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The phase design of high entropy alloys (HEAs) is an important issue since the phase structure affects the
comprehensive properties of HEAs. Accurate prediction of phase classification can accelerate material design. In
this paper, a new phase prediction framework is proposed using machine learning (ML) and an improved in-
formation fusion approach based on the Dempster-Shafer (DS) evidence theory. Considering that the classifi-
cation results of different ML algorithms may conflict, and the traditional DS evidence theory cannot solve the
problem of high conflict, we propose an improved information fusion approach based on the DS evidence theory.
The basic probability assignment function is constructed using the ML algorithms. 761 HEAs samples are
collected consisting of amorphous phase (AM), solid solution (SS), intermetallic compound (IM), and a mixture of
SS and IM (SS + IM). For the small dataset of HEAs, we use a conditional generative adversarial network (CGAN)
for data augmentation. Based on the enhanced dataset, the ML model is optimized by sparrow search algorithm
(SSA), which can accelerate searching speed of model hyperparameters and improve the performance of the
model. The results show that the proposed information fusion method performs better than several other existing
techniques on the test set, and the prediction accuracy reaches 94.78 %. Meanwhile, the prediction accuracy of
the proposed method is higher than that of the existing technology (93.17 %). It is proved that the proposed
method can solve the high conflict problem effectively. Moreover, we present the interpretability analysis of the
features by the Shapley additive explanations (SHAP) and the sensitivity matrix. A smaller atomic size difference
8 (<6.6 %) is conducive to the formation of SS phase, while a larger § (>6.6 %) is conducive to the formation of
AM phase. A smaller enthalpy of mixing AHp;x tends to form AM phase. In binary and ternary alloy systems, IM
phase can be extracted by the mixing enthalpy ASpix < 10. In addition, we find that mean bulk modulus (K) and
standard deviation of melting temperature (c7) are critical features to distinguish between SS and SS + IM.

1. Introduction better functional materials [11]. The formation of phase can signifi-

cantly affect its microstructure, which in turn affects its physical and

High-entropy alloys (HEAs) are refers to the composition containing
at least five metallic elements, and the atomic percentage of each
element is 5-35 atomic percent (at.%) [1,2]. Due to the excellent me-
chanical properties, HEAs have a broad application prospect [3-8]. The
crystal structures exhibit different thermodynamic properties, such as
high strength, great corrosion resistance and high temperature, high
temperature softening resistance and good wear resistance. In general,
the SS phase is closely related to the hardness and ductility of the HEAs
[9], while the AM phase is related to the elasticity and electrical
corrosion [10]. HEAs with intermetallic compound phases are generally

* Corresponding author.
E-mail address: chencun@zzu.edu.cn (C. Chen).

https://doi.org/10.1016/j.commatsci.2024.112976

mechanical properties. Therefore, the prediction of phase information is
crucial for the development of new HEAs.

The problem of phase design has aroused wide concern [12-14].
Several computational simulation methods are applied to the phase
design of HEAs, such as first-principle [15,16], Monte Carlo simulation
[17-19], molecular dynamics simulation [20,21], and calculation of
phase diagrams (CALPHAD) [22,23]. However, the computational
simulation methods are based on certain hypothetical framework, which
are only applied for simple cases. For complex phase structures in HEAs,
computational simulation methods may not be applicable. We tend to
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Fig. 1. Schematic flow of phase prediction based on CGAN and the improved DS.

develop data-driven phase design approach for HEAs based on real
experimental data.

Machine learning (ML) can explore potential relationship between
the features and the targets from real data, which has been used in the
phase prediction of HEAs [24-28]. Many scholars have studied the
phase classification by ML and obtained satisfactory results in two or
three types of phase prediction [29-33]. For example, Krishna et al.
applied ML algorithms to predict SS and SS + IM in a dataset containing
636 alloys, and the accuracy of the artificial neural network was up to
80 % [31]. Zhu et al. proposed a deep neural network structure using
residual network to predict AM, SS, and IM phases, the accuracy of phase
prediction was 81.9 % [33]. However, the prediction of multi-class of
HEAs needs to be improved. For example, Lee et al. used generative
adversarial networks to generate additional HEAs samples from 989
samples and constructed regularized deep neural networks for predict-
ing the SS, SS + IM, AM and IM HEAs phases. The enhancement of the
generative model significantly improved the performance of the model,
and the prediction accuracy reached 93.17 % [34]. Qu et al. based
several KNN models with k-dimensional tree algorithm and weighted
voting to classify BCC, FCC, others, hexagonal close-packed (HCP) and
IM using a dataset containing 2043 pieces of data, and the test accuracy
is 93 % [35]. Singh et al. applied ML algorithms to predict the FCC, BCC,
FCC + BCC, and intermetallic mixture (MIP) phases of HEAs based on
1200 original samples. The average accuracy is 92 % [36]. For the
problem that the prediction results of multiple ML algorithms may be
inconsistent, Hou et al. proposed a hybrid prediction frame for HEAs
that combined empirical knowledge and Dempster-Shafer (DS) evidence
theory. The model is verified by the prediction of SS, SS + IM, AM and
IM in a dataset of 426 HEA samples. The results show that the phase
prediction of quinaries, senaries and septenaries material systems are
87.8 + 2.1 %, 86.7 + 1.7 % and 83.3 £ 1.4 %, respectively [37]. The
learning ability of a single ML algorithm is limited, while multiple ML
algorithms predictions may conflict. In order to solve this problem, we
apply DS evidence theory to predict the four phases of HEAs based on
four ML models. The traditional DS evidence theory cannot solve the
high conflict problem effectively [38-41]. Therefore, we propose an
improved DS combination rule, which can effectively solve the problem
of inconsistent prediction results of various algorithms and improve the
prediction accuracy of multiphase classification problems based on

