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ARTICLE INFO ABSTRACT
Keywords: Multi-principal element alloys (MPEAs) have drawn great interest due to their superior me-
Multi-principal element alloys chanical properties compared to the conventional alloys. However, it is unclear in these two
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aspects: i) how to predict the brittle-to-ductile transition temperature (BDTT) and fracture
toughness of MPEAs using theory and model; ii) how to quantify the influences of the complicated
alloy composition variation and microstructural parameter on the BDTT and fracture toughness of
MPEAs. These issues are critical to both the underlying mechanisms and practical engineering
applications. Here, we develop a dislocation theory-based model accounting for the modified
lattice friction stress model, the composition-dependent strength model, and the critical energy
model to determine the BDTT and corresponding fracture toughness in body-centered cubic
MPEAs. The calculated yield stress and BDTT of the as-cast MPEA agree well with the experi-
ments. Subsequently, the BDTT and fracture toughness of TiVNbTa-based MPEAs are obtained as
a function of the element concentration fluctuation. The effects of microstructure parameters,
such as component randomness and short-range ordering described by the standard deviation of
the interplaner potential perturbation and short-range correlation length, on the BDTT and
fracture toughness are further elucidated. Importantly, a microstructure-based BDT criterion is
proposed to evaluate whether MPEA is ductile or brittle at a given temperature. These results are
conducive to the development and application of MPEAs in extreme environments.

1. Introduction

Multi-principal element alloys (MPEAs) have excellent mechanical properties, such as high strength, good ductility, structural
stability, and wear resistance (George et al., 2019; Li et al., 2022a; Miracle and Senkov, 2017; Rao et al., 2022; Senkov et al., 2018; Ye
etal., 2016; Zhang et al., 2024, 2015). They are composed of multiple elements in equimolar or approximately equimolar proportions
(Cantor et al., 2004; Mak et al., 2021; Santodonato et al., 2015; Yeh et al., 2004). The high mixing entropy of MPEAs reduces the Gibbs
free energy, and hinders the formation of intermetallic phases (Li et al., 2020; Senkov et al., 2015, 2014; Soler et al., 2018). Thus,
MPEAs tend to show single-phase solid solutions, including face-centered cubic (FCC) and body-centered cubic (BCC) structures. A
major class of MPEAs is the Cr-Mo-Nb-Ta-V-W-Hf-Ti-Zr family of BCC alloys, which have high yield strength and high temperature
strength retention (Senkov et al., 2014).
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In recent years, the mechanical properties of MPEAs have been extensively studied by combining experiments, theoretical models,
with computational simulations (Zhang et al., 2023a). For instance, based on the theoretical guidance and thermodynamic tools, an
alloy design process is proposed to discover new single-phase BCC refractory MPEAs that satisfy specific mechanical properties (Rao
etal., 2022). Based on the understanding of traditional refractory metals and alloys, the influence of the interstitial compositions on the
mechanical properties of refractory complex concentrated alloys has been thoroughly investigated (Belcher et al., 2023). According to
the classical Peierls-Nabarro (P-N) model, a stochastic P-N model has been proposed to explain the origin of high strength in MPEAs
(Zhang et al., 2019a). The decomposition of the BCC structure into f+f*through the spinodal decomposition produces a modulation of
the chemical composition, which achieves an excellent combination of strength 1.1 GPa and ductility 28 % in HINbTiV MPEAs (An
et al., 2021). Combining the first-principles calculations and a set of physical descriptors, the surrogate models are developed to find
the candidate alloys that have the enhanced strength-ductility synergies (Hu et al., 2021). The addition of the W element increases the
yield stress of TiZrHfNbTa MPEAs from 1064 MPa to 1726 MPa for TiZrHfNbTaW MPEAs (Huang et al., 2022). Based on the theoretical
model, the effect of the severe lattice distortion on the mechanical properties reveals that the influence of the atomic-radius mismatch
on the solid-solution strengthening is the primary factor to govern the yield stress in the BCC AlyHfNbTaTiZr MPEA, surpassing the
impact of the shear-modulus mismatch (Li et al., 2020). The orientation-dependent tensile behavior of HfNbTaTiZr MPEAs, the
characteristics of deformation twinning, and phase transformations have been investigated at the nanoscale using molecular dynamics
(MD) simulations (Jian and Ren, 2024). The above work has made crucial progress in elucidating the close connection between the
components, microstructures, and mechanical properties in MPEAs.

There are new theoretical advances to study the fracture behaviors and failure mechanisms (Guo et al., 2024; Li et al., 2022b; Shen
et al., 2024; You et al., 2021; Zhao et al., 2023). In terms of the theory of the brittle-ductile transition (BDT) of metals and alloys, the
effect of the crack extension on the BDT behavior is emphasized in the previous work (Heslop and Petch, 1956, 1958). It is considered
that the BDTT is decided by the P-N stress associated with a free dislocation. The BDT behavior of metals is studied by the mechanism of
dislocation source nucleation, which is controlled by dislocation mobility at a constant loading rate (Hirsch and Roberts, 1996; Hirsch
et al., 1989). The fracture toughness and the BDTT in the as-cast TiVNbTa MPEA are measured by conducting four-point bending tests
at temperatures ranging from - 139 °C to 20 °C and a strain rate of 1 x 1072 s~ ! (Scales et al., 2020). Based on the competition between
dislocation source operation and crack extension, an analytical method to calculate the BDTT is proposed in the pure metals (Zhang
et al., 2019b). The ratio of the screw dislocation velocity to edge dislocation velocity is regarded as a controlling factor to the BDT (Lu
et al., 2021). A probabilistic model that incorporates temperature-dependent constitutive relationships has been developed to accu-
rately describe the competition between cleavage and ductile void failure. This model successfully predicts the temperature-dependent
fracture toughness and the BDTT in ferritic steels with irradiation effects (Chen et al., 2020). A quantum-mechanical dimensionless
metric is proposed to accurately predict the ductility of various MPEAs. This metric aligns well with results from existing tensile
experiments (Singh et al., 2023). A room temperature ductility criterion, namely, the ratio of the stress intensity factor for dislocation
emission to the stress intensity factor for cleavage, is proposed to analyze the ductility of the existing MPEAs (Mak et al., 2021). Based
on a unified thermodynamic framework, a coupled crystal plasticity and phase field model is proposed to study the BDT process and
predict the experimental results well in the pure W (Li et al., 2022b). The crystal plasticity models have been used to reveal the
temperature dependence of deformation localization in the irradiated W (Li et al., 2021b). A discrete-continuum model, combining 3D
discrete dislocation dynamics with the finite element method, provides an effective way to understand the behavior of high-speed
dislocations under the complex shock loading conditions (Cui et al., 2022). In addition, the role of slow screw dislocations on the
fast strain burst events in submicron W is studied using the discrete dislocation dynamics simulations, and the results show the external
load mode control can transform the complex collective dynamics of dislocations (Cui et al., 2016, 2020). Through different methods,
the previous studies have made significant progress in understanding the deformation behavior and BDT of the alloys.

