miracle and Senkov, 2017; Romero et al., 2022;
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Wei et al., 2022; Zhang et al., 2014). Many MPEAs exhibit an impressive combination of high strength and ductility in extreme en-
vironments, such as at ultra-high temperatures (Senkov et al., 2019, 2010; Wang et al., 2020; Wang and Wang, 2022; Zhou et al.,
2016a), at cryogenic temperatures (Ding et al., 2019; Gludovatz et al., 2014, 2016; Naeem et al., 2020; Schneider and Laplanche,
2021), and high-impact scenarios (Jiang et al., 2016; Liu et al., 2020; Peng et al., 2021; Zhang et al., 2017). Notably, several MPEAs
with straightforward composition designs exhibit promising irradiation resistance, showcasing low swelling, hardening, and
embrittlement under irradiation (Chen et al., 2020b; Deluigi et al., 2021; Ji et al., 2022; Lu et al., 2016; Moghaddam et al., 2021; Patel
et al., 2020; Sadeghilaridjani et al., 2020; Zhang et al., 2022b). A thorough exploration of the expansive compositional design space
and unique microstructures of MPEAs holds the potential for a sustainable breakthrough in irradiation performance.

To achieve a systematic design of composition and microstructure, it is imperative to unveil the underlying mechanisms. The
current body of research predominantly focuses on probing the impact of compositions on the irradiation resistance and elucidating
the intrinsic mechanisms contributing to the irradiation damage tolerance of MPEAs (Lin et al., 2020; Lu et al., 2016; Zhang et al.,
2015b; Zhao, 2020; Zhao et al., 2018; Zinkle and Busby, 2009). Employing a combination of ab initio calculations, atomic simulations,
and experiments, it has been unveiled that the composition of MPEAs alters the intrinsic defect properties from the quantum scale to
the nanoscale. At the quantum-atomic level, the mixing of multiple elements leads to a short electron mean free path, resulting in slow
energy dissipation and low thermal conductivity (Lin et al., 2020; Orhan et al., 2023; Zhang et al., 2015b). Simultaneously, the
migration energies of vacancies and interstitials exhibit wide distribution and significant overlap (Roy et al., 2022; Shi et al., 2022; Su
et al., 2023; Zhao, 2020; Zhao et al., 2018), enhancing the interaction between vacancies and interstitial atoms. In nanoscale, the
randomly distributed elements generate a heterogeneous atomic strain field, transitioning the conventional 1D motion of interstitial
clusters into high-frequency 3D motion within a localized area (Lu et al., 2016, 2021; Zhao et al., 2021). These factors significantly
boost the recombination of vacancies and interstitial atoms, offering a partial explanation for the enhanced irradiation resistance of
MPEAs.

However, the impact of microstructure on irradiation damage in a chemically diverse environment of MPEAs remains unclear. In
particular, grain boundaries (GBs) are prevalent crystal defects in alloys, adept at accommodating a significant number of irradiation-
induced defects, thereby become a key microstructure to mitigate the irradiation damage (Christodoulou et al., 2023; El-Atwani et al.,
2019; Field et al., 2015; Hoffman et al., 2023; Li et al., 2016; van Beers et al., 2015; Zhou et al., 2016b). The high-frequency interaction
between GBs and irradiation defects leads to the segregation/depletion of elements (Field et al., 2015; Hoffman et al., 2023; Li et al.,
2016; Wen et al., 2020) and further results to the spatially heterogeneous formation of defect clusters, such as dislocation loops, voids,
and precipitates (Bao et al., 2022; Field et al., 2017; Gao et al., 2023; Hung et al., 2022; Li et al., 2023e; Xiao et al., 2019; Xie et al.,
2023). This interaction proves to be a crucial strategy for mitigating radiation damage in materials. Currently, our understanding of the
effect of GBs on the irradiation response of MPEAs is limited and mostly speculative, relying on extrapolations from studies conducted
on conventional alloys.

Numerous studies have demonstrated that the anti-radiation ability of GBs varies across different GB types (Barr et al., 2018; Baruffi
and Brandl, 2023; Gao et al., 2023; Hung et al., 2022; Li et al., 2023e; Moladje et al., 2022; Pu et al., 2022). Some preliminary studies
have explored the connection between the GB structure/energy and anti-irradiation ability (Dunn et al., 2016; Field et al., 2015; Jiang
etal., 2014; Lietal., 2014; Tiwari et al., 2019; Xu et al., 2022; Zhu et al., 2023). For instance, the quantitative relationship between GB
misorientation and sink strength, which quantifies a sink’s efficiency in absorbing defects, has been extensively examined and applied
to elucidate irradiation damage in polycrystalline materials (Jiang et al., 2014; Zhu et al., 2018). However, the controlling factor of
GBs in inhibiting irradiation damage remains contentious due to the diversity of GB types. This issue is not only prevalent in con-
ventional alloys but is even more pronounced for MPEAs. The mechanism of GB resistance to irradiation damage is more intricate in
MPEAs due to the complex chemical environment.

Recent studies have revealed that GB structure, properties, and interactions with other microstructures in MPEAs differ compared
to conventional alloys (Eleti et al., 2020; Elsener et al., 2009; Tan et al., 2021; Utt et al., 2020; Yang et al., 2020; Zhang et al., 2023b).
For example, the GB structure in MPEAs tends to exhibit roughening and disordering due to complex alloying (Gupta et al., 2007; Li
etal., 2022b; Tan et al., 2021). This not only triggers the transition of GB migration mechanisms (Tan et al., 2021), but also enhances
their efficiency in healing defect clusters such as stacking fault tetrahedra (Li et al., 2022a, b; Li et al., 2016). It is evident that GB
engineering has become a viable option for modulating the microstructure and properties of MPEAs.

To achieve effective anti-irradiation GB engineering, a crucial step is understanding the mechanism behind GB resistance to
irradiation damage. The resistance of GBs to irradiation damage originates from the rapid interaction between radiation-induced
defects produced by nanoscale collision cascades and GBs. Given the swift nature of this interaction process (10-20 ps), experimen-
tally capturing the nanoscale mechanisms of GB radiation resistance poses a significant challenge. Fortunately, molecular dynamics
(MD) simulations have emerged as a powerful tool for modeling collision cascades. They enable the exploration of defect creation and
morphology, mutual interactions, and, to some extent (specifically at very short times), their evolution (Becquart et al., 2019).

