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A B S T R A C T   

The phase design of high entropy alloys (HEAs) is an important issue since the phase structure affects the 
comprehensive properties of HEAs. Accurate prediction of phase classi昀椀cation can accelerate material design. In 
this paper, a new phase prediction framework is proposed using machine learning (ML) and an improved in-
formation fusion approach based on the Dempster-Shafer (DS) evidence theory. Considering that the classi昀椀-
cation results of different ML algorithms may con昀氀ict, and the traditional DS evidence theory cannot solve the 
problem of high con昀氀ict, we propose an improved information fusion approach based on the DS evidence theory. 
The basic probability assignment function is constructed using the ML algorithms. 761 HEAs samples are 
collected consisting of amorphous phase (AM), solid solution (SS), intermetallic compound (IM), and a mixture of 
SS and IM (SS + IM). For the small dataset of HEAs, we use a conditional generative adversarial network (CGAN) 
for data augmentation. Based on the enhanced dataset, the ML model is optimized by sparrow search algorithm 
(SSA), which can accelerate searching speed of model hyperparameters and improve the performance of the 
model. The results show that the proposed information fusion method performs better than several other existing 
techniques on the test set, and the prediction accuracy reaches 94.78 %. Meanwhile, the prediction accuracy of 
the proposed method is higher than that of the existing technology (93.17 %). It is proved that the proposed 
method can solve the high con昀氀ict problem effectively. Moreover, we present the interpretability analysis of the 
features by the Shapley additive explanations (SHAP) and the sensitivity matrix. A smaller atomic size difference 
δ (<6.6 %) is conducive to the formation of SS phase, while a larger δ (>6.6 %) is conducive to the formation of 
AM phase. A smaller enthalpy of mixing ΔHmix tends to form AM phase. In binary and ternary alloy systems, IM 
phase can be extracted by the mixing enthalpy ΔSmix < 10. In addition, we 昀椀nd that mean bulk modulus (K) and 
standard deviation of melting temperature (σT) are critical features to distinguish between SS and SS + IM.   

1. Introduction 

High-entropy alloys (HEAs) are refers to the composition containing 
at least 昀椀ve metallic elements, and the atomic percentage of each 
element is 5–35 atomic percent (at.%) [1,2]. Due to the excellent me-
chanical properties, HEAs have a broad application prospect [3–8]. The 
crystal structures exhibit different thermodynamic properties, such as 
high strength, great corrosion resistance and high temperature, high 
temperature softening resistance and good wear resistance. In general, 
the SS phase is closely related to the hardness and ductility of the HEAs 
[9], while the AM phase is related to the elasticity and electrical 
corrosion [10]. HEAs with intermetallic compound phases are generally 

better functional materials [11]. The formation of phase can signi昀椀-
cantly affect its microstructure, which in turn affects its physical and 
mechanical properties. Therefore, the prediction of phase information is 
crucial for the development of new HEAs. 

The problem of phase design has aroused wide concern [12–14]. 
Several computational simulation methods are applied to the phase 
design of HEAs, such as 昀椀rst-principle [15,16], Monte Carlo simulation 
[17–19], molecular dynamics simulation [20,21], and calculation of 
phase diagrams (CALPHAD) [22,23]. However, the computational 
simulation methods are based on certain hypothetical framework, which 
are only applied for simple cases. For complex phase structures in HEAs, 
computational simulation methods may not be applicable. We tend to 

* Corresponding author. 
E-mail address: chencun@zzu.edu.cn (C. Chen).  

Contents lists available at ScienceDirect 

Computational Materials Science 
journal homepage: www.elsevier.com/locate/commatsci 

https://doi.org/10.1016/j.commatsci.2024.112976 
Received 20 December 2023; Received in revised form 20 March 2024; Accepted 21 March 2024   

mailto:chencun@zzu.edu.cn
www.sciencedirect.com/science/journal/09270256
https://www.elsevier.com/locate/commatsci
https://doi.org/10.1016/j.commatsci.2024.112976
https://doi.org/10.1016/j.commatsci.2024.112976


Computational Materials Science 239 (2024) 112976

2

develop data-driven phase design approach for HEAs based on real 
experimental data. 