While there have been recent significant theoretical advancements that explain the relationship between yield stress and
composition in BCC MPEAs, there is a significant lack of research on ductility properties, such as BDTT and fracture toughness (Mak
et al., 2021). The alloying elements and interstitial impurities have a significant effect on the BDTT (Scales et al., 2020; Zhang et al.,
2020). The chemical short-range ordering (SRO) has been observed in the atomic simulations and experimental studies (Chen et al.,
2021a, 2021b; Kormann et al., 2017; Li et al., 2019; Singh et al., 2015; Tamm et al., 2015). The previous research has demonstrated
that SRO has the potential to enhance the strength of the alloy (Jouiad et al., 1999; Li et al., 2023b; Pettinari-Sturmel et al., 2002). The
SRO plays an impact on the dislocation friction stress based on the classic P-N model. The potential strengthening mechanism involves
increasing the volume of mismatch, facilitating dislocation cross-slip and multiplication, and phase transformation (Wu et al., 2021).
In addition, the interaction between dislocation and SRO has a significant impact on the thermal activation process of dislocation slip
(Tanaka et al., 2012). With an increase in the Cu content, the low SRO degree decreases the activation energy required for dislocation
slip, ultimately lowering the BDTT in the FeCrNCu MPEA (Tanaka et al., 2014). However, there is a lack on the quantitative impact of
SRO on the BDTT and fracture toughness in the MPEA.

In the present work, a dislocation theory-based model is developed to quantify the influence of the alloying element and SRO on the
dislocation motion, BDTT, and fracture toughness in MPEAs. The developed model gives a quantitative prediction for the composi-
tional contribution to the BDTT and fracture toughness. In addition, the microstructure-based brittle-ductile transition criteria is
proposed.

2. Modeling and theory

The distinction between ductile and brittle fracture in crystalline metals is primarily determined by whether or not yielding occurs.
In essence, the brittle fracture typically occurs prior to yielding, whereas ductile fracture occurs after the metal has yielded. In the case
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of polycrystalline materials, stress concentrations caused by clusters of dislocation pile-ups can trigger dislocation sources in neigh-
boring grains and facilitate crack propagation. If the crack propagation is the primary initiation process, fracture occurs before
yielding, resulting in a brittle fracture. On the other hand, if the dislocation source is initiated first, fracture occurs after yielding,
leading to a ductile fracture. The dislocation mechanism theory is widely adopted to investigate the BDT behavior (Bonnekoh et al.,
2019; Heslop and Petch, 1956, 1958; Lu et al., 2021; Petch, 1958; Zhang et al., 2023b), which depends on grain size, lattice friction
stress, yield strength, and applied stress. Hence, the models of dislocation friction stress and yield strength are determined in MPEAs
due to their complex element composition and distribution. For example, from the previous experiments (Chen et al., 2024; Zhu et al.,
2024), MPEAs have a random distribution or locally chemically ordered distribution of atom types at several nanometers, leading to
atomic severe lattice distortion. However, the classic P-N model hardly predicts the dislocation friction stress due to the constantly
changing lattice parameters at several nanometers. Thus, the theoretical framework is established in this work for BDT based on the
dislocation theory-based model considering the modified lattice friction stress model, the composition-dependent strength model, and
the dislocation mechanism-based critical energy model.

2.1. Dislocation mechanism-based critical energy model

Here, the BDT depends on the competition between crack propagation priority and crack tip dislocation source activation priority
in MPEAs. The ductile fracture occurs when the dislocation source firstly operates, and the brittle fracture takes place when the crack
begins to extend. Fig. 1 shows a reasonable model from the previous experiment for crack propagation and dislocation pile-up in the
adjacent grains of CrMnFeCoNi MPEAs (Suzuki et al., 2020).

Hence, the effective potential barrier for the initiation of dislocation sources at the crack tip in the MPEA is

E=E, +E3; —E;, —E4 @

where E; is the energy for the dislocation line tension, E; is the consumed energy for the dislocation movement, Ej3 is the energy of the

Crack Surface

Grain Boundary

Dislocation

Fig. 1. (a) Overview around one of the subcracks near the main crack in the CrMnFeCoNi MPEA. (b) The corresponding Inverse Pole Figure map. (c)
Magnified electron channeling contrast images of the crack initiation site. (d) Dislocation pile-up. (a-d) come from previous work (Suzuki et al.,
2020). (e) The schematic diagram of two adjacent grains in MPEAs containing a crack. The length of the crack is c, the distance between the pile-up
position and the crack tip is [, and the dislocation source exists at the point, P, in the front of the crack tip. Assuming that a large amount of slipping
dislocations pile-up on the boundary between grains A and B.
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crack propagation, and E4 is the crack surface energy (Zhang et al., 2019b). When the thermal activation energy overcomes the
maximum effective potential barrier, the BDT behavior occurs.
The energy for the dislocation line tension is

E, = Fob 2)
where F = ub? /2 is the line tension. 4 is the shear modulus. 6b is the elongation of the arc “CD”. Here, the dislocation segment “CD” is

expanded from the radius r; to radius r, as shown in Fig. 2.
The consumed energy for the dislocation segment “CD” movement is expressed as

E, = 6bAS 3)

o = (0, — o) (d/1)2 )
1/ ,0 0\ _6br,

AS = 5 (ﬁrgﬂ — m‘fﬂ) ~= 5)

where ¢ is the amplified stress of the pile-up group at the point of P, AS is the area of the pink area swept by the dislocation source. o is
the yield stress, which is given by Eq. (24). 6f = M(opy 411 +72 +173) is the stress acted on the dislocation motion, where opy is
determined by Egs. (22, 23). 7; is the stress of the elastic interaction with other dislocations, 73 is the stress of the jogs formation, and 73
denotes the stress of the elastic stress field of the dislocation. Here, 7; = a;ub /x, a; is approximately between 0.2 and 0.3. The value of x
is approximately 10~7 m. d is the average grain size. The radius r, is expressed by r, = m /[2sin(6 /2)].

