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Abstract 7 

The original two-dimensional bond-based peridynamic (BBPD) framework, which only considers 8 

the pairwise forces (compression and tension) between two material points, is extended by 9 

incorporating the effect of shear deformation in the calculations and its influence on the failure of 10 

the bonds. To this end, each bond is considered as a short Timoshenko beam, and by doing so, the 11 

traditional BBPD is enhanced into a more comprehensive model known as multi-polar 12 

peridynamic (MPPD). The proposed novel approach explicitly considers the shear influence factor 13 

used in Timoshenko beams and introduces a strain-based shear deformation failure criterion. The 14 

model is then validated against two benchmark experimental tests (i.e., a standard pure mode I 15 

edge crack, and a Kalthoff-Winkler configuration) reported in the literature under in-plane 16 

dynamic loading and plane stress conditions. In most cases, the developed model is shown to be 17 

more accurate in predicting the crack paths obtained from the experimental results when compared 18 

to other theoretical methods delineated in the literature. Furthermore, a noticeable change in crack 19 

branching and crack path is observed in a study on the effects of Poisson’s ratio and the loading 20 

rate. This investigation also demonstrated that the proposed MPPD model can accommodate 21 

materials with Poisson’s ratios up to 1/3, expanding the range beyond the traditional BBPD 22 

limitations. 23 
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Nomenclature 30 
b External body force density field. 

BBPD Bond based peridynamics. 

c Bond axial micromodulus. 

CM Continuum mechanics. 

dVx Particle’s infinitesimal volume. 

E Young’s modulus. 

f Pair-wise force function. 

G0 Fracture energy. 

h Thickness. 

Hx Particle’s neighborhood or horizon. 

Jρ Specific polar mass moment of inertia. 

k Bulk modulus. 

m Pair-wise moment function. 

MPPD Multipolar peridynamics. 

n External body moment density field. 

NO-SBPD Non-ordinary state-based peridynamics. 

O-SBPD Ordinary state-based peridynamics. 

PD Peridynamics. 

s Bond stretch. 

s0 Critical bond stretch. 

SBPD State-based peridynamics. 

𝑡𝑛, 𝑡𝑛−1 Time in the current and the previous time step. 

𝒖, 𝒖̇, 𝒖̈ Particle’s displacement, velocity, and acceleration vector. 

𝑉𝑡𝑖𝑝 Crack tip velocity. 

w Micropotential. 

W Strain energy density. 

x Particle’s coordinates. 

x′ Neighbor’s coordinates. 

𝒙𝑛, 𝒙𝑛−1 Crack tip position in the current and the previous time step. 

XFEM Extended finite element method. 

γ Bond shear deformation. 

γ0 Critical bond shear deformation. 

δ Radius of the horizon. 

Δt Time step. 

𝜼 Relative displacement of two particles. 

𝜃, 𝜃̇, 𝜃̈ Angular orientation, speed, and acceleration. 

κ Bond shear micromodulus. 

𝜇 Damage history-dependent scalar value function. 

𝜈 Poisson’s ratio. 

𝝃 Relative position of two particles in the reference configuration. 

𝜌 Material density. 

𝜑 Damage parameter. 

𝜑𝑥 Shear influence factor. 



1. Introduction 31 

Dynamic fracture mechanics, a discipline focusing on the behavior of rapidly propagating cracks, 32 

has been an evolving topic of research due to its importance in fields ranging from aerospace 33 

engineering to geophysics [1-5]. The complexity of dynamic fractures, characterized by rapid 34 

crack propagation, stress wave interaction, and branching, leads to unique challenges that 35 

traditional analytical methods tend to neglect [6-12]. This has required the development of robust 36 

numerical methods capable of simulating such phenomena with greater accuracy. 37 

Even though traditional methods are effective in certain scenarios such as quasi-static loading, 38 

they often fall short of accurately capturing the details of dynamic fracture processes (i.e., the 39 

prediction of crack initiation angle and crack path) [2, 14-16]. This gap led to the evolution of 40 

advanced computational techniques such as atomistic models [17, 18], lattice models [19], 41 

continuum-based models (FEM and XFEM) [20-27], and phase field models [28, 29, 30]. In the 42 

case of atomistic models, as the name implies, it would require recreating an entire structure to the 43 

atomic level in order to predict the interaction between the stress waves and the boundaries, which 44 

is computationally unfeasible [17, 18]. Moreover, these models have been shown to estimate crack 45 

branching angles much greater than those seen experimentally or to those estimated by other 46 

models [31].  Lattice models tend to predict crack propagation speeds significantly larger than 47 

theoretically permissible or seen experimentally [19]. Both continuum-based and phase field 48 

models show better performance and accuracy than the latter two. Nevertheless, some major 49 

drawbacks arise in complex dynamic scenarios. In the continuum-based approaches (i.e. FEM and 50 

XFEM models) additional failure criteria are required. For FEM methods when such failure criteria 51 

are met, the crack propagates by either erasing elements, or a cohesive model is applied to separate 52 

the pertinent nodes. Hence, in both cases, the crack path will be strongly influenced by the mesh 53 

[21, 22, 23]. The XFEM method permits cracks to propagate through elements, however, constant 54 

crack tip tracking and bifurcation criteria are required to estimate the crack path, leading to higher 55 

computational expenses than its predecessor [20]. Most importantly, the crack propagation speeds 56 

differ significantly from those observed experimentally, unless the material’s fracture energy is 57 

considerably modified [27]. Phase field models use an energy minimization approach based on 58 

elastic and fracture energy through a coupled system of equations considering classical elasticity 59 

and a continuous damage model [28, 29, 30]. Nonetheless, phase field theory does not guarantee 60 



to find the lowest energy solution due to the nonconvexity of the energy functional, possibly 61 

converging in a local minimum, and predicting erroneous crack paths [31, 32, 33]. 62 

In recent years, peridynamics, a nonlocal reformulation of classical continuum mechanics 63 

developed by S.A. Silling in the early 2000s, which has been a significant contribution to the field 64 

[34-40]. With its integro-differential equation approach, peridynamics offers a more direct way of 65 

simulating the discontinuities inherent in fracture mechanics (i.e., cracks). Unlike classical 66 

continuum mechanics, which relies on partial differential equations and spatial derivatives, 67 

peridynamics employs integral equations, thereby enabling a more natural treatment of 68 

discontinuities [34]. This feature makes peridynamics particularly suitable for modeling complex 69 

crack initiation and propagation scenarios in dynamic fracture mechanics. It offers valuable 70 

insights into the mechanics behind crack branching and path instability by effectively modeling 71 

how stress wave propagation influences crack initiation and growth [41-44]. 72 

The original Bond-Based Peridynamic (BBPD) theory, the first and simplest variant of the 73 

peridynamic theory, considers interactions between material points to be linear pairwise forces, 74 

making it computationally efficient [45, 46]. However, BBPD has been limited by its inability to 75 

accurately model materials with varying Poisson's ratios, as it is fixed to 1/3 in 2D and 1/4 in 3D 76 

[45, 46]. To circumvent this limitation, several modifications to the BBPD model have been 77 

proposed to incorporate more complex material behaviors and interactions. For instance, Silling 78 

later introduced other numerical methods like Ordinary State-Based Peridynamic (O-SBPD) or 79 

