

1 **A modified mixed-mode Timoshenko-based peridynamics model**
2 **considering shear deformation**

3 Victor Bautista, Behnam Shahbazian, Mirmilad Mirsayar*

4 *Department of Aerospace, Physics, and Space Sciences, Florida Institute of Technology, Melbourne,*
5 *Florida 32901, USA*

7 **Abstract**

8 The original two-dimensional bond-based peridynamic (BBPD) framework, which only considers
9 the pairwise forces (compression and tension) between two material points, is extended by
10 incorporating the effect of shear deformation in the calculations and its influence on the failure of
11 the bonds. To this end, each bond is considered as a short Timoshenko beam, and by doing so, the
12 traditional BBPD is enhanced into a more comprehensive model known as multi-polar
13 peridynamic (MPPD). The proposed novel approach explicitly considers the shear influence factor
14 used in Timoshenko beams and introduces a strain-based shear deformation failure criterion. The
15 model is then validated against two benchmark experimental tests (i.e., a standard pure mode I
16 edge crack, and a Kalthoff-Winkler configuration) reported in the literature under in-plane
17 dynamic loading and plane stress conditions. In most cases, the developed model is shown to be
18 more accurate in predicting the crack paths obtained from the experimental results when compared
19 to other theoretical methods delineated in the literature. Furthermore, a noticeable change in crack
20 branching and crack path is observed in a study on the effects of Poisson's ratio and the loading
21 rate. This investigation also demonstrated that the proposed MPPD model can accommodate
22 materials with Poisson's ratios up to 1/3, expanding the range beyond the traditional BBPD
23 limitations.

24
25
26
27
28 Keywords: dynamic brittle fracture; computational fracture mechanics; crack branching;
29 peridynamics; Timoshenko beam theory; mixed-mode I/II loading

Nomenclature

<i>b</i>	External body force density field.
BBPD	Bond based peridynamics.
<i>c</i>	Bond axial micromodulus.
CM	Continuum mechanics.
dV_x	Particle's infinitesimal volume.
<i>E</i>	Young's modulus.
<i>f</i>	Pair-wise force function.
G_0	Fracture energy.
<i>h</i>	Thickness.
H_x	Particle's neighborhood or horizon.
J_ρ	Specific polar mass moment of inertia.
<i>k</i>	Bulk modulus.
<i>m</i>	Pair-wise moment function.
MPPD	Multipolar peridynamics.
<i>n</i>	External body moment density field.
NO-SBPD	Non-ordinary state-based peridynamics.
O-SBPD	Ordinary state-based peridynamics.
PD	Peridynamics.
<i>s</i>	Bond stretch.
s_0	Critical bond stretch.
SBPD	State-based peridynamics.
t_n, t_{n-1}	Time in the current and the previous time step.
<i>u</i>, $\dot{\mathbf{u}}$, $\ddot{\mathbf{u}}$	Particle's displacement, velocity, and acceleration vector.
V_{tip}	Crack tip velocity.
<i>w</i>	Micropotential.
<i>W</i>	Strain energy density.
<i>x</i>	Particle's coordinates.
<i>x'</i>	Neighbor's coordinates.
$\mathbf{x}_n, \mathbf{x}_{n-1}$	Crack tip position in the current and the previous time step.
XFEM	Extended finite element method.
γ	Bond shear deformation.
γ_0	Critical bond shear deformation.
δ	Radius of the horizon.
Δt	Time step.
η	Relative displacement of two particles.
$\theta, \dot{\theta}, \ddot{\theta}$	Angular orientation, speed, and acceleration.
κ	Bond shear micromodulus.
μ	Damage history-dependent scalar value function.
ν	Poisson's ratio.
ξ	Relative position of two particles in the reference configuration.
ρ	Material density.
φ	Damage parameter.
φ_x	Shear influence factor.

31 **1. Introduction**

32 Dynamic fracture mechanics, a discipline focusing on the behavior of rapidly propagating cracks,
33 has been an evolving topic of research due to its importance in fields ranging from aerospace
34 engineering to geophysics [1-5]. The complexity of dynamic fractures, characterized by rapid
35 crack propagation, stress wave interaction, and branching, leads to unique challenges that
36 traditional analytical methods tend to neglect [6-12]. This has required the development of robust
37 numerical methods capable of simulating such phenomena with greater accuracy.

