
Lockless Blockchain Sharding with Multiversion
Control

Ramesh Adhikari1[0000−0002−8200−9046] and Costas Busch1[0000−0002−4381−4333]

Augusta University, Augusta, GA 30912, USA
{radhikari,kbusch}@augusta.edu

Abstract. Sharding is used to address the performance and scalabil-
ity issues of the blockchain protocols, which divides the overall transac-
tion processing costs among multiple clusters of nodes. Shards require
less storage capacity and communication and computation cost per node
than the existing whole blockchain networks, and they operate in par-
allel to maximize performance. However, existing sharding solutions use
locks for transaction isolation which lowers the system throughput and
may introduce deadlocks. In this paper, we propose a lockless trans-
action method for ensuring transaction isolation without using locks,
which improves the concurrency and throughput of the transactions. In
our method, transactions are split into subtransactions to enable par-
allel processing in multiple shards. We use versions for the transaction
accounts to implement consistency among the shards. We provide for-
mal proof for liveness and correctness. We also evaluate experimentally
our proposed protocol and compare the execution time and throughput
with lock-based approaches. The experiments show that the transaction
execution time is considerably shorter than the lock-based time and near
to the ideal (no-lock) execution time.

Keywords: Blockchains · Blockchain Sharding · Lockless Transactions
· Transaction Conflicts · Parallel Commits

1 Introduction

The popularity of blockchains has grown due to their numerous benefits in decen-
tralized applications. They have several special features such as fault tolerance,
transparency, non-repudiation, and immutability [25]. To maximize bandwidth
usage, every transaction is hashed with a cryptographic function and multiple
transactions are divided into blocks [9]. After that, a ledger is created by chaining
all the blocks together using a consensus mechanism to append blocks. Assuming
that nobody else can be trusted, every node is in charge of keeping its own copy
of the distributed ledger. As a result, if someone or some system attempts to
alter or restore a portion of these transactions it will be detected, which provides
assurances of data integrity and finality.

The distributed cryptocurrency blockchain system known as Bitcoin [22] is
one of the first and most well-known instances of how blockchain was originally

2 R. Adhikari et al.

designed for the reliable exchange of digital goods. A permissionless blockchain
allows anyone to join or leave the network without having to reveal their true
identity. No participant can be truly trusted in such situations. Due to the lack
of identity, a computationally intensive consensus process called proof-of-work
that is based on cryptography is required. On the other hand, in permissioned
systems the environment is more controlled and allows for more power-efficient
consensus protocols based on Byzantine agreement [1]; nevertheless, even these
blockchain protocols do not scale well due to large communication overhead.

Unfortunately, conventional blockchain applications have a fully replicated
architecture where each node stores a copy of the whole blockchain and pro-
cesses every transaction which causes scalability issues in contemporary very big
data-based applications [23]. When the number of transactions and storage nodes
increases, the blockchain system not only takes a longer time to achieve a consen-
sus among nodes but also takes more time to process the transaction; therefore,
it reduces the overall performance of the system. To mitigate the scalability is-
sue of the blockchain, several blockchain protocols like Elastico [20], OmniLedger
[18], RapidChain [27], and ByShard [14] has proposed to introduce sharding to
provide scalability which divides the whole replicated single blockchain system
to multiple shards and each shard processes its own transactions independently.

The blockchain nodes are divided into clusters of nodes called shards. Subsets
in each shard may contain Byzantine nodes. We presume that each shard employs
a BFT (Byzantine Fault Tolerant) consensus algorithm with authentication, such
as PBFT [7]. Existing sharding solutions such as, Elastico [20], OmniLedger
[18], and RapidChain [27] are tailored for supporting open (or permissionless)
cryptocurrency applications and are not easily generalizable to other systems.
To address system-specific specialized approaches towards sharding, Hellings et
al. [14], introduced ByShard, and combine two conventional sharded database
concepts, two-phase commit and two-phase locking for atomicity and isolation
of transactions in a Byzantine environment. However, their sharding solutions
are not optimal as the locks are expensive, and when a process locks a data set
for reading or writing, all other processes attempting to access the same data
set are blocked until the lock is released, which lowers system throughput.

In this paper, we propose a different method for ensuring transaction isolation
without using locks, which improves the transaction processing time. We propose
a novel algorithm for ensuring atomicity and isolation of the transactions in the
distributed environment.

1.1 Contributions

To our knowledge, we give the first lockless approach to blockchain sharding. We
provide the following contributions:

– We provide a lockless protocol for sharded blockchains. Our protocol is based
on multi-version concurrency control of the various shared objects (accounts)
that the transactions access. A transaction is first split into subtransactions

Lockless Blockchain Sharding with Multiversion Control 3

that execute in parallel in multiple shards. Using object versioning, the sub-
transactions can detect whether there is a conflict with other subtransac-
tions that attempt to access the same shared objects concurrently. In case of
a conflict, a transaction may need to restart and attempt to commit again.

– We provide correctness proofs for the safety and liveness of our proposed
protocol. We also evaluate our protocol experimentally through simulations
and we observe that the transaction execution time is considerably faster
than the lock-based approaches and also the throughput of the transactions
is improved with an increasing number of shards.

Paper Organization: The rest of this paper is structured as follows: Section
2 provides previous related works. Section 3 describes the preliminaries for this
study and the sharding model. Section 4 discusses our proposed lockless sharding
protocol. In 5 we provide the correctness analysis. Section 6 discusses the per-
formance evaluation of our work, experimental setup, and experimental results.
Finally, we give our conclusions in Section 7.

2 Related Work

Several proposals have come forward to address the blockchain scalability is-
sue in the consensus layer [15, 17, 10, 16, 12]. Although these protocols have ad-
dressed the scalability issues to some extent, the system still cannot maintain
good performance as the network size grows too large (thousand or more node
participants). The sharding technique has been used to further improve the scal-
ability of a blockchain network. Sharding is a fundamental concept in databases
which has been recently used to improve the efficiency of blockchains [14, 27].

The way that conventional big database systems achieve scalability is by
separating the whole database into shards (or partitions) [2], which increases the
efficiency of the system by dividing the workload among the shards. To ensure
ACID characteristics [11] of the database transactions, coordination is needed
among the multiple shards if the transaction access multiple shards objects.
In the distributed database system two-phase commit (2PC), and two-phase
locking (2PL) [8], are used for atomicity, concurrency control, and isolation for
the transactions. And we achieved these characteristics in our model in a different
way without using locks.