Non-Ordinary State-Based Peridynamics (NO-SBPD) [49-52]. Although the mentioned 80 

approaches are capable of solving the fixed Poisson’s ratio restriction seen in bond-based 81 

peridynamics, these numerical methods are significantly more computationally expensive than the 82 

original BBPD [40, 45, 53-56]. Consequently, there has been a focus on creating improved 83 

versions of bond-based peridynamics known as multipolar peridynamics (MPPD). Such models 84 

moved away from the idea of treating the bonds as purely linear springs by accounting for the 85 

effects of shear deformation and rotation in the simulation [46, 57-59]. Some researchers, such as 86 

Gerstle [60, 61], have treated these bonds as Euler-Bernoulli beams. By doing so, they not only 87 

vanquished the Poisson’s ration limitation in the original BBPD but also achieved a more accurate 88 

prediction of mixed-mode dynamics crack propagation [40, 60, 61].  89 



The drawback of the Euler-Bernoulli beam theory is that it assumes that the cross-section of the 90 

beam is always perpendicular to the longitudinal axis and neglects the effect of shear deformation, 91 

which leads to artificially stiffening effects [62]. This stiffening effect and inaccuracy in predicting 92 

beam deformation is even more prominent in short beams, thereby making it unsuitable for such 93 

conditions. A recent approach to increase the accuracy of the multipolar peridynamics in predicting 94 

stress wave propagation, crack initiation, and crack path, is to use a more sophisticated theory, 95 

such as treating the bonds as Timoshenko beams. The Timoshenko beam theory, developed in the 96 

20th century by Stephen Timoshenko and Paul Ehrenfest, allows rotation of the beam’s cross-97 

section with respect to the bending line and includes the effect of shear deformation, allowing it to 98 

predict the deformation of stubby beams with much greater accuracy [63]. Therefore, given that 99 

peridynamic bonds have varying lengths within the peridynamic horizon, utilizing Timoshenko 100 

beam theory over Euler-Bernoulli beam theory ensures a more accurate approximation of the 101 

behavior of materials under complex loading conditions. 102 

Incorporating the Timoshenko beam theory into the BBPD framework represents a significant 103 

advancement in the area of dynamic fracture mechanics, however, only modified versions of this 104 

theory have been applied to peridynamics [64, 65]. The Timoshenko beam theory, known for its 105 

ability to account for both bending and shear effects in beam deformation, offers a more realistic 106 

representation of beam/bond behavior, particularly in cases where shear deformation is non-107 

negligible [66, 67, 68]. Integrating this theory into the BBPD model aims to overcome the existing 108 

limitations regarding Poisson's ratio and enhance the capability of BBPD in accurately simulating 109 

in-plane mixed-mode fractures. This integration not only addresses a long-standing limitation in 110 

the BBPD theory but also broadens the scope of its application in computational fracture 111 

mechanics [69]. 112 

The current work focuses on this integration, exploring the potential of the enhanced BBPD model 113 

(Timoshenko MPPD) in providing more accurate and comprehensive tools for the simulation of 114 

dynamic fractures. This advancement is expected to have significant implications in a wide range 115 

of engineering applications where understanding and predicting fracture behavior under dynamic 116 

loading conditions is vital. 117 

 118 



2. Theoretical framework 119 

2.1. Bond-Based Peridynamics 120 

The classical bond-based peridynamics can be thought of as a nonlocal version of continuum 121 

mechanics as expressed by Silling [34]. In the nonlocal method, a particle 𝒙 interacts with all other 122 

particles 𝒙′ within a neighborhood or horizon Hx, of radius δ, through the so-called “bonds”, thus 123 

the name bond-based peridynamics. The acceleration of a particle x can be found by the following 124 

integral equation, known as the peridynamic equation of motion: 125 

𝜌𝒖̈(𝒙, 𝑡) =  ∫ 𝒇(𝒖(𝒙′, 𝑡) − 𝒖(𝒙, 𝑡), 𝒙′ − 𝒙)𝑑𝑉𝒙′ + 𝒃(𝒙, 𝑡)
⬚

𝐻𝑥

  , (1) 

where ρ is the density of the material, 𝒖̈ is the acceleration vector of particle x, u is the 126 

displacement vector field, b is an external body force density field, dVx’ is the differential volume 127 

element at the material point x′, and f is a pairwise force vector in units of force per unit volume 128 

squared. Fig. 1 depicts the undeformed and deformed configurations of two neighboring 129 

peridynamic nodes. 130 

 131 

Fig. 1. Undeformed and deformed configuration of peridynamic bonds and horizon. 132 

In peridynamic notation, the relative position of two particles in the reference configuration is: 133 

𝝃 = 𝒙′ − 𝒙   , (2) 

and their relative displacement is denoted as: 134 

𝜼 = 𝒖(𝒙′, 𝑡) − 𝒖(𝒙, 𝑡)  . (3) 



For a microelastic material, the pairwise force function derives from the change in micropotential 135 

energy with the change in the deformation of the bond as: 136 

𝑓(𝜼, 𝝃) =  
𝜕𝑤

𝝏𝜼
(𝜼, 𝝃)             ∀ 𝝃, 𝜼   . (4) 

The linear microelastic potential can be obtained from the following expression [34, 37]: 137 

𝑤 =
𝑐𝑠2|𝝃|

2
   , 

(5) 

where 𝑐 is the bond elastic stiffness in units of force per unit volume squared, and s is the stretch 138 

of a bond, defined very similarly to strain in one dimension as follows: 139 

𝒔 =
|𝜼 + 𝝃| − |𝝃|

|𝝃|
=
𝑦 − |𝝃|

|𝝃|
   . 

(6) 

Then, the strain energy density at any point in the material is computed by integrating the 140 

micropotential energy over the node’s neighborhood:  141 

𝑊𝑃𝐷 =
1

2
∫ 𝑤(𝜼, 𝝃)𝑑𝑉𝜉   ,
⬚

𝐻𝑥

 
(7) 

and notice the 1/2 factor as each endpoint of the bond takes half of the strain energy [34, 37]. 142 

BBPD introduces the concept of failure and crack propagation by allowing the bonds to break after 143 

a critical stretch limit, 𝑠0, is reached, and making it incapable of bearing any force from that 144 

instance, leading to the model being history dependent [34, 37, 43]. Thus, failure is considered in 145 

the pairwise force function by recasting the equation as follows:    146 

𝑓(𝑦(𝑡), 𝝃) = 𝑔(𝑠(𝑡, 𝝃))𝜇(𝑡, 𝝃)  , (8) 

where 𝑔 is a linear scalar-valued function,  147 

𝑔(𝑠) = 𝑐𝑠     ∀𝑠   , (9) 

and 𝜇 is a history-dependent scalar-valued function whose value is equal to unity if the bond is 148 

“healthy” (it hasn’t surpassed the critical bond stretch), or equal to zero if the bond is broken (it 149 

has surpassed the critical bond stretch, or it was originally broken due to a pre-existing crack) and 150 

it mathematically can be shown as [34]: 151 

𝜇(𝑡, 𝝃) =  {
1   𝑖𝑓 𝑠(𝑡′, 𝝃) < 𝑠0  ∀  0 ≤ 𝑡′ ≤ 𝑡

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   . (10) 