small dataset.

In the present work, we collected 761 HEAs samples consisting of
amorphous (AM), solid solution (SS), intermetallic compound (IM), and
a mixture of SS and IM (SS + IM). Considering the small dataset, the
conditional generative adversarial network (CGAN) is introduced for
data augmentation. Sparrow search algorithm (SSA) is a powerful tool to
optimize hyperparameters of ML algorithm and improve model perfor-
mance [42]. We used SSA to optimize the hyperparameter of the basic
classification models, such as Logistic Regression (LR), Decision tree
(DT), eXtreme Gradient Boosting (XGBoost) and Gradient Boosting De-
cision Tree (GBDT). This paper proposes a phase prediction framework
based on CGAN and an improved DS evidence theory which fuses ML
models optimized by the SSA, which can improve the classification
performance. The proposed model can achieve an accuracy of 94.78 %
for phase classification, which performs better than several existing
models. The advancement of the current work relates to three factors:
(1) Considering the small dataset, CGAN is used to data augmentation
(2) In the ML classification models, SSA is applied for hyperparameter
optimization. It can accelerate searching speed of the hyperparameters
and avoid falling into the local optimal solution. (3) The improved DS
evidence theory can effectively solve high conflict problem and improve
the accuracy of model prediction.

2. Materials and methods
2.1. Design strategy

The prediction frame of the improved DS evidence fusion method for
HEAs phase is shown in Fig. 1. First, the dataset is established containing
phases of HEAs: SS, AM, IM, and SS + IM. Second, CGAN is used to
generate virtual training samples for each class of phases. Inception
Score (IS) is applied to measure the quality of generated data. In addi-
tion, four ML algorithms are optimized by SSA in order to improve the
performance of the model. The output of the optimized ML models is
treated as mass functions. Finally, we propose an improved DS evidence
theory, which can solve the confliction of results among different al-
gorithms. The proposed information fusion method performs better than
four ML algorithms optimized by SSA and traditional DS evidence theory
on the test set.
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Fig. 2. The structure of CGAN model.

2.2. Conditional generative adversarial network

CGAN is a generative adversarial network (GAN) with constraints
proposed by Mehdi Mirza in 2014 [43]. By adding additional condi-
tional information, namely category label to the generator G and
discriminator D of the original GAN, the conditional generation model is
implemented. In addition to the prior input noise P,(z), the input of the
generator has the conditional information y, namely the category label,
so that we can generate the sample more precisely. The discriminator is
the input sample labels and the corresponding features, which are
combined to judge the authenticity of the sample. The objective function
of CGAN is a two-player minimax game with conditional probability,
and the loss function is described as follows,

minmaxV (D, G) = E-p,, (v [10gD(]y) | + Eevp. o log(1 = D(G(zly) ) )]~ (1)

The schematic diagram of CGAN is shown in Fig. 2. The purpose of
the discriminator is to distinguish the input data is real data or generate
synthetic data G(z|y). The purpose of the generator is to generate the
data distribution as close as possible to the real data distribution Pggq(x).
We expect the discriminator to distinguish well between real data and
generated data. D(x|y) represents the probability of x under condition y,
where D(x|y) to be close to 1 and D(G(z|y)) to be close to 0, corre-
sponding to V(D,G) maximization. The generator tries to imitate the real
data to deceive the discriminator. D(G(z|y)) is expected to be close to 1,
which corresponds to V(D,G) minimization. During the training process,
both sides strive to optimize their network, thus forming a competitive
confrontation until both sides reach a dynamic equilibrium.

