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The present work developed a novel low-density (7.71 g/cm®) and high-strength Fe-Ni-base high-entropy su-
peralloy with a composition of Fe-33.2Ni-13.4Co-13.8Cr -3.1Al-2.2Ti-1.1Nb-1.7Mo-0.03C-0.015B-0.03Zr (wt.
%), which contains spherical y’ nanoparticles coherently-precipitated into FCC-y matrix. These y’ nano-
precipitates were coarsened slowly at 1023 K with the particle size being ~40 nm after 1000 h-aging, showing a
great microstructural stability due to lower lattice misfit between y/y’. Thus, this superalloy exhibits excellent

mechanical properties at room and high temperatures, as evidenced by the yield strength being 743 MPa at 1023
K. The involved strengthening mechanisms were further discussed. Moreover, it has a superior creep-resistant
property with the rupture lifetime of 61.5 h under 450 MPa/973 K. Also, it possesses a prominent strain-
hardening capacity due to the presence of abundant stacking faults in y’ nanoprecipitates. The current work
opens a new way to design low-density superalloys with stable coherent microstructure at high temperatures.

The development of advanced structural materials with prominent
mechanical properties and high microstructural stability at high tem-
peratures (HTs), as well as low-density and low-cost, has gained great
importance to meet the growing demands for engineering applications
in the aerospace field [1-3]. Among them, Ni-base wrought superalloys
have been widely used due to their excellent HT mechanical properties
and microstructural stability, which mainly benefits from their unique
coherent microstructure with spherical or cuboidal L15-y’ (cubic-CugAu
type) nanoparticles precipitated into the face-centered-cubic (FCC)-y
matrix [4-6]. For example, the well-known IN718Plus superalloy
(Ni-9.2Fe-9.3C0-17.4Cr-2.7Mo0-5.3Nb-0.97Ti-1.6Al-1.19W, wt. %) ex-
hibits a higher yield strength with o6ys ~ 780 MPa at 973 K [7]. However,
its long-term service capability at 1023 K is limited owing to the rapid
coarsening of y’ nanoprecipitates at this temperature [8]. By contrast,
the IN740H superalloy (Ni-19.9Co-25.6Cr-1.5Nb-0.5Mo-1.4Ti-1.5Al)
can be endured a long-time (3000 h) aging at 1023 K, exhibiting a high
microstructural stability with an extremely-low particle coarsening rate
and a relatively-high strength (oys ~ 630 MPa at 1023 K) [9]. In order to
further enhance the strength, several superalloys containing a high
amount of heavy elements have been developed [10-12], but they
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generally suffer from high density and high cost, such as U720Li
(Ni-15C0-16Cr-1.25W-3.0Mo-2.5A1-5Ti) with a density of ~ 8.22 g/cm3
[12,13]. Thus, it is of great significance to explore novel superalloys
with low density, high strength, and high microstructural stability at
HTs, which needs to match multiple alloying elements simultaneously
and appropriately. However, an inappropriate addition among alloying
elements always induces the precipitation of brittle phases, such as
6-(Cr,Mo)(Ni,Co) (D8y,-CrFe type) and n-NisTi (D024-NisTi type), which
can destabilize the y/y’ coherent microstructure and then deteriorate the
HT mechanical property [14-16].