From this failure criterion, a peridynamic damage parameter is proposed as a value that can range 152 

from zero (none of the material point’s bonds are broken) to unity (all the bonds of the material 153 

points have broken). The equation for damage is then defined as unity minus the ratio of healthy 154 

bonds to the original number of nodes in the neighborhood, or: 155 

𝜑(𝒙, 𝑡) = 1 −
∫ 𝜇(𝒙, 𝑡, 𝝃)𝑑𝑉𝝃
⬚

𝐻𝑥

∫ 𝑑𝑉𝝃
⬚

𝐻𝑥

   . (11) 

In continuation of the constitutive model, Silling [34] obtained the expression for the 156 

micromodulus, c, by equating the continuum-mechanics strain energy density expression for a 157 

linear-elastic material under isotropic expansion (𝑊𝐶𝑀): 158 

𝑊𝐶𝑀 =
9𝑘𝑠2

2
   , (12) 

to that of the peridynamic model (𝑊𝑃𝐷): 159 

𝑊𝑃𝐷 =
1

2
∫ 𝑤(𝜼, 𝝃)𝑑𝑉𝜉 = 

1

2
∫ (

𝑐𝑠2𝜉

2
) 4𝜋𝜉2𝑑𝜉 =

𝛿

0

𝜋𝑐𝑠2𝛿4

4

⬚

𝐻𝑥

   , (13) 

where k is the bulk modulus. Thus, for a three-dimensional case, by equating Eq. (12) to Eq. 160 

(13), the micromodulus expression is found as: 161 

𝑐 =
18𝑘

𝜋𝛿4
   . (14) 

It’s important to note that given the pairwise nature of the bond forces acting only along the current 162 

bond direction, the Poisson’s ratio is “locked” with a value of 1/4 for 3D and plane strain 163 

conditions, and to a value of 1/3 for plane stress conditions. The expression for the micromodulus 164 

in each case is as follows [47]: 165 

𝑐 =  

{
  
 

  
 

6𝐸

𝜋ℎ𝛿4(1 − 2𝜈)
                                              (𝜈 =

1

4
)    3𝐷

6𝐸

𝜋ℎ𝛿3(1 − 𝜈)
                             (𝜈 =

1

3
)    𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑒𝑠𝑠

6𝐸

𝜋ℎ𝛿3(1 + 𝜈)(1 − 2𝜈)
             (𝜈 =

1

4
)    𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑎𝑖𝑛

   , (15) 

where E is the Young’s modulus, ν is the Poison’s ratio, and h is the specimen thickness. A similar 166 

procedure is needed to find the critical bond stretch, 𝑠0. In this case, Silling’s approach was to 167 



equate the energy required to open a unit area of a crack surface, to the peridynamic energy needed 168 

to break all the bonds joining two points across this surface (Fig. 2). In 3D, the fracture toughness 169 

of a material can be related to the critical bond stretch through the following expression [17, 20]: 170 

𝐺𝑜 = ∫∫ ∫ ∫ (
𝑐𝑠0

2𝜉

2
) 𝜉2𝑠𝑖𝑛𝜙𝑑𝜙𝑑𝜉𝑑𝜃𝑑𝑧   ,

cos−1 𝑧/𝜉

0

𝛿

𝑧

2𝜋

0

𝛿

0

 (16) 

leading to: 171 

𝑠0 = √
5𝐺0
9𝑘𝛿

= √
5𝐺0(1 − 2𝜈)

3𝐸𝛿
= √

5𝐺0
6𝐸𝛿

              𝑤𝑖𝑡ℎ   𝜈 =
1

4
   . (17) 

 172 

Fig. 2. Physical representation for the computation of critical peridynamic bond stretch based on fracture 173 
energy. 174 

Similarly, for the plane stress conditions, the expression for the critical bond stretch is [70, 71]: 175 

𝑠0 = √
4𝜋𝐺0
9𝐸𝛿

     𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑒𝑠𝑠 (𝜈 =
1

3
)   . (18) 

However, this approach has three major limitations; a fixed value for Poisson’s ratio that is 176 

problem-dependent, the inability of the bonds to experience anything except axial loads, and the 177 

failure criterion being based only on axial extension/compression of these bonds. All three of these 178 

lead to an inaccurate representation of dynamic crack initiation, propagation, and bifurcation, 179 



especially in materials with a different Poisson’s ratio and mixed-mode loading where shear effects 180 

are predominant. The rest of this paper focuses on modifying the original bond-based peridynamics 181 

by treating the bonds as Timoshenko beams instead of linear springs to overcome the existing 182 

issues. 183 

2.2. Proposed 2D Timoshenko-Based Peridynamics 184 

Due to the previously stated issues of BBPD, and the computational cost of the more advanced 185 

SBPD models, extensive research has been undertaken to improve the original BBPD model in 186 

order to add more degrees of freedom to the bonds, such as the work carried out by Gerstle’s 187 

MPPD [40, 60, 61], which treated the bonds as Euler-Bernoulli beams. Gerstle’s approach partly 188 

solves the Poisson’s ratio issue of BBPD, being limited to Poison’s ratios up to 1/4 only, and adds 189 

a rotational degree of freedom to the particles, leading to a more accurate representation of the 190 

linear elastic material’s behavior. Nevertheless, the Euler-Bernoulli beam theory is mostly suitable 191 

for high aspect ratio beams and neglects shear deformation, making it insensitive to the deviatoric 192 

part of deformation, failing to capture shear-dominated fracture scenarios (Fig. 3). Thus, further 193 

efforts have been made to improve the peridynamic model by using modified versions of 194 

Timoshenko beam theory adapted for this numerical method which led to the addition of shear 195 

stiffness and rotational stiffness coefficient [47, 61]. However, the purpose of this paper is to use 196 

the exact Timoshenko stiffness matrix with a peridynamic equivalent of the shear influence factor 197 

and reduce the number of stiffness coefficients to tensile and shear (similarly to Gerstle’s [60, 61] 198 

work and to classical continuum mechanics where material properties are characterized through 199 

the Young’s and shear moduli). Given that the particles are now not only allowed to have linear 200 

displacement but can also rotate, the new peridynamic equations of motion are: 201 

𝜌𝒖̈(𝒙, 𝑡) =  ∫ 𝒇(𝜼, 𝝃, 𝜃𝑖, 𝜃𝑗)𝑑𝑉𝒙′ + 𝒃(𝒙, 𝑡)   ,
⬚

𝐻𝑥

 (19) 
 

𝐽𝜌𝜽̈(𝒙, 𝑡) =  ∫ 𝒎(𝜼, 𝝃, 𝜃𝑖, 𝜃𝑗)𝑑𝑉𝒙′ + 𝒏(𝒙, 𝑡)  ,
⬚

𝐻𝑥

 (20) 
 

where 𝜃̈ is the angular acceleration of the particle, n is an external body moment density field, m 202 

is a pairwise moment vector in units of force times length per unit volume squared, and Jρ is the 203 

specific angular mass moment of inertia of a particle. 204 



 205 

Fig. 3. Euler-Bernoulli and Timoshenko beam deformation comparison under shear loads. 206 

For a two-node, 2D beam, there are two pairwise translational and one pairwise rotational degree 207 

of freedom, thus, the Timoshenko stiffness matrix reduces to a six-by-six matrix: 208 

{
 
 

 
 