Machine learning (ML) can explore potential relationship between 
the features and the targets from real data, which has been used in the 
phase prediction of HEAs [24–28]. Many scholars have studied the 
phase classi昀椀cation by ML and obtained satisfactory results in two or 
three types of phase prediction [29–33]. For example, Krishna et al. 
applied ML algorithms to predict SS and SS + IM in a dataset containing 
636 alloys, and the accuracy of the arti昀椀cial neural network was up to 
80 % [31]. Zhu et al. proposed a deep neural network structure using 
residual network to predict AM, SS, and IM phases, the accuracy of phase 
prediction was 81.9 % [33]. However, the prediction of multi-class of 
HEAs needs to be improved. For example, Lee et al. used generative 
adversarial networks to generate additional HEAs samples from 989 
samples and constructed regularized deep neural networks for predict-
ing the SS, SS + IM, AM and IM HEAs phases. The enhancement of the 
generative model signi昀椀cantly improved the performance of the model, 
and the prediction accuracy reached 93.17 % [34]. Qu et al. based 
several KNN models with k-dimensional tree algorithm and weighted 
voting to classify BCC, FCC, others, hexagonal close-packed (HCP) and 
IM using a dataset containing 2043 pieces of data, and the test accuracy 
is 93 % [35]. Singh et al. applied ML algorithms to predict the FCC, BCC, 
FCC + BCC, and intermetallic mixture (MIP) phases of HEAs based on 
1200 original samples. The average accuracy is 92 % [36]. For the 
problem that the prediction results of multiple ML algorithms may be 
inconsistent, Hou et al. proposed a hybrid prediction frame for HEAs 
that combined empirical knowledge and Dempster-Shafer (DS) evidence 
theory. The model is veri昀椀ed by the prediction of SS, SS + IM, AM and 
IM in a dataset of 426 HEA samples. The results show that the phase 
prediction of quinaries, senaries and septenaries material systems are 
87.8 ± 2.1 %, 86.7 ± 1.7 % and 83.3 ± 1.4 %, respectively [37]. The 
learning ability of a single ML algorithm is limited, while multiple ML 
algorithms predictions may con昀氀ict. In order to solve this problem, we 
apply DS evidence theory to predict the four phases of HEAs based on 
four ML models. The traditional DS evidence theory cannot solve the 
high con昀氀ict problem effectively [38–41]. Therefore, we propose an 
improved DS combination rule, which can effectively solve the problem 
of inconsistent prediction results of various algorithms and improve the 
prediction accuracy of multiphase classi昀椀cation problems based on 

small dataset. 
In the present work, we collected 761 HEAs samples consisting of 

amorphous (AM), solid solution (SS), intermetallic compound (IM), and 
a mixture of SS and IM (SS + IM). Considering the small dataset, the 
conditional generative adversarial network (CGAN) is introduced for 
data augmentation. Sparrow search algorithm (SSA) is a powerful tool to 
optimize hyperparameters of ML algorithm and improve model perfor-
mance [42]. We used SSA to optimize the hyperparameter of the basic 
classi昀椀cation models, such as Logistic Regression (LR), Decision tree 
(DT), eXtreme Gradient Boosting (XGBoost) and Gradient Boosting De-
cision Tree (GBDT). This paper proposes a phase prediction framework 
based on CGAN and an improved DS evidence theory which fuses ML 
models optimized by the SSA, which can improve the classi昀椀cation 
performance. The proposed model can achieve an accuracy of 94.78 % 
for phase classi昀椀cation, which performs better than several existing 
models. The advancement of the current work relates to three factors: 
(1) Considering the small dataset, CGAN is used to data augmentation 
(2) In the ML classi昀椀cation models, SSA is applied for hyperparameter 
optimization. It can accelerate searching speed of the hyperparameters 
and avoid falling into the local optimal solution. (3) The improved DS 
evidence theory can effectively solve high con昀氀ict problem and improve 
the accuracy of model prediction. 

2. Materials and methods 

2.1. Design strategy 

The prediction frame of the improved DS evidence fusion method for 
HEAs phase is shown in Fig. 1. First, the dataset is established containing 
phases of HEAs: SS, AM, IM, and SS + IM. Second, CGAN is used to 
generate virtual training samples for each class of phases. Inception 
Score (IS) is applied to measure the quality of generated data. In addi-
tion, four ML algorithms are optimized by SSA in order to improve the 
performance of the model. The output of the optimized ML models is 
treated as mass functions. Finally, we propose an improved DS evidence 
theory, which can solve the con昀氀iction of results among different al-
gorithms. The proposed information fusion method performs better than 
four ML algorithms optimized by SSA and traditional DS evidence theory 
on the test set. 

Fig. 1. Schematic 昀氀ow of phase prediction based on CGAN and the improved DS.  
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2.2. Conditional generative adversarial network 

CGAN is a generative adversarial network (GAN) with constraints 
proposed by Mehdi Mirza in 2014 [43]. By adding additional condi-
tional information, namely category label to the generator G and 
discriminator D of the original GAN, the conditional generation model is 
implemented. In addition to the prior input noise Pz(z), the input of the 
generator has the conditional information y, namely the category label, 
so that we can generate the sample more precisely. The discriminator is 
the input sample labels and the corresponding features, which are 
combined to judge the authenticity of the sample. The objective function 
of CGAN is a two-player minimax game with conditional probability, 
and the loss function is described as follows, 
min

G
max

D
V(D,G) = Ex>pdata(x)[logD(x|y) ]+Ez>pz(z)[log(1 − D(G(z|y) ) ) ]. (1) 

The schematic diagram of CGAN is shown in Fig. 2. The purpose of 
the discriminator is to distinguish the input data is real data or generate 
synthetic data G(z|y). The purpose of the generator is to generate the 
data distribution as close as possible to the real data distribution Pdata(x). 
We expect the discriminator to distinguish well between real data and 
generated data. D(x|y) represents the probability of x under condition y, 
where D(x|y) to be close to 1 and D(G(z|y)) to be close to 0, corre-
sponding to V(D,G) maximization. The generator tries to imitate the real 
data to deceive the discriminator. D(G(z|y)) is expected to be close to 1, 
which corresponds to V(D,G) minimization. During the training process, 
both sides strive to optimize their network, thus forming a competitive 
confrontation until both sides reach a dynamic equilibrium. 