Up to now, many design methods, like d-electron theory [17],
CALPHAD-aided design [18-20], machine learning (ML) [21], and
high-entropy alloying principle [22-25], etc., have been extensively
applied to guide the composition design of superalloys. Among them,
the high-entropy alloying principle is prevalent since the equimolar or
near-equimolar mixing of multi-principal elements in alloys can
enhance the structural stability and induce the sluggish effect, which
expands traditional alloy-design strategies and provides an enormous
composition space to achieve high-performance alloys [22-25]. For
instance, the high-entropy vy’-(Ni,Co,Fe)3(Al,Ti) nanoparticles are
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coherently-precipitated into the high-entropy FCC-NiCoFe matrix in
NiCoFeAlTi system with an equi-molar mixing among elements, which
leads to a more stable coherent microstructure at 873 K due to the
entropy-increase effect [26,27]. However, it is difficult to balance the
addition of oxidation-resistant Cr element with the Fe in these design
methods, since the co-addition of Fe and Cr can remarkably destabilize
the y/y> microstructure at HTs via the brittle phase precipitation [28]. In
light of the chemical short-range orders in solid solution structure for
describing the local distribution of solute atoms, we proposed the cluster
formula approach (i.e., the cluster-plus-glue-atom model) to understand
the interactions among alloying elements and the matrix [29]. It is
constituted of the nearest-neighbor cluster centered by a solute atom
that has a strong interaction with the base atoms and the
second-nearest-neighbor atoms to fill into the glue sites among clusters
for balancing the atomic-packing density [30]. Then we applied this
approach to analyze the composition rule of Ni-base superalloys and
found that alloy compositions with optimum properties satisfy the ideal
cluster formula of [Al-Ni;5] (Al Cr),, in which Ni, Al and Cr represent the
Ni series of basic elements (Ni, Co, Fe), Al series of y’-forming elements
(Al, Ti, Nb, Ta), and Cr series of soluble elements (Cr, Mo, W), respec-
tively [31]. Based on which, we attempt to introduce a relatively-large
amount of Fe to substitute for the base Ni for reducing the density, in
which a small amount of Co is also added to improve the matrix stability
and to decrease the stacking fault energy. Since a large ratio of
Al/(Ti+Nb) (> 0.85 in molar fraction) can avoid brittle phase precipi-
tation, the atom number of (Ti, Nb) in the glue site is determined as 0.5
to get a larger ratio of Al/(Ti+Nb) = 2.0 for a more stable coherent
microstructure when Al; occupies the cluster center [32]. Accordingly,
the atom number of (Cr, Mo) is 2.5 because the total number of glue
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atoms is 3.0 in the cluster formula. Therefore, the cluster formula of
[Al-FesNi5Co2](Ti,Nb)g 5(Cr,Mo0), 5 will be determined to modulate the
matching among alloying elements for preventing the brittle phase
precipitation from the matrix. Also, a trace amount of C, B, and Zr ele-
ments will be added to refine the grain size of matrix and to strengthen
the grain boundaries (GBs) [7,33]. Finally, the composition of this su-
peralloy is Fe-33.2Ni-13.4Co-3.1A1-2.2Ti-1.1Nb-13.8Cr-1.7Mo-0.03C-
0.015B-0.03Zr (wt. %), possessing a relatively-high configurational en-
tropy (4Sconf = 1.61R) and a much lower density of p = 7.71 g/cm®. The
microstructural evolution of coherent y/y’ phases with the aging time at
1023 K will be investigated, in which the coarsening behavior of y’
nanoprecipitates is involved. Then, the mechanical properties of the
superalloy at room temperature (RT) and HTs (973 ~ 1023 K) as well as
the creep properties will be measured, where both the strengthening and
deformation mechanisms are discussed.

The designed alloy ingot with a weight of ~ 100 g was prepared by
vacuum-arc melting under argon atmosphere, in which the purities of
raw metals are 99.99 wt. %. The alloy ingot was melted at least five
times to ensure composition homogeneity. Alloy ingots were homoge-
nized at 1473 K for 4 h, followed by cold rolling into plates with a total
thickness reduction of ~ 85 %. Then these plates were solutionized at
1273 K for 15 mins and subsequently aged at 1023 K for 24 ~ 1000 h.
Each heat treatment was followed by water-quenching cooling. A Bruker
D8 X-ray diffractometer (XRD) with the Cu K, radiation (A = 0.15406
nm) was used to analyze the crystalline structure of designed alloy. The
microstructures were examined employing electron backscattered
diffraction (EBSD) and IT800-SHL scanning electron microscopy (SEM).
The morphology and phase verification were further analyzed by
JEM2100FFEG transmission electron microscope (TEM). The statistical
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Fig. 1. Phase constitution and microstructural observations of the 24 h-aged alloy. (a, b): XRD patterns, in which the typical peak-separation fitting of primary (111)
diffraction peak was shown; (c): EBSD mapping to show an equiaxed microstructure; and (d): SEM-SE observation to show the y’ nanoparticles both in the matrix and

on GBs.
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analysis of the volume fraction and size of precipitates were measured
from the SEM/TEM images (at least 5 images) using the ImageJ software
[34]. Uniaxial tensile tests were conducted on a UTM5504 Material Test
System at both RT and HTs (973 K and 1023 K). Constant load creep tests
were conducted on the current alloy using the RD-50 creep testing
machine with a high applied stress of 450 MPa at 973 K. Detailed
experimental details are given in the N Y materials.

