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A B S T R A C T

We propose a machine learning (ML) model to predict the fatigue life of multi-principal element
alloys (MPEAs) by extracting features from empirical formulas. The model is built on XGBoost
and GBDT, and outperforms the single ML model, with almost all predictions lying in the ± 2
error bands and the relative error not exceeding 0.16 in the extrapolation test. Feature analysis
shows that for the nine explored MPEAs systems, their S–N curves are more suitable to be
fitted by logĊ = ÿ + Ā log ÿăÿĎ. Interpretable analysis indicates that for the explored alloys,
elongation > 47% benefits the increase of fatigue life; if their yield strength is less than 720
MPa, improving strength will favor improvement in lifetime, otherwise improving ductility will
favor lengthening their lifetime. It provides a fast and low-cost method to predict the fatigue
life of those FCC-based MPEAs, which guides designing alloys with longer fatigue life.

1. Introduction

The vast majority of failures in engineering applications are fatigue failures. Fatigue is the phenomenon that a structure fails
under cyclic loading below its ultimate strength. Fatigue life refers to the lifetime from service to failure in a given cyclic loading [1].
Actually, fatigue tests are commonly time-consuming and costly. Obtaining each point in the S–N curve may take hours, days, or
longer. Therefore, providing reliable material fatigue life prediction before applications and exploring potential factors that affect
fatigue life become crucial.

The powerful data mining capabilities of machine learning (ML) have brought effective solutions to various problems [2–4],
including the research of material fatigue. Some successful works have been made on conventional materials. For instance, Yang
et al. [5] employed four ML algorithms to explore the effect of geometrical size on the fatigue life of A588 steel. Hao et al. [6]
proposed a physics-informed ML framework for the fatigue life prediction of aerospace polycrystalline alloys. In addition, based on
the small-scale fatigue experimental dataset of Al alloys, Lian et al. [7] proposed a knowledge-based ML framework that extracts
features from empirical formulas to construct a model for predicting lifetime.

Unlike conventional materials, multi-principal element alloys (MPEAs) are composed of multiple major elements with equal or
near-equal molarity [8]. Their excellent properties have attracted widespread attention from academia and industry [9–12]. Recent
experimental explorations have illustrated that MPEAs present outstanding fatigue properties [13–16]. For instance, Lu et al. found
that under similar strain amplitudes, the fatigue life of CoCrFeMnNi (Cantor) alloy is longer than that of 316L steel [13], but shorter
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Fig. 1. The flow chart on fatigue life prediction of multi-principal element alloys via domain knowledge-based machine learning.

than that of CoCrNi alloy [14]. At high strain amplitudes, Lu et al. revealed that the fatigue life of dual-phase Al0.5CoCrFeMnNi
alloy is shorter than that of Cantor alloy with similar grain sizes [15], and Liu et al. reported that Fe38.5Mn20Co20Cr15Si5Cu1.5 alloy
exhibits delayed crack initiation and crack propagation [16].

The applications of ML algorithms in MPEAs mainly focus on two aspects: phase classification and mechanical property
prediction [17–19]. In 2023, Sai et al. [20] proposed the pioneering work of fatigue life prediction for MPEAs. They collected 118
data points of CoÿCrĀFeāMnĂNiă (68 data points) and AlĄCoąCrℎFeÿMnĀNiā (50 data points) systems from the available literature.
Based on the small dataset, they used ML algorithms to individually construct regression models for each class of MPEAs, effectively
predicting the fatigue life at room temperature.

To date, the available fatigue datasets for specific materials are commonly small, especially for MPEAs whose fatigue behavior has
only recently been investigated. However, it is certain that ML models which rely on small datasets are easy to be overfitted [17].
Previous studies have demonstrated that adding prior knowledge to the ML models can effectively prevent overfitting [6,7,21].
Inspired by the work of Sai et al. [20] and Lian et al. [7], we expand the small dataset and then combine empirical formulas to
build a voting ML model that can predict the fatigue life of MPEAs. Furthermore, we analyze the factors that affect fatigue life and
provide the guidelines for engineering applications.