Similarly, the blockchain network can be split up into smaller committees
using the well-researched and tested technique of sharding, which also serves
to scale up databases and lower the overhead of consensus algorithms. Elas-
tico [20], OmniLedger [18], and RapidChain [27] are a few examples of sharded
blockchains. These methods are not generalizable to other applications since
they concentrate on a simple data model, that is the unspent transaction output
(UTXO) model [13]. In addition, these methods use locks for the isolation of
transactions. As in databases, a blockchain transaction must be isolated since it
interacts with the global state. In reality, it is necessary to avoid dirty, phantom,
or unrepeatable reads [3]. Additionally, transactions must comply with all of

4 R. Adhikari et al.

the ACID properties [11]. Typically, two-phase locking [8] is used to accomplish
optimistic concurrency control [19], serializable snapshot isolation [6, 24].

To mitigate the system-specific specialized approaches towards sharding,
Hellings et al. [14], propose ByShard. It uses a two-phase commit to ensure
the atomicity of the transaction and two-phase locking for isolation of the trans-
action in a Byzantine environment of the blockchain system. However, locking
is expensive because when a process locks a data set for reading or writing, all
other processes attempting to access the same data-set are blocked until the lock
is released, which lowers system throughput. An innovative lock-free method for
ensuring transaction isolation is presented by Hagar Meir et al. [21], In order to
construct version-based snapshot isolation, it takes advantage of the key-value
pair versioning that already exists in the database and is mostly utilized at the
validation phase of the transaction to detect the read-write [21]. However, they
are not addressing their solution in a sharding-based blockchain model.

In our solution, we are using a lockless approach to achieve transaction isola-
tion with sharding. We use multiversion concurrency control [5], as we describe
in our proposed model in Section 4.

3 Preliminaries and Sharding Model

Shards: We assume that the system consists of a set of N (replica) nodes, where
n = |N |. We design a sharded system as a partitioning of the N nodes into w
shards S1, S2, . . . , Sw, where N = ∪iSi and each Si ⊆ N is a subset of the nodes
such that Si ∩ Sj = ∅, for i ̸= j. Let ni = |Si| represent the number of replica
nodes in shard Si, and fi represent the number of Byzantine nodes in shard Si.
Similar to related work [27], to achieve Byzantine fault tolerance in each shard
we assume that ni > 3fi within each shard. Hence, we focus on the consistency
aspects, assuming there is an underlying consensus protocol in each shard.

Let O be a set of shared objects that are accessed by the transactions. Sim-
ilar to related work [14] we assume that every shard is responsible for a subset
of the shared objects (accounts) that are accessed by the transactions. Namely,
O is partitioned into subsets O1, . . . ,Ow, where Oi is the set of objects han-
dled by shard Sz. Every shard Si maintains its own local ledger (local chain)
Li and runs a local consensus algorithm to achieve this (e.g. PBFT [7]). The
shard Si processes subtransactions related to the object set Oi (see below for
the description of subtransactions). The local chains define implicitly the global
blockchain, that is, the global order of all transactions is implied by the order of
their respective subtransactions in the local chains.

Timing Assumptions: We consider a semi-synchronous setting where com-
munication delay is upper bounded by some time ∆1, which means that every
message is guaranteed to be delivered within ∆1 time. Our sharding protocol
does not require knowledge of ∆1. We assume that every transaction has a
unique ID based on its generation timestamp, hence IDs grow over time. Due to
the semi-synchronous model, since local clocks are not perfectly synchronized,

Lockless Blockchain Sharding with Multiversion Control 5

we assume a new timestamp (generated at any node in N) will be strictly larger
than any timestamp generated c ·∆1 time earlier (where the constant c depends
on the system). Hence, we assume that for a transaction Ti that arrives at time
t, any other transaction Tj that arrives after t+ c ·∆1 will have always a higher
ID than Ti.

For guaranteeing liveness in our protocol, we assume that each ∆2 time each
shard sends the lowest transaction ID from its transaction pool to other shards.
Here ∆2 is known to each shard (in order to periodically perform the lowest ID
transmission) but is not related to ∆1. In this way, each shard maintains the
set of lowest transaction IDs which are periodically updated with new lowest ID
information from each shard. The transaction which has the global lowest ID gets
within a bounded time high priority and is eventually added to the blockchain.
The process of propagating the lowest IDs is running in the background while
the normal execution phases take place.

Similar to previous works [14], we assume that each shard runs locally a
PBFT-style [7] consensus algorithm in every phase of our algorithm which takes
bounded time ∆3 for decisions (e.g. in [14] it is assumed that ∆3 = 30ms). Our
protocol does not need to know ∆3.

Subtransactions: We model each transaction Ti which consist of subtransac-
tions Ti,k1

, . . . , Ti,kj
, such that:

– Subtransaction Ti,kl
uses only objects in Okl

in shard Skl
. We also say that

the subtransaction Ti,kl
belongs to shard Skl

.
– The subtransactions of a transaction Ti do not depend on each other and

can be executed in parallel in any relative order.
– A subtransaction consists of two parts: (i) condition checking, where various

explicit conditions on the objects are checked, and (ii) updates on the objects.

Example 1. Consider a transaction (T1) consisting of read-write operations on
the accounts with several conditions.

T1 = “Transfer 2000 from Rock account to Asma account, if Rock has 3000
and Asma has 500 and Mark has 200”. We split this transaction into three
subtransactions, where shards r, a, and m are responsible for the respective
accounts of Rock, Asma, and Mark:

T1,r : “Check Rock has 3000”
: “Remove 2000 from Rock
account”

T1,m : “Check Mark has 200”

T1,a : “Check Asma has 500”
: “Add 2000 to Asma ac-
count”

After splitting the transaction T1 into its subtransactions we send each sub-
transaction to its respective shard associated with that account. If the conditions
are satisfied (for example in T1,r check if Rock has 3000) and the transaction
is valid (for example in T1,r Rock has indeed 2000 in the account to be re-
moved) then the destination shards are ready to commit the subtransactions

6 R. Adhikari et al.

which imply that T1 will commit as well. Otherwise, if any of the conditions in
the subtransactions is not satisfied or the subtransactions are invalid, then the
corresponding subtransactions abort, which results in T1 aborting as well. In this
case, all subtransactions of T1 will also be forced to abort.

4 Sharding Algorithm

Our sharding protocol consists of two parts, the leader shard algorithm (Algo-
rithm 1), and the destination shard algorithm (Algorithm 2).