The elastic energy released by crack expansion for plane stress conditions is approximated as U = z6%cb?/(2u) (Lawn, 1993). When
the dislocation source opens first at point P, the unreleased elastic energy will become the energy barrier for the dislocation source to
open. Thus, the energy of the crack propagation is

no*ch?
2u

(6)

3 =
The surface energy of the crack is
E4 = 2b%y, (7)

where 2b? is the incremental crack surface area, and y, is the specific surface energy. Here, the crack extends from c to ¢ + b.
The relationship between strain rate and BDTT has been determined by (Tanaka et al., 2008)
& = Ae Fa/(KTc) (8)
where ¢ is the strain rate, A is a pre-factor, E, is the activation energy for the BDT behavior, k is the Boltzmann’s constant, and T, is the

BDTT.
According to the thermal activation theory, the strain rate can be given by (Argon, 2007)

& = phsyge Fa/kTe) 9)

|3

X z
z X

Fig. 2. The schematic diagram of the curved segment of dislocation at the point, P, in the front of the crack tip. The dislocation source is supposed to
be a segment of dislocation with a Burgers vector, b, and length, m, where the ends are fixed at points C and D. The dislocation segment, denoted as
“CD”, bends under the applied stress, and the arc “CD” corresponds to a circular angle of 8 (0 < 6 < x); the radii before and after the moved distance
b in the top of “CD” are ry, and rz, respectively. It is assumed that the center angle of the dislocation is the same before and after it moves a distance
b, thusry =r; + b.
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where p is the mobile dislocation density, b is the Burgers vector, s is the dislocation moved distance, and vy is the natural vibration

frequency of the dislocation.
Thus, the BDTT is

Emax
(10)

T k[In(b2pva) — In(&)]

where Epx = E1 + E3 — E5 — E4 is the maximum energy change at 6 = 7.
The fracture toughness of metallic materials varies with the temperature. When the temperature is below the BDTT, the fracture

toughness decreases rapidly. In the temperature-transition region, the relationship between the fracture toughness and temperature is
(Sailors and Corten, 1972)
Kic = k1°° (1n
2 =2/ +e P (12)
where K¢ is the fracture toughness, the constant k; is 14.6, y is the Charpy V-notch value, y, and B are obtained from the experimental

data, and T is the temperature.

2.2. Dislocation friction stress

The dislocation core plays an important role in the dislocation slip and dislocation interaction (Alkan et al., 2018; Fan et al., 2021;
Krasnikov and Mayer, 2018; Li et al., 2021a; Yang et al., 2020). In the classical P-N model (Nabarro, 1947; Peierls, 1940), it integrates
an atomic-level description of dislocation core and a long-range description of the dislocation strain field (Hirth et al., 1983). Fig. 3
shows a single edge dislocation in MPEAs, and this model considers the random atom occupancy and SRO (Zhang et al., 2019a).

The total energy, stress field, misfit energy, and generalized stacking-fault energy (GSFE) in a single edge dislocation are given by

(Anderson et al., 2017)

Bt = % [ :° 0y () (3)dx + Enisic 13)

o) = / ACVP (14)
27(1 —v) ) o X—X1

Busas = [ rip(ox as)

ro) =+ ﬂb;a (1 - cos?) 16)

where 0yx(x) is the shear stress on the slip surface, v is the Poisson ratio, and y(¢) is the periodic interplanar potential. Assuming that
the dislocation line in a grain of MPEAs is along the z-axis and the Burgers vector is along the x-axis, and the slip plane is the x-z plane.
Two continuous and linear elastic half spaces (y > 0 and y < 0) are separated by the slip plane. The disregistry function in the x di-
rection along the slip plane is expressed by a function, ¢(x); ¢(x— — o0) = 0 and ¢(x— + o) = b. The distribution of the disregistry is

p(x) = ¢'(x). a is the spacing of the atomic plane perpendicular to the glide plane.

e
o 8 ®

ke =" o -0 ---@ o o‘ °

Yo ° 1@ 00 St ) x

00#00@

boddbecbad

Fig. 3. The schematic diagram of an edge dislocation in a grain of MPEAs formed by the simple cubic crystals. Although MPEAs have severe lattice

distortion, we plot it as a simple cubic lattice for simplicity.
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The equilibrium dislocation disregistry function and core width are derived by Eoa /5[@(x)] = 0. The disregistry function and
Peierls stress are expressed as follows

b x b
p(x) = ;arctanw—0 + 2 a7
27w,
0, = pexp( — 5 %) (18)

where wy = a /[2(1 —v)] is the dislocation core width.

In MPEAs, the random lattice occupancy varies from the site to site, and thus the misfit energy related to the GSFE is different from
that of traditional alloys. To understand the effect of the random site occupancy and SRO on the intrinsic strength, a random variable,
@(x), with the short-range spatial correlation is introduced. Thus, the misfit energy is expressed as

+o0
B = | 0(0r(p())dx 19)
The random variable is described by a normal distribution, and its probability density function is
1 (u— 1)2>
P;(u) == exp( — 20
®) AV2r p( A2 (20)
where A is the standard deviation, and it is written as
— 2w, (2 teo | e x—s x2 ’
A=2"0/2A / / exp<f—) —————dx| ds 21)
T V4 —w | Js A7 (x+wp)

Here, the standard deviation explicitly depends on the short-range spatial correlation 4 and standard deviation A (Zhang et al.,
2019a). The reasons for choosing a normal distribution are explained in Appendix A.
The dislocation friction stress and its probability distribution in the MPEA are expressed as

o = ol (177) (22)

P, (u) = Py(1/ (1~ plogu))(5/ u)(1 — plogu) * (23)

P

where § = b /(2awy). Here, 6, is defined as the normalized dislocation friction stress, opy/ ag. Therefore, the dislocation friction stress
of a single edge dislocation is a function of the standard deviation of the GSFE perturbation and the correlation length of the spatial
component distribution. Hence, the existence of SRO significantly influences the standard deviation of the GSFE perturbation and the
correlation length of the spatial component distribution, thus ultimately impacting the dislocation friction stress.

