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ABSTRACT

Many studies attribute the excellent properties of high-entropy alloys to the ordering-phenomena. It can be known from density functional
theory that the macroscopic properties of the system can be described by the electron density. Electronegativity is related to electron density,
and models describing ordering can be established based on electronegativity scales through machine learning. In this study, a large dataset
was established and predicted the ordered state corresponding to the alloy composition. The accuracy of the model on the test set was 94%.
Furthermore, this study used different methods to explain the machine learning model and learned more model information.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0188516

In numerous research fields, methods to build complex system
models through machine learning (ML) have attracted much atten-
tion.1–5 Modeling and interpreting models through ML provide an
interesting perspective on understanding complex systems: not all
microscopic details affect the macroscopic properties of the system,
and causal emergence occurs at different levels in the complex sys-
tem.6–8 High-entropy alloys (HEAs) belong to complex systems that
have more principal elements added than traditional alloys.9 The birth
of the design concept of HEAs was accompanied by such a conjecture:
If more types of alloying elements are added to the alloy system, the
alloy will be a disordered solid solution rather than an intermetallic
phase.9 This conjecture can be viewed as an extension of the coopera-
tion phenomenon10 in binary alloys (also known as the order–disorder
transformation11,12 and superlattice–sublattice problem13). To summa-
rize, the positions of atoms in crystal lattices are not independent,
but will affect each other, resulting in ordering phenomena in the
alloy.14–16 The existence of this effect will directly affect the micro-
scopic particle distribution and then affect the macroscopic properties
of the alloy.17–19

In the initial research, people hoped to establish a phenomeno-
logical model to describe the statistical laws between macroscopic vari-
ables and ordered phenomena.20–22 These phenomenological models
have promoted the discovery of new HEA compositions.23–26

Electronegativity has long been used as such a system variable, such as
the Hume–Rothery criterion in binary alloys,20 and there are also
related electronegativity criteria in HEAs.23 The concept of electroneg-
ativity was proposed in 1932.27 It is believed that electronegativity can
represent the polarizability of atoms,28 the distribution of electrons,29

and the properties of electron orbits.30 It can be known from the den-
sity functional theory31 that the macroscopic properties of matters can
be regarded as a functional function of the electron density. The rele-
vant definition of electronegativity is closely related to the electron
density, so ones associate electronegativity with the atomic radius,32

ionization energy,33 electron affinity,33 compound formation
enthalpy,34 and other properties. In the past 90 years, the related con-
cepts of electronegativity have continued to develop. Not only various
electronegativity scales corresponding to different experiments have
been proposed35 but the related concepts of electronegativity have also
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been constantly updated. It is interesting to develop a model describing
ordering in alloys starting from electronegativity. It can help us under-
stand the relationship between the electronegativity and ordering in
alloy systems and can give interesting explanations about alloy-
ordering phenomena from the electronic level, providing interesting
ideas for alloy designing.

The earliest electronegativity scale was proposed by Pauling.27 It
is a set of standards abstracted from thermochemical experimental
data to describe the ability of atoms in a molecule to attract electrons
to themselves. In 1963, Whitehead, Hinze, and Jaffe proposed the con-
cept of orbital electronegativity,30 defining electronegativity as the
derivative of the energy of a certain valence state, corresponding to the
number of electrons occupied in the orbit. They believed that electro-
negativity is not a fixed property of atoms, but a property of atomic
orbitals. In 1994, Ghosh redefined electronegativity based on the den-
sity functional theory36–38 and divided chemical bonds into three
regions: two atomic regions and one bond region. The bonding process
was explained as follows: the electronegativity before bonding is higher
than the average electronegativity of the two atoms, so electrons flow
from the atomic region to the bonding region. This explanation can
describe the bonding process of diatomic molecules. In 2019, Rahm,
Zeng, and Hoffmann made corresponding corrections to the tradi-
tional Allen electronegativity29 through a large number of density
functional calculations,39 considering that electronegativity is the aver-
age electron binding energy of ground state atoms. Electronegativity is
not a measurable value of an isolated atom, and related electronegativ-
ity scales often come from different experimental measurements or
abstract methods. In total, 10 electronegativity scales were chosen in
this study to establish relevant models describing the ordering in alloy
systems. In this study, macroscopic variables describing the system are
obtained by calculating the properties of the alloy system correspond-
ing to different electronegativity scales. This process is also called fea-
ture engineering. The corresponding features of the first raw moment
of the relevant electronegativity scale corresponding to the alloy system
are suffixed by the letter a, and the characteristics of the second central
moment are suffixed by d. The first raw moment is the weighted aver-
age value of electronegativity, and the second central moment is the
weighted standard deviation of electronegativity, which is employed to
describe the level of electronegativity deviation from the average value
in the alloy system (see the supplementary material for more informa-
tion about feature engineering and different electronegativity scales).