2.3. ML models optimized by SSA

The SSA is a swarm optimization approach proposed by Xue et al.
based on group intelligence, foraging and anti-predation behaviors of
sparrows [44]. In the simulation of sparrow foraging, sparrows can be
divided into discoverers and participants. The location of sparrows and
their food is constantly changing due to the presence of predators. The
discoverer is responsible for finding food in the population and

providing feeding areas and directions for the entire sparrow popula-
tion, while the participant follows the discoverer to obtain food.
Therefore, SSA is introduced to optimize the hyperparameters of Logistic
Regression, Decision tree, eXtreme Gradient Boosting and Gradient
Boosting models respectively. The use of SSA optimization algorithm
can accelerate searching speed of model hyperparameters and improve
model prediction performance.

2.4. DS evidence theory

The DS evidence theory was firstly proposed by Dempster [45] in
1967. 1t is further developed by Shafer [46] as a theory of uncertainty
reasoning which is also a generalization of Bayesian theory. The frame of
discernment Q is a non-empty and mutually exclusive set, indicted by
Q = {E;,Es, ...,E,,}.ZQ ={®,{E1}, ...,{En},{E1, E2},...,{E1,Eq, ..., Ei},
...,Q} as a power set consists of a complete subset of Q. A mass function
is a mapping m from 2% to [0, 1], the mass function can be also called as
the basic probability assignment (BPA), indicted by,

m:22500,1], )

which satisfies m(@) = 0 and ), ,om(A) = 1. If m(A) > 0,A is a focal
element.

Two independent BPAs m; and m; on 2% by their orthogonal sum
m = m; @ my represent Dempster’s rule of combination, is defined as
follows,

1

my(B)my(C),
m(A) = 1=Ky ca ((Byma(C): 3

0,

K= > m(B)m(C) 4

BNC=@

where B € 22 and C € 2%,K < [0,1] is a conflict coefficient that repre-
sents the conflict degree between BPAs m; and m,. Dempster’s rule of
combination only makes sense at K < 1. If K proaches 1, the BPAs m; and
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Fig. 3. Flowchart of the improved DS evidence fusion method.

my are in high conflict. If K is closer to 0, the BPAs m; and my are in low
conflict. If K = 1, BPAs m; and my are completely conflicting, i.e. the
equation is mathematically meaningless, and traditional DS evidence
theory may produce counterintuitive results.

2.5. Improved DS evidence theory

DS evidence theory is a powerful tool to handle with conflict prob-
lems. However, if there is a high conflict among several algorithms, the
traditional DS evidence theory may produce counterintuitive results
[47-50]. In this paper, we use the output of the ML models optimized by
SSA to construct the basic belief assignments. An improved DS evidence
fusion method based on a new measure of evidence and Belief Jen-
sen-Shannon divergence is constructed to fuse the different algorithms.
The flowchart for the improved approach is shown in Fig. 3.

Steps of the improved DS evidence fusion method are shown as
follows:

Step 1: Build masses M = {my,mg,--m;,---m,} for each sample
Xp€ X = {x1,X2,Xp,-Xm} by the ML algorithms L =
{L1,L3,Lj, Ly}, where n represents the number of algorithms, m
represents the total number of sample data.

Step 2: Calculate the distance H(m;) of each masse m; as,

1| (ymi4) —ve 2
H(m;) = ﬁ Z]:<2|A'—1)7 ()

<.

where ¢ = 1/N, N represents the total number of categories of
phases;m;(A;) represents the probability that sample X, belongs to the j-
th phase by i-th algorithm.

Step 3: The first weighting factor w; (i) of masse m; is denoted as,

(i) = Ll ©
>t [H ()]

Step 4: The divergence matrix is constructed as follows,
0 <+ BJSy; BJSy,

D=|BIS - 0 BIS,|, @
BiSs -~ BIS, -~ 0

where BJS; represents the divergence between two bodies of evidence
m;, m;(i,j = 1,2, ---n) is calculated by the Belief Jensen-Shannon diver-
gence measure [51]. The Belief Jensen-Shannon divergence between the
m; and my is defined as,

1 i j i j
BJS,] = BJS(m,‘m,) = E [S(mi,m ;mj) +S(le,m ;M/>}

S(mi,m;) = Zmi(Ak)logZ;gﬁg,Zm;(Ak) =1(k=1,2,...,2%i=1,2)

Step 5: The second weighting factor w, (i) of masse m; is denoted as,
1/D;
Z:] 1/ 5k7

2

_ _ BJS; .
where D; = %’ represents the average distance of the masse m;.
Step 6: Calculate the weighted average evidence WAE as follows,

(8)

WAE = Z (w1 (i) x wy (i) x m; ). ©))

Step 7: Calculate the combination result of WAE as follows,

m, = (((WAE & WAE), & WAE), & - & WAE ) (10)

n—17
where @ represents traditional Dempster’s rule of combination [52,53].