The XRD result in Fig. 1(a) shows that the 24 h-aged alloy consists of
FCC-y phase and ordered L15-y’ phase. Since the y and y’ phases are
coherent, their main diffraction peaks are overlapped, where the (111)
peak can be separated into two sub-peaks using the pseudo-Voigt
function (Fig. 1(b)). Thus, the lattice constants of y and y’ were

r= 17‘; 3 nm

f=38.2£26%
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obtained as a,= 0.3593 nm and @, = 0.3584 nm. Then the lattice misfit
between them was calculated with the equation of ¢ = 2(a,- a,)/(a,+
a,) [35], being ¢ ~ -0.25 %. The corresponding EBSD result (Fig. 1(c))
shows a fully equiaxed microstructure with the grain size of d =19 + 6
pm. The SEM secondary-electron (SE) image (Fig. 1(d)) indicates that
spherical y’ nanoparticles are uniformly distributed in the FCC-y matrix,
with the particle size and volume fraction being r = 16 + 3 nm and f =
38.4 £+ 1.7 %, respectively. In addition, no other phases were found on
GBs in this state, besides the partially-coarsened y’ nanoprecipitates (the
inset of Fig. 1(d))

In order to study the thermal stability of y/y’ coherent microstruc-
ture, alloy specimens were isothermally aged at 1023 K for a long time
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Fig. 2. SEM-SE observations of the designed alloy after aging at 1023 K for 50 h (a), 100 h (b), 500 h (c), and 1000 h (d). (e): Variation of the average particle radius
> of y* precipitates with aging time, in which the fitted coarsening rate constant K of particles was fitted and the coefficient of determination R? was also marked; (f):
Comparison of the K value in this alloy with those in reported typical alloys at 1023 K.
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Fig. 3. TEM characterization of the 500 h-aged alloy. (a): DF-TEM image and corresponding SAED pattern; (b): HRTEM image to show the coherent interfaces
between y/y’, where the FFT patterns were obtained from y’ nanoparticle (b-1) and y matrix (b-2); and (c): Elemental distributions in coherent y/y’ microstructure
mapped with TEM-EDS.
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up to 1000 h, and the SEM-SE observations are shown in Fig. 2. It can be
seen that these spherical y’ nanoparticles are coarsened slowly with the
aging time, as evidenced by the fact that the particle size increases from r
=17 + 3nmin 50 h-aged state tor = 31 + 6 nm in 500 h-aged state, and
then to r = 40 + 6 nm in 1000 h-aged state. During this process, the
particle morphology is not changed and the volume fraction keeps
almost constant, being f ~ 39 %. It is consistent with the classical
Philippe-Voorhees (PV) theory, i.e., the coherent precipitates in multi-
component alloys are generally coarsened by the agglomeration of
precipitates during aging without any change in volume fraction [36].
Thus, the time-dependent coarsening process of y’ nanoprecipitates in
the current alloy can be described by Eq. (1) [36]:

r(t)> —r(to)® = K(t—to) )