Currently, MD simulations are widely employed to scrutinize the impact of GBs on radiation damage. Results from cascade collision
simulations in pure metals, such as Fe and W, reveal a significantly lower count of surviving defects in bicrystals and nanocrystalline
materials compared to single crystals (Liu et al., 2022; Manna and Pal, 2023; Wang et al., 2017; Zhang et al., 2015a), indicating the
efficient reduction of irradiation damage by GBs at the early stages of irradiation. Calculations of defect segregation energies on GBs
underscore the GB’s effectiveness as a sink for irradiation defects, especially for interstitial atoms, with sink strength being sensitive to
GB type and composition (Baruffi and Brandl, 2023; Fernandez-Pello et al., 2022; Samaras et al., 2003; Zheng et al., 2023; Zhou et al.,
2022). When exposed to an excess of irradiation-induced interstitial atoms, GBs can also emit interstitial atoms into the bulk to
annihilate vacancies within grains (Bai et al., 2010; Li et al., 2023e, 2022c), affirming GBs as excellent anti-radiation microstructures
even under high-dose irradiation. Recent studies have initially explored the influence of GBs on the irradiation damage of MPEAs based
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on collision cascades simulations. The results demonstrate that X5 tilt GBs in NiFe and CoCrCuFeNi are effective sinks for irradiation
defects compared to Ni (Li et al., 2023a, 2023c¢), with sink strength sensitivity to Fe concentration (Li et al., 2023a). Another simulation
involving dislocations in FeCoCrNi indicates that the differences between the numbers of dislocation-absorbed interstitials and va-
cancies in FeCoCrNi are smaller than in Ni (Chen et al., 2023), attributed to the smaller difference in mobilities of interstitials and
vacancies. These findings suggest that GBs in MPEAs are effective sinks for irradiation defects. However, these simulations focus on a
limited number of GBs, providing an incomplete understanding of the correlation between GB properties and irradiation defect
characteristics. Additionally, the impact of GB disordering on sink strength in MPEAs remains unclear. Elucidating the anti-irradiation
mechanism of GBs in MPEAs can not only provide a reference for other microstructures, but also serve as a crucial milestone in the
development of microstructure design for irradiation-resistant MPEAs.

In this study, we systematically investigate the impact of thirteen representative GBs on the irradiation damage in the model
NiCoCr MPEA. The relationships between the GB properties (misorientation, excess energy, excess volume, and defect segregation
energy) and the irradiation-damage characteristic (the number of peak defects and surviving defects, and the defect absorption rate)
are comprehensively analyzed. A unique correspondence between GB properties and irradiation damage characteristics is identified,
shedding light on the anti-irradiation micromechanism of GBs. Through a comparative analysis between NiCoCr and Ni systems, we
explore the role of intrinsic severe lattice distortion, GB disordering and specific elements, uncovering the physical origin of the
enhanced resistance of GBs to irradiation damage in MPEAs.

2. Method
2.1. General setting and interatomic potential

Atomic simulation is widely applied to capture the material response in the early stages of irradiation, providing its ability to
reproduce structural evolution at a nanosecond timescale. In this study, MD simulations are performed to simulate the defect pro-
duction during the collision cascade caused by high-energy particle incidence in pure Ni and equimolar NiCoCr alloy. All simulations
are conducted using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) (Plimpton, 1995), and visualization is
performed with the Open Visualization Tool (OVITO) software (Stukowski, 2010). The interatomic interaction is described by a po-
tential function based on the embedded-atom-method (EAM) (Li et al., 2019). This potential does not consider the spin polarization,
but it adequately captures key features of typical MPEAs, including multi-principal constituents with similar atomic sizes, chemical
interactions consistent with MPEA solutions, and a single-phase solution with variable local chemical order. This potential has been
widely used for simulating lattice defects in NiCoCr MPEA (Li et al., 2019; Zhang et al., 2023a), and the microstructural evolution is
accurately predicted.

Due to the high kinetic energy of incident particles, some atoms close proximity may deviate significantly from equilibrium atomic
spacing during cascade, resulting in increased interatomic repulsion. To capture this repulsion, the short-range interatomic interaction
is described using the Ziegler-Biersack-Littmark (ZBL) repulsive potential (Ziegler and Biersack, 1985). The transition distance be-
tween ZBL and EAM potentials is set at 1.2 A, closely aligning with the typical cut-off distance range (~1 A) of the ZBL potential
(Manna and Pal, 2023; Nordlund et al., 1998; Xiong et al., 2023). The ZBL potential is widely employed in MD simulations of
displacement cascades across various materials, including metals (Liu et al., 2022; Wang et al., 2017) and alloys (Chen et al., 2023; Liu
et al., 2022; Xiong et al., 2023), enhancing prediction accuracy for defect production during displacement cascades.

2.2. Modeling and structural optimization

Thirteen distinct GB models with different atomic structures are utilized, as presented in Table 1. These GBs have various tilt axes

Table 1
Basic information of the GBs used in the present work. The GB type, misorientation angle, 6, excess energy, g, and excess volume, Vg, are presented.
Ni NiCoCr

GB type 0¢) Yas (mJ/m?) Vas (A) Yep (mJ/m®) Vas (A)
>°3[111]1(112) 109.47 81.77 —0.013 —31.384 —0.0146
>-5[001](210)-a 53.13 1352.10 0.0337 997.403 0.2460
>°5[0011(210)-b 53.13 1387.17 0.2003 1000.067 0.2301
3°5[001](310)-a 36.87 1519.10 0.0256 1330.903 0.2485
>-5[0011(310)-b 36.87 1284.35 0.2237 1033.482 0.2720
>°5[0011(650)-a 79.6 1947.38 0.3208 799.927 0.1703
3°5[0011(650)-b 79.6 1213.16 0.1194 775.530 0.1646
>°5[0011(750)-a 71.1 1453.94 0.2524 754.270 0.1987
>-5[001](750)-b 71.1 1114.41 0.2177 741.163 0.1977
$°11[1101(113)-a 50.48 527.14 0.0844 324.683 0.1362
3°11[110](113)-b 50.48 537.80 0.0911 362.801 0.1185
>°19[110](331)-a 153.47 1256.12 0.1586 1029.175 0.1566
5°19[1101(331)-b 153.47 1296.55 0.2926 1035.085 0.1645
Average 1151.61 0.1544 781.008 0.1761
Standard error 474.05 0.1025 354.410 0.0708
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(111, 001, and 110) and misorientation angles (from 36.87° to 153.47°). Considering the fact that most GBs in materials are inherently
non-equilibrium and distinguished by differing atomic densities (Cantwell et al., 2014; Han et al., 2016; Tucker and McDowell, 2011),
the non-equilibrium GBs are also constructed. To create the non-equilibrium GB model, the atomic density of a GB is adjusted by
removing GB atoms within the cutoff distance of 3.0 A. GBs with the same tilt axes and misorientation but varying atomic densities are
denoted by the suffixes “—a” and “—b” in Table 1. Consequently, these GBs exhibit diverse geometrical characteristics and a wide range
of structural parameters, providing ample scope for investigating the general principles governing the impact of GBs on irradiation
damage. Additionally, single-crystal models of Ni and NiCoCr are constructed for comparative analysis with the results obtained from
the bicrystal model, elucidating the influence of GBs.

The simulation boxes have dimensions of approximately 200 x 200 x 200 A3, which is large enough to ensure that the defect
evolution is limited in the internal region of the box during collision cascade, and is not affected by the cascade collision in the periodic
boxes. The GB is positioned 25 A below the center of the model, as the primary knock-on atom (PKA) would be selected from the box
center and the resulting collision-cascade peak thermal is located near the GB. This configuration aligns with previous simulations
(Chen et al., 2023; Wang et al., 2017; Zhang et al., 2015a), and the outcomes remain independent of the box size and GB position.

The representative bicrystal models are depicted in Fig. 1(b-e). In constructing the NiCoCr system, an initial pure Ni model is
created, followed by the random replacement of elements with Co and Cr until the desired composition is achieved. This process
ensures a homogeneous chemical environment, as evidenced by the similar fractions of atomic pairs in the GB and grain regions (Fig. 1
(f-g)). The atomic structure of the initial model undergoes optimization using the conjugate gradient method to attain a locally
minimized energetic state. Subsequently, the system is relaxed for 100 ps under the NPT ensemble (10 K, O bar) to reach a kinetic
steady state. Following this, collision cascade simulations are conducted at 10 K. It is essential to note that the low temperature of 10 K
is chosen to eliminate the influence of temperature effects. The influence of temperature would be discussed in the later section.
Throughout all simulations, the model maintains a periodic boundary condition in all directions.