Step 8: The element of matrix m, represents the credibility of the
phase of sample X, and the phase with the greatest credibility is taken as
the output of the model.

3. Results and discussion
3.1. Dataset and features

We collected as-cast samples from previous literature
[29,54,55,56,57] to develop phase prediction model for HEAs. Consid-
ering the lack of data of thermal history, we only consider compositions
as the inputs to the machine learning models. 761 samples are collected
with 12 candidate parameters, including atomic size difference 8, mean
atom radius a, valence electron concentration VEC, standard deviations
of valence electron concentration oygc, electronegativity y, standard
deviation of electronegativity Ay, mean bulk modulus K, standard de-
viation of bulk modulus ok, average melting temperature Tp,, standard
deviation of melting temperature 67, mixing enthalpy AHp;x and mixing
entropy ASpix- This dataset is divided into 165 AM phases, 248 IM
phases, 131 SS phases and 217 SS + IM phases, which refers to 56 ele-
ments (Al, B, In, Co, Cr, Cu, Fe, Mn, Ni, Pd, V, Mo, Ta, Hf, Zr, Nb, Sc, Y,
Zn, Li, Mg, Sn, Ca, Gd, etc).

VEC, 8, Ay, AHpix and ASp;x are the existing empirical design pa-
rameters, and on this basis, we add the 7 parameters namely a, 6ygc, Ok,
o7, Tm, K and . These additional parameters were verified to have a
positive effect on HEAs phase prediction [55]. The parameters of the
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Table 1

The calculation formula of the parameters for HEAs phase.
Configurational parameters Formulas
Mean atom radius a= " cn

Atomic size difference N i\ 2
8 =4/Xhial *E)
ASmix = —RY"% cilng;
AHpie = 3100 i 4HjCi
VEC = Y"1 1 ¢ VEG;

S ci(VEG; — VEC)?

Mixing entropy
Enthalpy of mixing

Average valence electron concentration

Standard deviation of VEC
OVEC =

Electronegativity ¥ =2k
Standard deviation of electronegativi /

8 v Ay = /Xl —)()2
Mean bulk modulus K =Y" cK;
Standard deviation of bulk modulus ox = /E?:l (K- K)Z
Average melting temperature T =30 1¢iTmi

Standard deviation of melting temperature

/ T;\?
or = E;':lci(l — T—l)
m

samples are calculated according to the parameter formulas in Table 1.
Ci, Ti» xi» Ki and Ty are the percentage, atomic radius, pauling electro-
negativity, bulk modulus and melting point of the i-th element of the
alloy, and Hjy is the heat of mixing between the i-th and j-th elements in
Table 1. In this paper, all the codes are run in Python 3.8.5. The Pearson
correlation coefficient is used to describe the correlation between each
two parameters. As shown in the Fig. 4, the Pearson correlation coeffi-
cient ranges from —0.84 to 0.75, with no strong correlation between any
two design parameters. Due to the large number of parameters, we
choose the t-stochastic neighbor embedding (t-SNE) method for
dimension reduction after data normalization to explore the structure of
the data. The t-SNE constructs a Gaussian distribution and a T-distri-
bution in a high-dimensional data space and a low-dimensional

VEC

Ok Ay X ASmix AHpmix  Ovec

Tm

Or

.
6 a VEC Ovec

DHpmix  BSpmix X
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embedding space, respectively. The dimensionality reduction of data
is achieved as shown in Fig. 5, and the entire dataset containing four
types of HEAs phases is distributed in a two-dimensional feature space. It
is obvious that the SS and SS + IM phases are indistinguishable from
each other, which indicates that their original features are similar. Some
samples of the AM and IM phase are located near the locations of the SS
and SS + IM phases. In general, the classification of the four types of
phases is not a linear problem. In the following, we choose DS evidence
theory to solve the classification prediction by fusing the results of
different ML models.

3.2. Data augmentation

The training set comprises 85 % of the dataset and contains 646
HEAs samples, of which 148 AM phases, 203 IM phases, 113 SS phases,
and 182 SS + IM phases. The CGAN is employed to generate 100 data for
each of the four types of phases. Both the generator and discriminator
are fully connected networks and the activation function is LeakyReLU.
The generator has two hidden layers and the discriminator has one
hidden layer, which is to prevent the discriminator from being too
strong. BatchNormalization and Dropout are added into the generating
network, which can generate better HEAs data.