In fact, ordering always exists in real alloys, and what often needs
to be discussed is the degree and form of ordering. In many studies,
the ordering phenomenon observed by instruments is often named as
intermetallic phase. The ordering method in complex alloy systems is
more complicated than that in dilute alloys.40 The order in the alloy
can be compared to the critical opalescence phenomenon. When the
order reaches a certain degree or range, it will be identified by the
instrument. It seems inappropriate to use the traditional naming
method. In this study, we prefer to use different degrees of symmetry
to describe alloy systems. The relevant standards used here come from
Miracle and Senkov.9 It is a good solution to describe the order of alloy
systems through static concentration waves.41 This description based
on Fourier transform can relate the concentration waves to the sym-
metry of the alloy system. The alloy system can be divided into two
states of high and low symmetry through engineering-precision resolu-
tion. An order phase found in alloys means that the alloy system has

low symmetry. In fact, the distinction for this task is difficult, for exam-
ple: in the work of Zhang et al.,42 the accuracy of identifying solid solu-
tions and non-solid solutions was 88.7%. In the work of Huang et al.,43

the accuracy of identifying was 78.9%. In Pei’s work,44 solid solutions
were identified with an accuracy of 93%.

Accuracy is not the only indicator for evaluating reality. In fact,
in some early works, simple criteria can achieve good classification
results,23–25 which may be due to the small database, leading to signifi-
cant biases. When the database is large enough, some simple criteria
seem to lose their effectiveness. Here, the relevant effects are shown in
Fig. 1. First, all data are normalized (projected to the range of 0–1
through the normal distribution according to the characteristic quan-
tile), and the four radar charts in Fig. 1 are drawn. In the radar chart,
an alloy composition will correspond to a polygon, and the vertices of
the polygon represent the features corresponding to this alloy compo-
sition. A random subset in the database was selected to draw the radar
diagrams in Figs. 1(a) and 1(b). A total of 200 alloy components were
superimposed with the center as the origin. The darker superimposed
color means that the same type of alloys has similar properties. Figure
1(a) represents the low symmetry state, and Fig. 1(b) represents the
high symmetry state. As can be found from Fig. 1, there are obvious
differences between the two-symmetry states. This feature means that
it is easy to find specific features in small databases to distinguish mac-
roscopic phenomena. For example, low-symmetry systems tend to
have higher E_n_G_a features, while high-symmetry systems do not.
However, after drawing more data (4000 groups in total) into a radar
chart, as presented in Figs. 1(c) and 1(d), the polygons are almost filled,
and the contrast between two symmetry states is not distinguishable. It
does not work to use simple criteria to make distinctions in big data.
Complex systems require more complex models, and ML has demon-
strated excellent capabilities in building models that describe complex
systems.45–47