After static structural optimization, the GB excess property Pgg can be calculated, including the excess energy y;z, excess volume
Vip. The GB excess property is the increment in the property of the bicrystal model and single-crystal model with the same atomic
number (Fischer et al., 2019; Zheng et al., 2020, 2023), i.e.,

P
Pep = (PBC —NBCN;W> /ZAGB 1)
sc

where Pgp is the GB excess property, Agp is the area of the GB in the bicrystal model. Pg¢ and Pg¢ are the total atomic properties of
bicrystal model and single-crystal model, respectively. Ngc and Ng¢ are the atomic number of the bicrystal model and single-crystal
model, respectively. When Pgc and Psc are equal to the total atomic potential energy of the bicrystal and single-crystal models, Pgg
equals the GB excess energy yg. Similarly, considering the total atomic volume, Pgg equals the GB excess volume Vgg. The values for
excess energy yp and excess volume Vgp for different GBs are given in Table 1.

2.3. Collision cascade

To simulate the collision cascade, a Ni atom at the center of the model is designated as the PKA and endowed with an initial velocity
directed toward the GB, providing the PKA with an initial kinetic energy of 10 keV. The distance between the PKA and GB plane is
approximately 25 A. This distance is meticulously tested and chosen to ensure that the center of the cascade thermal peak closely aligns
with the center of the GB. The cascade is conducted under the NVE ensemble, with two thin layers of 10 A thickness at the upper and

(b)

Grain GB

(a)
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grain
Fractions of atomic pairs
Co-Cr Cr-Cr
(@ .
Grain
o "GB 7\
Lower /N 2
grain B8 co0ogggh oz A NN
o —— \ /
AR,
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Fig. 1. Simulation method. (a) Schematic image of the bicrystal model and collision cascade simulation. (b) Element distribution and (c) crystalline
structure of a representative Ni bicrystal. (d) Element distribution, and (e) crystalline structure of a representative NiCoCr bicrystal. (f) Enlarged
images of the atomic details of GB and grain. (g) The fractions of all atomic pairs in the GB and grain regions.
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lower boundaries of the simulation box serving as a thermostatic layer, maintaining a constant temperature of 10 K.

The time step during the cascade simulation varies within the range of [0.00001 fs, 0.5 fs] to ensure that the displacement of atoms
per timestep does not exceed 0.005 times the lattice constant (~ 0.02 A). The cascade reaction operates for 100 ps to ensure that the
system has ample time to reach a steady state following the collision cascade. The simulation duration is sufficiently long to capture
stable defects produced by the collision cascade, as validated in prior studies (Chen et al., 2023; Wang et al., 2017; Zhang et al., 2015a),
and corroborated by the present simulation results. To eliminate randomness, five independent displacement cascade simulations are
conducted, and the average result of the five cases is utilized for the statistical analysis of irradiation defects. In each displacement
cascade simulation, atomic velocities are randomly altered, while keeping the temperature of the ensemble unchanged.

It is worth noting that the MD simulations are conducted under the extremely short time scale and the thermal equilibrium con-
ditions, whereas the actual radiation damage involves the non-equilibrium state and subsequent annealing process. These processes
encompass the long-distance diffusion, recombination, and clustering of defects. Hence, the comprehensive understanding of the
overall radiation damage, especially mesoscale defect aggregation and cluster formation, would not be fully addressed using MD
simulations. For example, the annealing stage is explored using kinetic Monte Carlo method (Li et al., 2023e, 2022c) and rate theory
(Cooper et al., 2021; Xiong et al., 2023). Despite these limitations, MD simulations of displacement cascades remain crucial because the
irradiation defects produced by displacement cascades serve as the foundation for the defect evolution in subsequent annealing
process. Thus, the present work primarily focuses on studying the primary irradiation events within the 10-20 ps displacement cascade
stage using MD simulations.

3. Results

This section begins by presenting the atomic configurations of the GBs before cascade. Subsequently, the defect evolution during
the collision cascade is comprehensively introduced, including the atomic details and the statistics of defect numbers. In the third part,
the correlation between the GB properties (GB misorientation, GB excess energy and GB excess volume) and irradiation damage
characteristics (peak defects, surviving defects and defect absorption rate at GBs) are systematically analyzed.

3.1. Atomic structure of the GB

The atomic details of the GB structures in Ni and NiCoCr before the cascade collision simulation are illustrated in Figs. 2 and 3,
respectively. In pure Ni, GBs consist of periodic arrays of ordered structural units (Fig. 2), aligning with prior research findings
(Bourasseau et al., 2022; Frolov et al., 2013a; Lu et al., 2022; Medlin et al., 2017; Pan and Rupert, 2016; Zhu et al., 2017). Twin
boundaries manifest as monolayer hexagonal-close-packed (HCP) atomic planes. Notably, the 210b, 310b, and 750b GBs comprise the
typical normal-kite unit (Bourasseau et al., 2022; Frolov et al., 2013a; Medlin et al., 2017; Zhu et al., 2017), while the 331a and 331b
exhibit the flat-kite unit. Other GBs, such as 210a (shrink-kite unit), 310a (split-kite unit), 650a, 650b, and 750a (distorted-kite units),
as well as 113a and 113b (diamond units), demonstrate distinct structural variations (Frolov et al., 2013a; Pan and Rupert, 2016; Zhu
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Fig. 2. Composition map and GB structures in pure Ni bicrystals. The atomic details of the structure units of GBs are outlined by blue lines.
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Fig. 3. Composition map and GB structures of NiCoCr bicrystals. The atomic details of the structure units of GBs are outlined by red lines.

et al., 2017). It’s worth noting that while multiple GBs share a kite-like shape in their structural units, minor differences persist in the
atomic structure among GBs with varying misorientation and tilt axes.

In MPEAs, the GB structures undergo distortion and partially disorder (Fig. 3) (Tan et al., 2021; Zhou et al., 2016a). The structures

(b)

NiCoCr-
SC

()
Ni-BC

(d)
NiCoCr-
BC

Fig. 4. Typical defect evolution during collision cascade, for (a) Ni single crystal, (b) NiCoCr single crystal, (c) Ni bicrystal with £5(210)[001] GB,
and (d) NiCoCr bicrystal with £5(210)[001] GB.
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of some GBs are stable and almost unchanged, including the twin boundary, 210b, 310b, 113a, and 113b GBs. For the 210a, 331a, and
331b GBs, the structures experience slight distortion, but the periodic arrays’ structural units remain discernible. Conversely, the 310a,
650a, 650b, 750a, and 750b GBs exhibit severe structural distortion, with some units becoming entirely disordered. It is noteworthy
that the structures of 650a, 650b, and 750a GBs exhibit the extended-kite feature, as reported in other pure metals (Zhu et al., 2017).
This suggests that the steady-state GB structures differ among different systems for the same GB geometry parameters (tilt axis,
misorientation, atomic density). This phenomenon also indicates an ordered GB phase transition induced by composition changes (Ma
etal., 2012; Wang et al., 2011). For the 650b GB in NiCoCr, some structural units remain ordered, and others become disordered. The
coexistence of ordered and disordered structures GBs results from specific boundary conditions (fixed atomic density at the GB) and a
complex chemical environment. In cases where the atomic density at the GBs is variable, such as for the GBs in interconnected GBs
network in polycrystalline materials, GBs in complex chemical environments may undergo globally ordered phase transitions akin to
those in conventional alloys (Frolov et al., 2013b; Meiners et al., 2020; Wei et al., 2021).