where r(t) is the average particle radius at the aging time t; t) = 24 h is
the starting time for y’ coarsening; and K is the coarsening rate constant
of precipitates. Fig. 2(e) gives the variation of particle size () with the
aging time, which can be well fitted by the PV theory. Thus, the coars-
ening rate constant of y* precipitates is evaluated as K = 1.7 x 102°m3/s
at 1023 K. It is much lower than those of reported typical superalloys
and high-entropy alloys (HEAs) at the same temperature [8,9,37-40], as
seen in Fig. 2(f), such as IN718Plus (K = 14.3 x 10%° m3/s) [7]. And it is
comparable to those of IN740H and U720Li with an extremely-low K
values (2.1 ~ 2.7 x 102° m®/s) [9,40] and (NiCoFeCr)q4TizAl; HEA (K
= 4.8 x 10%° m3/s) [371, which indicates that the current alloy has a
much more stable y/y’ coherent microstructure. In fact, the slow
coarsening of y’ particles is mainly ascribed to the smaller lattice misfit
between y/y’, which remains almost unchanged (¢ = -0.25 ~ -0.27 %)
during the aging process, as seen in Fig. S1 of Supplementary Materials.

The 500 h-aged alloy was further characterized by TEM, as seen in
Fig. 3. Both the TEM dark-field (DF) image and the selected area electron
diffraction (SAED) pattern along the [100]gcc direction (Fig. 3(a)) show
that spherical y’ nanoparticles are precipitated into the FCC-y matrix.
The particle size and volume fraction of y’ nanoprecipitates in this state
arer =31 + 5nm and f = 37.2 & 2.2 %, respectively, which is in a good
consistence with the SEM results. In addition, the high-resolution TEM
(HRTEM) image and the corresponding fast Fourier transformation
(FFT) patterns in Fig. 3(b, b-1, b-2) indicate that the interfaces (marked
with white dashed lines) between y’ nanoparticles and y matrix are
coherent. Also, the elemental distributions in the y/y’ coherent micro-
structure were analyzed using the TEM-EDS (Fig. 3(c)), from which it is
found that the Ni, Al, and Ti elements are obviously enriched in the y’
nanoparticles, while the Fe, Co, and Cr elements are mainly segregated
in the FCC-y matrix.

The tensile engineering stress-strain curves of the current alloy in
different aged states at RT and HTs are presented in Fig. 4(a). It is found
that the yield strength values at RT keep almost constant with the aging
time, being oys = 852 MPa in 24 h-aged state, oys = 894 MPa in 100 h-
aged state, oys = 859 MPa in 200 h-aged state, and oys = 866 MPa in 500
h-aged state, which is mainly derived from the stable y/y’ coherent
microstructure. In addition, this alloy has a good ductility with the
elongation of ~ 20 %. More importantly, the current alloy has a much
higher strength at HTs, being oys = 788 MPa at 973 K and oys = 743 MPa
at 1023 K. Fig. 4(b) compares the specific yield strength with the tem-
perature of this alloy with those of existing superalloys [7,9,40-45].
Significantly, the specific strength of the alloy at 1023 K (96.4
MPa/(gocm’B)) is superior to those of superalloys, such as IN718Plus
(75.4 MPa/(gecm™)) [7] and IN740H (77.9 MPa/(gecm™)) [9].
Furthermore, the strength of the current alloy is not sensitive to the
temperature from RT to 1023 K, showing an extremely-slow reduction
tendency compared with those in existing superalloys. Additionally,
Fig. 4(c) plots the variation of the creep strain with the time under the
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condition of 450 MPa / 973 K for the 24 h-aged alloy, from which the
measured creep rupture lifetime is 61.5 h. Fascinatingly, the rupture
lifetime of this alloy is about 4 times larger than that (13 h) of the
commercial ~ A286  Fe-Ni-base  superalloy  (Fe-24.6Ni-14.7-
Cr-0.16A1-2.2Ti-1.23Mo, wt. %) [45], and 3 times larger than that (22 h)
of Nigg 9Co3gFe13Cri5AlgTigBg 1 (at.%) HEA [46] under the same con-
dition, as presented in Fig. 4(d), indicating that the current alloy has a
superior creep property.