2.3. Composition-dependent strength model

For a single-phase BCC MPEA, there are three strengthening mechanisms that contribute to the yield strength, including the solid-
solution strengthening, o, dislocation strengthening, o4, and grain-boundary strengthening, og. Hence, the yield stress in Eq. (4) for
the MPEA is expressed as

Oy = 0 + Ogis + Ogp 24)

Solid-solution strengthening originates from various interactions between dislocations and solute atoms (Li et al., 2023c¢), including

(@) (b)

Fig. 4. (a) The schematic depiction of the pure BCC crystal structure. (b) The severely distorted crystal for four-principal-element BCC MPEAs.
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elastic interaction, modulus interaction, electrical interaction, chemical interaction, and localized ordering interaction. Among these,
the elastic interaction and modulus interaction dominate solid-solution strengthening (Courtney, 2005). Here, the contribution of SRO
to the yield strength of MPEAs is very limited (Zhang et al., 2020). Previous work has suggested that the contribution of SRO only
accounts for about 4 % of the yield strength of BCC MoNbTaW MPEA (Li et al., 2023a), and even SRO results in a decrease in the yield
strength of solid solution alloys (Abu-Odeh and Asta, 2022). Moreover, the SRO causes the limited antiphase boundary strengthening
(Schon, 2021), while it leads to a decrease in solute concentration which greatly reduces solid solution strengthening (Fang et al.,
2022). On other hand, the antiphase boundary energy is very difficult to measure and calculate due to the formation of the complex
SRO and the obvious changeable solute composition around the SRO structure, thus hardly evaluating the SRO contribution to the
yield strength in MPEAs. As a result, this work primarily investigates the dominant solid-solution strengthening mechanism, while
disregarding the weaker SRO strengthening effect.

Here, the solute atom in the BCC matrix induces the lattice distortion to impede dislocation motion (Fig. 4). Based on Vegard’s law
(Li et al., 2020; Toda-Caraballo and Rivera-Diaz-del-Castillo, 2015; Vegard, 1916), for MPEA composed with n elements, the
contribution of solid solution strengthening to the yield stress is summarized as:

n
s = Y Ciol, (25)
i=1

where ¢; is the atomic percentage of the element, i. The strength contribution, o

L., of the element, i, is expressed as

o, = Auc?s? (26)
where A = 0.04 is the material constant, and y = Y"1 ; ci; is the shear modulus following the average rule (Senkov et al., 2010). The
mismatch parameter, §;, is given by (Toda-Caraballo and Rivera-Diaz-del-Castillo, 2015)

8 = &(ou? + pror?) (27)

where £ = 2.5 in BCC metals (Li et al., 2020), &y; is the shear modulus mismatch, and ér; is the atomic-size mismatch. The coefficient

is dependent on the kind of dislocations (Labusch, 1970). For screw dislocations, 3 < < 16 is used, while for edge dislocations, > 16

is employed. MPEA, ijkl, is assumed to be composed of a multi-principal matrix, jkl, and an additional element, i. The expressions of the
sye_ grave s e _ s, ave

atomic-size mismatch, dr;, as well as the modulus mismatch, 5y;, are given: ér; = a‘f“cii’“and Su; = (%“07”’“, oriy; and ougy are the

average atomic size mismatch and average modulus mismatch of the ijkl MPEA, respectively. The expressions 6r®¢ and 6u®° are

calculated by

5r11 57‘12 N 6r1" C1
ve = - Oy Oryy -+ 6r2n Ca
or = Z Zcicjérij = (€152, ¢n) | . o . : (28)
t O Oy ++ Ofmn Cn
. Opyy Opy e B, G
5ﬂave = Z Zcicjéﬂij = (cl’ Ca, "'7Cn) (s'u:Zl 5”22 5/’?2;1 C:2 (29)
i j : . H :
5/"111 5”112 o 6:“1111 Cn

where §p; = 2(#1‘ —ﬂj) /(l‘i +ﬂj) and &ry = 2(r; —1;) /(r;+1;) are the shear-modulus mismatch and the atomic-size mismatch between
two elements, i and j, respectively. y; and r; are the shear moduli and atomic radii of the element, i. There are no atomic-size mismatch
and shear-modulus mismatch between atoms i. Therefore, 6r;; and y;; are zero. The probability of mismatch between atom i and atom j
is cic;.

According to the Taylor relationship (Kim et al., 2019), the dislocation strengthening is written as

o4is = Mgub /p (30)

where M=3.06 is the Taylor constant, and ¢=0.33 is an empirical constant.
The grain boundary strengthening is written as (Liu et al., 2013)

Ogh = kyd71/2 (31)
where k, is the Hall-Petch constant.
2.4. Microstructure-based brittle-to-ductile transition criterion

Based on Egs. (2-7), the relationship between the effective potential barrier and microstructure is obtained as

Emax = ub®n/2 + ncb®6® [ (2u) — omb®m /4 — 2b%y, (32)
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Hence, from Eqs. (10, 32), the microstructure-based BDT criteria can be expressed by

ncdb? 2 , (12 ub®x 5 5 .
g Fld Ay —mbte() f(@2.8) [ 4+ 5T = 20— kT(in(b%pv) In@)] <0 (33)

where f(d, A, A) = oy — o is defined as the microstructure parameters. The microstructural parameters are influenced by various

factors, including the average grain size, the standard deviation of the interplaner potential perturbation, and the short-range cor-
relation length. In addition, Eq. (33) is simplified as

£d,2,8) - (5)/%

1+,/1+

2 | aub*m?

KT[In(b2pv,) — In(é)] + 27,b* — ”bg”} 32c ] <0 (34)

Here, for a given temperature T, when Eq. (34) is satisfied, the material is ductile; otherwise, the material is brittle.

Therefore, the BDT behavior is predicted in MPEAs based on the above developed physical model. Considering the critical energy
model, the modified lattice friction stress model, and the composition-dependent yield strength model, Fig. 5 shows the flowchart of
the calculation process for the dislocation theory-based model. It is important to note that the critical energy model based on dislo-
cation theory is not dependent on the materials used. The modified lattice friction stress model takes into account the component
randomness and SRO of MPEAs. Additionally, the composition-dependent strength model considers the effects of composition, lattice
distortion, and component concentration in MPEAs. Therefore, the developed physical model provides accurate and reasonable
predictions for the BDT behavior. The specific calculation details are described as follows: i) To begin with, we would provide defi-
nitions for the following parameters: atomic radii, shear modulus, atomic fractions, dislocation density, Hall-Petch constant, and grain
size, as outlined in Egs. (24-31). Subsequently, we will make predictions regarding the yield strength, taking into account solid-
solution strengthening stress, grain-boundary strengthening stress, and dislocation strengthening stress. ii) Secondly, determine the
dislocation friction stress using Eqs. (18-23). The average dislocation friction stress is determined by the phenomenological parameters
A and 4. iii) Finally, predict the BDTT of MPEA of MPEA using Eqs. (1-10). As the composition of MPEA varies, the yield strength, shear
modulus, and dislocation friction stress also vary, leading to changes in the effective potential barrier and ultimately influencing the
BDTT.