2.3. ML models optimized by SSA 

The SSA is a swarm optimization approach proposed by Xue et al. 
based on group intelligence, foraging and anti-predation behaviors of 
sparrows [44]. In the simulation of sparrow foraging, sparrows can be 
divided into discoverers and participants. The location of sparrows and 
their food is constantly changing due to the presence of predators. The 
discoverer is responsible for 昀椀nding food in the population and 

providing feeding areas and directions for the entire sparrow popula-
tion, while the participant follows the discoverer to obtain food. 
Therefore, SSA is introduced to optimize the hyperparameters of Logistic 
Regression, Decision tree, eXtreme Gradient Boosting and Gradient 
Boosting models respectively. The use of SSA optimization algorithm 
can accelerate searching speed of model hyperparameters and improve 
model prediction performance. 

2.4. DS evidence theory 

The DS evidence theory was 昀椀rstly proposed by Dempster [45] in 
1967. It is further developed by Shafer [46] as a theory of uncertainty 
reasoning which is also a generalization of Bayesian theory. The frame of 
discernment Ω is a non-empty and mutually exclusive set, indicted by 
Ω = {E1,E2,…,En}.2Ω = {∅, {E1}, …, {En}, {E1, E2},…, {E1,E2,…,Ei},
…,Ω } as a power set consists of a complete subset of Ω. A mass function 
is a mapping m from 2Ω to [0, 1], the mass function can be also called as 
the basic probability assignment (BPA), indicted by, 
m : 2Ω→[0, 1], (2)  

which satis昀椀es m(∅) = 0 and 3A*2Ω m(A) = 1. If m(A) > 0,A is a focal 
element. 

Two independent BPAs m1 and m1 on 2Ω by their orthogonal sum 
m = m1 · m2 represent Dempster’s rule of combination, is de昀椀ned as 
follows, 

m(A) =

§
««
««

1

1 − K

3

B+C=A¦Ω

m1(B)m2(C),

0,

(3)  

K =
3

B+C=∅

m1(B)m2(C) (4)  

where B * 2Ω and C * 2Ω,K * [0, 1] is a con昀氀ict coef昀椀cient that repre-
sents the con昀氀ict degree between BPAs m1 and m2. Dempster’s rule of 
combination only makes sense at K < 1. If K proaches 1, the BPAs m1 and 

Fig. 2. The structure of CGAN model.  
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m2 are in high con昀氀ict. If K is closer to 0, the BPAs m1 and m2 are in low 
con昀氀ict. If K = 1, BPAs m1 and m2 are completely con昀氀icting, i.e. the 
equation is mathematically meaningless, and traditional DS evidence 
theory may produce counterintuitive results. 

2.5. Improved DS evidence theory 

DS evidence theory is a powerful tool to handle with con昀氀ict prob-
lems. However, if there is a high con昀氀ict among several algorithms, the 
traditional DS evidence theory may produce counterintuitive results 
[47–50]. In this paper, we use the output of the ML models optimized by 
SSA to construct the basic belief assignments. An improved DS evidence 
fusion method based on a new measure of evidence and Belief Jen-
sen–Shannon divergence is constructed to fuse the different algorithms. 
The 昀氀owchart for the improved approach is shown in Fig. 3. 

Steps of the improved DS evidence fusion method are shown as 
follows: 

Step 1: Build masses M = {m1,m2,⋯mi,⋯mn} for each sample 
xp* X = {x1, x2,⋯xp,⋯xm} by the ML algorithms L ={L1, L2,⋯Lj,⋯Ln

}, where n represents the number of algorithms, m 
represents the total number of sample data. 

Step 2: Calculate the distance H(mi) of each masse mi as, 

H(mi) =
1���
2

:

������������������������������������������������
3N

j=1

( ��������������
mi

(
Aj

):
− ���

c
: )2

2|Ai | − 1

::::: , (5)  

where c = 1/N, N represents the total number of categories of 
phases;mi(Aj) represents the probability that sample xp belongs to the j- 
th phase by i-th algorithm. 

Step 3: The 昀椀rst weighting factor w1(i) of masse mi is denoted as, 

w1(i) =
[H(mi)]−1

3n

k=1[H(mk)]−1
. (6)  

Step 4: The divergence matrix is constructed as follows, 

D =

£
£££££

0 ⋯ BJS1i ⋯ BJS1n

⋮ ⋯ ⋮ ⋮ ⋮

BJSi1 ⋯ 0 ⋯ BJSin

⋮ ⋯ ⋮ ⋮ ⋮

BJSn1 ⋯ BJSni ⋯ 0

§
§§§§§
, (7)  

where BJSij represents the divergence between two bodies of evidence 
mi,mj(i, j = 1,2,⋯n) is calculated by the Belief Jensen–Shannon diver-
gence measure [51]. The Belief Jensen-Shannon divergence between the 
m1 and m2 is de昀椀ned as, 

BJSij = BJS
(
mi,mj

)
= 1

2

[
S
(

mi,
mi + mj

2

)
+ S

(
mj,

mi + mj

2

) ]

S
(
mi,mj

)
=

3

k

mi(Ak)log
mi(Ak)
mj(Ak)

,
3

k

mi(Ak) = 1
(
k = 1, 2,…, 2Ω

; i = 1, 2
)

Step 5: The second weighting factor w2(i) of masse mi is denoted as, 

w2(i) =
1/Di3n

k=11/Dk

, (8)  

where Di =
3n

j=1,i7=jBJSij
n−1 represents the average distance of the masse mi. 