In this paper, we propose a domain knowledge-based fatigue life prediction model for various MPEA systems. Firstly, 203 fatigue
data points are collected from previous literature [13–15,22–39]. Five single ML models are constructed by extracting features from
empirical formulas, and then a voting model consisting of the above two best-performing models is built to improve the model’s
performance. The Shapley Additive exPlanations (SHAP) and partial dependence plot (PDP) are utilized to analyze the quantitative
relationship between influencing factors and fatigue life. The overall framework of this work is shown in Fig. 1.

2. Methods

2.1. Data collection

Fatigue datasets of the CoCrNi [14,22], CoCrFeNi [23,24], CoCrFeMnNi [13,25–33], and AlĎCoCrFeMnďNiĐ [15,34–39] are
collected from the available work. The datasets of the above nine FCC-based MPEAs systems are acquired under room temperature
fatigue tests with R (minimum/maximum stress) = −1 or 0.1. The fatigue life of the MPEAs systems ranges from 102 to 107 cycles.
The dataset incorporates 28 S–N curves with 203 experimental points, among which one curve from Cantor alloy [13] is selected as
the validation set and does not appear in the training set. Each data point includes material chemical composition, mechanical
properties, and indicators related to fatigue test. Specifically, the chemical composition is expressed in atomic percentages.
Mechanical properties include two stress indicators (yield strength (YS) and ultimate tensile strength (UTS)), and one strain indicator
(elongation). The indicators from the fatigue test are composed of stress ratio (R), stress amplitude (ÿÿ), and the number of cycles
to failure (N). The logarithm of fatigue life (logĊ) is selected as the output target. More details of the original data can be found
in the Supplementary file, where Table S1 lists subsets of the dataset, and Fig. S1 shows the distribution of the dataset.

2.2. Feature engineering

2.2.1. Feature generation
Design features based on expert knowledge are effective strategies for improving model performance and overcoming the limita-

tions of small datasets [40]. In general, the S–N curve are fitted by semi-logarithmic or logarithmic mathematical expressions [41]
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Table 1
The input features, output variable and their mathematical expression considered in this analysis.

Descriptors Description

Input

Structure descriptors

ÿ =
1

āÿĈÿ Mean atom radius

Ă =
√1

āÿ(1 −
Ĉÿ

ÿ
)2 Atomic size difference

Đă =
1

āÿĐăÿ Average of the melting points of constituent elements

ÿĐ =
√1

āÿ(1 −
Đÿ

Đă
)2 Standard deviation of melting temperature

ĀďăÿĎ = −ćþ

1
āÿ ln āÿ Mixing entropy

ĀĄăÿĎ = 4
1

ÿ�Ā āÿāĀĄÿĀ Mixing enthalpy

ÿĀĄ =
√1

ÿ�Ā āÿāĀ (ĄÿĀ − ĀĄăÿĎ)
2 Standard deviation of mixing enthalpy

ÿ =
1

āÿÿÿ Electronegativity

Āÿ =
√1

āÿ(ÿÿ − ÿ)2 Standard deviation of electronegativity
Ē āÿ =

1
āÿĒ āÿÿ Average VEC

ÿĒ āÿ =
√1

āÿ(Ē āÿÿ − Ē āÿ)2 Standard deviation of VEC
ć =

1
āÿćÿ Mean bulk modulus

ÿć =
√1

āÿ(ćÿ −ć)2 Standard deviation of bulk modulus

Mechanical properties descriptors
UTS Ultimate tensile strength
YS Yield strength
– Elongation

Parameter of fatigue test
R = minimum/maximum stress Stress ratio (R)
ÿÿ Stress amplitude
– descriptors driven from empirical formulas

Output log10N N is the number of cycles to failure

as follow,

logĊ = ÿ + Āÿ (1)

or

logĊ = ā + Ă log ÿ, (2)

where ÿ is ÿÿ (stress amplitude), ÿăÿĎ (maximum stress), or ÿăÿĄ (minimum stress), and a, b, c, d are coefficients. Therefore, ÿăÿĎ,
ÿăÿĄ, log ÿÿ, and log ÿăÿĎ are added to the feature sets.