𝑓𝑥𝑖
𝑓𝑦𝑖
𝑚𝑧𝑖

𝑓𝑥𝑗
𝑓𝑦𝑗
𝑚𝑧𝑗}

 
 

 
 

=  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝐸𝐴

𝐿
0 0 −

𝐸𝐴

𝐿
0 0

0
12𝐸𝐼𝑥

(1 + 𝜑𝑥)𝐿
3

6𝐸𝐼𝑥
(1 + 𝜑𝑥)𝐿

2
0 −

12𝐸𝐼𝑥
(1 + 𝜑𝑥)𝐿

3

6𝐸𝐼𝑥
(1 + 𝜑𝑥)𝐿

2

0
6𝐸𝐼𝑥

(1 + 𝜑𝑥)𝐿
2

(4 + 𝜑𝑥)𝐸𝐼𝑥
(1 + 𝜑𝑥)𝐿

0 −
6𝐸𝐼𝑥

(1 + 𝜑𝑥)𝐿
2

(2 − 𝜑𝑥)𝐸𝐼𝑥
(1 + 𝜑𝑥)𝐿

−
𝐸𝐴

𝐿
0 0

𝐸𝐴

𝐿
0 0

0 −
12𝐸𝐼𝑥

(1 + 𝜑𝑥)𝐿
3

−
6𝐸𝐼𝑥

(1 + 𝜑𝑥)𝐿
2

0
12𝐸𝐼𝑥

(1 + 𝜑𝑥)𝐿
3

−
6𝐸𝐼𝑥

(1 + 𝜑𝑥)𝐿
2

0
6𝐸𝐼𝑥

(1 + 𝜑𝑥)𝐿
2

(2 − 𝜑𝑥)𝐸𝐼𝑥
(1 + 𝜑𝑥)𝐿

0 −
6𝐸𝐼𝑥

(1 + 𝜑𝑥)𝐿
2

(4 + 𝜑𝑥)𝐸𝐼𝑥
(1 + 𝜑𝑥)𝐿 ]

 
 
 
 
 
 
 
 
 
 
 
 
 

{
 
 

 
 
𝑢𝑖
𝑣𝑖
𝜃𝑖
𝑢𝑗
𝑣𝑗
𝜃𝑗}
 
 

 
 

   , (21) 

 209 

where fx, fy, and mz are the axial force, transversal force, and out-of-plane moment, respectively. 210 

The subfix i and j denote the node at the coordinate system and at the end of the beam (cf., Fig. 3), 211 

respectively (or in the peridynamic sense, the node of interest and its neighbor). The geometrical 212 

parameters L, A, and Ix refer to the length, cross-sectional area, and second moment of inertia of 213 

the beam respectively. Furthermore, to predict the shear deformation, the shear influence factor, 214 

φx, is defined as follows: 215 



𝜑𝑥 =
12𝐸𝐼𝑥
𝑘𝑠𝐴𝐺𝐿

2
   , (22) 

  

where G is the shear modulus and ks is the shape factor for the cross-sectional area of the beam. 216 

For the purposes of this study, the “cross-section” of the bond is assumed to be circular, thus, the 217 

shape factor has a value of 10/9 [61].  218 

It is worth noting that in the peridynamic framework, material properties such as Young’s modulus 219 

and shear modulus do not appear explicitly, and the bonds do not have a known cross-sectional 220 

area or a second moment of inertia. Instead, the tensile and shear stiffness coefficients encompass 221 

these characteristics and are, from now on, defined as c = EA, and κ = EIx, respectively. 222 

Furthermore, the length of the bond in the undeformed configuration, ξ, corresponds to the beam 223 

length. Given that the sum of all forces and moments from all bonds attached only to the node of 224 

interest is needed to compute its acceleration, the Timoshenko stiffness matrix can be truncated to 225 

a six-by-three matrix as such: 226 

{

𝑓𝑥𝑖
𝑓𝑦𝑖
𝑚𝑧𝑖

} =  

[
 
 
 
 
 
 
𝑐

𝜉
0 0 −

𝑐

𝜉
0 0

0
12𝜅

(1 + 𝜑𝑥)𝜉
3

6𝜅

(1 + 𝜑𝑥)𝜉
2

0 −
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   . (23) 

 227 

This novel recasting of the MPPD Timoshenko stiffness matrix maintains the shear influence 228 

factor as a length-dependent variable, similar to the original Timoshenko stiffness matrix. Thus, 229 

shorter bonds will be subjected to higher and more accurate shear forces, leading to earlier failure 230 

as compared to previous MPPD models where this differentiation was not accounted for. 231 

Assuming local isotropy, using the relationship between the Young’s modulus and shear modulus, 232 

the shear influence factor is reformulated in peridynamic form as: 233 

𝜑𝑥 =
12𝐸𝐼𝑥
𝑘𝑠𝐴𝐺𝐿

2
=
12𝐸𝐼𝑥
10
9 𝐴𝐿

2
×
2(1 + 𝜈)

𝐸
=
108𝜅(1 + 𝜈)

5𝑐𝜉2
   . (24) 

  

Now, the Timoshenko beam theory has been implemented into the peridynamic framework, adding 234 

one translational and one rotational degree of freedom for a 2D case (Fig. 4). To obtain the two 235 



stiffness constants in terms of the classical material properties, the strain energy density expression 236 

from continuum mechanics is equated to the new expression found from Timoshenko MMPD in 237 

terms of the unknown constants. For the case of isotropic expansion (uniform strain field), the 238 

bonds are only stretched axially, and no shear effects are seen. Thus, following the same procedure 239 

as Silling [34], the same axial micromodulus equation as in Eq. (15) is obtained. To acquire the 240 

expression for the shear micromodulus, a similar procedure is followed but applying a uniform 241 

shear field. The micropotential is then described by Eq. (25) as: 242 

  243 

Fig. 4. Degrees of freedom on original bond-based and Timoshenko-based peridynamics. 244 

𝑤 =
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2
𝑑𝑇

[
 
 
 
𝑐

𝜉
0

0
12𝜅

𝜉3(1 + 𝜑𝑥)]
 
 
 
𝑑   , (25) 

where d is the two-node’s beam displacement vector, and the strain energy density is computed 245 

using Eq. (7). Originally, in 2D, this is a one-by-six vector holding the two translational and one 246 

rotational degrees of freedom of both nodes, but under the assumption of isotropic expansion 247 

around the node of interest, this can effectively be reduced to a one by two vector [65]. Thus, 248 

𝑑 = [𝑢𝑖 𝑣𝑖 𝜃𝑖 𝑢𝑗 𝑣𝑗 𝜃𝑗]   , (26) 

becomes, 249 

𝑑 = [𝑢𝑗 𝑣𝑗] = [𝛾𝑥𝑦𝜉𝑠𝑖𝑛2𝜙 𝛾𝑥𝑦𝜉𝑐𝑜𝑠2𝜙]   , (27) 



where 𝛾𝑥𝑦 is the shear strain, and 𝜙 is the counterclockwise angle between the bond and the positive 250 

x-axis. Next, the local peridynamic strain energy density is computed as: 251 

𝑊𝑃𝐷 =
ℎ

4
∫∫ 𝑑𝑇

2𝜋

0

𝛿

0 [
 
 
 
𝑐

𝜉
0

0
12𝜅

𝜉3(1 + 𝜑𝑥)]
 