Step 6: Calculate the weighted average evidence WAE as follows, 

WAE =
3n

i=1

(w1(i) × w2(i) × mi ). (9) 

Step 7: Calculate the combination result of WAE as follows, 
�mp =

((
(WAE · WAE)1 · WAE

)
2
· ⋯ · WAE

)
n−1

, (10)  

where · represents traditional Dempster’s rule of combination [52,53]. 
Step 8: The element of matrix �mp represents the credibility of the 

phase of sample xp, and the phase with the greatest credibility is taken as 
the output of the model. 

3. Results and discussion 

3.1. Dataset and features 

We collected as-cast samples from previous literature 
[29,54,55,56,57] to develop phase prediction model for HEAs. Consid-
ering the lack of data of thermal history, we only consider compositions 
as the inputs to the machine learning models. 761 samples are collected 
with 12 candidate parameters, including atomic size difference δ, mean 
atom radius a, valence electron concentration VEC, standard deviations 
of valence electron concentration σVEC, electronegativity χ, standard 
deviation of electronegativity Δχ, mean bulk modulus K, standard de-
viation of bulk modulus σK, average melting temperature Tm, standard 
deviation of melting temperature σT, mixing enthalpy ΔHmix and mixing 
entropy ΔSmix. This dataset is divided into 165 AM phases, 248 IM 
phases, 131 SS phases and 217 SS + IM phases, which refers to 56 ele-
ments (Al, B, In, Co, Cr, Cu, Fe, Mn, Ni, Pd, V, Mo, Ta, Hf, Zr, Nb, Sc, Y, 
Zn, Li, Mg, Sn, Ca, Gd, etc). 

VEC, δ, Δχ, ΔHmix and ΔSmix are the existing empirical design pa-
rameters, and on this basis, we add the 7 parameters namely a, σVEC, σK, 
σT, Tm, K and χ. These additional parameters were veri昀椀ed to have a 
positive effect on HEAs phase prediction [55]. The parameters of the 

Fig. 3. Flowchart of the improved DS evidence fusion method.  
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samples are calculated according to the parameter formulas in Table 1. 
ci, ri, χi, Ki and Tmi are the percentage, atomic radius, pauling electro-
negativity, bulk modulus and melting point of the i-th element of the 
alloy, and Hij is the heat of mixing between the i-th and j-th elements in 
Table 1. In this paper, all the codes are run in Python 3.8.5. The Pearson 
correlation coef昀椀cient is used to describe the correlation between each 
two parameters. As shown in the Fig. 4, the Pearson correlation coef昀椀-
cient ranges from −0.84 to 0.75, with no strong correlation between any 
two design parameters. Due to the large number of parameters, we 
choose the t-stochastic neighbor embedding (t-SNE) method for 
dimension reduction after data normalization to explore the structure of 
the data. The t-SNE constructs a Gaussian distribution and a T-distri-
bution in a high-dimensional data space and a low-dimensional 

embedding space, respectively. The dimensionality reduction of data 
is achieved as shown in Fig. 5, and the entire dataset containing four 
types of HEAs phases is distributed in a two-dimensional feature space. It 
is obvious that the SS and SS + IM phases are indistinguishable from 
each other, which indicates that their original features are similar. Some 
samples of the AM and IM phase are located near the locations of the SS 
and SS + IM phases. In general, the classi昀椀cation of the four types of 
phases is not a linear problem. In the following, we choose DS evidence 
theory to solve the classi昀椀cation prediction by fusing the results of 
different ML models. 

3.2. Data augmentation 

The training set comprises 85 % of the dataset and contains 646 
HEAs samples, of which 148 AM phases, 203 IM phases, 113 SS phases, 
and 182 SS + IM phases. The CGAN is employed to generate 100 data for 
each of the four types of phases. Both the generator and discriminator 
are fully connected networks and the activation function is LeakyReLU. 
The generator has two hidden layers and the discriminator has one 
hidden layer, which is to prevent the discriminator from being too 
strong. BatchNormalization and Dropout are added into the generating 
network, which can generate better HEAs data. 

To verify the quality of the generated data, we chose the Inception 
Score (IS) proposed by Salimans et al. in 2016 [58]. IS is a compre-
hensive GAN evaluation index in terms of the quality and diversity of the 
generated data. The formula for calculating the IS of the generator is: 

IS(G) = exp

[
3

i

p(xi)DKL(P(y|xi)|p(y) )
]
, (11)  

where p(xi) = 1/N,N = 4;P(y|xi) represents the probability that the i-th 
generated sample belongs to y;p(y) represents the probability that all the 

Table 1 
The calculation formula of the parameters for HEAs phase.  