Fatigue life is also affected by chemical composition, microstructural parameters, and mechanical properties like ultimate tensile
strength and yield strength [20,42]. Here, microstructure and chemical composition are not selected as input features as they
correlate with mechanical properties and structure descriptors, respectively. The final features and target variable is listed in Table 1.

2.2.2. Feature selection

To eliminate the impact of unit inconsistencies on the performance of ML models, features are firstly normalized as follows,

Ď∗ =
Ď − ĎăÿĄ

ĎăÿĎ − ĎăÿĄ
, (3)

where ĎăÿĄ and ĎăÿĎ are the minimum and maximum values of the feature Ď, respectively. After normalization, all of the feature
values are located at [0, 1].

A good ML model should strike a balance between accuracy and complexity. Thus, redundant features should be removed through
the feature selection. Firstly, if there is a strong correlation between multiple features, only one of them is retained. Here, we choose
to retain the feature that has a significant impact on model accuracy. Next, all possible combinations of the remaining features are
evaluated by exhaustive methods to determine the subset of features with the lowest error (see Supplementary file as Fig. S2 for
details). Finally, the log ÿăÿĎ, YS, elongation, and ÿć are selected as input features for predicting fatigue life. Fig. 2 plots the Pearson
correlation coefficient (Ā) between the four selected features. The |Ā| close to 1 indicate a high correlation between features, while
less than 0.8 indicates a weak linear correlation. As evident, there is no strong linear correlation between the four selected features.

2.3. ML algorithms

There is no optimal ML model applicable to all problems. Thus, we exploit five different algorithms, including Extreme Gradient
Boosting (XGBoost), Gradient Boosting Decision Tree (GBDT), Random Forest (RF), Support Vector Regression (SVR), and K-Nearest
Neighbor (KNN). The hyperparameter values of these algorithms are derived through the grid search method. A brief description
and the corresponding hyperparameter values of the above ML algorithms are provided in the Supplementary file. Using the five-fold
cross-validation method to measure the performance of all ML models, rather than the traditional strategy of splitting the dataset into
training and testing sets. Final results are averaged over 10 random five-fold cross-validations to avoid errors caused by the optimal
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Fig. 2. Pearson correlation coefficient of the selected feature, where the upper triangle represents the Ā-value, and the lower triangle represents the correlation
coefficient.

split. The mean absolute error (ĉýā), mean squared error (ĉďā), and R-squared (Ď2) are used to evaluate the performance of
developed prediction models, which are described as:

ĉýā =
1

Ą

Ą1

ÿ=1

|ďÿ − �ďÿ|, (4)

ĉďā =
1

Ą

Ą1

ÿ=1

(ďÿ − �ďÿ)
2, (5)

Ď2 = 1 −

1Ą

ÿ=1
(ďÿ − �ďÿ)

2

1Ą

ÿ=1
(ďÿ − �ď)2

, (6)

where ďÿ, �ďÿ, and �ď is the true, prediction, and average values, respectively.

In addition, different algorithms may produce different results for the same problem. Thus, we construct a voting model that
concentrates several well-performing algorithms to predict the same problem and uses their average as the final output. The
performance of the voting model is evaluated by the above methods.

2.4. Feature analysis

Feature analysis is crucial for extracting useful insights. It could reveal the quantitative and qualitative relationships between
features and target variables, thereby providing a more comprehensive understanding. In this paper, the prediction model is
interpreted using the game theory-based SHAP [43] method and the PDP [44], a visualization method for black-box explanations,
respectively.