To verify the quality of the generated data, we chose the Inception
Score (IS) proposed by Salimans et al. in 2016 [58]. IS is a compre-
hensive GAN evaluation index in terms of the quality and diversity of the
generated data. The formula for calculating the IS of the generator is:

IS(G) =exp| Y _p(x)Dxe(POI)Ip(Y)) |, an

i

where p(x;) = 1/N,N = 4;P(y|x;) represents the probability that the i-th
generated sample belongs to y;p(y) represents the probability that all the

1.00

0.75

0.25

- -0.25

- =0.50

-=0.75

Fig. 4. Pearson correlation coefficients of all the features.
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Table 2
The IS evaluation results of the CGAN.
H(yl|x) H(y) s
0.1111 1.3857 3.5773
Table 3
Prediction accuracy of ML models and SSA-ML algorithms.
Method LR DT XGBoost GBDT
Basic ML 83.45 % 79.13 % 86.96 % 86.96 %
SSA-ML 86.09 % 88.70 % 93.04 % 93.04 %

generated samples belong to y;Dk:i(p(y|xi)|p(y)) is Kullback-Leibler
divergence, which measures the similarity of two probability distribu-
tions [59].

IS can also be simply expressed as IS(G) = e)-HUX H(y) is the in-
formation entropy of y, which means the uncertainty. A larger H(y)
means a higher diversity of the sample.H(y|x) reflects the quality of the
generated data, and a smaller H(y|x) suggests that the generated data is
closer to the real data. The values of IS are calculated in Table 2. The
H(y]x) = 0.1111, which is close to the ideal result of 0, indicating that
the quality of the generated data is good. The difference between H(y) =
1.3857 and the optimal result logK(log4 =~ 1.3863) is 0.0006, indicating
that the generated data is of high diversity. In addition, IS = 3.5773 is

Computational Materials Science 239 (2024) 112976

respectively. To improve the performance of the base classifier, the
relevant hyperparameter of the ML models are optimized using SSA. The
regularization intensity 'C’ of an important parameter of LR is opti-
mized. For DT, three hyperparameters 'max_depth’, ’max_features’ and
*criterion’, respectively are optimized. The hyperparameter *objective’
of XGBoost is set to 'multi: softproba’, and we optimize 'n_estimators’,
’max_depth’, ’learning rate’ and 'gamma’. For GBDT, four important
hyperparameters, including 'n_estimators’, ’learning_rate’, *subsample’
and 'max_depth’ are selected to optimize.

To verify the advantages of the SSA algorithm, we conducted
comparative experiments on LR, DT, XGBoost and GBDT algorithms
with and without SSA optimization, respectively. The results of the
experiment are listed in Table 3. The default values for the hyper-
parameters used in the ML models are sklearn defaults. The default
hyperparameter setting of LR is as follows, ’penalty’="12/, ’C’=1.0. The
default hyperparameter setting of DT is as follows, ’criterion’="gini’,
*splitter’="best’, 'max_depth’=None, 'max_features’=None. The default
hyperparameter setting of XGBoost is as follows, 'n_estimators’=100,
’max_depth’=6, ’learning rate’=0.3, "'gamma’=0. The default hyper-
parameter setting of GBDT is as follows, 'n_estimators’=100, ’sub-
sample’=1.0, 'max_depth’=3, ’learning rate’=0.1. LR has the lowest
prediction accuracy, probably due to the fact that it cannot solve

|
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Fig. 6. Comparison of the proposed method with ML algorithms and traditional
DS evidence theory.

Table 5
Comparison of different methods on various performances.

‘ ) e Algorithm Precision F1-Score Recall
close to 4, which means that the quality of the generated data is high.
SSA-LR 89.66 87.19 86.09
SSA-DT 88.74 88.63 88.70
Lo SSA-XGBoost 93.42 92.91 93.04
3.3. ML models optimization SSA-GBDT 03.03 62.90 03.04
SSA-DS 87.92 87.71 87.83
Four ML models including LR, DT, XGBoost, and GBDT are trained The proposed method 94.78 94.75 94.78
based on 646 original data and 400 data generated by CGAN
Table 4
rediction results of the SSA-ML algorithms and the proposed DS evidence theory.
Alloys SSA-LR SSA-DT SSA-XGBoost SSA-GBDT DS Proposed DS DSDSDS True Phase
Zr70Pdso AM M AM AM M AM AM
MoNbTavVW SS AM SS SS + IM AM SS SS
AlCoCrCuFeNi SS + IM AM SS + IM SS +IM AM SS +IM SS + IM
AlCo,CuFeNi SS + IM SS + IM SS + IM Ss Ss SS + IM SS + IM
AlBe4Mn M AM M M AM M M
C0sMo; 75Nio VW 75 Ss M SS + IM SS + IM M SS +IM SS +IM
NaZn;3 M AM M M AM M M
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nonlinear problems. The performance of DT, XGBoost and GBDT opti-
mized by SSA is significantly improved. The accuracy of DT increases
significantly due to its hyperparameter *'max_depth’ has a significant
effect on the performance of the model. SSA can quickly find the global
optimal value of *'max_depth’ to improve the accuracy of the model. The
hyperparameters ’n_estimators’, 'max_ depth’ and ’learning rate’ of
XGBoost and GBDT affect the training results of the models. SSA can
help ML algorithms to optimize the hyperparameters, which makes the
training results better than basic ML models.