 
 
𝑑𝜉 𝑑𝜙𝑑𝜉   . (28) 

Integrating, the peridynamic strain energy density becomes, 252 

𝑊𝑃𝐷 =
ℎ

4
[
𝑐𝜋𝛿3

12
+
12𝜅𝜋𝛿

𝜑𝑥 + 1
] 𝛾𝑥𝑦

2    . (29) 

For plane stress conditions, the strain energy density from continuum mechanics is: 253 

𝑊𝐶𝑀 =
1

2
{0 0 𝛾𝑥𝑦}

𝐸

1 − 𝜈2
 [

1 𝜈 0
𝜈 1 0

0 0
1 − 𝜈

2

] {

0
0
𝛾𝑥𝑦

} =
𝐸

1 − 𝜈
𝛾𝑥𝑦

2   . (30) 

Equating the terms in Eqs. (29) and (30), and solving for the shear micromodulus, the expression 254 

for plane stress conditions becomes: 255 

𝜅 =
𝐸(1 − 3𝜈)(𝜑𝑥 + 1)

24𝜋ℎ𝛿(1 − 𝜈2)
   . (31) 

The shear stiffness coefficient is derived from an innovative formulation that incorporates sliding 256 

deformations in accordance with Timoshenko’s beam theory. This is accomplished by accounting 257 

for the length-dependent shear influence factor. The model accommodates a broad spectrum of 258 

Poisson's ratios, unlike the original BBPD, which resulted in a fixed value for this material 259 

property. Nevertheless, similarly to other MPPD models, there is a Poisson’s ratio upper limit. 260 

Gerstle’s MPPD model presented a lower upper limit of 1/4 [60, 61], while previous MPPD models 261 

utilizing adaptations of the Timoshenko theory without an explicit formulation of the shear 262 

influence factor also show an upper limit of 1/3 for this property [64, 65]. It is worth noting that 263 

this range covers a grand majority of isotropic brittle materials, which usually have values between 264 

0.15 to 0.33. Substituting Eqs. (15) and (31) into Eq. (24), the shear influence factor is reformulated 265 

as: 266 

𝜑𝑥 =
1

20
3(1 − 3𝜈)

(
𝜉
𝛿
)
2

− 1

   , 
(32) 



which is now only a function of the bond length, the horizon radius, and the Poison’s ratio. As 267 

seen in Fig. 5, the peridynamic shear influence factor behaves very similarly to Timoshenko’s 268 

shear influence factor as the length of the beam changes and all other variables are held constant. 269 

For comparison purposes, the shear influence factor in both cases was computed using equivalent 270 

geometrical properties by matching the axial stiffness coefficient previously defined as c = EA. 271 

 272 

Fig. 5. Classical Timoshenko vs MPPD shear influence factor. Bond length ranges from Δx = 0.002m to 273 
0.0064 m. 274 

Similarly, using the beam analogy once again, the critical shear strain of a bond is related to the 275 

critical axial strain as follows: 276 

𝛾0 =
𝑠0𝑐𝜉

2

12𝜅
   , (33) 

where γ is defined as, 277 

𝛾 =
𝑣𝑗 − 𝑣𝑖

𝜉
   . (34) 

  

Then, the proposed method is implemented by discretizing Eqs. (19) and (20), turning the 278 

integral over the horizon into a summation of the contribution of each neighboring node to the 279 

forces and moments as follows: 280 

 281 



𝜌𝒖̈𝑖
𝑛 = ∑ 𝒇(𝒖𝑚

𝑛 − 𝒖𝑖
𝑛 , 𝒙𝑛 − 𝒙𝑖, 𝜃𝑖, 𝜃𝑗)𝑉𝑗 + 𝒃𝑖

𝑛𝑚
𝑗=1     , (35) 

  

𝐽𝜌𝜽̈𝑖
𝑛 = ∑ 𝒎(𝒖𝑚

𝑛 − 𝒖𝑖
𝑛, 𝒙𝑛 − 𝒙𝑖, 𝜃𝑖, 𝜃𝑗)𝑉𝑗 + 𝒏𝑖

𝑛𝑚
𝑗=1     , (36) 

where n is the time step, and the subscripts denote the node number, so that 282 

𝒖𝑖
𝑛 = 𝒖(𝒙𝑖, 𝑡

𝑛)   . (37) 

Comparably to the approach used in finite element methods, in peridynamics the stresses are 283 

applied as an external force per unit volume acting on the surface nodes, represented by the term 284 

𝒃𝑖
𝑛 in Eq. (35). Once the acceleration is computed, the explicit time integration to find the new 285 

position and velocity is done using the Velocity-Verlet algorithm [70]: 286 

𝒖̇
𝑛+

1
2
= 𝒖̇𝑛 +

∆𝑡

2
𝒖̈𝑛  , (38) 

  

𝒖
𝑛+

1
2
= 𝒖𝑛 + ∆𝑡𝒖̇𝑛+1

2
 , (39) 

  

𝒖̇𝑛 = 𝒖̇𝑛+1
2
+
∆𝑡

2
𝒖̈𝑛+1  , (40) 

where 𝑛 +
1

2
 denotes a half time step, and ∆𝑡 is the time step size. 287 

3. Results and Discussion  288 

In this section, the performance of the new Timoshenko MPPD is first compared to a benchmark 289 

elastic solution and later to the original BBPD, and the extended non-ordinary SBPD under in-290 

plane dynamic loading conditions. The numerical outcomes are then verified against experimental 291 

results for well-known benchmark problems obtained from the literature, such as dynamic 292 

branching under pure mode I and the Kalthoff-Winkler experiment for mixed-mode dynamic 293 

fracture [72-76]. Later, the effects of varying Poisson’s ratio and loading rates on crack paths are 294 

investigated using the proposed model. 295 

 296 

 297 

 298 



3.1. Benchmark Elastic Problem 299 

A known isotropic linear-elastic benchmark problem is solved in this section using the proposed 300 

Timoshenko-based MPPD model and verified against the FEM analysis. Fig. 6 shows the boundary 301 

conditions for the problem. 302 

 303 

Fig. 6. Elasticity benchmark problem BC's. 304 

 305 

Similarly to the work done in [47], the square plate has a Young’s modulus of 70 GPa and a 306 

Poisson’s ratio of 0.25. The structured mesh has a size of ∆𝑥 = 0.01 m, and the horizon radius was 307 

chosen to be 𝛿 = 3∆𝑥. Fig. 7 shows the results for both the proposed model and the FEM solution. 308 



 309 

 

      (e) 

 

    (f) 

 
 

 