3. Results and discussion

3.1. Fatigue life prediction model

The predicted results of five single ML models under the cross-validations strategy are shown in Fig. 3a. By contrast, their
accuracy is in the order of GBDT > XGBoost > RF > KNN > SVR. In addition, different algorithms may produce different results for
the same problem. Thus, we construct a voting model that concentrates the two best-performing models (GBDT and XGBoost) to
predict the same problem and uses their average as the final output. As evident, the voting model exhibits high predictive accuracy
than the single ML model with Ď2 = 81.4%, ĉďā = 0.172, and ĉýā = 0.313.

Fig. 3b shows the predicted and measured fatigue life of the voting model in the training and testing sets split by a ratio of 8:2.
It is clear that there is a strong linear relationship between the predicted and measured fatigue life. Moreover, almost all predictions
lie in the ±2 error bands (the pink solid lines), demonstrating the great success of the voting model in predicting fatigue life of the
explored MPEAs systems. In addition, only several data points fall between the triple and quadruple error bands. It illustrates that
the voting prediction model outperforms previous work, which still has a few data points outside the quadruple error band [20].
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Fig. 3. (a) Mean absolute error (ĉýā), mean squared error (ĉďā) and R-squared (Ď2) values under the cross-validations strategy for the employed ML
algorithms: SVR, KNN, XGBoost, GBDT, RF, and voting model. (b) The plot of experimental vs. predicted fatigue life by the voting model under one split.

3.2. Model explanation analysis

3.2.1. SHAP analysis
The SHAP method is utilized to analyze the influence of the selected features on fatigue life. Due to the limitations of the SHAP

method in the voting model, the correlation analysis is conducted on the top-performing GBDT algorithm. As evident from Fig. 4a,
the log ÿăÿĎ is the most significant input variable, and the fatigue life is mainly influenced by log ÿăÿĎ, YS, and elongation. It is also
worth noting that log ÿăÿĎ derived from ÿăÿĎ outweighs other stress features. This trend means the fatigue life of the explored alloys
is mainly influenced by ÿăÿĎ rather than ÿÿ or ÿăÿĄ. Fig. 4b illustrates that the log ÿăÿĎ has a linear contribution with the target
variable (logĊ). It indicates that for the explored MPEAs systems, the ÿăÿĎ-N curve is a better way to describe the relationship
between the stress and fatigue life rather than the common ÿÿ-N curve, i.e., the S–N curve is more suitable to be described by the
following logarithmic mathematical expression:

logĊ = ā + Ă log ÿăÿĎ. (7)

Fig. 4c presents that the higher log ÿăÿĎ are associated with larger negative SHAP values, and the smaller log ÿăÿĎ are associated
with the larger positive SHAP values. It indicates that the logarithm of the maximum stress is negatively correlated with the target
variable. The same trend is displayed in ÿć , while opposite trends can be observed in YS and elongation, which are positively
correlated with the target variable. Overall, higher yield strength, great ductility, and smaller standard deviation of bulk modulus
favors the increase of fatigue life.

Moreover, we explore the quantitative relation between fatigue life and two influence factors: YS and elongation (see Fig. 4d
and e). As shown in Fig. 4d, the explored alloys generally exhibit lower ductility when their yield strength exceeds 720 MPa, but
typically have good ductility when their yield strength is below 720 MPa. The YS of 400 MPa and elongation of 47% are critical
values, which divide the SHAP values into positive and negative regions. It indicates that YS greater than 400 MPa or elongation
greater than 47% is beneficial to lengthen fatigue life. The similar result is also presented in the PDP analysis of YS and elongation
(Fig. 4f), that is, alloys with high strength or ductility exhibit good fatigue life.