In order to better understand the high strength of the current alloy,
the classical strengthening mechanisms at RT were employed. Thus, the
contributions to the yield strength of this alloy mainly derive from three
strengthening mechanisms, i.e., 6ys = Aogs + Ao + Aop, where the Ao,
Aog, and Ao, are the strength increments from the solid-solution
strengthening, grain-boundary strengthening, and precipitation
strengthening of y’ particles, respectively [47]. The calculation details
using the 500 h-aged specimen as an example are presented in Supple-
mentary Materials. The calculated strength increments are Acgs = 169
MPa, Ao = 52 MPa, and 4cp, = 633 MPa, leading to a total sum of oys =
169 + 52 + 633 = 854 MPa (Fig. 4(a)), which matches well with the
experimental value of 866 MPa. Obviously, the precipitation strength-
ening mechanism plays a dominant role in the designed alloy.

Interestingly, this alloy exhibits an excellent strain-hardening ca-
pacity, as evidenced by a much higher ratio of ultimate tensile strength
to yield strength (oyts/oys ~ 1.45). Fig. 4(e) shows the strain-hardening
behavior for the current alloy as a function of the true strain. It exhibits a
steady uniform plastic deformation within the strain range of 4 ~ 15 %,
leading to a continuous increase in the tensile strength up to 1240 MPa.
Then the uniformly-deformed microstructure of 500 h-aged sample after
tension was observed with TEM under two-beam conditions, as seen in
Fig. 4(f), from which it can be found that large amounts of dislocations
are accumulated in both FCC matrix and y’ nanoparticles. And, dislo-
cations cut through these fine y’ nanoparticles during the slipping pro-
cess, which is consistent with the precipitation strengthening induced by
the dislocation shearing mechanism. Moreover, abundant stacking faults
(SFs) also occur in the y/y’ coherent microstructure (Fig. 4(g)), which is
mainly due to the relatively-lower stacking fault energy (< 50 mJ/m?)
induced by the introduction of Co [48-50]. Actually, this phenomenon
of SFs shearing the y’ nanoparticles always appears in Co-containing
superalloys, which results in the formation of superlattice intrinsic
stacking faults, as presented in Fig. 4(h). It is known that the formation
and refinement of SFs could effectively prevent the movement of dis-
locations, which decreases the mean free path of dislocations and then
produces a dynamic Hall-Petch effect remarkably [28]. Therefore, the
dislocation slip and the formation of SFs are the main deformation
mechanisms of the current alloy, which contributes to the pronounced
strain-hardening capability.

In conclusion, a novel Fe-Ni-base high-entropy superalloy (Fe-
33.2Ni-13.4Co0-3.1A1-2.2Ti-1.1Nb-13.8Cr-1.7Mo0-0.03C-0.015B-0.03Zr
wt. %) with y/y’ coherent precipitation and low density (p = 7.71 g/
cm®) was developed in light of the cluster formula approach. It exhibits a
much higher y/y’ microstructural stability at 1023 K, as evidenced by
the fact that the particle size of y’ nanoparticles changes from ~16 nm in
24 h-aged state to ~40 nm in 1000 h-aged state. The extremely-slow
coarsening behavior of y’ nanoprecipitates, characterized by the coars-
ening rate constant (K = 1.7 x 102 m3/s), is mainly attributed to a
lower lattice misfit (~ -0.25 %) between y/y’. Meanwhile, the stable
coherent microstructure renders the current alloy with high strength
(oys = 852 MPa at RT, oys = 743 MPa at 1023 K) and prominent creep-
resistant property (the rupture lifetime of 61.5 h under the condition of
450 MPa / 973 K). Moreover, this superalloy also exhibits a prominent
strain-hardening capacity, which is ascribed to both the dislocation slip
in the matrix and the formation of a large amount of stacking faults in y’
nanoparticles.
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Fig. 4. (a): Mechanical properties of the current alloy in different aged states; (b): Comparison of the variation of specific yield strength with temperature of the
current alloy with those of existing superalloys; (c): Creep curve of the current alloy under the condition of 450 MPa / 973 K; (d): Comparison of creep properties of
the current alloy with other alloys. (e): True stress-strain curves and the corresponding strain hardening rate curves of the current alloy; (f): BE-TEM images of 500 h-
aged alloy after tension under two-beam conditions, which is close to [110] axis; (g, h): BF-TEM images, HRTEM image and corresponding FFT pattern of 500 h-aged

alloy after tension along [110] axis.
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