3.4. ML models construction

In the following, we construct a phase prediction model using the
proposed DS evidence theory to fuse the classification results of four
SSA-ML algorithms including SSA-LR, SSA-DT, SSA-XGBoost and SSA-
GBDT, which can solve the problem of high conflict among different
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X
6
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algorithms.

In order to verify the high conflict resolution capability of the pro-
posed DS evidence theory, we compare the output results of the pro-
posed method and the SSA-ML algorithms. Several representative
samples are listed in Table 4. For each alloy, the prediction results of
different algorithms may not be consistent. For example, the true phase
of CoyMoy 75NiaVW] 75 is SS + IM phase. SSA-XGBoost and SSA-GBDT
predicted its phase correctly, while SSA-LR predicted it as SS phase
and SSA-DT predicted it as IM phase. For alloys MoNbTaVW, although
SSA-LR and SSA-XGBoost algorithms predicted its phase correctly, SSA-
DT has a belief value of 1 for the AM phase. Therefore, there is a high
conflict that it is difficult to make a correct judgment with the traditional
DS evidence theory. In this situation, the improved DS evidence theory
proposed in this paper can solve the high conflict problem effectively,
and it can predict the phases more correctly.

To further demonstrate the effectiveness of the proposed method, we
compared it with the performance of different ML algorithms and
traditional DS evidence theory. Fig. 6 draws the accuracy of different ML
algorithms optimized and not optimized by SSA and it shows the com-
parison of the accuracy of the proposed method with the traditional DS
evidence theory and different SSA-ML algorithms. No matter whether
the ML models are optimized by SSA or not, the traditional DS evidence
theory cannot improve the prediction accuracy of the model, which is
lower than the accuracy of the ensemble model XGBoost, due to the
traditional DS evidence theory fails to solve high conflict problems
effectively. As exhibited in Fig. 6, the accuracy of the proposed method
reaches 94.78 %, which is higher than other methods. Moreover, we also
compare other indicators of SSA-ML algorithms, such as precision, F-
score and recall are shown in Table 5. The precision, F-score and recall of
the proposed method are 94.78 %, 94.75 % and 94.78 %, respectively. In
addition, to further study the phase prediction results of the proposed
method, we present the confusion matrix. In Fig. 7, of the 115 test
samples, 109 samples are predicted correctly. The accuracy of AM phase
is 100 %, IM phase is 97.78 %, SS phase is 88.89 %, and SS + IM phase is
91.43 %. The above results show that the proposed method is better than
four SSA-ML algorithms and the traditional DS evidence theory method.
The reason is that the improved DS evidence theory assigns reasonable

0.0 0.1 0.2 0.3

T

0.4 0.5 0.6

mean(|SHAP value|) (average impact on model output magnitude)

Fig. 8. Assessment of parameters importance level for the mean SHAP values.
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Fig. 9. Comparison of SHAP values of 12 design parameters. The SHAP value of different features for the prediction of (a) AM phase, (b) IM phase, (c) SS phase and

(d) SS + IM phase.

weight to different algorithms, which can solve the problem of high
conflict.

3.5. SHAP method and sensitivity matrix for interpretability analysis

In this part, the influence of features on the HEAs phase is analyzed
by the SHapley Additive exPlanation (SHAP) [60] and the sensitivity
matrix via artificial neural network (ANN) [55,61]. Firstly, the SHAP
method is used for interpretability analysis. The importance of param-
eters can be obtained: ASpix > ¥ > 8 > AHpix > 6ygc > VEC > Ay > Ty >
a > ok > K > o, which is shown in Fig. 8. In Fig. 9, each sample point
represents an alloy sample, and the color represents the magnitude of
the feature value. On the y-axis, features are ranked by importance from
top to bottom. SHAP values represent the contribution of features to the
output of the ML model. A positive SHAP value indicates that the feature
increases the output of the ML model. On the contrary, a negative SHAP
value indicates that the feature reduces the output of the ML model. The
coverage of a feature is wider, the greater its effect on phase. As shown
in Fig. 9, the larger & value and smaller AHp,jx produce the positive SHAP
value, facilitating the formation of AM phase, which is reasonable and
demonstrated in Fig. 11 (a). Large 6 can cause serious lattice distortion,
reduce the phase transformation rate and even lead to the formation of