38 Even though traditional methods are effective in certain scenarios such as quasi-static loading,
39 they often fall short of accurately capturing the details of dynamic fracture processes (i.e., the
40 prediction of crack initiation angle and crack path) [2, 14-16]. This gap led to the evolution of
41 advanced computational techniques such as atomistic models [17, 18], lattice models [19],
42 continuum-based models (FEM and XFEM) [20-27], and phase field models [28, 29, 30]. In the
43 case of atomistic models, as the name implies, it would require recreating an entire structure to the
44 atomic level in order to predict the interaction between the stress waves and the boundaries, which
45 is computationally unfeasible [17, 18]. Moreover, these models have been shown to estimate crack
46 branching angles much greater than those seen experimentally or to those estimated by other
47 models [31]. Lattice models tend to predict crack propagation speeds significantly larger than
48 theoretically permissible or seen experimentally [19]. Both continuum-based and phase field
49 models show better performance and accuracy than the latter two. Nevertheless, some major
50 drawbacks arise in complex dynamic scenarios. In the continuum-based approaches (i.e. FEM and
51 XFEM models) additional failure criteria are required. For FEM methods when such failure criteria
52 are met, the crack propagates by either erasing elements, or a cohesive model is applied to separate
53 the pertinent nodes. Hence, in both cases, the crack path will be strongly influenced by the mesh
54 [21, 22, 23]. The XFEM method permits cracks to propagate through elements, however, constant
55 crack tip tracking and bifurcation criteria are required to estimate the crack path, leading to higher
56 computational expenses than its predecessor [20]. Most importantly, the crack propagation speeds
57 differ significantly from those observed experimentally, unless the material's fracture energy is
58 considerably modified [27]. Phase field models use an energy minimization approach based on
59 elastic and fracture energy through a coupled system of equations considering classical elasticity
60 and a continuous damage model [28, 29, 30]. Nonetheless, phase field theory does not guarantee

61 to find the lowest energy solution due to the nonconvexity of the energy functional, possibly
62 converging in a local minimum, and predicting erroneous crack paths [31, 32, 33].

63 In recent years, peridynamics, a nonlocal reformulation of classical continuum mechanics
64 developed by S.A. Silling in the early 2000s, which has been a significant contribution to the field
65 [34-40]. With its integro-differential equation approach, peridynamics offers a more direct way of
66 simulating the discontinuities inherent in fracture mechanics (i.e., cracks). Unlike classical
67 continuum mechanics, which relies on partial differential equations and spatial derivatives,
68 peridynamics employs integral equations, thereby enabling a more natural treatment of
69 discontinuities [34]. This feature makes peridynamics particularly suitable for modeling complex
70 crack initiation and propagation scenarios in dynamic fracture mechanics. It offers valuable
71 insights into the mechanics behind crack branching and path instability by effectively modeling
72 how stress wave propagation influences crack initiation and growth [41-44].

73 The original Bond-Based Peridynamic (BBPD) theory, the first and simplest variant of the
74 peridynamic theory, considers interactions between material points to be linear pairwise forces,
75 making it computationally efficient [45, 46]. However, BBPD has been limited by its inability to
76 accurately model materials with varying Poisson's ratios, as it is fixed to 1/3 in 2D and 1/4 in 3D
77 [45, 46]. To circumvent this limitation, several modifications to the BBPD model have been
78 proposed to incorporate more complex material behaviors and interactions. For instance, Silling
79 later introduced other numerical methods like Ordinary State-Based Peridynamic (O-SBPD) or
80 Non-Ordinary State-Based Peridynamics (NO-SBPD) [49-52]. Although the mentioned
81 approaches are capable of solving the fixed Poisson's ratio restriction seen in bond-based
82 peridynamics, these numerical methods are significantly more computationally expensive than the
83 original BBPD [40, 45, 53-56]. Consequently, there has been a focus on creating improved
84 versions of bond-based peridynamics known as multipolar peridynamics (MPPD). Such models
85 moved away from the idea of treating the bonds as purely linear springs by accounting for the
86 effects of shear deformation and rotation in the simulation [46, 57-59]. Some researchers, such as
87 Gerstle [60, 61], have treated these bonds as Euler-Bernoulli beams. By doing so, they not only
88 vanquished the Poisson's ratio limitation in the original BBPD but also achieved a more accurate
89 prediction of mixed-mode dynamics crack propagation [40, 60, 61].