Con昀椀gurational parameters Formulas 
Mean atom radius a = 3n

i=1ciri 
Atomic size difference 

δ =
����������������������������������
3n

i=1ci
(1 − ri

a
)2:

Mixing entropy ΔSmix = −R3n
i=1cilnci 

Enthalpy of mixing ΔHmix = 3n
i=1,i<j4Hijcicj 

Average valence electron concentration VEC = 3n
i=1ciVECi 

Standard deviation of VEC 
σVEC =

���������������������������������������������3n
i=1ci(VECi − VEC)2

:

Electronegativity χ = 3n
i=1ciχi 

Standard deviation of electronegativity 
Δχ =

��������������������������������3n
i=1ci(χi − χ)2

:

Mean bulk modulus K = 3n
i=1ciKi 

Standard deviation of bulk modulus 
σK =

����������������������������������3n
i=1ci(Ki − K)2

:

Average melting temperature Tm = 3n
i=1ciTmi 

Standard deviation of melting temperature 
σT =

��������������������������������������
3n

i=1ci
(

1 − Ti
Tm

)2
:

Fig. 4. Pearson correlation coef昀椀cients of all the features.  
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generated samples belong to y;DKL(p(y|xi)|p(y) ) is Kullback-Leibler 
divergence, which measures the similarity of two probability distribu-
tions [59]. 

IS can also be simply expressed as IS(G) = eH(y)−H(y|x).H(y) is the in-
formation entropy of y, which means the uncertainty. A larger H(y)
means a higher diversity of the sample.H(y|x) re昀氀ects the quality of the 
generated data, and a smaller H(y|x) suggests that the generated data is 
closer to the real data. The values of IS are calculated in Table 2. The 
H(y|x) = 0.1111, which is close to the ideal result of 0, indicating that 
the quality of the generated data is good. The difference between H(y) =
1.3857 and the optimal result logK(log4 j 1.3863) is 0.0006, indicating 
that the generated data is of high diversity. In addition, IS = 3.5773 is 
close to 4, which means that the quality of the generated data is high. 

3.3. ML models optimization 

Four ML models including LR, DT, XGBoost, and GBDT are trained 
based on 646 original data and 400 data generated by CGAN 

respectively. To improve the performance of the base classi昀椀er, the 
relevant hyperparameter of the ML models are optimized using SSA. The 
regularization intensity ’C’ of an important parameter of LR is opti-
mized. For DT, three hyperparameters ’max_depth’, ’max_features’ and 
’criterion’, respectively are optimized. The hyperparameter ’objective’ 

of XGBoost is set to ’multi: softproba’, and we optimize ’n_estimators’, 
’max_depth’, ’learning_rate’ and ’gamma’. For GBDT, four important 
hyperparameters, including ’n_estimators’, ’learning_rate’, ’subsample’ 

and ’max_depth’ are selected to optimize. 
To verify the advantages of the SSA algorithm, we conducted 

comparative experiments on LR, DT, XGBoost and GBDT algorithms 
with and without SSA optimization, respectively. The results of the 
experiment are listed in Table 3. The default values for the hyper-
parameters used in the ML models are sklearn defaults. The default 
hyperparameter setting of LR is as follows, ’penalty’=’l2′, ’C’=1.0. The 
default hyperparameter setting of DT is as follows, ’criterion’=’gini’, 
’splitter’=’best’, ’max_depth’=None, ’max_features’=None. The default 
hyperparameter setting of XGBoost is as follows, ’n_estimators’=100, 
’max_depth’=6, ’learning_rate’=0.3, ’gamma’=0. The default hyper-
parameter setting of GBDT is as follows, ’n_estimators’=100, ’sub-
sample’=1.0, ’max_depth’=3, ’learning_rate’=0.1. LR has the lowest 
prediction accuracy, probably due to the fact that it cannot solve 

Fig. 5. The result of dimensionality reduction by t-SNE.  

Table 2 
The IS evaluation results of the CGAN.  

H(y|x) H(y) IS  
0.1111  1.3857  3.5773  

Table 3 
Prediction accuracy of ML models and SSA-ML algorithms.  

Method LR DT XGBoost GBDT 
Basic ML  83.45 %  79.13 %  86.96 %  86.96 % 
SSA-ML  86.09 %  88.70 %  93.04 %  93.04 %  

Table 4 
rediction results of the SSA-ML algorithms and the proposed DS evidence theory.  

Alloys SSA-LR SSA-DT SSA-XGBoost SSA-GBDT DS Proposed DS DSDSDS True Phase 
Zr70Pd30 AM IM AM AM IM AM AM 
MoNbTaVW SS AM SS SS + IM AM SS SS 
AlCoCrCuFeNi SS + IM AM SS + IM SS + IM AM SS + IM SS + IM 
AlCo2CuFeNi SS + IM SS + IM SS + IM SS SS SS + IM SS + IM 
AlBe4Mn IM AM IM IM AM IM IM 
Co2Mo1.75Ni2VW1.75 SS IM SS + IM SS + IM IM SS + IM SS + IM 
NaZn13 IM AM IM IM AM IM IM  

Fig. 6. Comparison of the proposed method with ML algorithms and traditional 
DS evidence theory. 