3.2. Defect evolution of collision cascade

The progression of irradiation defects during the collision cascade is illustrated in Figs. 4 and 5. The cascade is delineated into six
stages: initial, growth, peak, shrink, steady, and final stages (Lin et al., 2020; Shim et al., 2006). 1) Initial Stage: At the outset, the PKA
is endowed with initial kinetic energy, striking the first atom and generating the initial vacancy-interstitial atom pair, commonly
known as the Frenkel pair (FP). Throughout the cascade reaction, subsequent collisions lead to the production of additional FPs.
Concurrently, some FPs annihilate due to the recombination of vacancies and interstitials. Consequently, the number of FP pairs is
contingent upon the balance between production and annihilation events. 2) Growth Stage: Following PKA activation, the cascade
reaction enters the growth stage. During this phase, the rate of FP production greatly surpasses the rate of annihilation, resulting in a
rapid increase in the FP number and the expansion of the cascade-reaction impact area. 3) Peak Stage: Continuing the cascade reaction,
the creation and annihilation rates for FPs progressively converge. Once dynamic equilibrium is reached between FP creation and
annihilation, the number of FPs reaches its peak and the cascade reaches the commonly known thermal peak state. 4) Shrink Stage:
Following the thermal peak of cascade, the annihilation rate of FPs surpasses the production rate, marking the onset of the shrink stage.
As the kinetic energy of atoms at the cascade impact zone’s periphery diminishes rapidly, the entire groups of FPs contract from the
outer regions toward the center. If vacancies and interstitials are distant and lack the kinetic energy to approach each other, they
persist within the alloy, evolving into stable surviving point defects. In samples featuring GBs, some point defects are drawn toward the
GB, leading to defect segregation (Fig. 4(c, d)). It’s noteworthy that defect segregation is more pronounced when the thermal peak area
of the cascade collision coincides with the GB (Chen et al., 2023; Zhang et al., 2015a). This ideal phenomenon is likely to occur in
nanocrystalline materials, it may be infrequent in coarsened grains. In coarsened-grained materials, a fraction of PKA may directly
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Fig. 5. (a, b) Variation of the number of FPs inside the grain with the simulation time for Ni and NiCoCr. (c¢) The number of surviving FPs in the
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interact with GBs, depleting defects near these GBs. Consequently, the concentration gradient induces long-range diffusion of defects
within the grains, culminating in defect segregation at GBs. 5) Steady Stage: Once there are no more vacancies and interstitial atoms in
the system that can approach each other, and no further defects annihilation occur, the collision cascade reaches a steady stage. 6)
Final Stage: Subsequently, minor vacancies and interstitial atoms recombine under thermal activation. The number and distribution of
defects in the final and stable states become nearly consistent.

The cascade stages outlined above are universal across various systems with distinct compositions and microstructures. However,
the initiation moment and duration of each stage vary among different alloys, influencing the number and distribution of FPs in each
stage. Fig. 5 illustrates the evolution of the number of surviving defects within the grain over the cascade time. The FP count
consistently initiates from zero, undergoing a “zero-climb-peak-decline-stable-final” process, corresponding to the six stages illustrated
in Fig. 4. Regarding the number of FPs, the peak FPs in the bicrystal model are notably lower than those in the single-crystal model, for
both pure Ni and NiCoCr. This reduction is approximately 40-45 % (Fig. 5(a, b)), attributed to defect segregation to GBs (Fig. 4(c, d)).
The average number of surviving FPs in the bicrystal model is also lower than that in the single-crystal model (refer to the enlarged
images in Fig. 5(a, b)). Additionally, the surviving FPs in every NiCoCr bicrystal is less than that in the Ni bicrystal with the same GB
type (Fig. 6(d)). These findings suggest that GBs generally mitigate radiation damage, aligning with experimental results indicating
higher irradiation resistance in nanograined materials (El-Atwani et al., 2019; Hendy and Ponga, 2023; Wu et al., 2022).

The number of peak FPs (150 for BC model, 300 for SC model) and surviving FPs (11 for BC model, 17 for SC model) in NiCoCr is
significantly lower than the peak FPs (210 for BC model, 380 for SC model) and surviving FPs (18 for BC model, 20 for SC model) in Ni.
It’s thereby suggested that NiCoCr exhibits higher resistance to irradiation damage. Moreover, the NiCoCr experiences a more pro-
nounced reduction in the number of surviving FPs after the introduction of GBs: the average reduction is 5.3 for NiCoCr and 2.8 for Ni
based on total 65 cascade simulations (Fig. 5(a, b)). The number of surviving FPs aligns with the levels observed in previous cascade
simulations under 10 keV conditions (Chen et al., 2023; Wang et al., 2017). Furthermore, the relatively small data fluctuation of
surviving FPs in NiCoCr, particularly evidenced in the enlarged images in Fig. 5(a, b), suggests a consistent resistance of the majority of
NiCoCr GBs to irradiation damage. The GB resistance to irradiation damage is defined as the capacity of GBs to effectively mitigate
both peak and surviving defects. This capacity is intricately linked to the efficient absorption or inhibition of defects by GBs,
underscoring their pivotal role in reducing stable defects. Consequently, our findings indicate a general enhancement in GB resistance
to irradiation damage in NiCoCr.

Concerning the time taken for each cascade stage, our primary focus is on the duration from the peak stage to the stable stage, as
this stage determines the final state of surviving defects. As depicted in Fig. 5, the introduction of the GB into the model prolongs the
time taken to reach the stable stage for both pure Ni and NiCoCr alloy. Furthermore, compared to pure Ni, the NiCoCr system, for both
single-crystal and bicrystal models, exhibits a lengthier duration to achieve the stable state. Generally, the time required to reach the
stable stage is inversely related to the energy dissipation capacity or thermal conductivity. A lengthier time to reach the stable stage
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suggests that radiation defects have more time for recombination, thereby reducing the number of surviving FPs. This deduction
provides an explanation for the observed result that the irradiation damage in multi-principal-element/bicrystal systems is lower than
that in unary/single-crystal systems. Previous studies have demonstrated that GBs can effectively scatter low-frequency phonons,
thereby reducing thermal transport in crystalline materials (Fujii et al., 2020; Mohr et al., 2017). A recent study reports that the lower
thermal conductivity of MPEAs facilitates the recombination of irradiation defects (Lin et al., 2020; Zhang et al., 2015b). Overall, these
results suggest that the combined effects of GB and complex chemical environment in MPEAs significantly reduce thermal conduc-
tivity, thereby enhancing FP annihilation and reduce damage.

3.3. GB properties and collision-cascade defects characteristics

The influence of GBs on the cascade reaction has not been clarified because both the GB and cascade reaction are characterized by
various parameters. Generally, the misorientation angle, 6, is used to describe the geometry of GB (Olmsted et al., 2009), and the excess
energy and excess volume are used to represent the thermodynamics of GB (Fischer et al., 2019; Zheng et al., 2020); for collision
cascade, the peak number and surviving number of FPs are mainly concerned.