Solid solution strengthening

Built theoretical model

Component randomness

Grain boundary strengthening yield strength

stress model

composition dependent] r'nodiﬁccl lattice friction

Short range correlation length

Dislocation theory based
Dislocation strengthening Socao el

model

.

Setting material parameters

Change the atomic content Change the standard deviation
and substitute element and spacial correlation length
he atomic radius, shear modulus . Standard deviation of the GSFE
Other material parameter . .
and content of each element and spacial correlation length

Predict the BDTT and fracture

toughness combining with experiment

End

Fig. 5. The relationship between the three current models and the flowchart of the calculation for BDTT and fracture toughness.
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3. Results
3.1. Validity of dislocation theory-based model

To verify the reasonableness of the BDT model, we calculate the BDTT of the TiVNbTa MPEAs. The experimental data is obtained
from the existing TIVNbTa MPEAs (Scales et al., 2020). Table 1 shows the nominal chemical compositions of the TiVNbTa MPEAs. The
fracture testing of the TiVNbTa MPEA is essential to measure the fracture toughness and BDTT. This testing is conducted over a range of
temperatures to ensure its performance and prevent any potential catastrophic failures during service. By analyzing the fracture test
and examining the fractography, the fracture toughness and the BDTT are obtained in Fig. 6, where the temperature of the four-point
bending test is in the range of - 139 °C to 20 °C and the strain rate is 1 x 107> s~1 (Scales et al., 2020). The fracture toughness versus
temperature shows a soft BDT behavior (Fig. 6). The variation in fracture toughness with the temperature is observed in four distinct
stages: brittle, semi-brittle, brittle-ductile transition, and ductile. When the temperature is low, the fracture toughness remains rela-
tively stable at 43 MPa-m®°, but it increases to 65 MPa-m®® within the semi-brittle range. When the temperature is higher than —40 °C,
the as-cast TiVNbTa MPEA exhibits high ductility and does not easily fracture. The soft transition phenomenon is a characteristic
feature of semi-brittle BCC alloys, where the BDTT ranges from —47 °C to —27 °C in TiVNbTa MPEAs.

For the TiVNbTa MPEA, the related parameters are listed in Table 2. The full dislocation in the BCC crystal is b = (\/§ / 2)(10, the
Poisson ratio is v = 0.3, and the half core width of the dislocation is wy = 0.75a,. Thus, based on Table 2 and Eq. (10), the calculated
BDTT of the TiVNbTa is T, = —39°C (Fig. 6), which is well in line with the experimental results (Scales et al., 2020). Then, the effects of
component fluctuation, component randomness, and SRO on BDTT would be analyzed.

3.2. Effect of randomness and SRO on toughness

Based on the modified P-N model, the normalized dislocation friction stress is a statistical quantity with its own probability density
distribution. Fig. 7 illustrates the normalized dislocation friction stress probability density function corresponding to different
component randomness standard deviations and spatial correlation lengths. The average dislocation friction stress is calculated for
different parameters, and the average dislocation friction stress is used as a description of the actual dislocation friction stress in
MPEAs. Fig. 7a shows that the increasing standard deviation leads to a wide distribution of dislocation friction stress at a consistent
spatial correlation length. This, in turn, leads to high average dislocation friction stress. Fig. 7b demonstrates that the increasing spatial
correlation length at a fixed standard deviation leads to a wide distribution of dislocation friction stress and an increase in average
dislocation friction stress.

Here, the variation of average dislocation friction stress with standard deviation and correlation length is presented in Fig. 8a. Here,
when the standard deviation and correlation length is 0, it represents the pure metal; when the standard deviation and correlation
length is small value, it represents the random alloys; when the standard deviation and correlation length is large value, it represents
the MPEA with SRO. Fig. 8a shows the high dislocation friction stress in the MPEA compared to the pure metals (Pei et al., 2021; Xu
et al., 2021), for the given standard deviation and correlation length. The increasing standard deviation at a fixed correlation length
leads to the high dislocation friction stress. Furthermore, the increasing spatial correlation length and standard deviation both
contribute to an increase in the dislocation friction stress, where these findings are confirmed in the previous work (Zhang et al.,
2019a). Fig. 8b shows the distribution of BDTT for different component randomnesses and SRO degrees. Compared to the pure metals
and random alloys, MPEA has a high BDTT. As the SRO degree increases, the BDTT rises (Tanaka et al., 2014). This trend would
provide a way to control the BDTT for meeting the special service environment. Fig. 8c reveals the variation of fracture toughness at the
BDTT in the MPEAs. As the spatial-correlation length and standard deviation increase, the fracture toughness of MPEAs is enhanced
(Zhang et al., 2020). Fig. 8d reveals the variation of fracture toughness at room temperature in the MPEAs. As the spatial-correlation
length and standard deviation increase, the fracture toughness of MPEAs is reduced at room temperature. In other words, the regu-
lation of the chemical element distribution not only changes the BDTT, but also alters the fracture toughness in MPEAs.

To investigate the element distribution, the single crystal MPEA MoNbTaW sample is built using the large-scale molecular dy-
namics massively parallel simulator (LAMMPS) for Monte Carlo and molecular dynamics calculations. The MPEA sample with the size
of 33.3 x 3.1 x 27.2nm® has about 171,000 atoms. To construct the desired MPEA MoNbTaW sample containing the random elements,
the atoms within the single crystal Mo structure are randomly substituted with atoms of Nb, Ta, and W, as presented in Fig. 9. The
periodic boundary conditions are applied to all dimensions. The annealed MPEA samples are equilibrated using a hybrid Monte Carlo/
molecular dynamics (MC/MD) approach (Fig. 9). In every MC step, a random atom is swapped with another random atom, following
the Metropolis algorithm in the canonical ensemble. Each MC/MD step consists of 100 MC swaps followed by up to 10 MD relaxations.
The system is maintained at a temperature of 300 K during these processes.