Every transaction has a designated leader shard, which will handle its pro-
cessing. Each leader shard has a transaction pool for all the transactions that
have it as their leader. The job of the leader shard is to pick a transaction from
the transaction pool and split it into subtransactions and send them to desti-
nation shards. The leader shard interacts with the destination shards through a
protocol with seven phases which decide whether the subtransactions they re-
ceive are able to commit locally or not. The leader shard picks the transaction
from its transaction pool on the basis of the priority of the transactions so that
the earliest transaction (i.e. with lower ID) proceeds first. Whereas the destina-
tion shard checks each received subtransaction and if it is valid then it commits
it and appends it to its local ledger, otherwise, it aborts the subtransaction and
sends the corresponding message to its leader shard.

To achieve transaction isolation, we use multi-version concurrency control [5]
in each destination shard, which saves multiple versions of each object (account)
so that data can be safely read and modified simultaneously. When a destination
shard processes a subtransaction, it takes a snapshot of the current version of
each object that the subtransaction will access. When the subtransaction is about
to commit, it compares the latest version with the recorded snapshot version. If
these are the same then the subtransaction is eligible to commit; otherwise, the
subtransaction cannot commit. The leader shard is informed accordingly from
the destination shards. If all subtransactions are eligible to commit then the
whole transaction will commit and is removed from the leader shard pool. If
however, a subtransaction is not eligible to commit, the whole transaction will
restart and is reinserted back into its pool.

In our algorithm, each transaction whose conditional statements are satisfied
will eventually commit (as we show in the correctness proofs). Our algorithm
may attempt to commit the transaction multiple times by restarting it in case
of conflicts with other transactions. However, if the condition of a transaction
is not satisfied then the transaction is aborted and will not restart (is removed
completely from the pool). Using the object versions the algorithm guarantees
safety, as it does not allow conflicting transactions to commit concurrently. To
ensure liveness, the algorithm prioritizes earlier generated transactions.

4.1 Detailed Algorithm

We now describe the details of our protocol in Algorithms 1 and 2. Our combined
protocol consists of seven phases. As mentioned in Section 3, to ensure liveness,

Lockless Blockchain Sharding with Multiversion Control 7

periodically every ∆2 time, each leader shard sends the lowest ID from its trans-
action pool to every other shard. So that in case of conflict, priority is given to
the transaction with the smallest known ID. In this way, each destination shard
maintains in T ′′

l (Algorithm 2) the lowest known ID that it received from all
leader shards. If a subtransaction realizes that it belongs to a transaction with
the smallest ID in the system then it gets the highest priority and enforces itself
to commit. This is further achieved with the help of a rollback mechanism that
we discuss below.

Now we describe each phase of our algorithm. For simplicity of presentation,
we assume that each subtransaction accesses a single object in each destina-
tion shard. However, our algorithms can be generalized for the case where each
subtransaction accesses multiple objects.

Phase 1: (Algorithm 1) the leader shard (Sk) picks a transaction with the
lowest transaction ID from its transaction pool (Pk) and splits that transaction
Ti into its subtransaction Ti,j and sends each Ti,j to corresponding destination
shards (Sj) in parallel.

Phase 2: (Algorithm 2) after receiving the subtransaction Ti,j in destination
shard (Sj) accessing an object, say Od, it takes the latest version (say Vd) of the
object Od. After that, it checks the conditions (constraints) of the subtransaction
Ti,j . If the constraints match (means subtransaction is eligible to commit) then,
it adds the Ti,j to the read set R(Od) and if Ti,j will also write to Od then it
also adds Ti,j to write set W (Od) and sends a “commit vote” to the leader shard
Sk. Otherwise, it sends a “abort vote” to the leader shard.

Phase 3: (Algorithm 1) the leader shard Sk collects the votes from all the
destination shards, and if it gets all “commit vote”, (that means constraints are
matched in all respective destination shards) then it sends the “commit” message
to the corresponding destination shards. Similarly, if it gets any “abort vote” then
it sends an “abort” message to all respective destination shards.

Phase 4: (Algorithm 2) if the destination shard receives a “commit” mes-
sage from a leader shard then, it checks the read set (R(Od)) and write set
(W (Od)) of the accessing object and also checks the version of the object. If the
subtransaction Ti,j is only reading the object Od and the latest version of the
object Od is still the same (i.e. Vd) then the shard appends this subtransaction
to its local ledger Lj and sends “committed” message to the leader. Similarly,
if Ti,j is trying to update object Od and the read set only contains Ti,j (i.e.
(Ti,j ∈ W (Od) and R(Od) \ {Ti,j} = ∅)) and the latest version of the object Od

is still same as the previously taken version (i.e. Vd) (that means the object is
not modified by other transactions) then it does the necessary update operation
and adds the subtransaction Ti,j to its local chain and sends the “committed”
message to the leader shard. Moreover, if the transaction ID of subtransaction
Ti,j is equal to the lowest known transaction ID (T ′′

l), that means the current
subtransaction Ti,j is the earliest subtransaction among all and it has a higher
priority to execute. So it appends the subtransaction Ti,j to its local chain and
sends a “committed” message to its leader shard, and also sends “force rollback”
to the leader of the subtransaction which is in the write set (W (Od)). Otherwise,

8 R. Adhikari et al.

Algorithm 1: Leader Shard Sk

1 Let Pk be the pool of pending transactions in shard Sk;
// Periodically, every ∆2 time the transaction with lowest ID in

Pk is sent to every other shard
2 Let Ck be the committed transaction pool;

// Phase 1
3 Pick transaction Ti with lowest ID from Pk and remove it from Pk;
4 Split Ti into subtransactions;
5 Let S(Ti) be the set of destination shards for the subtransactions of Ti;
6 Send each subtransaction Ti,j to the corresponding destination shard Sj (in

parallel for all subtransactions of Ti);

// Phase 3
7 if “commit vote” message is received from all shards in S(Ti) then
8 Send “commit” message to all shards in S(Ti);
9 else if “abort vote” message is received from any shard in S(Ti) then

10 Send “abort” message to all shards in S(Ti);

// Phase 5
11 if “committed” message is received from all shards in S(Ti) then
12 Send “release” to all shards in S(Ti);
13 else if “restart vote” message is received from any shard in S(Ti) then
14 Send “restart” message to all shards in S(Ti);
15 else if “aborted” message is received from all shards in S(Ti) then
16 Transaction Ti is discarded;

// Phase 7
17 if “released” message is received from all shards in S(Ti) then
18 Transaction Ti has completed;
19 Add Ti to Ck;
20 else if “restarted” message is received from all shards in S(Ti) then
21 Transaction Ti is reinserted into the pool Pk to be processed again;