Table 5 
Comparison of different methods on various performances.  

Algorithm Precision F1-Score Recall 
SSA-LR  89.66  87.19  86.09 
SSA-DT  88.74  88.63  88.70 
SSA-XGBoost  93.42  92.91  93.04 
SSA-GBDT  93.03  92.90  93.04 
SSA-DS  87.92  87.71  87.83 
The proposed method  94.78  94.75  94.78  
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nonlinear problems. The performance of DT, XGBoost and GBDT opti-
mized by SSA is signi昀椀cantly improved. The accuracy of DT increases 
signi昀椀cantly due to its hyperparameter ’max_depth’ has a signi昀椀cant 
effect on the performance of the model. SSA can quickly 昀椀nd the global 
optimal value of ’max_depth’ to improve the accuracy of the model. The 
hyperparameters ’n_estimators’, ’max_depth’ and ’learning_rate’ of 
XGBoost and GBDT affect the training results of the models. SSA can 
help ML algorithms to optimize the hyperparameters, which makes the 
training results better than basic ML models. 

3.4. ML models construction 

In the following, we construct a phase prediction model using the 
proposed DS evidence theory to fuse the classi昀椀cation results of four 
SSA-ML algorithms including SSA-LR, SSA-DT, SSA-XGBoost and SSA- 
GBDT, which can solve the problem of high con昀氀ict among different 

algorithms. 
In order to verify the high con昀氀ict resolution capability of the pro-

posed DS evidence theory, we compare the output results of the pro-
posed method and the SSA-ML algorithms. Several representative 
samples are listed in Table 4. For each alloy, the prediction results of 
different algorithms may not be consistent. For example, the true phase 
of Co2Mo1.75Ni2VW1.75 is SS + IM phase. SSA-XGBoost and SSA-GBDT 
predicted its phase correctly, while SSA-LR predicted it as SS phase 
and SSA-DT predicted it as IM phase. For alloys MoNbTaVW, although 
SSA-LR and SSA-XGBoost algorithms predicted its phase correctly, SSA- 
DT has a belief value of 1 for the AM phase. Therefore, there is a high 
con昀氀ict that it is dif昀椀cult to make a correct judgment with the traditional 
DS evidence theory. In this situation, the improved DS evidence theory 
proposed in this paper can solve the high con昀氀ict problem effectively, 
and it can predict the phases more correctly. 

To further demonstrate the effectiveness of the proposed method, we 
compared it with the performance of different ML algorithms and 
traditional DS evidence theory. Fig. 6 draws the accuracy of different ML 
algorithms optimized and not optimized by SSA and it shows the com-
parison of the accuracy of the proposed method with the traditional DS 
evidence theory and different SSA-ML algorithms. No matter whether 
the ML models are optimized by SSA or not, the traditional DS evidence 
theory cannot improve the prediction accuracy of the model, which is 
lower than the accuracy of the ensemble model XGBoost, due to the 
traditional DS evidence theory fails to solve high con昀氀ict problems 
effectively. As exhibited in Fig. 6, the accuracy of the proposed method 
reaches 94.78 %, which is higher than other methods. Moreover, we also 
compare other indicators of SSA-ML algorithms, such as precision, F- 
score and recall are shown in Table 5. The precision, F-score and recall of 
the proposed method are 94.78 %, 94.75 % and 94.78 %, respectively. In 
addition, to further study the phase prediction results of the proposed 
method, we present the confusion matrix. In Fig. 7, of the 115 test 
samples, 109 samples are predicted correctly. The accuracy of AM phase 
is 100 %, IM phase is 97.78 %, SS phase is 88.89 %, and SS + IM phase is 
91.43 %. The above results show that the proposed method is better than 
four SSA-ML algorithms and the traditional DS evidence theory method. 
The reason is that the improved DS evidence theory assigns reasonable 

Fig. 7. Confusion matrix for phase prediction of the proposed method.  

Fig. 8. Assessment of parameters importance level for the mean SHAP values.  
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weight to different algorithms, which can solve the problem of high 
con昀氀ict. 

3.5. SHAP method and sensitivity matrix for interpretability analysis 

In this part, the in昀氀uence of features on the HEAs phase is analyzed 
by the SHapley Additive exPlanation (SHAP) [60] and the sensitivity 
matrix via arti昀椀cial neural network (ANN) [55,61]. Firstly, the SHAP 
method is used for interpretability analysis. The importance of param-
eters can be obtained: ΔSmix > χ > δ > ΔHmix > σVEC > VEC > Δχ > Tm >
a > σK > K > σT, which is shown in Fig. 8. In Fig. 9, each sample point 
represents an alloy sample, and the color represents the magnitude of 
the feature value. On the y-axis, features are ranked by importance from 
top to bottom. SHAP values represent the contribution of features to the 
output of the ML model. A positive SHAP value indicates that the feature 
increases the output of the ML model. On the contrary, a negative SHAP 
value indicates that the feature reduces the output of the ML model. The 
coverage of a feature is wider, the greater its effect on phase. As shown 
in Fig. 9, the larger δ value and smaller ΔHmix produce the positive SHAP 
value, facilitating the formation of AM phase, which is reasonable and 
demonstrated in Fig. 11 (a). Large δ can cause serious lattice distortion, 
reduce the phase transformation rate and even lead to the formation of 