The Warren-Cowley (WC) parameter is widely utilized to describe the SRO degree in the MPEAs (Cowley, 1950), which is expressed

as ag’ = (p{;’ - Cj> / (6,; - Cj). Here, N represents the Nth nearest-neighbor shell of the central atom i, ag-’ is the WC parameter of i-j type

Table 1

The elemental content of the as-casted TiVNbTa MPEA.
Element Ti Ta Nb v (o} C N
at.% 23.592 26.797 25.041 24.439 0.0963 0.0276 0.0073
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Fig. 6. The variation of the conditional fracture toughness in the TiVNbTa MPEA with the increasing temperature. The red five-pointed star
represents the result of the model calculation.

Table 2
Parameters used in the BDTT calculations of TiVNbTa.
Parameters Symbol Magnitude
Yield strength (MPa) oy 1095
Lattice constant (nm) aop 3.237 (Scales et al., 2020)
Burgers vector (nm) b V3ay/2
Shear modulus (GPa) u 49.5
Grain size (um) d 34.5 (Raman et al., 2021)
Distance to crack tip (um) 1 0.1d(Zhang et al., 2019b)
Dislocation density (/cm?) p 10!
Strain rate (/s) & 1072 (Scales et al., 2020)
Specific surface energy (J/m?) ¥s 1 (Zhang et al., 2019b)
Vibration frequency of dislocation (/s) Vg 103
Boltzmann constant (J/K) k 1.3806505 x 1023
Griffith crack size (cm) c 2 x 10~* (Zhang et al., 2019b)
Coefficient p 3
(a) s (b) 255
Mw,=2
4F 20F Y
— Mwy=4
2 5 —— Mw,=8
< 2] i
—8 7k —8 1.0 AMwy=10
= =
=D o
1k 0.5
0 0.0 "
0.0 1.0 1.5 2.0 2.5 0.0 1.0 1.5 2 0 2.5

Dlslocatlon friction stress Dlslocatlon friction stress

Fig. 7. (a) The normalized dislocation friction stress distribution versus the correlated random coefficient for several values of standard deviation at
fixed spatial correlation length A /wy = 1. (b) The normalized dislocation friction stress distribution versus the correlated random coefficient for
some values of spatial correlation length at fixed standard deviation A = 0.1 (Zhang et al., 2019a).

atomic pair in the Nth nearest-neighbor shell, C; is the average concentration of element j in MPEAs, pg’ is the probability of locating a
Jj-type atom within the Nth nearest-neighbor shell of an i-type atom, and §; is the Kronecker delta. The first-principles simulations show
that the GSFE in the MPEAs with different SRO degrees follows a normal distribution (Ding et al., 2018). Here, the SRO parameters are
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TiVNbTa MPEA. (b) The effect of the component randomness and SRO spatial correlation length on BDTT. The effect of the component randomness
and SRO spatial correlation length on the fracture toughness at the BDTT (c) and room temperature (d).

computed using the MD simulation in the BCC MoNbTaW MPEA (Fig. 10). The positive value of al,_,, increases significantly in the
MPEAs, indicating an increase in the degree of the local W segregation (Fig. 9).

The stacking fault energy curves of the random MPEA and SRO MPEA are presented in Fig. 11a-c, and the distributions of the
corresponding two other elements are described in Fig. 11d. For different ID samples, the stable stacking fault energy shows significant
fluctuations, which is 63.1 + 0.8 mJ/m? in the random MPEA and 78.4 + 1.1 mJ/m? in the SRO MPEA. By computing the SFE de-
viation under a given SRO MPEA, the corresponding correlation length can be obtained. For example, the short-range correlation
length increases from 0.53 to 3.68 as the WC parameter increases from 0.18 to 0.24. Thus, when the correlation length is four times the
dislocation core width and the standard deviation is 0.1, the BDTT is —22 °C in the MPEA TiVNbTa (Fig. 8). This comparison indicates

that the atomic simulation results are consistent with the predicted results of the theoretical model, namely, the randomness to in-
crease BDTT to a certain extent.

3.3. Effect of element on BDTT and fracture toughness

To assess the rationality and accuracy of the composition-dependent yield strength model, the predicted yield stress is compared to
the result of experiment obtained from the BCC TiVNbTa MPEA. In the TiVNbTa MPEA, the Hall-Petch coefficient is taken as 592
MPa,/um according to previous studies (Cordero et al., 2016; Raman et al., 2021). Table 3 presents the atomic radius and shear
modulus of each element for the solid solution strengthening.

Fig. 12 shows the comparison of the yield strength from the theoretical model and experiment in TiVNbTa MPEAs. The yield
strength predicted from the composition-dependent strength model is consistent with the experimental result (Lee et al., 2018). The
yield strength of the TiVNbTa MPEA is composed of three components, namely solid solution strengthening caused by the severe lattice
distortion, grain boundary strengthening, and dislocation strengthening. The yield strength experimentally obtained is 1273 MPa (Lee
et al., 2018), and the result predicted from the composition-dependent yield strength model is 1095 MPa. The experimental and
theoretical results deviate from each other by 14 %. Among these components, the solid solution strengthening contributes signifi-

cantly, dominating the overall yield strength; the grain boundary strengthening is 100 MPa, which contributes the least to the yield
strength; the dislocation strengthening is 443 MPa.
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Fig. 9. The distribution of element in the samples with different MC cycle numbers: 0 (a), 20 (b), 50 (c), and 80 (d). @ Mo, @ Nb,  Ta,and { 1 W.

The composition-dependent strength model is used to explore the effect of element concentration on the yield stress, atomic size
mismatch, shear modulus mismatch, and solid solution strengthening in the BCC TixVs0.xNbTa MPEAs. Thus, the current model is
utilized to predict the yield stress of the Tiy\Vs50xNbTa MPEA when Ti element varies in the range of 15 % to 35 %. Fig. 13a demon-
strates the calculated yield stress decreases with the increase Ti content in the TixVso.xNbTa MPEAs. Figs. 13b, ¢ depict the variations of
the atomic radius mismatch and shear modulus mismatch with the increasing Ti content. At the given Ti concentration, the atomic
radius mismatch of V element is larger than that of other elements, including Ti, Nb, and Ta. The atomic radii of other elements are very
close to each other, while the atomic radius of V element is significantly smaller compared to the other elements (Li et al., 2020). The
shear modulus mismatch of Ta element is higher than those of other elements, as exhibited in Fig. 13c. The shear moduli of the other
elements are significantly smaller than that of the pure Ta. Fig. 13d shows the variation of solid solution strengthening due to the large
atomic radius mismatch and shear modulus mismatch. From Figs. 13b-d, the V element to reduce the solid solution strengthening is the
main reason for the decreasing yield strength of TiyV5o.xNbTa MPEA. The atomic radius mismatch induces strong strengthening rather
than the modulus mismatch, which agrees with the previous findings (Dou et al., 2024; Lee et al., 2018).