AM structures [62]. Negative AHpx is a necessary condition for forming
AM alloys. The stronger the interaction between atoms, the higher the
possibility of forming an AM phase is [63]. ASp;x is the most important
feature among the 12 features for the prediction of IM, SS and SS + IM
phases (see Fig. 9(b)-(d)). Multi-component HEAs with equal atomic
ratio have higher ASp,;x than conventional alloys. According to AGp, =
AHpie —TASpix, high ASpix reduces Gibbs energy AGpiyx, which means a
higher degree of confusion in alloy system. A higher ASy,;x contributes to
the formation of SS phase, which is more stable than other ordered
phases and IM phase [64,65]. For the binary or ternary alloys with IM
phase, the corresponding ASpix value is small. It makes sense that a
small ASpix produces a positive SHPA value, which is conducive to the
formation of IM phase. The smaller VEC value has a positive effect on the
IM phase, while the larger VEC corresponds to a positive SHAP value in
the prediction of SS and SS + IM phases, indicating that the larger VEC is
conducive to produce the SS and SS + IM phases. Moreover, from Fig. 9,
we find that there is an important influence for y on the formation of AM
and IM phases, while the influence of y on the formation of SS and SS +
IM phases is not significant.

In the following, the sensitivity matrix is introduced to further
analyze the influence of parameters on the phase formation of HEAs. The
sensitivity matrix is the product of all linear transformation matrices in
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Fig. 11. Scatter plot of (a) design parameters AHnix, VEC and & for SS and AM phases, and (b) design parameters 8, AHpix and ASnx for SS, SS + IM and IM phases.

ANN, which can be used to assess the sensitivity of the features on the times and the corresponding sensitivity matrix is calculated to obtain
phases. The trained ANN in this paper contains an input layer, a hidden reliable results as shown in Fig. 10. A positive sensitivity value indicates
layer and an output layer. For each type of phase, ANN is trained ten that the feature have a positive correlation with the phase. On the
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contrary, a negative sensitivity value indicates that the feature have a
negative correlation with the phase. From Fig. 10 (a), it can be seen that
AHpix, @, ASmix, X, 0vec and Tp, play an important role on the formation
of AM phase. The feature importance is as follows, a > T, > AHpix > ¥
> ASnix- Negative sensitivity values of AHpx and y indicate that nega-
tive correlation with the AM phase. A positive oygc is in favor of the
formation of AM, while the cygc shows a smaller negative correlation
with IM, SS and SS + IM. The sensitivity value of Ay suggests that it can
promote the formation of IM, while restrain the formation of AM, SS and
SS + IM. In addition, from Fig. 10 (c¢) and Fig. 10 (d), we find that low
oyec and o7 are favorable for the formation of SS, while high oygc and o7
are beneficial to form SS + IM. As shown in Fig. 9 and Fig. 10, K has a
large positive effect on SS, whereas it has a small effect on SS + IM. Lager
ox favors the formation of AM, SS and SS + IM, while smaller cg favors
the formation of IM. Based on the above analysis, K and ot are critical
features to discriminate between SS and SS + IM.

In order to study the effect of parameters on phase formation, we
designed a three-dimensional spatial coordinate system to visualize the
data. According to the Fig. 11 (a), it is easy to form SS phase if the 5 is
less than 6.6 %, while it is easy to form AM phase if the § is greater than
6.6 %. The negative AHpx tends to form AM phase. The SS phases are
mainly distributed in & < 6.6 % and — 18 < AHpjx < 5, which is
consistent with the forming conditions of SS phase proposed by Guo et al
[66]. In addition, IM phase can be well extracted by ASpix < 10 in
Fig. 11 (b). The IM phase relatively concentrated in binary and ternary
alloys, or HEAs with principal elements greater than 6 [67]. In this
paper, for binary and ternary alloys, the IM phase is easy to form if ASnx
is less than 10; For alloys with principal elements greater than 3, the SS
and SS + IM phases are easy to form if ASp;y is greater than 10.