// Handling Force Rollback Messages
22 if “force rollback T ′

x,j” message is received and Sk is the leader shard of the
respective transaction T ′ then

23 if T ′ ∈ Ck then
24 Get subtransaction information from Ck;
25 Send respective “force rollback T ′

x,z” to all destination shards of T ′;
26 if “rollbacked T ′

x,z” message is received from all destination shards of T ′ and
Sk is the leader shard of the transaction T ′ then

27 Insert T ′ back in the pool Pk;
28 if T ′ ∈ Ck then
29 Remove T ′ from Ck;

Lockless Blockchain Sharding with Multiversion Control 9

Algorithm 2: Destination Shard Sj

1 T ′′
l ← the lowest transaction ID from the IDs propagation process;

// Phase 2
2 Subtransaction Ti,j from leader shard Sk is received;
3 Suppose Ti,j accesses object Od;
4 Let R(Od) and W (Od) be a set of transactions that will respectively read or

write Od;
5 Let Vd be the latest version of object Od;
6 if constraint match then
7 Add Ti,j to R(Od);
8 if Ti,j will write to Od then
9 Add Ti,j to W (Od);

10 Send “commit vote” message to Sk;
11 else
12 Send “abort vote” message to Sk;

// Phase 4
13 if “commit” message is received from Sk then
14 if (((W (Od) \ {Ti,j} = ∅) or (Ti,j ∈W (Od) and R(Od) \ {Ti,j} = ∅)) and

(the latest version of object Od is still Vd)) or (Ti,j = T ′′
l) then

15 Append transaction Ti,j to local chain Lj ;
16 Send “committed” message to Sk;
17 if Ti,j = T ′′

l // Ti,j has the lowest ID in the system
18 then
19 For each T ′

x,j ∈W (Od) send “force rollback” message to its
respective leader shard;

20 else
21 send “restart vote” message to Sk;
22 else if “abort” message is received from Sk then
23 Send “aborted” message to Sk;

// Phase 6
24 if “restart” message is received from Sk then
25 Remove Ti,j from R(Od) and W (Od) and from local chain Lj ;
26 Send “restarted” message to the leader Sk;
27 else if “release” message is received from Sk then
28 if Ti,j in W (Od) then
29 Create new version Vd + 1 for the object Od;
30 Remove Ti,j from R(Od) and W (Od);
31 Send “released” message to Sk;

// Handling Force Rollback Messages
32 if “force rollback T ′

x,j” message is received then
33 Remove T ′

x,j from R(Od) and W (Od);
34 Let Z be the suffix in local chain Lj starting from T ′

x,j ;
35 Remove from Lj the suffix Z and send “rollbacked T ′

x,j” message to its
leader shard;

36 For each subtransaction T ′
x,j in Z, send “force rollback T ′

x,j” message to
the leader shard of T ′

x,j ;

10 R. Adhikari et al.

it sends a “restart vote”, which means there is another higher-priority transaction
accessing the object Od and not released yet. Similarly, if it receives the “abort”
message then it sends an “aborted” message to its leader shard.

Phase 5: (Algorithm 1) if it receives a “committed” message from all des-
tination shards (means that eligible to commit subtransactions are added to
their local chain) then it sends a “release” message to the respective destination
shards to release the subtransactions from their read set, write set and also to
update the version of the object if required. Similarly, if the leader receives any
“restart vote” message from any shards then it sends the “restart” message to
the respective destination shards because some of the shards may have appended
the subtransaction to their local chain so that should be removed, and restart
should be consistent in all shards. Moreover, if it receives an “aborted” message
from all destination shards, then transaction Ti is discarded.

Phase 6: (Algorithm 2) if the destination shard receives a “restart” message
from the leader shard, then it removes the transaction Ti,j from R(Od) and
W (Od) and also removes Ti,j from its local chain Lk if it already added and sends
“restarted” message to the leader. Similarly, if it receives a “release” message and
Ti,j is already in W (Od) that means it updated the object Od so it creates the
new version of the object as Vd + 1. After that, it removes Ti,j from R(Od) and
W (Od) and sends a “released” message to its leader shard.

Phase 7: (Algorithm 1) if the leader shard receives a “released” message
from all destination shards that means the transaction Ti is completed, so it
adds Ti to the pool of committed transactions (Ck) so that it can get all the
subtransaction information of Ti in case of rollback. Similarly, if it receives a
“restarted” message from all destination shards, then this transaction needs to
be processed again, and is reinserted into the transaction pool Pk.

Handling Rollbacks: This part of our protocol executes only in the spe-
cial case (i.e. when the current transaction has the highest priority to execute
than the already running transaction accessing the same object). After receiving
the “force rollback” message from destination shards, the leader shard checks
whether that subtransaction belongs to the committed transaction pool (Ck)
or not. If the transaction of that subtransaction is in Ck then it gets the other
subtransaction information from Ck otherwise it has the information about the
currently running transaction, then it sends a “force rollback” message to all
respective destination shards because it should be rollbacked in all the shards
to be consistent. So if the destination shard receives the “force rollback T ′

x,j”
message from the leader then it rollbacks T ′

x,j from its shards and sends “roll-
backed T ′

x,j” message to its leader. Furthermore, if there exists some depending
subtransaction T ′ on T ′

x,j accessed the version of the object added by T ′
x,j then

all depending transactions should be rollbacked and it sends “rollback T ′” to
its leader shard so this function executes recursively to rollback all the trans-
actions which read the version of object added by T ′. The leader shard collects
the “rollbacked” messages from all the destination shards, and after receiving all
the “rollbacked” messages from all the respective shards for the transaction T ′,

Lockless Blockchain Sharding with Multiversion Control 11

it adds T ′ to its transaction pool to be processed again and removes T ′ from the
committed pool (Ck) if T ′ is already in Ck.

Example 2. Consider two conflicting transactions T1 and T2 consisting of read-
write operations on the accounts. We explain how our protocol handles these
transactions.

T1 = “Transfer 2000 from Rock account to Asma account, if Rock has 3000
and Asma has 500 and Mark has 200”.

T2 = “Transfer 500 from Asma account to Bob account, if Asma has 5000”.

Suppose leader shard (Sk1
) handles transaction T1 and splits it into three sub-

transactions, where shards Sr, Sa, and Sm are responsible for the respective
accounts of Rock, Asma, and Mark. Similarly, the leader shard (Sk2) handles
transaction T2 and splits it into two subtransactions where shard Sa is respon-
sible for the Asma account and shard Sb is responsible for the Bob account.