The effect of the solid solution strengthening induced by the lattice distortion on BDTT is investigated, as shown in Fig. 14. The
composition effect on the BDTT and fracture toughness is presented in Figs. 14b-d. Here, the yield stress, the BDTT and the fracture
toughness are studied in TixVs50.xNbTa, TixVNbsg.xTa and TiV4NbsoxTa MPEAs. From Fig. 14a, with the increasing Ti content, the yield
strength of TixVso.xNbTa decreases due to the reducing solid-solution strengthening contributed by the V element, and the yield
strength of TiV4Nbso4Ta increases. In addition, the high V content in TiyVsoxNbTa leads to the large yield stress and fracture
toughness, in agreement with the experimental results (Wang et al., 2021). Fig. 14b displays the variation of BDTT versus the element
fluctuation. The BDTT of TixVs9xNbTa firstly decreases, and then increases with the increasing element content. The BDTT trend of
TiViNbso.<Ta is similar to that of Ti\VsoxNbTa, while the BDTT of TiyVNbsg.xTa shows a decreasing trend. The BDTT reaches the
minimum value in the TiyVNbsgxTa MPEAs. It indicates that the increase Ti and the decrease Nb contribute to the reduction of BDTT,
while the decrease Ti and the increase V significantly increase the BDTT. Fig. 14c demonstrates the variation of fracture toughness at
the occurrence of BDT behaviour. When the Ti content is between 20 % and 25 %, the fracture toughness approaches the maximum
value in the TiyV59xNbTa MPEAs. It suggests that the decrease Ti and the increase V lead to the improvement of fracture toughness.
Fig. 14d demonstrates the variation of fracture toughness at room temperature. When the Ti content is between 15 % and 25 %, the
TixVNbsg.xTa MPEA shows the high fracture toughness compared to the TiyV59xNbTa and TiVxNbsg.xTa MPEAs. It reveals that the
increasing Ti and the reducing V lead to enhance the fracture toughness at room temperature.

4. Discussion

Here, the impact of atomic radius and shear modulus from the other elements on the mechanical properties of MPEAs is evaluated
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Table 3

The atomic radius, shear modulus, and atomic fraction of Ti, V, Nb, and Ta.
Element Ti v Nb Ta
Atomic radius, r (pm) 145 135 148 148
Shear modulus, y (GPa) 44 47 38 69
Atomic fraction, ¢ (%) 25 25 25 25

1200

Stress (MPa)
=

400

0

Experimental yield stress
I Solid-solution
I Grain boundary

[ |Dislocation

Fig. 12. Comparison of yield stress between the theoretical prediction and the experiment for the TiVNbTa MPEA. The grid columns correspond to
the yield strength obtained from the experiment. The color column illustrates the contribution of various strengthening mechanisms to the yield
strength of the TiVNbTa MPEA. The red column represents the solid solution strengthening, the blue column represents grain boundary

strengthening, and the yellow column represents dislocation strengthening.
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for a constant composition content. In fact, based on the lattice distortion related strengthening model, the effects of atomic radius and
shear modulus on the yield strength, BDTT, and fracture toughness are quantitatively evaluated in the TiVNbTa MPEA. For example,
the other elements (denoted as X) can form VNbTaX, TiVTaX, and TiVNbX MPEAs. Then, the influence of the atomic radius and shear
modulus on the mechanical properties is quantitatively assessed in VNbTaX, TiVTaX, and TiVNbX MPEAs. In Fig. 15a, when the
element radius is less than 148pm, the yield strength improves with the increase atomic radius in the VNbTaX, TiVTaX, and TiVNbX
MPEAs. It is evident that the VNbTaX MPEA has the high strength. As shown in Fig. 15b, the BDTT decreases in both TiVTaX and
TiVNbX MPEA, as the atomic radius increases. However, the BDTT for VNbTaX is intricate, and it shows a complex relationship with
the increasing atomic radius. This trend shows a pattern of initially decreasing, then increasing, and ultimately decreasing. Fig. 15¢
shows that the fracture toughness at the BDTT initially decreases, and then increases with the increasing atomic radius in VNbTaX.
Similarly, the fracture toughness of TiVTaX and TiVNbX follows a similar trend as the atomic radius increases. Here, the other elements
lead to the improved strength and fracture toughness in VNbTaX. Fig. 15d shows that the trend of fracture toughness in relation to
atomic radius is almost the same at room temperature for TiVTaX and TiVNbX. It is worth noting that the MPEAs exhibit a high fracture
toughness for the large atomic radius at room temperature.

Fig. 16 presents the effect of shear modulus of the other elements on the yield stress, BDTT, and fracture toughness in the MPEAs.
From Fig. 16a, as the shear modulus increases, the yield strength of VNbTaX exhibits a parabolic trend, while TiNbTaX and TiVTaX
show similar trends. By substituting Zr for Nb, experimental results reveal that the hardness of TiVZrTa surpasses that of TiVNbTa
(Kareer et al., 2019). This enhancement in hardness also signifies a corresponding increase in the strength. TiNbTaX MPEA exhibits
superior yield strength under the condition that the atomic radius of the other element remains constant and the shear modulus is
below 45 GPa. In Fig. 16b, the BDTT of TiNbTaX exhibits a more pronounced variation in response to the shear modulus change. When
the shear modulus is below 45 GPa, VNbTaX exhibits a low BDTT. Fig. 16c shows that the trends of fracture toughness at the BDTT in
relation to shear modulus for VNbTaX and TiVTaX are quite similar. However, it is worth noting that TiNbTaX exhibits a notably high
level of fracture toughness when the shear modulus is below 45 GPa. Fig. 16d shows that the trends of fracture toughness at room
temperature in relation to shear modulus for VNbTaX and TiVTaX are quite similar. However, it is worth noting that VNbTaX exhibits a
notably high level of toughness when the shear modulus is below 45 GPa.

Fig. 17 illustrates the brittle/ductile characteristic distribution of TiVNbTa MPEA at different temperatures. When the given
temperature is Ty= —39 °C, the microstructural parameters including standard deviation and spatial correlation length fall within the
blue shaded region, indicating that the material is ductile; when the given temperature is To= —15 °C, the microstructural parameters
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fall within the yellow shaded region, indicating that the material exhibits brittle properties. Based on the microstructure-based BDT
criterion, it is possible to analyze the conditions satisfied by the microstructural parameters of the MPEAs in order to maintain ductility
at a given temperature. Thus, such results provide the opportunity to adjust the mechanical properties through alterations in the
microstructure. It is anticipated that this work would aid in the prediction of the BDTT and fracture toughness of MPEAs, and
developing materials for extreme working conditions.