Fig. 7. Elastic benchmark problem solution from FEM for a) x-displacement, b) y-displacement, and the 310 
proposed model for c) x-displacement, d) y-displacement in addition to the comparison along y=0.155m 311 

for e) x-displacement, and along x=0.155m for f) y-displacement. 312 



It is apparent that the displacement field is accurately approximated by the proposed model. As 313 

can be seen in Fig. 7a and 7c, the maximum x-displacement is 0.0322 mm and 0.0345 mm, 314 

respectively, denoting a 7.1% error. In the y-direction, Fig. 7b and 7d show a maximum 315 

displacement of 0.0792 mm and 0.0794 mm, indicating a 0.25% error. Moreover, the average 316 

percent error along the vertical line located at x = 0.155 m, is 3.25% and the average percent error 317 

along the horizontal line placed at y = 0.155 m is 2.19%. These lines were chosen with the intention 318 

to investigate discrepancies in high gradient regions away from the edges. Regarding maximum 319 

percent error, at the vertical line, the y-displacement percent error is 19.9% and in the horizontal 320 

line the x-displacement percent error is 2.8%. It is worth noting that the high maximum error in 321 

the vertical line is due to small deformation values involved in this location, which is close to the 322 

fixed boundary. The displacement discrepancy at this point, however, is only 1.37 × 10−6 m, 323 

which is a 0.002% when compared to the maximum displacement. Given that the mesh size and 324 

peridynamic horizon are the same as in other MPPD models, it shows that the variable shear 325 

influence factor has a significant impact over the results. For instance, in the work done in [47], 326 

the maximum error was around 15%. Indeed, while the presented model demonstrates high 327 

accuracy in predicting FEM results, its performance may slightly vary depending on the problem 328 

size and other discretization parameters. 329 

3.2. Pure Mode I Dynamic Branching 330 

To investigate the validity of the presented model, a benchmark problem illustrated in Fig. 8 is 331 

simulated using the proposed Timoshenko MPPD, and compared to results obtained from original 332 

BBPD, extended NO-SBPD, and experiments. Table 1 summarizes the material properties of 333 

Duran 50, which is used for this model. 334 



 335 

Fig. 8. Loading and boundary conditions for mode I dynamic brittle fracture on edge-crack specimen. 336 

Table 1. Duran 50 material properties [77]. 337 

Young’s Modulus, E (GPa) Poisson’s Ratio Density (kg/m3) Fracture Energy, G0 (kJ/m2) 

65 0.2 2235 0.2 

 338 

The test sample consists of a thin 10 by 4 cm plate with a 5 cm edge crack. Duran 50 is a brittle 339 

material commonly used in this benchmark problem, both in numerical and experimental tests [70, 340 

71, 72, 76], and thus it is chosen for the validation of the proposed model herein. The sample is 341 

symmetrically loaded with a sudden stress of 12 MPa on the upper and lower edges while 342 

preventing displacement on the x-direction of the rightmost edge. As described in [71] and [77], 343 

peridynamic models are sensitive to the choice of grid size and horizon radius. A highly refined 344 

mesh with a large horizon radius would lead to extremely long computational time while not 345 

necessarily obtaining a significantly better solution than a simpler model with a lesser number of 346 

nodes and a shorter horizon radius. Thus, two types of convergence analysis are performed to find 347 

an optimal grid size and horizon radius, the m-convergence and the δ-convergence. For the m-348 

convergence, the horizon radius δ is kept constant while the grid size is changed, while for the δ-349 

convergence, the ratio between the horizon radius and the grid size is kept constant, and the grid 350 

size is changed. Fig. 9 shows both convergence analyses, with the δ-convergence on the top (Fig. 351 

9a and 9b), and the m-convergence on the bottom (Fig. 9c and 9d).  352 

The δ-convergence analysis was performed by fixing the horizon-to-grid size ratio to 4 (i.e., m = 353 

4) and using two grid sizes (Δx = 0.5 mm and Δx = 0.25 mm), shown in Fig. 9a and 9b, 354 



respectively. Both results show similar crack paths and branching phenomena as expected. 355 

However, the computational times are significantly different, with a 20-minute run for the Δx = 356 

0.5 mm grid and 3.5 hours for the Δx = 0.25 mm grid. In the m-convergence analysis, a constant 357 

radius of 1.5 mm is chosen, and two grid sizes of Δx = 0.5 mm (m = 3) and Δx = 0.25 mm (m = 6) 358 

are used (see Fig. 9c and 9d) [71, 77]. While a more refined mesh (i.e., a larger m-ratio) results in 359 

a more concise crack, the overall crack path and crack length are almost identical to the coarser 360 

grid, which requires a computational time one order of magnitude smaller. Thus, the grid size of 361 

0.5 mm and the m-ratio of 3.2 will be used for the numerical investigations of this study. 362 

(a) 

 

(b) 

  
(c) 

 

(d) 

  
Fig. 9. Study on m-convergence analysis with m = 4 and a) Δx = 0.5 mm, and b) Δx = 0.25 mm. δ-363 

convergence analysis with δ = 1.5 mm and c) Δx = 0.5 mm, and d) Δx = 0.25 mm. 364 

However, to facilitate a better comparison with other numerical methods reported in the literature 365 

(see [77]), the grid size for the next model is specifically chosen as Δx = 0.25 mm. This selection 366 

aligns with the grid size used in [77], which also has a value of 0.25 mm, resulting in a total of 367 

64,000 discrete material points. 368 

To ensure the numerical stability of the explicit simulation, the time step also needs to be chosen 369 

carefully. The maximum time step size is dictated by the time a stress wave requires to propagate 370 

through a single grid size unit [34]. In this study, a safety factor of 1/5 is applied as a rule of thumb 371 

to guarantee numerical stability and accuracy. Following the work done in [71, 72], the total real 372 

simulation time is set to 50 μs, and the horizon radius (δ) is 𝑚 × Δx where m is equal to 3.2. Note 373 

that the m is chosen to be 3.2 as it has been reported in the literature that the values between 3 and 374 

4 yield accurate results with the lowest computational cost [51, 56, 71]. The CPU simulation time 375 



for this model was 3.5 hours on an 11th Gen Intel(R) Core (TM) i7-11850H @ 2.50GHz. Fig. 10 376 

shows the results for all the aforementioned cases at 46 μs, right before the crack propagates 377 

through the rightmost edge. 378 

(a) 

 

(b) 

  
(c) 

 

(d) 

  
Fig. 10. Pure mode I dynamic crack branching under symmetrical loading (12 MPa) for a) experiment by 379 

Ravi-Chandar and Knauss [76], b) extended NOSB [77], c) BBPD [71], and d) the present 380 
numerical method. 381 

It is apparent that the present model shows crack propagation and branching as expected from 382 

experimental observations and as predicted by both BBPD and extended NO-SBPD models. The 383 

initial bifurcation angle is consistent between models as shear effects are not significant on the 384 

onset of bifurcation. However, shortly after branching the two new crack tips are subjected to shear 385 

forces leading to a gradual change of the crack paths and returning to a horizontal propagation (as 386 

observed in Ravi-Chandar’s and Knauss’ experiment [76]). This phenomenon cannot be seen in 387 

the original BBPD results, but it is captured by both the extended NO-SBPD model and the present 388 

model.  389 

Fig. 11 shows the crack propagation speed over time for the proposed model, the original BBPD 390 

[70], the extended NO-SBPD [77], and the maximum experimental speed [78], using a grid spacing 391 

of Δx = 0.5 mm in all models for a more rigorous comparison between results. As can be seen in 392 

this figure, the proposed Timoshenko MMPD model has an overall better performance compared 393 

to the other two models considering both the accuracy of the results and the computational time. 394 