Fig. 6 illustrates the relationship between GB properties and the number of peak/surviving FPs. Both the numbers of peak FPs and
surviving FPs in NiCoCr are lower than that in pure Ni. Furthermore, for both Ni and NiCoCr systems, GBs with the close properties may
correspond to huge difference of peak/surviving FPs. Previous studies that only concerned a limited number of GBs suggested that GBs
with large misorientation, free energy, and excess volume can achieve lower irradiation damage. By analyzing a broad range of
characteristic properties of GBs, our results indicate that the conclusions drawn from existing literature are somewhat contingent.
Besides, there is no obvious connection between these GB properties and the numbers of peak FPs and surviving FPs in Fig. 6, indi-
cating that GB properties do not directly influence the number of irradiation defects.

The impact of GBs on irradiation vacancies and interstitials varies due to the differing thermodynamic properties of these two types
of point defects. Fig. 7(a—c) depict the relationship between GB properties and the number of surviving vacancies and interstitials. In
both pure Ni and NiCoCr systems, the surviving interstitial atoms are less than the vacancies. The majority of interstitial atoms are
absorbed by GBs, resulting in a high absorption rate of interstitial atoms. This trend is partially related to the lower migration energy
and higher diffusion rate of interstitial atoms in alloys (Bai et al., 2010; Samaras et al., 2003; Smirnov, 2020; Takahashi and Hashi-
moto, 1993). Moreover, the number of surviving vacancies and interstitials in NiCoCr is consistently lower than that in pure Ni,
indicating that the GB absorption abilities for both vacancies and interstitial atoms are enhanced in NiCoCr.

The defect absorption rate at GB is further calculated and presented in Fig. 7(d-f). In this context, the defect absorption rate,
denoted as f;, is defined as the ratio between the number of defects located at the GB, ngg, and the total defects retained in the grain,

g, i€, fg = ngg/ndef x 100 %. The defect absorption rate serves as a pivotal metric in understanding how effectively the GB
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mitigates the impact of irradiation-induced defects within the material. The count of surviving defects, influenced directly by the
defect absorption rate, provides crucial insights into the GB’s ability to withstand irradiation damage. A higher defect absorption rate
signifies a more robust defense mechanism at the GB, resulting in a greater reduction in the overall number of surviving defects.
Consequently, an increase in the defect absorption rate not only indicates a more efficient absorption of defects at the GB but also
signifies a notable enhancement in the GB resistance to irradiation damage.

Note that the GB experiences slight changes under the influence of collision cascade. As a result, statistics on defects at GBs may be
inaccurate using the Wigner-Seitz method. However, the structural changes of the GB are limited to its central region, where the
absorption density of defects is very high. Therefore, the additional defects contributed by the GB structural change are not expected to
have a significant impact on the overall defect number at the GB. Such inaccuracy is further faded by performing multiple independent
cascade simulations. Additionally, the Wigner-Seitz method remains widely accepted for analyzing irradiation defects at GBs (Bai
et al., 2010; Li et al., 2023c; Zhang et al., 2015a), and the resulting conclusions align well with common knowledge.

From Fig. 7(d-f), it can be observed that the defect absorption rate is not clearly correlated with the GB misorientation and GB
excess volume. However, the defect absorption rate roughly increases with the rise in GB excess energy (Fig. 7(f)). This trend suggests
that GB excess energy may be a crucial factor influencing the resistance of GBs to irradiation damage. Accordingly, it is logical to
deduce that the anti-irradiation ability of the a-GBs and b-GBs, characterized by the same misorientation but different atomic density,
is primarily controlled by their GB excess energy, i.e., the GB with high energy tends to exhibit the high irradiation resistance. Due to
the excess energy of a-GBs is not always higher or lower than that of b-GBs (Table 1), there is no consistent pattern regarding the
strength of their anti-irradiation ability. In addition, Fig. 7(f) also show that the absorption of GBs in NiCoCr is more pronounced than
in Ni, and the absorption rate of interstitials is higher than that of vacancies. These results align with the observations in Fig. 7(a—c),
where fewer defects survive in NiCoCr, and more interstitial atoms are retained in the grain.

4. Discussion

Irradiation damage is closely linked to the number of surviving defects, and this number is diminished by an enhanced defect
absorption rate at GBs. In the following sections, the underlying correlation between the defect absorption rate and GB energetic states
is first discussed, revealing that GB excess energy and defect segregation energy are critical properties influencing the defect absorption
rate. Subsequently, the key GB property that contributes to the improved defect absorption rate at GBs in NiCoCr is unveiled. The
essential role of GB disorder and GB entropy in influencing GB sink strength is then discussed based on thermodynamic analysis.
Finally, the impact of specific elements in NiCoCr is also examined.

4.1. Relationship between GB excess energy and defect absorption rate at GBs

The results in Fig. 7(f) indicate a positive correlation between the defect absorption rate at GB and GB excess energy. We inde-
pendently analyze the mathematical relationship between the absorption rate of vacancies and interstitials corresponding to different
GB excess energies (Fig. 8). Surprisingly, there is a concise exponent relationship between the defect absorption rate and GB excess
energy, representing as:

fu=Aep(-LE) +f @
where f; is the defect absorption rate at GB, y; is the GB excess energy, f, is the intrinsic defect absorption rate that is sensitive to the
material system, t is a parameter controlling the sensitivity of the defect absorption rate on the GB excess energy, A is the prefactor. The
corresponding fitting parameters are given in Table 2. This functional relationship proves to be applicable across different systems and
different types of defects, suggesting a degree of universality. Here, it is worth to note that the exponent formation of the defect
absorption rate - GB energy relationship is informed by the well-established thermodynamic principles involving GBs, such as the
exponent relationship between grain growth rate and grain growth activation energy (Aust, 1969; Swalin and Rice, 1963), the rela-
tionship between GB diffusion coefficient with diffusion activation energy (Frolov et al., 2013a; Schweizer et al., 2023; Suzuki and
Mishin, 2005), and the equilibrium concentration of GB solute (Raabe et al., 2014; Svoboda et al., 2006). This consistency implies a
shared thermodynamic nature among these relationships.

Given that Eq. (2) is informed by the traditional thermodynamic principles with exponent format, it is logical to deduce that the
parameter t in Eq. (2) is positively related to the temperature T, i.e., teT. But the exact mathematic relationship between parameter t
and temperature T cannot be obtained based on the current cascade simulation data that merely concern one temperature. A recent MD
work for the 300 K collision cascade in Zr bicrystal also notice that the trend of GB excess energy and defect absorption rate is very
similar (Xu et al., 2024). Via analyzing their data, we also find an exponent relationship between the GB excess energy and defect

Table 2
Fitting parameters of Eq. (2) through the data presented in Fig. 8.
Ni-vacancy Ni-interstitial NiCoCr-vacancy NiCoCr-interstitial Zr-Frenkel pair
fo 103.88 100.00 106.06 100.00 94.20
A —84.33 —75.55 —100.90 —104.54 —146.44
t (mJ /m?) 818.40 469.90 1103.24 753.84 135.20
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absorption rate (Fig. 8(f)), akin to the Eq. (2) revealed by the present work. This finding strongly supports the university of Eq. (2)
among different metal systems and various temperature. Thus, while derived from low-temperature cascade simulations, the obtained
relationship holds promise for validity at elevated temperatures as well.