T1,r : “Check Rock has 3000”
: “Remove 2000 from Rock
account”

T1,a : “Check Asma has 500”
: “Add 2000 to Asma ac-
count”

T1,m : “Check Mark has 200”

T2,a : “Check Asma has 5000”
: “Remove 500 from Asma
account”

T2,b : “Add 500 to Bob account”

Let us consider both leader shards (Sk1
and Sk2

) are trying to execute their
transaction in parallel. At this condition, there are two subtransactions accessing
the same account of Asma (i.e. T1,a, T2,a) so there will be a conflict on the
respective subtransactions. So, in our algorithm, each destination shard takes
the version of every account and checks that version at the time of commit. In
case of conflicts, the transaction that updated earlier the read and write sets (R
and W) at the destination shard will have a chance to commit.

5 Correctness Analysis

Consider a set of transactions T = {T1, T2, . . . , Tζ}. The objective is to arrange
all transactions in T in a sequence B = Ti1 , Ti2 , . . . , Tiζ , which is agreed upon
by all non-faulty nodes in N . We also write Til ≺B Til′ for l < l′ to denote the
relative order between two transactions in the sequence B. The sharding system
does not maintain the actual B as a single blockchain (or ledger) explicitly, but
rather, the blockchain consists of a collection of local chains which if combined
they jointly give the whole blockchain B.

Each shard Sα maintains a local chain Lα of the sub-transactions Ti,α that
it receives. The subtransactions are appended in Lα according to the order that

12 R. Adhikari et al.

they commit in Sα. If Ti,α ≺Lα
Tj,α, and Ti,α conflicts with Tj,α (the two sub-

transactions conflict if they access the same object in Sα and one of the two is up-
dating the object), then we say that Ti,α causes Tj,α and we write Ti,α →Lα Tj,α.

We define the local chain system as the tuple L = (L1, . . . , Lw) consisting of
local chains in shards. If Ti,α →Lα Tj,α, we can also simply write Ti,α →L Tj,α.
The casual relation → can be extended across two local chains Lα and Lβ , α ̸= β,
in the following way.

– If Ti,α →Lα Tj,α and Tj has a subtransaction Tj,β .
– If Ti has subtransactions Ti,α and Ti,β such that Ti,β →Lβ

Tj,β .

In both cases, we say that Ti,α causes Tj,β , and we write Ti,α →L Tj,β . Consider
from now on the transitive closure of the causal relation →L.

We say that the local chain system L is valid if there is no subtransaction
Ti,α such that Ti,α →L Ti,α. That is, L is a valid local chain system if there is
no cyclic (transitive) causal relationship of a subtransaction to itself.

We say that a sequence B is a valid serialization of the local chain system L
if B is a sequence of all the subtransactions which preserves the causal relation-
ship of L. Namely, if Ti,α →L Tj,β then Ti,α ≺B Tj,β . We say that a sequence
B is a blockchain serialization of L if B is a valid serialization of L, and for
each transaction Ti its subtransactions Ti,j1 , . . . , Ti,jk appear consecutively in B
(without being interleaved by subtransactions of other transactions).

The goal is to show that our sharding protocol generates a local chain sys-
tem L that has a blockchain serialization B. We introduce the shard-coherence
property which we will use to prove the existence of B.

Definition 1 (Shard-coherence). We say that transactions Ti and Tj are
shard-coherent with respect to local chain system L if whenever two of their
subtransactions are casually related as Ti,α →L Tj,β, then for any two of their
conflicting subtransactions Ti,γ and Tj,γ it holds that Ti,γ ≺Lγ

Tj,γ . The local
chain system L is shard-coherent if every pair of transactions are shard-coherent.

The following result shows that in order to build a blockchain serialization B
from a chain system L, it suffices to prove that L is shard-coherent. (The proof
of Proposition 1 is in Appendix A.1.)

Proposition 1. If a local chain system L is shard-coherent, then L has a blockchain
serialization B.

Next, we continue to show that in our sharding protocol two transactions that
conflict in the same shard, they cannot have some of their phases interleave. (The
proof of Lemma 1 is in Appendix A.2.)

Lemma 1. If two transactions Ti and Tj conflict in a destination shard Sγ , and
their respective subtransactions are processed concurrently by Sγ so that they both
go past phase 2 in Sγ concurrently, then at least one of the two transactions will
restart or rollback.

Lockless Blockchain Sharding with Multiversion Control 13

Theorem 1 (Safety). The local chain system L produced by our protocol has
a blockchain serialization B.

Proof. From Proposition 1, we only need to prove that L is shard-coherent.
Consider any two transactions Ti and Tj such that Ti,α →L Tj,β . Suppose

that Ti,γ and Tj,γ conflict in shard Sγ because they access at least one common
object Od and one of the two subtransactions updates Od. It suffices to show
that Ti,γ ≺Lγ

Tj,γ .
Since Ti,α →L Tj,β , from the definition of the →L relation, we have that

there is a sequence of transactions Tk1 , Tk2 , . . . , Tkz with Tk1 = Ti, Tkz = Tj and
Tki → Tki+1 , for 1 ≤ i < z, such that any pair of consecutive transactions Tkl

and Tkl+1
have respective conflicting subtransactions Tkl,δ and Tkl+1,δ on some

common shard Sδ such that Tkl,δ ≺Lδ
Tkl+1,δ.

Since Tkl,δ and Tkl+1,δ are appended in the local chain Lδ, while they both
conflict, we have from Lemma 1 that they cannot go past phase 2 concurrently
without one of them restarting or rolling back. Therefore, Tkl,δ finishes phase 6,
before Tkl+1,δ enters phase 4.

This implies that phase 5 of Tkl
(at its leader shard) finishes before phase

5 of Tkl+1
starts (at its leader shard). Therefore, by induction, we can easily

show that the end of phase 5 of Ti (at its leader shard) occurs earlier than the
beginning of phase 5 of Tj (at its leader shard).

Suppose now that Tj,γ ≺Lγ Ti,γ . Since Ti and Tj commit in Sγ and also
conflict in Sγ by sharing the same object, then from Lemma 1, phase 6 of Tj

ends before phase 4 of Ti starts in Sγ . Therefore, phase 5 of Tj ends before
phase 5 of Ti starts (at their respective home shards). This is a contradiction.
Therefore, Ti,γ ≺Lγ

Tj,γ , as needed.

Theorem 2 (Liveness). Our protocol guarantees that every issued transaction
will eventually commit.