The maximum crack propagation speed found by the current model was 1708 m/s, which is 8% 395 

higher than the maximum theoretical speed, while the original BBPD model shows a 25.6% 396 



overshoot with a maximum velocity of 1985 m/s. The extended NO-SBPD shows a better 397 

agreement with the theoretical values at approximately 5% overshoot. However, the presented 398 

model is mathematically simpler and hence less computationally expensive for a comparable 399 

result.  400 

Note that the crack speed is calculated using the following equation: 401 

𝑉𝑡𝑖𝑝 =
‖𝒙𝑛 − 𝒙𝑛−1‖

𝑡𝑛 − 𝑡𝑛−1
   , (35) 

where 𝑉𝑡𝑖𝑝, 𝒙𝑛, 𝒙𝑛−1, 𝑡𝑛, and 𝑡𝑛−1, are the crack tip velocity, the crack tip position in the current 402 

and previous time steps, and the real simulation time in the current and previous time steps, 403 

respectively. 404 

 405 

Fig. 11. Crack propagation speed comparison between the proposed model, the original BBPD [70], 406 
extended NO-SBPD [77], and the maximum experimental velocity [78]. 407 

3.3. Kalthoff-Winkler Experiment 408 

The Kalthoff-Winkler experiment is a well-known benchmark problem for in-plane mixed-mode 409 

dynamic crack propagation for which extensive experimental and numerical results can be found 410 

in the literature. Fig. 12 illustrates the geometry and boundary conditions for the test setup, which 411 

consists of a thin rectangular 100 by 200 mm plate with two symmetrically placed 50 mm edge 412 



cracks, and a velocity constraint is imposed on the edge between the cracks. The material 413 

properties are those of maraging steel and can be found in Table 2. 414 

 415 

Fig. 12. Boundary conditions for the Kalthoff-Winkler mixed-mode dynamic fracture experiment. 416 

 417 

Table 2. Maraging steel material properties [77]. 418 

Young’s Modulus, E (GPa) Poisson’s Ratio Density (kg/m3) Fracture Energy, G0 (kJ/m2) 

190 0.3 8000 22.17 

 419 

For a better comparison, in this case, the grid spacing for the numerical simulation is chosen to be 420 

the same as in the simulations carried out by Zhou et al. [77], and by Dipasqual et al. [79], where 421 

Δx = 1 mm. The total number of material points is 20,000 and the time step is chosen in the same 422 

manner as explained in the previous benchmark example. An initial velocity of 16.5 m/s is applied 423 

to the leftmost edge at −25 ≤ 𝑦 ≤ 25 mm, and the real simulation time is 90 μs. Note that the 424 

coordinate system is placed in the middle of the specimen on the left edge. Similarly, the m-ratio 425 

between the horizon radius and grid size is set to m = 3.2. Fig. 13 shows the results obtained 426 

experimentally, and using XFEM, BBPD, extended NO-SBPD, and the proposed model. 427 



(a) 

 

(b) 

 

(e) 
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(c) 

 

(d) 

  
Fig. 13. Results for Kalthoff-Winkler setup a) extended NOSB by Zhou et al. [77], b) XFEM by 428 

Belytscho et al. [80], c) original Kalthoff-Winkler experiment [74], d) proposed model, e) BBPD by 429 
Dipasqual et al. [79], and f) proposed model for the full specimen. 430 

While the experiment setup is the one described earlier, it is common to apply symmetric boundary 431 

conditions at y = 0 and simulate only one-half of the test article to save computational resources 432 

as seen in several examples in Fig. 13. For the present study, however, the full test article was 433 

simulated as seen in Fig. 13f, and a crop of only the upper part is shown in Fig. 13d for better 434 

visualization and comparison.  435 

As expected from classical fracture mechanics and seen in the Kalthoff-Winkler experiment, under 436 

in-plane shear-dominant loading conditions, the crack initiation angle is close to 70⁰ [2,5]. All 437 

numerical models presented in Fig. 13 capture this phenomenon accurately, with the exception of 438 

XFEM having a slightly lower slope. However, there is a noticeable difference towards the end of 439 

the simulation as the crack approaches the upper edge. Both BBPD [79] and extended NO-SBPD 440 

[77] show the crack path deviating upwards becoming almost vertical towards the edge. However, 441 

the original experimental results [74] show the crack maintaining a straight fashion until the end 442 

with some minor kinking. This is also seen in the XFEM results [80] but the crack leans towards 443 

the end more than the one seen in the experiment or other numerical results. The Timoshenko 444 

MPPD model presented here, captures the crack initiation angle, and the entire crack path 445 

accurately being almost identical to the experimental results, proving its capabilities to capture 446 

shear effects on brittle materials. It is worth noting that while not seen in the experiment carried 447 



out by Kalthoff and Winkler [74], a second crack naturally forms at the center of the specimen on 448 

the rightmost edge and starts propagating as a Mode I fracture that later branches symmetrically. 449 

This phenomenon is also observed in all other numerical results presented in Fig. 13, exhibiting a 450 

similar crack pattern. 451 

3.4 Further Numerical Results 452 

In the following section, the effects of loading rate and Poisson’s ratio on mixed-mode dynamic 453 

fracture behavior are investigated. The two benchmark problems discussed in Sections 3.2 and 3.3 454 

are subjected to higher stresses and initial velocities respectively while keeping all the rest of the 455 

parameters the same for a more insightful qualitative analysis of the effects of higher loading rates. 456 

Similarly, the effects of different Poisson’s ratios on crack propagation are studied on those same 457 

specimens. Finally, the Kalthoff-Winkler experiment setup is modified by changing the crack 458 

orientation angles and tested under various initial conditions. 459 

3.4.1 Effects of loading rate 460 

In this section, the effect of loading rate for pure mode I and in-plane loading conditions is 461 

investigated by subjecting the specimens from Sections 3.2 and 3.3 to two different loading rates. 462 

Additionally, these effects are also investigated in two modified Kalthoff-Winkler setup models. 463 

Under pure mode I conditions, all the material properties and geometrical parameters are identical 464 

to the ones mentioned in Section 3.2, except for a coarser grid size of Δx = 0.5 mm, and a Poisson’s 465 

ratio of 0.3. The test article was subjected to a sudden load of 20 and 30 MPa as shown in Fig. 14. 466 

For the 20 MPa loading case (Fig. 14a), a simple bifurcation pattern with no secondary branching 467 

is observed, very similar to previous cases. However, the two crack tips present a sudden change 468 

in propagation angle shortly after bifurcation, indicating a more prominent stress wave interference 469 

pattern during crack growth. Constructive interference of these waves leads to localized areas with 470 

grater stress that the crack tips propagate through. At a higher loading stress of 30 MPa (Fig. 14b), 471 

the crack path shows a more complex pattern with secondary branching occurring due to the 472 

aforementioned reasons. A higher number of crack fronts at higher loading rates is also expected 473 

in order to dissipate the energy in the specimen once the material cannot store any more elastic 474 

energy [71]. 475 



(a) 

 

(b)  

  
Fig. 14. Dynamic Mode I branching in Duran 50 at a) 𝜎 = 20 MPa and b) 𝜎 = 30 MPa. 476 

For mixed-mode loading conditions, the exact same simulation parameters as in Section 3.3 is 477 

used, except for the initial velocities, which is set to 30 and 40 m/s for the analysis (Fig. 15a and 478 