The ordering phenomena in alloys are governed by the same
model,16,48 and a unified model can be established to describe the
ordering in multicomponent HEAs and dilute alloys.44 By collecting
the data of HEAs and traditional alloys together, a dataset with 4000
alloy data components is constructed. In the dataset, alloy components
in two symmetry states account for half each. A prediction accuracy of
94% was achieved in this work. (Accuracy is a common classifier eval-
uation standard, and the corresponding function is provided in the
supplementary material.) The algorithm selected in this study is the
decision forest49 in supervised learning. Supervised learning uses a
training set to learn a model and then uses the model to predict the
test set. In this work, different random seeds are used to control the
division of training and test sets. 70% of the data are employed for
model learning, and the remaining 30% is used to test the model’s pre-
dictive ability. This method is also known as simple cross-validation,
and K-fold cross-validation with different K values also provides in the
supplementary material. Features constitute the feature space, and the
macroscopic phenomena of the alloy system correspond to the output
space.50 In supervised learning, it is assumed that there is a joint distri-
bution between the feature space and the output space. The training
and test data rely on this joint distribution.50 The joint distribution can
also be understood as the mapping between the feature and the output
space. The purpose of ML tools is to find an optimal mapping that can
transform the feature space into the output space. If the supervised
learning model can achieve high prediction accuracy on never-seen
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datasets, it means that the relevant model has learned the relationship
between macroscopic variables and ordering phenomena. We tried
several common algorithm frameworks to test the effects of different
algorithms on this task (more details are provided in the supplemen-
tary material), and the results showed that the forest algorithm based
on the tree structure showed greater advantages.

The decision tree model is a common classifier, while the decision
forest can be regarded as an ensemble algorithm. By combining
decision-tree models in a parallel manner, the decision forest becomes
a strong learner and has better performance in combating overfitting.
The classification-decision-tree model consists of nodes and directed
edges. There are two types of nodes, namely, one is internal nodes, and
the other is leaf nodes. Internal nodes will contain features, while leaf
nodes represent related categories. In this work, the optimal model is
found by adjusting the hyperparameters of the decision-forest model.
The method of adjusting hyperparameters is the grid method, and the
optimal hyperparameter combination is found by traversing limited
hyperparameters (see the supplementary material for more details).
The result of the model is shown in Fig. 2. The hyperparameter that
has the greatest impact on the accuracy of the decision tree model is

the depth of the tree. The relationship between the depth of the tree
and the accuracy of the model is plotted in Fig. 2. As shown in
Fig. 2(a), the forest algorithm achieves the highest accuracy when the
depth of the tree in the weak classifier reaches 18. After that, as the
depth of the tree increases, the model accuracy almost remains
unchanged. Another important parameter is the number of sub-
learners. The best hyperparameters was obtained through 77 sets of
parameter combinations. When the forest model contains 30 tree
models, the accuracy of the model does not increase as the number
increase. In the six sets of hyperparameter comparisons about min
samples leaf, the results show that when min samples leaf is equal to 2,
the model is the most accurate. In the six sets of hyperparameter com-
parisons about min samples split, when number is equal to 3, the
model is the most accurate (relevant results are shown in the supple-
mentary material).

The basic unit of the tree model is a simple if-then judgment,
which can be explained as a competition to a certain extent. When a
related feature reaches a certain level, it means that the competition
corresponding to the feature in the system reaches an overwhelming
level. As exhibited in Fig. 2(a), the accuracy description of the relevant

FIG. 1. Alloy feature radar chart, the vertices of the polygon correspond to the features of the alloy composition. (a) 200 random high-symmetry alloys. (b) 200 random low-
symmetry alloys. (c) 2000 random high-symmetry alloys. (d) 2000 random low-symmetry alloys.
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model shows that the model has a high accuracy of up to 94%.
Considering that the performance of the model may be affected by
database partitioning, 30 different random seeds were selected to aver-
age the performance of the model, and the relevant results were repre-
sented in a box graph. To comprehensively demonstrate the predictive
performance of the model, Fig. 2(a) shows four model evaluation
functions.

A receiver-operating characteristic (ROC) is a common computa-
tional method used to evaluate the effectiveness of classifiers. The hori-
zontal axis of the ROC curve image represents the false positive rate
(FPR), while the vertical axis represents the true positive rate (TPR).
The shape and position of the ROC curve can reflect the performance
of the classifier. The closer the ROC curve is to the upper left corner,
the better the performance of the classification model. In addition to
the ROC curve, the area under curve (AUC) is also one of the indica-
tors for evaluating classifier performance. AUC is the area below the
ROC curve and is usually considered a comprehensive indicator for
evaluating classifier performance. The range of AUC values is between
0 and 1, and the larger the value, the better the performance of the clas-
sifier. When AUC is equal to 1, it indicates that the classifier has per-
fectly classified all samples; when AUC is equal to 0.5, it indicates that
the performance of the classifier is equivalent to random guessing,
meaning that the classifier has not learned any useful information. As
shown in Fig. 2(b), the AUC of the relevant model obtained can reach
0.986.