90 The drawback of the Euler-Bernoulli beam theory is that it assumes that the cross-section of the
91 beam is always perpendicular to the longitudinal axis and neglects the effect of shear deformation,
92 which leads to artificially stiffening effects [62]. This stiffening effect and inaccuracy in predicting
93 beam deformation is even more prominent in short beams, thereby making it unsuitable for such
94 conditions. A recent approach to increase the accuracy of the multipolar peridynamics in predicting
95 stress wave propagation, crack initiation, and crack path, is to use a more sophisticated theory,
96 such as treating the bonds as Timoshenko beams. The Timoshenko beam theory, developed in the
97 20th century by Stephen Timoshenko and Paul Ehrenfest, allows rotation of the beam's cross-
98 section with respect to the bending line and includes the effect of shear deformation, allowing it to
99 predict the deformation of stubby beams with much greater accuracy [63]. Therefore, given that
100 peridynamic bonds have varying lengths within the peridynamic horizon, utilizing Timoshenko
101 beam theory over Euler-Bernoulli beam theory ensures a more accurate approximation of the
102 behavior of materials under complex loading conditions.

103 Incorporating the Timoshenko beam theory into the BBPD framework represents a significant
104 advancement in the area of dynamic fracture mechanics, however, only modified versions of this
105 theory have been applied to peridynamics [64, 65]. The Timoshenko beam theory, known for its
106 ability to account for both bending and shear effects in beam deformation, offers a more realistic
107 representation of beam/bond behavior, particularly in cases where shear deformation is non-
108 negligible [66, 67, 68]. Integrating this theory into the BBPD model aims to overcome the existing
109 limitations regarding Poisson's ratio and enhance the capability of BBPD in accurately simulating
110 in-plane mixed-mode fractures. This integration not only addresses a long-standing limitation in
111 the BBPD theory but also broadens the scope of its application in computational fracture
112 mechanics [69].

113 The current work focuses on this integration, exploring the potential of the enhanced BBPD model
114 (Timoshenko MPPD) in providing more accurate and comprehensive tools for the simulation of
115 dynamic fractures. This advancement is expected to have significant implications in a wide range
116 of engineering applications where understanding and predicting fracture behavior under dynamic
117 loading conditions is vital.

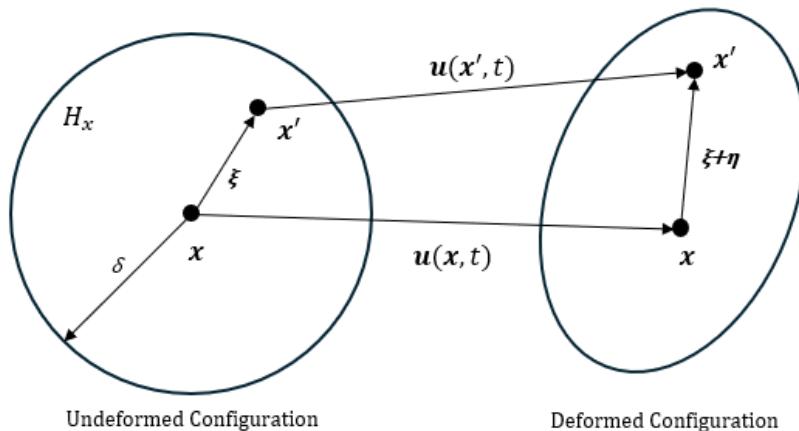
119 **2. Theoretical framework**

120 *2.1. Bond-Based Peridynamics*

121 The classical bond-based peridynamics can be thought of as a nonlocal version of continuum
 122 mechanics as expressed by Silling [34]. In the nonlocal method, a particle x interacts with all other
 123 particles x' within a neighborhood or horizon H_x , of radius δ , through the so-called “bonds”, thus
 124 the name *bond-based peridynamics*. The acceleration of a particle x can be found by the following
 125 integral equation, known as the peridynamic equation of motion:

$$\rho \ddot{\mathbf{u}}(\mathbf{x}, t) = \int_{H_x}^{\square} \mathbf{f}(\mathbf{u}(\mathbf{x}', t) - \mathbf{u}(\mathbf{x}, t), \mathbf{x}' - \mathbf{x}) dV_{\mathbf{x}'} + \mathbf{b}(\mathbf{x}, t) , \quad (1)$$