Proof. Consider the timing assumptions for ∆1, ∆2, and ∆3 as described in
Section 3. Consider a transaction Ti with ID ID(Ti) generated at time t. In the
worst case, Ti will execute when its ID is the lowest in the system, through force
rollback messages.

After c ·∆1 time steps, every new transaction generated will have a larger ID
than ID(Ti), and hence lower precedence than Ti. It takes additional time ∆2

to propagate ID(Ti).
Let ID′

min be the smallest ID of all transactions considering all the pools of all
shards at time t. Let q be the number of transactions which at time t+∆2+c·∆1

have ID at least ID′
min and less than ID(Ti). In the worst case, all of these q

transactions may commit before Ti. As we have 7 phases in our protocol, for
each committed transaction, the combined upper bound for communication and
consensus delay time is 7(∆1 +∆3). Hence, it takes at most q · 7(∆1 +∆3) time
to commit the q transactions. Therefore, by time t+ q · 7(∆1+∆3)+∆2+ c ·∆1

transaction Ti will be committed in the blockchain.

14 R. Adhikari et al.

6 Performance Evaluation

We set up our experiments in a virtual machine in M1 MAC PC with a 10-core
CPU and 32-core GPU, including 32 GB RAM. We used Python programming
language for the experiments which supports multiprocessing and multithread-
ing. We virtually created multiple shards within a machine and conducted the
experiment with different numbers of shards. For the communication between
the shards, we use socket programming in Python, which enables the communi-
cation between shards by message passing. Same as previous work [14], we also
assume that each shard runs the consensus algorithm and takes 30ms (say ∆3)
for decisions.

We generate 1000 accounts randomly by using the combination of the En-
glish alphabet letters and assigned an initial balance of 3000 to each account.
Moreover, we generate 1500 transactions by randomly selecting the account from
1000 accounts. Each transaction includes the read and writes operations with
some constraints. The generated 1500 transactions are divided with respect to
the number of shards and randomly assigned to the transaction pool of each
leader shard.

We show the experimental results in three categories. Firstly, optimal (no
lock), means there is no transaction isolation; concurrent transactions can access
the accounts and update those accounts without any consideration of the data
consistency. Secondly, We used the concept of exclusive lock protocol to ensure
transaction isolation and concurrency control. This approach acquires a lock on
an object (account), at the time of accessing it and releases the lock after the
transaction completes [4]. This prevents other transactions from accessing the
same object until the lock is released, ensuring that transactions do not interfere
with each other. When a transaction acquires an exclusive lock on a data item,
no other transaction can read or modify that data item until the lock is released,
providing exclusive access to the data. In our implementation, when an object
is locked, other transactions attempting to access the same object wait until
the lock is released. This guarantees that the transaction holding the lock has
exclusive access to the data and can modify it without interference from other
transactions. Finally, we used our protocol to achieve transaction isolation and
concurrency control without using a lock, which takes a snapshot of each object
(account) and if there is conflict occurs then priority to access the object is
given to the earliest transaction and other transaction are restart and rollback
to re-execute again.

Experimental Results: In the first experiment, we evaluate the average through-
put of the transactions using 1500 generated transactions, in which each transac-
tion checks whether the account has sufficient balance or not before transferring
from its own account to another account, and the other three constraints. If
the transaction is valid and satisfies all the conditions then the transaction is
executed by removing the balance from one account and adding that balance to
another account (i.e. two write operations). To measure the average throughput
of transactions, we initialize the start time at the beginning of the transaction

Lockless Blockchain Sharding with Multiversion Control 15

processing and capture the final time after processing all the 1500 transactions.
The average throughput of the transaction with respect to the number of shards
is shown in Figure 1, where we measure the average throughput of the transac-
tions by varying the number of shards. From the experiment, we observe that
the throughput increases with the number of shards. From Figure 1 we can see
that the transaction throughput of our protocol is better than the lock-based
protocol and quite close to the no-lock protocol.

Fig. 1. Average transaction throughput
with the number of shards

Fig. 2. Average execution time of a trans-
action with numbers of constraints

In the second experiment, we set up the environment with four shards and
calculate the average execution time of a transaction with respect to the number
of conditions in each transaction. We increases the constraints of the transactions
and recorded the execution of the transactions. In each experiment, we found that
the average execution time of our protocol is less than the lock-based protocol
also shown in Figure 2. From the experimental result, we see that as the number
of conditions to execute the transaction increased, the commit process takes a
long time. As a result, in the lock-based protocol, the lock is kept for a long
period, which adds a lot of overhead and takes more time for the execution of
transactions than in our proposed protocol.

7 Conclusion

In this research work, we presented a lockless transaction scheduling protocol
for blockchain sharding. Our protocol is based on taking a snapshot version of
the various shared objects (accounts) that the transactions access in each shard.
We provide a correctness proof with the safety and liveness properties of our
protocol. We also evaluate our protocol experimentally through simulations and
we observe that the transaction execution time is considerably faster than the
lock-based approaches and also the throughput of the transactions is improved
with an increasing number of shards.

16 R. Adhikari et al.

This study still has some room for improvement. One possible extension could
be a study on efficient communication between leader shards and destination
shards. Introducing a formal performance analysis for blockchain sharding is
another interesting topic for future work, which will quantify the performance
based on parameters of the blockchain, such as the number of shards and the
sizes of the shards.

In recent literature, Schwarzmann [26] reviewed several requirements that
need to be satisfied by electronic poll book systems, such as ensuring correct-
ness, security, integrity, fault-tolerance, consistent distributed storage, etc. Our
proposed protocol can be used to address some of these issues because it not only
provides blockchain features but also offers scalability and better performance for
recording transactions. Overall, our protocol may offer many unique features for
electronic check-in poll book systems, including decentralization, immutability,
and consensus.

Acknowledgements This paper is supported by NSF grant CNS-2131538.