Another advantage of the tree model is that one can interpret the
model by feature information in internal nodes. This study chose three
interpretation methods, one regarding the importance of Gini index49

features method, which we will show in the supplementary material.
The permutation feature importance method and the drop column fea-
ture importance method are shown in Fig. 3. The results in Fig. 3 come
from the average of fivefold cross-validation under the control of 10 ran-
dom seeds, which means that the data come from 50 sets of tests.

The importance ranking obtained by the permutation feature
importance method51,52 is shown in Fig. 3(a). First, the best
feature combination is found to be 20 features through a recursive fea-
ture elimination method (see the supplementary material for more
details), and the results are used as the baseline. Second, the corre-
sponding features are permuted one by one and the impact of the new

features on the accuracy of the model is observed. The abscissa is the
improvement effect of the second model. 0.1 represents a 10% increase
in model prediction accuracy. Figure 3(b) shows the relevant results
obtained by the drop column feature importance method. By remov-
ing each feature in turn, the impact of relevant features on the model
effect is obtained. It can be seen from Fig. 3(b) that the correlation
results obtained by this method fluctuate greatly because the model
has been retrained, but one thing is clear: removing any features will
degrade the performance of the model, and the correlation results are
consistent with those obtained by the recursive feature elimination
method. Hence, the results obtained by the drop column feature
importance method are not as significant as the permutation feature
importance method.

The controversy surrounding what electronegativity is has not yet
been resolved and is also beyond the scope of this study. Considering
that most studies follow Pauling’s explanation method: electronegativ-
ity is the force of atoms to attract electrons, and then the second central
moment of electronegativity describes the fluctuation of electron den-
sity in the system. The top rankings in both ranking methods are sec-
ond central moment features. This is because the second central
moment describes the average deviation of the electron attraction abil-
ity of different particles in the system and is more closely related to the
electron density. In both interpretation methods, E_n_N_d ranks high,
which means that the Nagle electronegativity scale contains more rele-
vant information that can describe the ordering phenomenon of the
alloy system. Nagle electronegativity is related to the polarizability
radius.28 Nagle assumes that atoms are approximately spherical and
believes that electronegativity is closely related to atomic size. The elec-
tronegativity of different particles comes from the attraction ability of
the atomic nucleus to electrons. Therefore, in the formulation of the
corresponding scale, electronegativity is regarded as a function of the
valence electrons and the atomic radius. This idea has a long history.
For example, when the ratio of polarizability to molar volume is larger
than one, it is believed that the element will exhibit metallic properties.
This polarizability radius can describe the relative volume of atoms,
thereby determining electron delocalization or itinerancy.

In traditional phenomenological models, such as the Miedema
model,34 relevant models are established by calling the abstract infor-
mation of particles. The ML method can provide another way of

FIG. 2. The effect of the model on the test set. (a) Accuracy increases with tree depth, and the box plot shows the model evaluation effect in different test sets. (b) Receiver
operating characteristic curve.
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modeling, first establishing a sufficiently accurate model, and then ana-
lyzing the physical background of each feature. The corresponding
standard of atomic radius is derived from the abstract description of
experimental values. One can establish different phenomenological
models based on the hypothetical meaning of “atomic size.” It is
believed that these phenomenological models can affect the macro-
scopic properties through elastic distortion or stacking effects. In fact,
it is not the artificial meaning that matters, but the relevant informa-
tion that these scales themselves carry to describe the large-scale phe-
nomena of the system. The process of modeling is to discover the
relationship between these scales and macroscopic phenomena or to
establish the joint distribution between them.53 The artificially defined
meaning itself should not be an obstacle to the application of related
concepts. Moreover, it is important to find the level of causal emer-
gence to describe the macroscopic phenomena of the system.

See the supplementary material for the details on feature engi-
neering, algorithm hyperparameters, and model validation.
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