126 where ρ is the density of the material, $\ddot{\mathbf{u}}$ is the acceleration vector of particle x , \mathbf{u} is the
 127 displacement vector field, \mathbf{b} is an external body force density field, $dV_{\mathbf{x}'}$ is the differential volume
 128 element at the material point \mathbf{x}' , and \mathbf{f} is a pairwise force vector in units of force per unit volume
 129 squared. Fig. 1 depicts the undeformed and deformed configurations of two neighboring
 130 peridynamic nodes.



131

Undeformed Configuration

Deformed Configuration

132 **Fig. 1.** Undeformed and deformed configuration of peridynamic bonds and horizon.

133 In peridynamic notation, the relative position of two particles in the reference configuration is:

$$\xi = \mathbf{x}' - \mathbf{x} , \quad (2)$$

134 and their relative displacement is denoted as:

$$\eta = \mathbf{u}(\mathbf{x}', t) - \mathbf{u}(\mathbf{x}, t) . \quad (3)$$

135 For a microelastic material, the pairwise force function derives from the change in micropotential
 136 energy with the change in the deformation of the bond as:

$$f(\boldsymbol{\eta}, \boldsymbol{\xi}) = \frac{\partial w}{\partial \boldsymbol{\eta}}(\boldsymbol{\eta}, \boldsymbol{\xi}) \quad \forall \boldsymbol{\xi}, \boldsymbol{\eta} . \quad (4)$$

137 The *linear microelastic potential* can be obtained from the following expression [34, 37]:

$$w = \frac{cs^2|\boldsymbol{\xi}|}{2} , \quad (5)$$

138 where c is the bond elastic stiffness in units of force per unit volume squared, and s is the stretch
 139 of a bond, defined very similarly to strain in one dimension as follows:

$$s = \frac{|\boldsymbol{\eta} + \boldsymbol{\xi}| - |\boldsymbol{\xi}|}{|\boldsymbol{\xi}|} = \frac{y - |\boldsymbol{\xi}|}{|\boldsymbol{\xi}|} . \quad (6)$$

140 Then, the strain energy density at any point in the material is computed by integrating the
 141 micropotential energy over the node's neighborhood:

$$W_{PD} = \frac{1}{2} \int_{H_x}^{\square} w(\boldsymbol{\eta}, \boldsymbol{\xi}) dV_{\xi} , \quad (7)$$

142 and notice the 1/2 factor as each endpoint of the bond takes half of the strain energy [34, 37].
 143 BBPD introduces the concept of failure and crack propagation by allowing the bonds to break after
 144 a critical stretch limit, s_0 , is reached, and making it incapable of bearing any force from that
 145 instance, leading to the model being history dependent [34, 37, 43]. Thus, failure is considered in
 146 the pairwise force function by recasting the equation as follows:

$$f(y(t), \boldsymbol{\xi}) = g(s(t, \boldsymbol{\xi})) \mu(t, \boldsymbol{\xi}) , \quad (8)$$

147 where g is a linear scalar-valued function,

$$g(s) = cs \quad \forall s , \quad (9)$$

148 and μ is a history-dependent scalar-valued function whose value is equal to unity if the bond is
 149 “healthy” (it hasn’t surpassed the critical bond stretch), or equal to zero if the bond is broken (it
 150 has surpassed the critical bond stretch, or it was originally broken due to a pre-existing crack) and
 151 it mathematically can be shown as [34]:

$$\mu(t, \boldsymbol{\xi}) = \begin{cases} 1 & \text{if } s(t', \boldsymbol{\xi}) < s_0 \quad \forall 0 \leq t' \leq t \\ 0 & \text{otherwise} \end{cases} . \quad (10)$$