AM structures [62]. Negative ΔHmix is a necessary condition for forming 
AM alloys. The stronger the interaction between atoms, the higher the 
possibility of forming an AM phase is [63]. ΔSmix is the most important 
feature among the 12 features for the prediction of IM, SS and SS + IM 
phases (see Fig. 9(b)-(d)). Multi-component HEAs with equal atomic 
ratio have higher ΔSmix than conventional alloys. According to ΔGmix =
ΔHmix −TΔSmix, high ΔSmix reduces Gibbs energy ΔGmix, which means a 
higher degree of confusion in alloy system. A higher ΔSmix contributes to 
the formation of SS phase, which is more stable than other ordered 
phases and IM phase [64,65]. For the binary or ternary alloys with IM 
phase, the corresponding ΔSmix value is small. It makes sense that a 
small ΔSmix produces a positive SHPA value, which is conducive to the 
formation of IM phase. The smaller VEC value has a positive effect on the 
IM phase, while the larger VEC corresponds to a positive SHAP value in 
the prediction of SS and SS + IM phases, indicating that the larger VEC is 
conducive to produce the SS and SS + IM phases. Moreover, from Fig. 9, 
we 昀椀nd that there is an important in昀氀uence for χ on the formation of AM 
and IM phases, while the in昀氀uence of χ on the formation of SS and SS +
IM phases is not signi昀椀cant. 

In the following, the sensitivity matrix is introduced to further 
analyze the in昀氀uence of parameters on the phase formation of HEAs. The 
sensitivity matrix is the product of all linear transformation matrices in 

Fig. 9. Comparison of SHAP values of 12 design parameters. The SHAP value of different features for the prediction of (a) AM phase, (b) IM phase, (c) SS phase and 
(d) SS + IM phase. 
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ANN, which can be used to assess the sensitivity of the features on the 
phases. The trained ANN in this paper contains an input layer, a hidden 
layer and an output layer. For each type of phase, ANN is trained ten 

times and the corresponding sensitivity matrix is calculated to obtain 
reliable results as shown in Fig. 10. A positive sensitivity value indicates 
that the feature have a positive correlation with the phase. On the 

Fig. 10. The sensitivity values of 12 parameters for (a) AM phase, (b) IM phase, (c) SS phase and (d) SS + IM phase.  

Fig. 11. Scatter plot of (a) design parameters ΔHmix, VEC and δ for SS and AM phases, and (b) design parameters δ, ΔHmix and ΔSmix for SS, SS + IM and IM phases.  
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contrary, a negative sensitivity value indicates that the feature have a 
negative correlation with the phase. From Fig. 10 (a), it can be seen that 
ΔHmix, a, ΔSmix, χ, σVEC and Tm play an important role on the formation 
of AM phase. The feature importance is as follows, a > Tm > ΔHmix > χ 

> ΔSmix. Negative sensitivity values of ΔHmix and χ indicate that nega-
tive correlation with the AM phase. A positive σVEC is in favor of the 
formation of AM, while the σVEC shows a smaller negative correlation 
with IM, SS and SS + IM. The sensitivity value of Δχ suggests that it can 
promote the formation of IM, while restrain the formation of AM, SS and 
SS + IM. In addition, from Fig. 10 (c) and Fig. 10 (d), we 昀椀nd that low 
σVEC and σT are favorable for the formation of SS, while high σVEC and σT 
are bene昀椀cial to form SS + IM. As shown in Fig. 9 and Fig. 10, K has a 
large positive effect on SS, whereas it has a small effect on SS + IM. Lager 
σK favors the formation of AM, SS and SS + IM, while smaller σK favors 
the formation of IM. Based on the above analysis, K and σT are critical 
features to discriminate between SS and SS + IM. 

In order to study the effect of parameters on phase formation, we 
designed a three-dimensional spatial coordinate system to visualize the 
data. According to the Fig. 11 (a), it is easy to form SS phase if the δ is 
less than 6.6 %, while it is easy to form AM phase if the δ is greater than 
6.6 %. The negative ΔHmix tends to form AM phase. The SS phases are 
mainly distributed in δ < 6.6 % and − 18 < ΔHmix < 5, which is 
consistent with the forming conditions of SS phase proposed by Guo et al 
[66]. In addition, IM phase can be well extracted by ΔSmix < 10 in 
Fig. 11 (b). The IM phase relatively concentrated in binary and ternary 
alloys, or HEAs with principal elements greater than 6 [67]. In this 
paper, for binary and ternary alloys, the IM phase is easy to form if ΔSmix 
is less than 10; For alloys with principal elements greater than 3, the SS 
and SS + IM phases are easy to form if ΔSmix is greater than 10. 