4. Conclusions

In this study, we propose a new information fusion rule to predict the
phases of HEAs based on machine learning models. The improved DS
evidence theory combines a new measure of evidence and Belief Jen-
sen-Shannon divergence, which can solve the high conflict issues
effectively. The basic probability assignment function is constructed by
the outputs ML algorithms. 761 HEAs samples are collected with 12
features. Considering the shortage of the raw data, CGAN is used to
generate 100 samples for each phase. Based on the augmented dataset,
the hyperparameters of four ML algorithms LR, DT, XGBoost, and GBDT
are optimized using SSA, which can improve the performance of the

Appendix A. . Details regarding of alloys

Fig. 1: The distribution of the different elements.
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model. To verify the validity of the proposed method, it is compared
with the four SSA-ML models and the traditional DS evidence theory.
The result shows that the proposed method performs best with an ac-
curacy of 94.78 %. The reason is that the improved DS evidence theory
can solve the problem of high conflict among the predicted results of
different algorithms. In addition, explainable analysis of the ML model is
presented. We find that the parameters ASpx, ¥, 8, AHpix, ovec and VEC
have the greatest influence on formation of HEAs phase. In addition, the
SS and AM phases can be distinguished well by § = 6.6 %. The binary
and ternary alloys tend to form the IM phase if ASp,ix is less than 10; The
alloys with principal elements greater than 3 tend to form SS and SS +
IM phases if ASpix is greater than 10. K and o7 are critical features to
distinguish between SS and SS + IM. The method proposed in this paper
has wide application prospect. It is not only suitable for phase prediction
of HEAs but also can be applied in ceramic material, magnetic material,
polymeric materials, etc.
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From Fig. 1, it can be seen that the occurrence frequency of Ni elements is 428 times. Al, Fe, Co, Cu and Cr elements appear more than 290 times. P,

N, Pr and Tm elements only appear once.
Fig. 2: The number of alloys with different components
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It can be seen from Fig. 2, the number of binary, ternary, quinary and senary alloys exceeds 100, while the number of octonary and nonary alloys

are less than 10.
Fig. 3: The distribution of different phases in different alloy systems. (a) AM, (b) IM, (c) SS, and (d) SS + IM.
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The distribution of different phases in the alloy is further analyzed. As can be seen from Fig. 3, AM phase is mainly distributed in ternary, qua-
ternary and quinary alloys. IM phase is mainly distributed in binary and ternary alloys. SS phase is mainly distributed in quinary and senary alloys. SS
+ IM phase is mainly distributed in quinary, senary and heptenary alloys. In Tablel, it shows the minimum and maximum values of the mass per-
centage for each chemical element.

Table 1. The minimum and maximum values of the mass percentage for each chemical element.

Element minimum maximum

Ag 0.044928162 0.888843111
Al 0.008585424 0.769377008
Au 0.240626947 0.937238295
B 0.001960166 0.827823867
Be 0.011312497 0.615362983
Bi 0.301799417 0.851433111
C 0.004735039 0.066609972
Ca 0.045032696 0.798446138
cd 0.086501835 0.932759861
Ce 0.215262144 0.867953914
Co 0.030891735 0.915986632
Cr 0.047113387 0.905828034
Cu 0.012552243 0.887991504
Dy 0.197549175 0.718867507
Er 0.724665391 0.925366528
Fe 0.009990466 0.905135288
Ga 0.177255739 0.492257002
Gd 0.191166817 0.828244978
Ge 0.275865998 0.484006397
Hf 0.07343273 0.891959422
Ho 0.225154262 0.609833527
In 0.110572895 0.685015412
La 0.061315202 0.84757756
Li 0.010021621 0.366592323
Lu 0.212708794 0.235630791
Mg 0.028721909 0.702231058

(continued on next page)
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Element minimum maximum
Mn 0.078082474 0.853201943
Mo 0.0394614 0.911090713
N 0.017808794 0.017808794
Na 0.026336591 0.091438799
Nb 0.034153496 0.774637319
Nd 0.266817118 0.84242495
Ni 0.030691594 0.942155394
P 0.078582122 0.078582122
Pb 0.344678444 0.759373053
Pd 0.01911286 0.986298029
Pr 0.798937849 0.798937849
Pt 0.783327979 0.955930875
Re 0.46313983 0.932448673
Ru 0.251380391 0.71407376
Sb 0.138860695 0.818609654
Sc 0.151736055 0.276099239
Si 0.002166211 0.524458551
Sm 0.191129924 0.755653835
Sn 0.019640284 0.913498165
Sr 0.193004097 0.540722704
Ta 0.199574671 0.692605068
Tb 0.193209171 0.613510905
Ti 0.02885021 0.726513887
Tm 0.205366043 0.205366043
A% 0.023072951 0.5645781
w 0.215736666 0.820293153
Y 0.05218703 0.548942371
Yb 0.381162166 0.681313489
Zn 0.076876044 0.973663409
Zr 0.049622473 0.83529699
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