3.2.2. PDP analysis
As is well known, there is a trade-off relationship between strength and ductility. That means as the alloy’s strength increases,

its ductility will usually decrease, and vice versa. Therefore, there would exist a turning point during the trade-off process. It can
be seen from Fig. 4d that the turning point of 720 MPa divided the explored alloys into two groups: alloys with high strength and
alloys with high ductility. So, we explored strategies to improve the fatigue life of these two groups of alloys. The marginal effects
of strength and ductility on the predicted fatigue life of the model are analyzed through PDP. The results are displayed in Fig. 5a–e.
Here, the Ĕ-axis refers to the value of YS or elongation. The ĕ -axis represents the difference between ďĄ (the predicted value of the
feature at ĎĄ) and ď1 (the predicted value at minimum feature value), which values reflect the effect of improving YS or elongation
on fatigue life. The blue shaded area represents the confidence interval, and the solid line denotes the average prediction for all
alloys.

Fig. 5a and b indicate that improving YS or elongation of alloys with YS less than 720 MPa will increase their fatigue life.
And compared to enhancing lifetime by increasing elongation, increasing YS is a better choice. Fig. 5c and d show that increasing
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Fig. 4. Feature analysis of SHAP and PDP on GDBT Model. (a) Importance ranking of input features by the mean value of absolute SHAP values. (b) Dependence
plot of ĂąąÿăÿĎ feature. (c) SHAP value of each input data point. (d) The interaction of YS and elongation for every one of the data by SHAP values. (e) The
SHAP values of elongation for every one of the data. (f) The interaction of YS and elongation by PDP.

the elongation of alloys with YS greater than 720 MPa will benefit their lifetime. It is known that simultaneously improving the
strength and ductility of alloys is difficult in engineering applications. Thus, when the YS of alloys is less than 720 MPa, increasing
their strength is an effective way to improve their fatigue life, otherwise improving enhancing their ductility can effectively extend
their lifespan. The existing experimental results validated these findings. Specifically, it is found that alloys with yield strength
greater than 720 MPa show no improvement in fatigue properties when enhancing their yield strength, but exhibit excellent fatigue
resistance when improving their ductility [34,37]. Refs. [31,33] show that alloy has excellent fatigue resistance when improving
yield strength from 300 MPa to 800 MPa and 293.1 MPa to 774.8 MPa, respectively. In addition, the similar results also can be
found by comparing the S–N curves obtained under the same experimental conditions [15,23,25,29,36–38]. Specifically, when the
alloy’s YS is less than 720 MPa, alloys with higher YS exhibit longer fatigue life, as shown in Fig. 6a–c. When their YS is greater
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Fig. 5. Partial dependence plot for YS and elongation of two groups of alloys: (a, b) alloys with high ductility, (c, d) alloys with high strength. The Ĕ-axis
refers to the value of YS or elongation. The ĕ -axis indicates the effect of improving YS or elongation on fatigue life.

than 720 MPa, the increase in YS will not increase their fatigue life, as shown in Fig. 6d. It provides guidelines for designing alloys
with longer fatigue life in engineering applications.

3.3. Evaluation of generalization ability for unexplored alloys

A more practical need in engineering is to evaluate materials that do not appear in the training set. Thus, to verify the
generalization ability of the prediction model, experimental data of the Cantor alloys and three new materials: Fe42Mn28Cr15Co10Si5,
Fe38.5Mn20Co20Cr15Si5Cu1.5, and HfNbTaTiZr are collected from available literature [13,16,45,46]. Table 2 gives the comparison
between predicted values and experimental results. Relative error, defined as |ďĊĈċă − ďĆĈăĂÿāĊÿąĄ|∕ďĊĈċă, is used as a metric function.