References

1. Amiri, M.J., Agrawal, D., El Abbadi, A.: Sharper: Sharding permissioned
blockchains over network clusters. In: Proceedings of the 2021 International Con-
ference on Management of Data. pp. 76–88 (2021)

2. Bagui, S., Nguyen, L.T.: Database sharding: to provide fault tolerance and scal-
ability of big data on the cloud. International Journal of Cloud Applications and
Computing (IJCAC) 5(2), 36–52 (2015)

3. Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P.: A critique
of ansi sql isolation levels. ACM SIGMOD Record 24(2), 1–10 (1995)

4. Bernstein, P.A., Goodman, N.: Concurrency control in distributed database sys-
tems. ACM Computing Surveys (CSUR) 13(2), 185–221 (1981)

5. Bernstein, P.A., Goodman, N.: Multiversion concurrency control—theory and al-
gorithms. ACM Transactions on Database Systems (TODS) 8(4), 465–483 (1983)

6. Cahill, M.J., Röhm, U., Fekete, A.D.: Serializable isolation for snapshot databases.
ACM Transactions on Database Systems (TODS) 34(4), 1–42 (2009)

7. Castro, M., Liskov, B., et al.: Practical byzantine fault tolerance. In: OsDI. vol. 99,
pp. 173–186 (1999)

8. Eswaran, K.P., Gray, J.N., Lorie, R.A., Traiger, I.L.: The notions of consistency
and predicate locks in a database system. Communications of the ACM 19(11),
624–633 (1976)

9. Friedman, R., Van Renesse, R.: Packing messages as a tool for boosting the perfor-
mance of total ordering protocols. In: Proceedings. The Sixth IEEE International
Symposium on High Performance Distributed Computing (Cat. No. 97TB100183).
pp. 233–242. IEEE (1997)

10. Giridharan, N., Howard, H., Abraham, I., Crooks, N., Tomescu, A.: No-commit
proofs: Defeating livelock in bft. Cryptology ePrint Archive (2021)

11. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edn. (1992)

Lockless Blockchain Sharding with Multiversion Control 17

12. Gueta, G.G., Abraham, I., Grossman, S., Malkhi, D., Pinkas, B., Reiter, M.,
Seredinschi, D.A., Tamir, O., Tomescu, A.: Sbft: a scalable and decentralized trust
infrastructure. In: 2019 49th Annual IEEE/IFIP international conference on de-
pendable systems and networks (DSN). pp. 568–580. IEEE (2019)

13. Hellings, J., Hughes, D.P., Primero, J., Sadoghi, M.: Cerberus: Minimalistic multi-
shard byzantine-resilient transaction processing. arXiv preprint arXiv:2008.04450
(2020)

14. Hellings, J., Sadoghi, M.: Byshard: Sharding in a byzantine environment. Proceed-
ings of the VLDB Endowment 14(11), 2230–2243 (2021)

15. Jalalzai, M.M., Busch, C.: Window based BFT blockchain consensus. In: iThings,
IEEE GreenCom, IEEE (CPSCom) and IEEE SSmartData 2018. pp. 971–979 (July
2018)

16. Jalalzai, M.M., Busch, C., Richard, G.G.: Proteus: A scalable bft consensus
protocol for blockchains. In: 2019 IEEE international conference on Blockchain
(Blockchain). pp. 308–313. IEEE (2019)

17. Jalalzai, M.M., Feng, C., Busch, C., Richard, G.G., Niu, J.: The hermes bft for
blockchains. IEEE Transactions on Dependable and Secure Computing 19(6),
3971–3986 (2021)

18. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.: Om-
niledger: A secure, scale-out, decentralized ledger via sharding. In: 2018 IEEE
Symposium on Security and Privacy (SP). pp. 583–598. IEEE (2018)

19. Kung, H.T., Robinson, J.T.: On optimistic methods for concurrency control. ACM
Transactions on Database Systems (TODS) 6(2), 213–226 (1981)

20. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure
sharding protocol for open blockchains. In: Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security. pp. 17–30 (2016)

21. Meir, H., Barger, A., Manevich, Y., Tock, Y.: Lockless transaction isolation
in hyperledger fabric. In: 2019 IEEE International Conference on Blockchain
(Blockchain). pp. 59–66 (2019). https://doi.org/10.1109/Blockchain.2019.00017

22. Nakamoto, S.: Bitcoin : A peer-to-peer electronic cash system (2009)

23. Pisa, M., Juden, M.: Blockchain and economic development: Hype vs. reality. Cen-
ter for Global Development Policy Paper 107, 150 (2017)

24. Ports, D.R., Grittner, K.: Serializable snapshot isolation in postgresql. arXiv
preprint arXiv:1208.4179 (2012)

25. Sankar, L.S., Sindhu, M., Sethumadhavan, M.: Survey of consensus protocols on
blockchain applications. In: 2017 4th international conference on advanced com-
puting and communication systems (ICACCS). pp. 1–5 (2017)

26. Schwarzmann, A.A.: Towards a robust distributed framework for election-day voter
check-in. In: Stabilization, Safety, and Security of Distributed Systems: 23rd Inter-
national Symposium, SSS 2021, Virtual Event, November 17–20, 2021, Proceedings
23. pp. 173–193. Springer (2021)

27. Zamani, M., Movahedi, M., Raykova, M.: Rapidchain: Scaling blockchain via full
sharding. In: Proceedings of the 2018 ACM SIGSAC conference on computer and
communications security. pp. 931–948 (2018)

18 R. Adhikari et al.

A Appendix

A.1 Proof of Proposition 1

The proof of Proposition 1 follows directly from Corollary 1 and Lemma 4 given
below. In the results below consider a local chain system L = (L1, . . . , Lw) for
transactions T = {T1, T2, . . . , Tζ}.
Lemma 2. If L is a valid local chain system, then L has a valid serialization.

Proof. Consider the sequence A of subtransactions which is the concatenation
of sequences L1, L2, . . . , Lw. Suppose that A = a1, a2, . . . , aδ, where aσ = Tiσ,jσ

where Tiσ,jσ is a subtransaction of transaction Tiσ ∈ T .
From A we incrementally build a sequence A′ which is a valid serialization of

L. Let A′
σ denote the sequence that we obtain after we appropriately insert (as

explained below) the σth element of A into A′. We prove by induction that A′
σ

is a valid serialization of the involved subtransactions of the respective induced
subsystem Lσ of L that consists of the σ subtransactions of L under consideration
(the subsystem Lσ keeps from each Li the involved subtransactions; note that
the subsystem is valid). The main claim follows when we consider σ = ζ which
gives A′ = A′

σ.
For the basis case σ = 1, and A′

1 = a1 which is trivially a valid serialization of
the single subtransaction. Suppose that we built A′

σ which is a valid serialization
of the first σ subtransactions in A, where σ < ζ.

In order to build A′
σ+1 we take aσ+1 and insert it into A′

σ, as follows. Suppose
that A′

σ = a′1, . . . , a
′
σ. If there is no a′i ∈ A′

σ such that aσ+1 →L a′i, then append
aσ+1 at the end of A′

σ, to obtain A′
σ+1, which is clearly a valid serialization.