Leveraging the exponent relationship elucidated above, it becomes apparent that the sensitivity of the defect absorption rate to GB
energy is more pronounced when the GB energy is relatively low. This sensitivity implies a substantial divergence in the anti-
irradiation ability among low-energy GBs within a specific polycrystalline sample. On the contrary, for high-energy GBs (ygp >
1000 mJ/m?), the variance in defect absorption rate becomes negligible. In practical materials, high-energy GBs often dominate with
similar structures, resulting in comparable resistance to irradiation damage across most GBs. Consequently, optimizing the irradiation
resistance of a given system becomes feasible primarily by increasing GB density. Current alloying techniques propose methods to
lower GB energy, usually aiming to enhance high-temperature stability and strength (Lu et al., 2009; Prithiv et al., 2018; Zhou et al.,
2018). These alloys can potentially fine-tune GB energy using the derived mathematical expressions, offering a pathway for a syn-
ergistic optimization of high-temperature stability, strength, and irradiation resistance in the alloy.

Referring to Fig. 8(a), the defect absorption rate follows the order: interstitials in NiCoCr > vacancies in NiCoCr > interstitials in Ni
> vacancies in Ni. This quantitatively validates the superior resistance of NiCoCr alloy to irradiation damage compared to pure Ni,
particularly regarding irradiation-induced interstitials. The exponent relationship suggests that high-energy GBs exhibit a higher
absorption rate for defects. However, even though the average GB excess energy of NiCoCr (yNC°Cr =781 mJ/m?) is lower than that of
pure Ni (/3L = 1152 mJ/m?), the defect absorption rate in NiCoCr remains relatively high. This indicates that GB excess energy might
not be the sole determinant of the defect absorption rate. To unravel this discrepancy, the subsequent section independently delves into
the segregation energy of vacancies and interstitials at GBs.

The aforementioned discussion highlights the potential to enhance GB sink strength by elevating GB energy, offering a clear
strategy for mitigating irradiation damage in polycrystalline materials. However, increasing GB energy comes at the cost of diminished
thermal stability of GBs (Fu et al., 2022; Kusama et al., 2017; Zhang et al., 2022a). The interplay between GB sink strength and GB
stability emerges as a pivotal challenge in GB engineering for irradiation-resistant materials. An effective approach to navigate this
dilemma involves boosting the kinetic stability of GBs by restraining GB motion. In MPEAs, lattice distortion induces heterogeneous
lattice strain at the atomic scale, effectively impeding the motion of crystal defects like dislocations (Chen et al., 2020a; Li et al., 2020,
2023d). This lattice strain also creates sporadic high-stress regions that act as pinning points to hinder GB motion (Li et al., 2023b; Luo
and Zhou, 2023), thereby enhancing the kinetic stability of GBs. Consequently, the competition between GB sink strength and GB
stability is partially alleviated and weakened in MPEAs.
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4.2. Relationship between defect segregation energy and defect absorption rate

According to the thermodynamic theory, the driven force for defects segregating to the GB is controlled by the defect segregation
energy, i.e., the energy difference between the defect formed in the grain and in the GB. The defect segregation energy is given by:

Egf = B3 — EiS ®

where E% is the defect segregation energy. Ej; and Ej; are the formation energies of the defects in grain and GB, respectively. For a
system composed of N atoms, the energy required for forming a vacancy at a lattice site i, E% is equal to the difference in energy
between this system and a vacancy-free system consisting of N-1 atoms (Bai et al., 2010; Li et al., 2023e; Zheng et al., 2023), i.e.,

Efor = Evac - Enavuc + Hi (4)
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where Epovqc and E,q are the potential energies of the vacancy-free system and the system containing one vacancy. y; is the potential
energy of the atom originally located at the lattice site i. For the vacancy in GB, y; is the average potential energy of all atoms in the GB
that have the same element type as atom i.

Similarly, the interstitial atom formation energy, E°"

ine» 1S given by:

ElY = Eii — Enoim — t; 5)

where E,oin and Ej, are the potential energies of the system before and after inserting an interstitial atom.

Fig. 9 illustrates the relationship between defect segregation energy and defect absorption rate at GBs. Notably, there are exponent
relationships between the defect absorption rate and defect segregation energy for both systems and types of defects, aligning with the
findings in Fig. 8. This reaffirms that the GB energetic state (GB excess energy or defect segregation energy) governs the resistance of
GBs to irradiation damage. In Fig. 9, it is evident that the defect segregation energy in NiCoCr is lower than that in pure Ni, mirroring

the trend observed in GB excess energy. The average vacancy segregation energy in NiCoCr, E,> ... = 0.86 €V, is lower than that in
Ni, E,% . = 1.17 eV; similarly, the average interstitial segregation energy in NiCoCr, Ejs_picocr = 2.58 €V, is lower than that in Ni,
E i =3.10eV.

Interesting, while both interstitial and vacancy segregation energies in NiCoCr decrease, the reduction in interstitial segregation
energy is more pronounced. Specifically, the interstitial segregation energy experiences a greater reduction of 0.52 eV, surpassing the
reduction observed in vacancy segregation energy of 0.31 eV. The uneven reduction in defect segregation energies reduces the gap
between interstitial and vacancy segregation energies. In NiCoCr, the interstitial-vacancy segregation energy difference is 1.72 eV, 11
% lower than the 1.93 eV difference in Ni. This suggests a higher fraction of interstitial atoms stays within the grain interior, facilitating
recombination between interstitials and vacancies. With more defects consumed within the grains, the proportion of defects at GBs
increases. Ultimately, this results in an increased defect absorption rate at GBs. In short, the enhanced defect absorption rate in NiCoCr
stems from the reduced difference between interstitial and vacancy segregation energies.

It is noteworthy that the average GB excess energy and defect segregation energy exhibit a similar relationship with the defect
absorption rate at GBs, hinting at an inherent connection between them. From a thermodynamic perspective, the segregation of defects
consumes GB excess energy and reduces the residual defect energy of the grain, leading to an overall reduction in the system’s internal
energy. Concurrently, the final number and fraction of irradiation defects are influenced by the difference between interstitial and
vacancy segregation energy. A reduced difference implies that the numbers of interstitials and vacancies within the grain are com-
parable, facilitating defect recombination and, consequently, improving the defect absorption rate at the GB. Therefore, the ultimate
conclusion is that the enhanced defect absorption rate at the GB can be attributed to the overall increase in GB energetic state (GB
excess energy and defect segregation energy) and the biased reduction in interstitial segregation energy.

4.3. Influence of GB disorder

The atomic-level elemental heterogeneity is a core characteristic of MPEAs, significantly altering the configuration and activity of
microstructures (Lee et al., 2020, 2018; Lu et al., 2016; Tandoc et al., 2023; Wang et al., 2020; Zhang et al., 2015b). Local lattice
disorder causes atomic positions to deviate from ideal lattice sites, reducing the symmetry of the lattice. This degree of lattice disorder
can be represented using the change in lattice symmetry (Kelchner et al., 1998). Fig. 10 depicts the distribution and statistical
characteristics of the centrosymmetry parameter of GB atoms. As the GBs in pure Ni are composed of ordered structural units (Fig. 2),
the distribution of atomic centrosymmetry parameters exhibits a periodic mode or uniform character (Fig. 10(c)). In contrast, for
NiCoCr, a dramatic fluctuation in atomic centrosymmetry parameters is observed, diverging from the ordered feature in pure Ni. The
averaged atomic centrosymmetry parameters for all GB are independently calculated, demonstrating that the lattice symmetry of most
GBs in NiCoCr deviates from that in pure Ni (Fig. 10(a)), and the averaged lattice symmetry of the NiCoCr GBs is also distinct (Fig. 10
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(b)). These results illustrate that the atomic-level elemental heterogeneity significantly alters the lattice symmetry of GBs in MPEAs.
To quantify the influence of lattice disorder on the key GB properties that control the GB resistance to irradiation damage, the
relationships between the GB atomic centrosymmetry parameter and the GB excess energy and segregation energy are analyzed. Here,

the reduction of the GB property, Cde;, is calculated by:

) CNi _ CNiCoCr
c = W x 100 % 6)

where CYi and CNiC°Cr represent the considered GB property, which can be the GB atomic centrosymmetry, GB excess energy and GB
segregation energy. It’s worth noting that the change in the GB atomic centrosymmetry reflects the degree of local lattice disorder in
the distorted GB compared to the ordered GB. Fig. 11 illustrates the relationship between the GB atomic centrosymmetry parameter
and the GB excess energy and defect segregation energy. Surprisingly, for most GBs, except for the 3[111](112) GB, the change in the
atomic centrosymmetry parameter is linearly related to the reduction in GB excess energy and defect segregation energy. These results
reveal that the decreased defect segregation energy is caused by the GB disordering in NiCoCr.

The uniqueness of the £3[111](112) GB arises from its high atomic-density structure and inherently low energetic state. The GB
excess energy of the £3[111](112) GB is 82 mJ/m? in Ni and —31 mJ/m?, significantly lower than the average excess energy of other
GBs (1240 mJ/m? in Ni and 781 mJ/m? in NiCoCr). In this context, even a slight change in the energy value leads to a substantial
proportionate energy change. The reason for the low GB segregation energy of ¥3[111](112) GB is similar. Additionally, it’s note-
worthy that the vacancy segregation energy in the ¥3[111](112) GB is much lower than that of other GBs, while the interstitial
segregation energy is much higher than that of other GBs. This is attributed to the £3[111](112) GB being composed of a single-layer of
atoms with a highly dense structure, making it challenging to embed an atom, while relatively easier to remove an atom.

4.4. The essential role of GB entropy

According to the thermodynamic theory, the lattice-disorder-induced change of the GB energetic state inherently derives from the
change of the enthalpy and entropy of the GB (Ragone, 1995; Swalin and Rice, 1963). Here, considering a GB structure unit composed
with N lattice sites. When the GB unit is disorder, there are still n; (< N) lattice sites stay at the normal position, while n, (=N — n;)
sites deviate from the normal position. The order degree of GB can be defined as ¢ =n; /N. Then the change of GB energy, AGg;, due to
the lattice disorder is given by:

AGuis = AHyis — T - ASuss 7)
where AHg; and ASgy; are the change of GB enthalpy and entropy, T is the current temperature. When one lattice site of the GB unit

becomes disordered, the enthalpy change is £4;. In this case, the enthalpy change is positively related to the number of disorder site ny
and can be written by:

AH g = ny - €4 8

Since we only care about the entropy change caused by changes of GB structure, it is assumed that there is only one element type for
GB atoms. The structural entropy of the GB unit is determined by the number of configurations arranged by the normal and disorder
sites:

(a) (b)
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Fig. 12. Relationship between the GB disorder and GB entropy. (a) Schematic images of the GB structure units with different order degree. The
black dots and dash lines represent the ideal lattice sites and configuration of the GB unit, respectively. The large spheres and solid lines are the
current lattice sites and configuration of the GB unit, respectively. The black arrows mark the highly disorder sites. (b) Variation of the GB entropy
change ASy; with the order degree of GB ¢. Assuming N = 12 because the lattice structure of grain is face-cubic-center. Note that the trend in figure
(b) is not sensitive to the specific value of N.
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N!

Sais = kgln | ——— 9

n! - n,!
where kg is the Boltzmann constant. The entropy change is given by:
! !

ASyis = kpln EELLES B kgln M 10)

n! - ny! n(p=1)!
Based on Stirling approximation In(a!) ~ aln(a) — a, we get:
ASyis = kgN(InN — pIn(Ng) —In(1 — @) + @In(1 — ¢)) an

Lastly, the impact of lattice disorder on the change in GB energy can be scrutinized using the above functions. In conventional
crystalline materials, the enthalpy change associated with a disordered structure is typically positive, contributing to an increase in the
enthalpy term AHy; and subsequently increasing the GB energy. This is in apparent contradiction with the observed reduction in the
GB energetic state of NiCoCr, as illustrated in Fig. 11. This incongruity suggests that entropy change may play a significant role in
diminishing the GB energetic state. Fig. 12 illustrates the entropy change ASg; for varying degrees of GB order ¢. The positive values of
ASy;s increase as the GB order degree decreases. This implies that GB disorder amplifies ASy;, leading to a reduction in GB energy - an
observation consistent with the diminished GB energetic state of NiCoCr. As enthalpy change tends to increase GB energy, these
findings underscore the predominant role of entropy change in shaping the energetic state of GBs of NiCoCr.

4.4. Influence of specific elements

During the collision cascade, the high-throughput flow of point defects is accompanied by the spatial transport of atoms, leading to
the redistribution of elements and consequent changes in the chemical environment, which in turn affect irradiation damage. To unveil
the impact of the complex chemical environment on irradiation defects in NiCoCr, the composition of residual defects in the NiCoCr
models is analyzed. In Fig. 13, it is observed that the residual vacancy group is generally encompassed by the interstitial atom group,
due to the faster movement of interstitial atoms compared to vacancies in alloys (Chen et al., 2023; Hendy and Ponga, 2023; Takahashi
and Hashimoto, 1993).

The element type of irradiation defects varies, and the element fraction is sensitive to the composition and GB structure (Manna and
Pal, 2023; Zhao et al., 2023; Zheng et al., 2023). Here, the element type of a vacancy denotes the initial element of the corresponding
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Fig. 13. Element fraction of irradiation defects in the model. (a) Typical case of the atomic details of the residual defects in the irradiated NiCoCr
bicrystal. The distribution of vacancies and interstitial atoms, as well as the element type of these point defects, is presented. (b) The element
fraction of the residual vacancies in the models with different GBs. (c) The average element fraction of the residual vacancies in all models. (d) The

element fraction of the residual interstitial atoms in the models with different GBs. (e) The average element fraction of the residual interstitial atoms
in all models.
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atom originally located at the lattice site of the vacancy. Fig. 13(b-e) present the element fraction of the residual vacancies and in-
terstitials in different models. Among the fourteen models, the vacancies in eight models are predominantly enriched with the Ni
element (Ni enrichment), while the interstitials in nine models exhibit a relatively low Ni content (Ni depletion). The average fraction
across all models also reflects a similar trend: the ordering of the element fraction for residual vacancies is 38.3 % Ni > 33.2 % Co >
28.6 % Cr (Fig. 13(c)), and for interstitials, it is 31.1 % Ni < 34.3 % Co < 34.5 % Cr (Fig. 13(e)). Recent experiments on the NiCoCrFe
MPEA reveal that ion irradiation induces atomic-level segregation of Ni around the mono-vacancy-type damage at early stages of
irradiation damage (Tuomisto et al., 2020). This suggests that Ni enrichment at irradiation-induced vacancies is a prevalent phe-
nomenon in NiCoCr-based MPEAs.