5. Conclusions

In the current work, a dislocation theory-based model coupling the critical energy model, the modified lattice friction stress model,
and the composition-dependent strength model is developed to predict the BDTT and fracture toughness in MPEAs. The yield stress of
TiVNDbTa predicted by the composition-dependent strength model shows good agreement with the experimental results. Furthermore,
the analytical model accurately predicts the BDTT in the TiVNbTa MPEA, consistent with previous experimental observations. The
impact of standard deviation, short-range spatial correlation length, elemental concentration fluctuation, and element substitution on
the toughness is investigated in the TiVNbTa MPEA. A high degree of short-range spatial correlation length increases dislocation
friction stress, but it does not necessarily reduce the BDTT in TiVNbTa. The solid-solution strengthening is identified as the main
mechanism for strengthening in TiVNbTa. In the Ti-V-Nb-Ta MPEAs, the ductility of TixVNbsgxTa is most affected by changes in
concentration. A microstructure-based BDT criterion for predicting the necessary microstructural parameters for MPEA is proposed to
exhibit ductility at a specific temperature. These findings support the use of the developed methods for computationally guided design
of advanced BCC MPEAs with superior strength and toughness.

CRediT authorship contribution statement

Zebin Han: Writing - original draft, Visualization, Validation, Software, Resources, Methodology, Investigation, Formal analysis,
Data curation. Bin Liu: Writing — original draft, Supervision, Methodology, Investigation, Funding acquisition, Formal analysis, Data

17



International Journal of Plasticity 180 (2024) 104059

Z. Han et al.

[
-
2
(9}
]
&
o
=t
<
1%}
2
] oo ) =
-+ =+ o
5]
E
&
Fmr]
£ £ 4
wy
1O &) =]
S~ S~ %
v 2] 2
3 -
e : ¢
% e e &
M_M.M 1 Mm hmm 98 3 QKRR
o o
2 s = - = & QRIRIRRRKKR
W =g < SEE < .8 CHARIIIHKIKNKS
Il 2 L2 E s
+ + 4 172) A, [Z2 . GRRRRIARRAIIRIRRKS
| ° SRHRRRRIRIRAKS
Jo a - XRHRRRHRRIRS
@ = RRIRRHIRAKS
172}
e
= = < =) = o« — < ~ = S a9
2 5. & B £ ¥ ®_& £ £
~ ~~ SR
(Do) LLAYE oS (c-ou BdIND) © g
O S 5
~ ~ =R}
=
£
- QO
3 5
o 1 g~
=+ S5 T 8
= m 2 o
S & -
& 5 T
P ~
) — a, P2IIRRRRRRRKS g 5
& £ 5 K ey
129 19 =™ PSXX2 AV ZSRRRRIRRKHA
S Y ~ -« o ARRRERRRRKNS
%] o5 7696000950, 0,0.9,.0.0.9
wn () 0.0.9:9.0.0.9.9.0.9.9,
=) - $.9,0.9.0.9.0.9.0.0.0.¢
= 5 DRIRILHIRRIKIKS
= = 2y Sod0t0tetetele 0t %0%?
3 3 82 i %2%0% % 0% %% %!
< X o o © i I L 1 1
a m CRCEA a S 3 (o)
| EEs g = o <t ol (=) 0 O < o~ o
Ty =22 |7 2 - - = & S © < S
< Z > — = 7 . % 4 %
X% 2 ZEE g & m = <o o o (= = = o
s = | 1)
g = 172) L ..AM 2 E UOIJBIAJD plepuelS
ZZz , 2 s
> BEH o - s =
1 ') o
1t =5
e
L L L L N = 0
e = = 2 = = S &
- = - =) &8 IS s A
" = = = = = £ m
~ (edJA) sSOAIS PAIA g e
~ .
= ®
T w
]
Qg
= =
. &b
o =
= S

Jia Li: Writing — original draft, Software,

ion.

t

6 7
length
= -39 °C and T>= —15 °C in the BCC TiVNbTa MPEA.
ing acquisi

, Methodology, Investigation, Funding acquisition. Peter K

, Fund

5
ion

ion

t
18

4
iga

3
Correloation

Validation, Supervis

£]

, Methodology, Invest

1s10n

Writing — original draft
Supervi

- original draft,

Fig. 17. The distribution of brittle and ductile characteristics at a given temperature T,
: Writing

Methodology, Investigation, Funding acquisition, Conceptualization.

curation. Qihong Fang

Liaw



Z. Han et al. International Journal of Plasticity 180 (2024) 104059

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data Availability

Data will be made available on request.

Acknowledgement

The present was supported by the National Natural Science Foundation of China (U2267252, 12372069, and 12172123), Natural
Science Foundation of Hunan Province (2022JJ20001), and the Hunan Provincial Innovation Foundation for Postgraduate
(CX20220378). PKL very much appreciates the support from (1) the National Science Foundation (DMR - 1611180, 1809640, and
2226508) and (2) the US Army Research Office (W911NF-13-1-0438 and W911NF-19-2-0049).

Appendix A

In MPEA, available information suggests that normal, gamma, and Weibull distributions can be used to characterize the statistical
distribution of the interplaner potential perturbation. Therefore, the probability density distribution of the dislocation friction stress is
calculated under these three distributions.

For a normal distribution, the probability density function is expressed as

(-1

e 247 (A1)

P,(u;1,A) =

(U( ’ ) A\/ﬂ

The average and standard deviation of the other two distributions are the same as those of the normal distribution. The probability
density function of gamma distribution is

P,(u;k,0) = 1/(T(k)6*)u* e/’ (A.2)

here, 0 and k are parameters of the gamma distribution. I'(k) is gamma function. In order to make the gamma distribution have an
average value of 1 and a standard deviation of A, we set @ = A and k = 1 /A2,
The probability density function of the Weibull distribution is expressed as

-1
f(wp,q) :g(g)q e (A.3)

where p is scale parameter, q is shape parameter.

The results obtained using these distributions are compared (Fig. A1). It can be seen that the results using normally distributed
dislocation friction stress approximate well the results of the gamma distribution. Whereas the results calculated from the Weibull
distribution are not consistent with the properties in MPEA. Therefore, the normal distribution is chosen for the study due to its
flexibility and rationality.
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