Otherwise, let a′i be the earliest subtransaction in A′
σ (i is the smallest index

within A′
σ) such that aσ+1 →L a′i, and let a′j be the latest subtransaction in A′

σ

(j is the largest index within A′
σ) such that a′j →L aσ+1. We examine two cases:

– j < i: in this case we append aσ+1 just before a′i (and clearly after a′j) in A′
σ

to obtain A′
σ+1, which gives a valid serialization.

– i < j: we examine three sub-cases as follows.
• a′i →L a′j : this case is impossible since this would create a cycle aσ+1 →L

aσ+1 in the causal relation →L, and hence, L would not be valid, con-
tradicting the assumptions.

• a′j →L a′i: since a′i ≺A′
σ
a′j this would imply that in A′

σ is not a valid
serialization of the involved subtransactions of A, which contradicts the
induction hypothesis.

• a′j and a′i are not related by →L to one another: consider the subsequence
s of A′

σ from a′i to a′j (including a′i and a′j). Let s1 be the subsequence of
s that includes all a′q such that a′i →L a′q; let s2 be the subsequence of s
that includes all a′q such that a′q →L a′j ; let s3 be the remaining elements
of s. Note that s1 and s2 are disjoint, since otherwise a′i →L a′j . Next, we
move all the elements in the sequence s2 (keeping their relative order)
to be before the first element in s1. Moreover, add aσ+1 between the last
element of s2 and the first element of s1. The resulting sequence A′

σ+1

is clearly a valid serialization of the involved subtransactions.

Lockless Blockchain Sharding with Multiversion Control 19

Lemma 3. If the local chain system L has a valid serialization, then L is
blockchain serializable.

Proof. Let A be a valid serialization of L. Suppose that A = a1, a2, . . . , aδ, where
aσ = Tiσ,jσ and Tiσ,jσ is a subtransaction of Tiσ ∈ T .

We will rearrange the subtransactions in A to a new sequence A′ such that
each transaction Ti has its subtransactions consecutively in A′. We will show
how to do the transformation for a single transaction, and this can repeat for
the remaining transactions.

For a transaction Ti let Ti,j1 , . . . , Ti,jq denote its subtransactions, with re-
spective positions as1 , . . . , asq in A.

From the validity of A and transitivity of →L, we have that if for some
l ∈ [q], aj →L asl , then aj ≺A asl′ , for every l′ ∈ [q]. Hence, if asl is the earliest
subtransaction of Ti in A (i.e. sl has the smallest index among those with l ∈ [q]),
any aj that causes (through →L) any of the subtransactions of Ti must appear
in A before asl . Therefore, we can move the subtransactions of Ti and arrange
them to appear consecutively starting at the position of asl , so that as1 will take
the place of asl , as2 will appear immediately after as1 , and so on, until asq .

Let A′ be the resulting sequence after we rearrange the subtransactions of
Ti. Clearly, this transformation of A has preserved its validity and also the
subtransactions of Ti appear consecutively in A′. By repeating this process for
each remaining transaction we obtain the final A′. By induction (on the number
of transactions), it is clear that the final A′ is a blockchain serialization of L.

From Lemmas 2 and 3 we obtain the following corollary.

Corollary 1. A valid local chain system L is blockchain serializable.

Lemma 4. If a local chain system L is shard-coherent, then L is valid.

Proof. Suppose that L is shard-coherent. Suppose for the sake of contradiction
that there is subtransaction Ti,j such that Ti,jk →L Ti,jk (that is, there is a cycle
in L with respect to causal relation →L).

Let p = a1, a2, . . . , aℓ be a transitive “relation path”, where each node in ai is
a subtransaction of some transaction in T and a1 = aℓ = Ti,jk , and ai →L ai+1,
for each 1 ≤ i < ℓ. Among all possible relation paths starting and ending to
Ti,jk , let p be the longest (and if there are multiple paths of the same longest
length then pick one of them arbitrarily). Note that it has to be ℓ > 2 since a
subtransaction alone by itself cannot create cyclic dependencies.

First, consider the case where each subtransaction in p is in the same shard
Sα = Sjk as that of Ti,jk . We consider two sub-cases:

– a1 ≺Lα
a2: let ar, 1 < r < ℓ, have the largest index r such that a1 ≺Lα

ar.
Then clearly, ar+1 ≺Lα

ar (note that ar+1 exists since we took r < ℓ and also
it holds ℓ > 2). However, since ar →L ar+1, the shard-coherence property of
L is violated between ar and ar+1, a contradiction.

– a2 ≺Lα a1: since a1 →L a2, the shard-coherence of L is violated between a1
and a2, a contradiction.

20 R. Adhikari et al.

Next, consider the case where some subtransaction in p is in a different shard
than Sα. Let ar, where 1 ≤ r < ℓ be the first subtransaction (with the smallest
index r) in p which is in a different shard, say Sβ , where α ̸= β.

We now show that ar+1 must also be in Sβ conflicting with ar. Suppose to
the contrary that ar+1 is not in Sβ . Since ar →L ar+1, there must be a subtrans-
action T ′ in Sβ which conflicts with ar, such that ar →Lβ

T ′ and T ′ →L ar+1.
However, this implies that p can be augmented with T ′, which is a contradiction
since p is the longest relation path. Thus, ar+1 is in Sβ . Moreover, ar+1 must
be conflicting with ar, since otherwise we would find as above some other trans-
action T ′ that conflicts with ar which could be inserted into p to increase its
length. We examine two cases:

– ar ≺Lβ
ar+1: from the cyclicity of path p we have that ar+1 →L ar (going

through a1). Hence, the shard-coherency is violated between ar and ar+1, a
contradiction.

– ar+1 ≺Lβ
ar: from p we have that ar →L ar+1. Hence, the shard-coherency

is violated between ar and ar+1, a contradiction.

A.2 Proof of Lemma 1

Proof. Suppose transactions Ti and Tj have respective subtransactions Ti,γ and
Tj,γ in Sγ . Moreover, suppose that these subtransactions conflict in Sγ by ac-
cessing the same object Od and at least one of two of them is updating Od.

Without loss of generality assume that Ti,γ is updating Od. Suppose that Ti,γ

has finished executing phase 2. Hence, Ti,γ has been added to write set W (Od).
Then when Tj,γ reaches phase 4, it will observe that Ti,γ is already in W (Od)
which will force Tj,γ to restart.

On the other hand, if Tj,γ has the lowest ID then when Tj,γ will reach phase
4 it will force Ti,j to rollback. In either case, one of the two transactions will
either restart or rollback.