To elucidate the influence of specific elements on GB resistance to irradiation damage, the element fractions of irradiation defects in
the grain and GB are independently analyzed. As depicted in Fig. 14, both the surviving defects in the grain and the segregated defects
in the GB commonly exhibit Ni-enriched vacancies and Ni-depleted interstitials. Notably, this Ni enrichment in vacancies and Ni
depletion in interstitial atoms are more prominent for the surviving defects in the grain. Specifically, ten models show Ni-enriched
surviving vacancies, whereas Ni-enriched segregated vacancies are observed in only nine models. Similarly, thirteen models exhibit
Ni-depleted surviving interstitial atoms, while Ni-depleted interstitial atoms are observed in ten models. Fig. 14(c, f) present the
average element fraction of all defects in the grain and GB, respectively. The surviving vacancies in the grain are enriched with Ni (38.6
% Ni > 31.9 % Co > 29.5 % Cr), and the depletion of Ni is more pronounced for the surviving interstitials (19.2 % Ni < 40.1 % Co <
40.7 % Cr).

It is essential to note that while the element type of segregated vacancies in the GB is still dominated by Ni (39.0 % Ni > 34.5 % Co >
26.5 % Cr), the Ni fraction of segregated interstitials is not the lowest (32.0 % Cr < 32.5 % Ni < 35.6 % Co). This observation is
particularly noteworthy when considering the Ni depletion for the surviving interstitials, which is enhanced compared to the total
interstitials in Fig. 13(e). It is reasonable to deduce that a substantial fraction of surviving Ni interstitials migrates into the GB.
Simultaneously, the enrichment of Ni interstitials on GBs comes at the expense of Cr interstitials, resulting in the depletion of Cr
interstitials in the irradiated GBs (Fig. 14(f)).

In traditional dilute alloys, such as Fe-Cr, Fe-Cr-Ni, and Fe-Cr-Mn, the migration of irradiation defects, especially interstitial atoms,
towards the GBs leads to the enrichment of Ni and depletion of Cr on GBs (Takahashi and Hashimoto, 1993; Wharry and Was, 2014).
This irradiation-induced redistribution of elements is typically attributed to the inverse Kirkendall effect (Marwick and Clark, 1989;
Marwick and Piller, 1977) and the solute drag effect (Allen et al., 1998). The combination of these phenomena results in the retention
of the low-diffusivity Ni element on GBs, while the high-diffusivity Cr element migrates away from GBs. Recent experiments also
observed Ni enrichment and Cr depletion on GBs in the irradiated FeNiMnCr MPEA (Kumar et al., 2016) and Al0.1CoCrFeNi (Yang
et al., 2018). Utilizing Positron annihilation spectroscopy and first-principles calculations, studies unveiled that atomic segregation of
Ni occurs at very early stages of radiation damage in 2-4 element NiCoFeCr MPEAs (Tuomisto et al., 2020). These findings support the
notion that irradiation-induced element redistribution in MPEAs is influenced by the diffusivity of specific elements.

Experiments and simulations have demonstrated that in NiCoCr-based MPEAs, such as CoCrFeNiMn and CoCrFeNi, the diffusivity
of Cr is higher than that of Ni (Kulkarni and Chauhan, 2015; Mizuno et al., 2019; Tsai et al., 2013). This observation aligns with the
results in Fig. 7, which have already indicated the favorable absorption of interstitials by GBs. Fig. 14 further illustrates that the biased
segregation of Ni interstitials is notably enhanced. This improvement effectively increases the absorption rate of total interstitials,
contributing to the overall high defect absorption rate at GBs.

Finally, it is important to discuss the influence of temperature on the GB resistance to radiation damage in MPEAs. As previously
mentioned, the simulations conducted in this study are performed at a temperature lower than typical radiation conditions to eliminate
the complicating interference of temperature effects. The results obtained under these low-temperature simulations would serve as the
baseline for further investigation into high-temperature collision cascades (Ma et al., 2023). With an increase in temperature, both the
properties of GBs and defects undergo changes. On one hand, the GB structure becomes more disordered thereby enhances GB diffusion
(Frolov et al., 2013a, 2013b; Rajeshwari et al., 2020), and the relaxation of GB structure becomes easier, allowing the GB to
accommodate more defects (Li et al., 2022b, 2023e, 2022c; Ma et al., 2023). On the other hand, bulk diffusion of defects, especially the
interstitial atoms, is enhanced. This enhanced bulk diffusion not only promotes defect recombination in the grain interior but also leads
to more defects migrating to GBs (Li et al., 2023e, 2022c; Zhang et al., 2012). While these changes are beneficial for improving GB sink
strength, their combining influence on irradiation damage is still hard to predict.

As revealed in the present work and supported by previous studies (Li et al., 2023a), the difference between interstitial and vacancy
segregation energy is also an important factor in radiation damage. The gap between interstitial and vacancy segregation energies may
widen, resulting in more sessile vacancies in the grain interior and potentially increasing radiation damage. These influences are
uncertain and sensitive to GB type and composition (Utt et al., 2020; Yang et al., 2018; Zhang et al., 2023b). For MPEAs, the influence
of temperature on GB sink strength may be weakened since the GBs are inherently disorder (Tan et al., 2021; Yang et al., 2020)
Simultaneously, the sluggish diffusion effect may reduce the kinetic differences between interstitials and vacancies (Jiang et al., 2021;
Tsai et al., 2013; Vaidya et al., 2018), thereby facilitating their recombination. In summary, the influence of temperature is highly
sensitive to GB type and composition, requiring additional research and systematic analysis.

5. Conclusion
In this study, we investigated the impact of GBs on irradiation damage in pure Ni and NiCoCr MPEA. Through the analysis of defects
induced by collision cascades in bicrystal systems with different GB structures, we explored the relationship between GB properties (GB

excess energy, GB excess volume, and defect segregation energy at GBs) and the characteristics of irradiation damage (number and
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average element fraction of the segregated defects in the GB of all models.

distribution of irradiation-induced vacancies and interstitials). The findings demonstrate that GBs in NiCoCr can reduce more surviving
defects compared to pure Ni, highlighting the effectiveness of GBs as anti-irradiation microstructures in NiCoCr MPEAs.

The analysis of GB properties and irradiation defects reveals that GB resistance to irradiation damage is influenced by both the
overall GB energetic state (GB excess energy and defect segregation energy) and the energy difference between interstitial and vacancy
segregation. A unique exponent function between the defect absorption rate at GB and the GB energetic state is uncovered for both Ni
and NiCoCr. It is found that the defect absorption rate can be improved by increasing the overall GB energetic state, as well as the
biased reduction of interstitial segregation energy, providing a feasible strategy to enhance the GB resistance to irradiation damage in
MPEAs.

In contrast to pure Ni, the significant lattice distortion in MPEA leads to GB disordering, resulting in higher GB entropy. This
essentially reduces the GB energetic state, particularly the interstitial segregation energy, and significantly narrows down the energy
difference between vacancy and interstitial segregation. This phenomenon is beneficial for improving the recombination of point
defects, a key factor in enhancing the radiation resistance of GBs in MPEA. Additionally, the analysis of element fraction in residual
defects after irradiation further reveals the promoted biased segregation of Ni interstitials in NiCoCr. This behavior not only con-
tributes to the elevated defect absorption level but also induces Ni enrichment in GBs. These results unveil the origins of GB resistance
to irradiation damage and underscore the crucial role of lattice distortion and composition in this resistance.

By purposefully tuning the composition state and structural disorder of GBs to tailor the GB energetic state, it becomes possible to
rationally design alloys with improved radiation tolerance.
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