4. Conclusions 

In this study, we propose a new information fusion rule to predict the 
phases of HEAs based on machine learning models. The improved DS 
evidence theory combines a new measure of evidence and Belief Jen-
sen–Shannon divergence, which can solve the high con昀氀ict issues 
effectively. The basic probability assignment function is constructed by 
the outputs ML algorithms. 761 HEAs samples are collected with 12 
features. Considering the shortage of the raw data, CGAN is used to 
generate 100 samples for each phase. Based on the augmented dataset, 
the hyperparameters of four ML algorithms LR, DT, XGBoost, and GBDT 
are optimized using SSA, which can improve the performance of the 

model. To verify the validity of the proposed method, it is compared 
with the four SSA-ML models and the traditional DS evidence theory. 
The result shows that the proposed method performs best with an ac-
curacy of 94.78 %. The reason is that the improved DS evidence theory 
can solve the problem of high con昀氀ict among the predicted results of 
different algorithms. In addition, explainable analysis of the ML model is 
presented. We 昀椀nd that the parameters ΔSmix, χ, δ, ΔHmix, σVEC and VEC 
have the greatest in昀氀uence on formation of HEAs phase. In addition, the 
SS and AM phases can be distinguished well by δ = 6.6 %. The binary 
and ternary alloys tend to form the IM phase if ΔSmix is less than 10; The 
alloys with principal elements greater than 3 tend to form SS and SS +
IM phases if ΔSmix is greater than 10. K and σT are critical features to 
distinguish between SS and SS + IM. The method proposed in this paper 
has wide application prospect. It is not only suitable for phase prediction 
of HEAs but also can be applied in ceramic material, magnetic material, 
polymeric materials, etc. 
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Appendix A. . Details regarding of alloys 

Fig. 1: The distribution of the different elements. 
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From Fig. 1, it can be seen that the occurrence frequency of Ni elements is 428 times. Al, Fe, Co, Cu and Cr elements appear more than 290 times. P, 
N, Pr and Tm elements only appear once. 

Fig. 2: The number of alloys with different components

. 
It can be seen from Fig. 2, the number of binary, ternary, quinary and senary alloys exceeds 100, while the number of octonary and nonary alloys 

are less than 10. 
Fig. 3: The distribution of different phases in different alloy systems. (a) AM, (b) IM, (c) SS, and (d) SS + IM. 
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The distribution of different phases in the alloy is further analyzed. As can be seen from Fig. 3, AM phase is mainly distributed in ternary, qua-
ternary and quinary alloys. IM phase is mainly distributed in binary and ternary alloys. SS phase is mainly distributed in quinary and senary alloys. SS 
+ IM phase is mainly distributed in quinary, senary and heptenary alloys. In Table1, it shows the minimum and maximum values of the mass per-
centage for each chemical element. 

Table 1. The minimum and maximum values of the mass percentage for each chemical element.   

Element minimum maximum 
Ag  0.044928162  0.888843111 
Al  0.008585424  0.769377008 
Au  0.240626947  0.937238295 
B  0.001960166  0.827823867 
Be  0.011312497  0.615362983 
Bi  0.301799417  0.851433111 
C  0.004735039  0.066609972 
Ca  0.045032696  0.798446138 
Cd  0.086501835  0.932759861 
Ce  0.215262144  0.867953914 
Co  0.030891735  0.915986632 
Cr  0.047113387  0.905828034 
Cu  0.012552243  0.887991504 
Dy  0.197549175  0.718867507 
Er  0.724665391  0.925366528 
Fe  0.009990466  0.905135288 
Ga  0.177255739  0.492257002 
Gd  0.191166817  0.828244978 
Ge  0.275865998  0.484006397 
Hf  0.07343273  0.891959422 
Ho  0.225154262  0.609833527 
In  0.110572895  0.685015412 
La  0.061315202  0.84757756 
Li  0.010021621  0.366592323 
Lu  0.212708794  0.235630791 
Mg  0.028721909  0.702231058 

(continued on next page) 
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(continued ) 
Element minimum maximum 
Mn  0.078082474  0.853201943 
Mo  0.0394614  0.911090713 
N  0.017808794  0.017808794 
Na  0.026336591  0.091438799 
Nb  0.034153496  0.774637319 
Nd  0.266817118  0.84242495 
Ni  0.030691594  0.942155394 
P  0.078582122  0.078582122 
Pb  0.344678444  0.759373053 
Pd  0.01911286  0.986298029 
Pr  0.798937849  0.798937849 
Pt  0.783327979  0.955930875 
Re  0.46313983  0.932448673 
Ru  0.251380391  0.71407376 
Sb  0.138860695  0.818609654 
Sc  0.151736055  0.276099239 
Si  0.002166211  0.524458551 
Sm  0.191129924  0.755653835 
Sn  0.019640284  0.913498165 
Sr  0.193004097  0.540722704 
Ta  0.199574671  0.692605068 
Tb  0.193209171  0.613510905 
Ti  0.02885021  0.726513887 
Tm  0.205366043  0.205366043 
V  0.023072951  0.5645781 
W  0.215736666  0.820293153 
Y  0.05218703  0.548942371 
Yb  0.381162166  0.681313489 
Zn  0.076876044  0.973663409 
Zr  0.049622473  0.83529699  
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