152 From this failure criterion, a peridynamic damage parameter is proposed as a value that can range
 153 from zero (none of the material point's bonds are broken) to unity (all the bonds of the material
 154 points have broken). The equation for damage is then defined as unity minus the ratio of healthy
 155 bonds to the original number of nodes in the neighborhood, or:

$$\varphi(\mathbf{x}, t) = 1 - \frac{\int_{H_x} \mu(\mathbf{x}, t, \xi) dV_\xi}{\int_{H_x} dV_\xi} . \quad (11)$$

156 In continuation of the constitutive model, Silling [34] obtained the expression for the
 157 micromodulus, c , by equating the continuum-mechanics strain energy density expression for a
 158 linear-elastic material under isotropic expansion (W_{CM}):

$$W_{CM} = \frac{9ks^2}{2} , \quad (12)$$

159 to that of the peridynamic model (W_{PD}):

$$W_{PD} = \frac{1}{2} \int_{H_x} w(\boldsymbol{\eta}, \xi) dV_\xi = \frac{1}{2} \int_0^\delta \left(\frac{cs^2 \xi}{2} \right) 4\pi \xi^2 d\xi = \frac{\pi c s^2 \delta^4}{4} , \quad (13)$$

160 where k is the bulk modulus. Thus, for a three-dimensional case, by equating Eq. (12) to Eq.
 161 (13), the micromodulus expression is found as:

$$c = \frac{18k}{\pi \delta^4} . \quad (14)$$

162 It's important to note that given the pairwise nature of the bond forces acting only along the current
 163 bond direction, the Poisson's ratio is "locked" with a value of 1/4 for 3D and plane strain
 164 conditions, and to a value of 1/3 for plane stress conditions. The expression for the micromodulus
 165 in each case is as follows [47]:

$$c = \begin{cases} \frac{6E}{\pi h \delta^4 (1 - 2\nu)} & \left(\nu = \frac{1}{4} \right) \text{ 3D} \\ \frac{6E}{\pi h \delta^3 (1 - \nu)} & \left(\nu = \frac{1}{3} \right) \text{ plane stress} , \\ \frac{6E}{\pi h \delta^3 (1 + \nu) (1 - 2\nu)} & \left(\nu = \frac{1}{4} \right) \text{ plane strain} \end{cases} \quad (15)$$

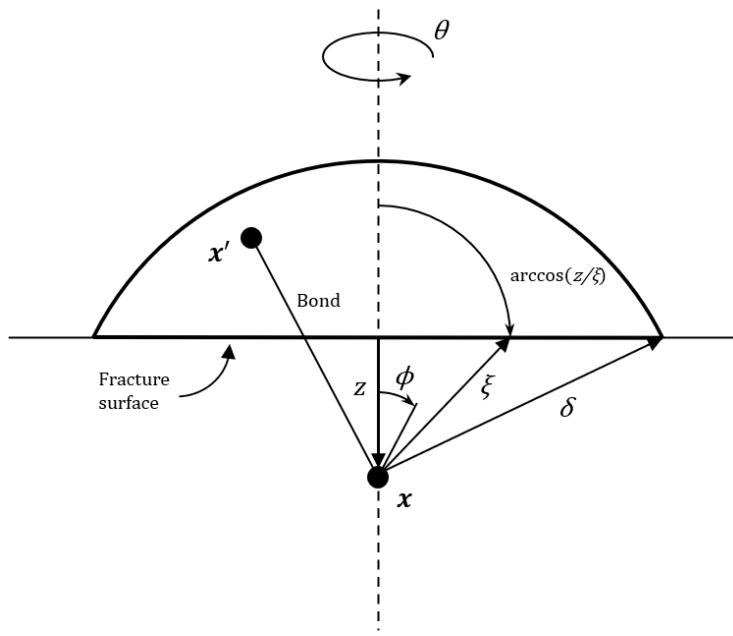
166 where E is the Young's modulus, ν is the Poisson's ratio, and h is the specimen thickness. A similar
 167 procedure is needed to find the critical bond stretch, s_0 . In this case, Silling's approach was to