15d, respectively). Two other variations of this test article are modeled for different mode mixities 479 

with crack orientation angles of 30⁰ and 60⁰ as shown in Fig. 15b and 15e, and Fig. 15c and 15f, 480 

respectively. Both test articles were also subjected to initial velocities of 30 and 40 m/s, as depicted 481 

in Fig. 15b and 15c, and Fig. 15e and 15f, respectively.  482 

For the original Kalthoff-Winkler setup configuration, increasing the initial speed to 30 m/s leads 483 

to a slightly shallower crack initiation angle [2] and more prominent secondary branching, with 484 

secondary cracks forming at nearly right angles from the main branch. This additional branching 485 

is not seen in the original experiment at 16.5 m/s. As the crack angle is increased, the crack tip is 486 

closer to the edges of the specimen, and the shear deformations are not as significant around the 487 

crack tip. It is apparent that branching becomes less prominent as the crack angle is increased and 488 

the crack tip starts closer to the upper edge. In the 60⁰ case this phenomenon is not observed and 489 

only crack kinking is seen. However, as the crack angle increases, the naturally occurring cracks 490 

along the middle of the rightmost edge begin to propagate earlier and branch more extensively, 491 

resulting in greater damage and increased energy release in this region. At 40 m/s the crack paths 492 

are similar to those seen at 30 m/s, presenting even shallower crack initiation angles and more 493 

branching events due to the higher energy dissipation rates required. It is also worth noting that a 494 

shear band forms in the configuration displayed in Fig. 15f, where the original crack meets the 495 

leftmost edge of the specimen. This shear band formation is similar to the results observed by 496 

Diana and Ballarini [46] showing the failure mode switching at higher loading rates. 497 
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Fig. 15. Dynamic crack propagation in the modified Kalthoff-Winkler setup at 30 m/s for an initial 498 
crack angle of a) 0⁰, b) 30⁰, c) 60⁰, and at 40 m/s with an initial crack angle of d) 0⁰, e) 30⁰, and f) 60⁰. 499 

3.4.2. Effects of Poisson’s ratio 500 

To investigate the effect of Poisson's ratio on mode I dynamic crack propagation, the simulation 501 

setup from Section 3.2 is used (𝜎 = 12 MPa). The geometrical and boundary conditions are kept 502 

the same, the grid size is coarsened to Δx = 0.5 mm, and the model’s prediction is computed for ν 503 

= 0.1 and ν = 0.25. The results shown in Fig. 16 indicate a clear dependency between the crack 504 

branching initiation and Poisson’s ratio, as well as the crack path after bifurcation. The path 505 

maintains a consistent propagation angle after bifurcation for lower values of Poisson’s ratio, while 506 

for higher values the crack presents a tendency to kink towards a horizontal orientation as observed 507 

in the results shown in Fig. 14 and Section 3.2. The earlier bifurcation and straight crack paths in 508 



materials with lower Poisson’s ratio, arise from its diminishing ability to deform perpendicular to 509 

the load direction. Under such circumstances, lesser amounts of work are stored in the form of 510 

elastic energy, thus resulting in cracks forming to dissipate the remaining energy. Equally, shear 511 

stresses are less prominent during axial loading, resulting in reduced kinking of the crack after 512 

branching. 513 

(a) 

 

(b) 

  
Fig. 16. Dynamic Mode I branching comparison for 𝜎 = 12 MPa a) ν = 0.1 and b) ν = 0.25 514 

For the Kalthoff-Winkler experiment, all geometrical, material, and simulation parameters from 515 

Section 3.3 were used with the exception of Poisson’s ratio which was tested at values of 0.1 and 516 

0.2.  Fig. 15 shows the upper half of the results for both cases. In the case of ν = 0.1, while the 517 

crack initiation angle and initial stages of crack propagation are very similar to those seen in 518 

Section 3.3 with ν = 0.3, there is a clear difference towards the end of the simulation where the 519 

crack branches for the case of ν = 0.1 (which is not seen for higher values). It is also worth noting 520 

that naturally occurring secondary crack on the rightmost edge is no longer a single crack that 521 

branches out, but it consists of two cracks instead, one that propagates straight right in the middle 522 

of the specimen and a second crack that forms right above and curves upwards. When ν = 0.2, the 523 

crack path is almost identical to the ν = 0.3 case, showing very small changes in the main crack 524 

where initiation of bifurcation can be seen in a similar region observed for ν = 0.1. The secondary 525 

crack originating on the rightmost edge presents a similar path to that observed for ν = 0.3, 526 

however, crack branching occurs closer to the origin of the crack. 527 
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Fig. 17. Dynamic mixed-mode crack propagation comparison for Kalthoff-Winkler experiment at 𝑉0= 528 
16.5 m/s with different Poisson’s ratios a) ν = 0.1 and b) ν = 0.2. 529 

4. Conclusion 530 

In this work, a new formulation for Bond-Based Peridynamics (BBPD) is presented by treating 531 

the bonds as Timoshenko beams, explicitly considering shear deformation effects, which is 532 

particularly important for short beams. This approach is advantageous because it accounts for the 533 

effect of shear in the deformation of the bonds, and the subsequent shear failure by incorporating 534 

a strain-based criterion which were originally neglected in the traditional BBPD. While previous 535 

researchers used the Timoshenko approach to MPPD, the shear influence factor was treated as 536 

constant and clustered as part of the shear stiffness coefficient. However, the core novelty of the 537 

current study is to consider a length-dependent shear influence factor which better resembles the 538 

underlying physics. It was revealed that the suggested Timoshenko Multipolar Peridynamics 539 

(MPPD) formulation is in good agreement with the experimental and numerical benchmark 540 

problems reported in the literature, denoting the validity and accuracy of the method. The study 541 

showed that adding extra degrees of freedom to the problem mitigates the Poisson’s ratio limitation 542 

in the original BBPD allowing the model to use materials with Poisson’s ratios up to 1/3. While 543 

not completely resolving this issue, the proposed model addresses a wider range of brittle 544 

materials. 545 

The current study comprehensively examined how the loading rate and Poisson's ratio influence 546 

dynamic crack propagation and branching. It was observed that the higher loading rates lead to 547 

more severe secondary branching due to the higher energy release rates, as well as a change in 548 



crack initiation angle and propagation path. Moreover, this phenomenon can also be explained due 549 

to the strong influence of constructive interference of stress waves in the crack front. Furthermore, 550 

this study revealed that models with lower Poisson’s ratio show more prominent branching events 551 

than those with higher values due to the different deformation gradients in the material domain. 552 

This phenomenon resulted from the material's limited capacity to deform perpendicular to the 553 

principal stretch direction which localizes the strain and induces additional branching. This 554 

branching effectively dissipated the energy that the material could no longer absorb elastically. 555 

However, this influence is not as severe as that of the loading rate in the formation of secondary 556 

branches and crack paths. 557 

Understanding the behavior of brittle materials such as ceramics, glass, rocks, etc., under impact 558 

scenarios is crucial during the design phases of structures involved in various industries spanning 559 

from civil to aerospace engineering. The simplicity of the proposed model compared to State-560 

Based Peridynamic (SBPD), and higher accuracy than the original BBPD formulation, facilitates 561 

its use for research and commercial applications. This work aims to improve predictions at a lower 562 

computational cost. Further work should be done to obtain an energy-based shear failure criterion, 563 

and to account for orthotropy in the material, expanding the use of the method to more complex 564 

materials extensively used in engineering applications. 565 
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