It can be seen from Table 2 that the prediction model performs well in the FeMnCoCrNiĎSiďCuĐ alloys, with a relative error
of no more than 0.16. While in the HfNbTaTiZr alloy, the prediction results are not as good as in the FeMnCoCrNiĎSiďCuĐ alloys.
There are two reasons: one is that the explored MPEA system is mostly composed of Al, Co, Cr, Fe, Mn, and Ni elements, and the
knowledge learned by the prediction model is mainly about these systems. The other reason is that, the FCC-based alloys and BCC
alloys (such as HfNbTaTiZr) experienced different fatigue damage and deformation mechanisms, making the model obtained mainly
from FCC-based alloys cannot accurately predict the fatigue life of the HfNbTaTiZr alloy. The two error points of 0.16 and 0.13 in
the Cantor alloy are noisy points, as they are inconsistent with the decreasing trend of the S–N curve. It illustrates that the voting
model has high prediction accuracy and power generalization ability for commonly explored MPEA systems. We believe that with
the enrichment of fatigue data for various MPEA systems, ML models will have a brighter future in predicting their fatigue life.

4. Conclusion

In summary, this work proposes a voting model based on two best-performing models (GBDT and XGBoost) by extracting
features from empirical formulas, which can reliably, fast, and low-costly predict the fatigue life of MPEAs. Partial dependence plots
and SHAP values are utilized to analyze the quantitative relationship between influencing factors and fatigue life, which provides
guidelines for designing alloys with higher fatigue life in engineering applications. Primary findings are described as follows:

• The voting prediction model outperforms the single ML model, with most data points lying in the double error dispersion
bands and relative errors not exceeding 0.16 in predicting the lifetime of unexplored MPEA systems. In addition, since most of
the fatigue data in this study were collected from MPEAs of FCC-based microstructure, the proposed model is more applicable
for predicting the fatigue life of those FCC-based MPEAs.
• The fatigue life of the nine representative MPEA systems is mainly influenced by ÿăÿĎ rather than ÿăÿĄ or ÿÿ. Moreover, their
S–N curves are more suitable to be described by the mathematical expression, viz., logĊ = ÿ + Ā log ÿăÿĎ.
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Fig. 6. Comparison between S–N curves in various MPEA systems obtained from previous work. YS is the alloy’s yield strength and EL is the alloy’s elongation.
(a) The S–N curves of Cantor alloy obtained from Ref. [25,29]. (b) The S–N curves of CoCrFeNi alloy obtained from Ref. [23]. (c) The S–N curves of AlĎCoCrFeNi
alloy obtained from Ref. [15,36]. (d) The S–N curves of AlĎCoCrFeNi alloy obtained from Ref. [37,38].

• It is found that higher yield strength and ductility favor increasing fatigue life. For the explored alloys, it is better to increase
their fatigue life by improving their yield strength instead of ductility when their yield strength is less than 720 MPa; otherwise,
improving their ductility for lengthening fatigue life is a better choice.
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Table 2
Comparison of predicted and experimental fatigue life of the MPEA system.

Alloy ÿÿ logĊ

True Predict Relative error

Fe42Mn28Cr15Co10Si5

799.2 4.3 4.5 0.04
708.6 4.7 4.6 0.02
679.3 5.2 5.1 0.02
638.9 5.7 5.2 0.09
577.6 6.5 5.9 0.09

Fe38.5Mn20Co20Cr15Si5Cu1.5

834.0 4.9 5.3 0.08
806.2 5 5.3 0.06
761.9 5 5.3 0.06
744.9 5.2 5.3 0.02

CoCrFeMnNi

433.7 3.4 3.8 0.11
427.5 3.6 4 0.11
405.5 3.9 4.2 0.07
403.4 3.6 4.3 0.16
385.2 4 4.3 0.07
384.5 3.8 4.3 0.13
332.3 4.4 4.9 0.11
330.7 4.7 4.9 0.04

HfNbTaTiZr

514.51 5.4 6.6 0.22
510.55 4.5 6.7 0.49
509.77 5.1 6.7 0.31
507.48 4.6 6.9 0.5
503.83 5.2 7 0.35
502.01 5 6.9 0.38
500.21 5 7 0.4
499.49 7 7 0
498.41 7 7.2 0.03
496.63 7 7.2 0.03

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.engfracmech.2024.109860.
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