168 equate the energy required to open a unit area of a crack surface, to the peridynamic energy needed
 169 to break all the bonds joining two points across this surface (Fig. 2). In 3D, the fracture toughness
 170 of a material can be related to the critical bond stretch through the following expression [17, 20]:

$$G_0 = \int_0^\delta \int_0^{2\pi} \int_z^{\cos^{-1} z/\xi} \left(\frac{c s_0^2 \xi}{2} \right) \xi^2 \sin \phi d\phi d\xi d\theta dz , \quad (16)$$

171 leading to:

$$s_0 = \sqrt{\frac{5G_0}{9k\delta}} = \sqrt{\frac{5G_0(1-2\nu)}{3E\delta}} = \sqrt{\frac{5G_0}{6E\delta}} \quad \text{with } \nu = \frac{1}{4} . \quad (17)$$



172

173 **Fig. 2.** Physical representation for the computation of critical peridynamic bond stretch based on fracture
 174 energy.

175 Similarly, for the plane stress conditions, the expression for the critical bond stretch is [70, 71]:

$$s_0 = \sqrt{\frac{4\pi G_0}{9E\delta}} \quad \text{plane stress } \left(\nu = \frac{1}{3} \right) . \quad (18)$$

176 However, this approach has three major limitations; a fixed value for Poisson's ratio that is
 177 problem-dependent, the inability of the bonds to experience anything except axial loads, and the
 178 failure criterion being based only on axial extension/compression of these bonds. All three of these
 179 lead to an inaccurate representation of dynamic crack initiation, propagation, and bifurcation,

180 especially in materials with a different Poisson's ratio and mixed-mode loading where shear effects
 181 are predominant. The rest of this paper focuses on modifying the original bond-based peridynamics
 182 by treating the bonds as Timoshenko beams instead of linear springs to overcome the existing
 183 issues.

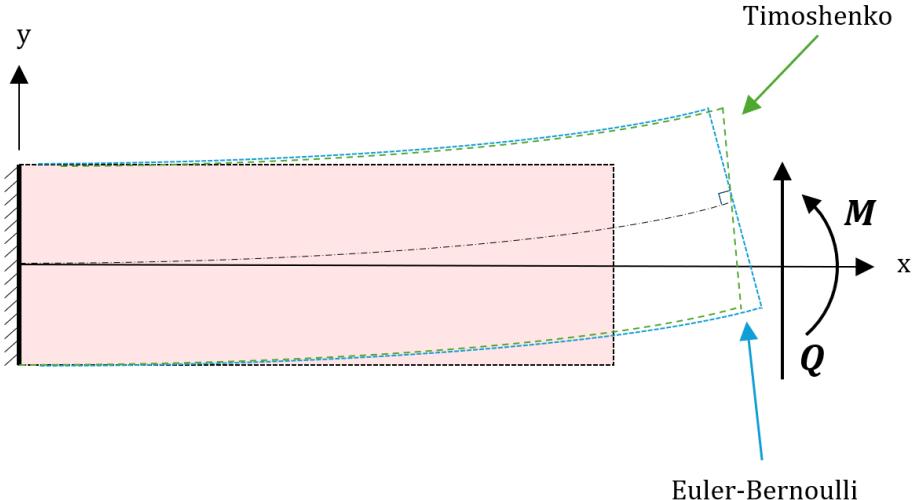
184 *2.2. Proposed 2D Timoshenko-Based Peridynamics*

185 Due to the previously stated issues of BBPD, and the computational cost of the more advanced
 186 SBPD models, extensive research has been undertaken to improve the original BBPD model in
 187 order to add more degrees of freedom to the bonds, such as the work carried out by Gerstle's
 188 MPPD [40, 60, 61], which treated the bonds as Euler-Bernoulli beams. Gerstle's approach partly
 189 solves the Poisson's ratio issue of BBPD, being limited to Poisson's ratios up to 1/4 only, and adds
 190 a rotational degree of freedom to the particles, leading to a more accurate representation of the
 191 linear elastic material's behavior. Nevertheless, the Euler-Bernoulli beam theory is mostly suitable
 192 for high aspect ratio beams and neglects shear deformation, making it insensitive to the deviatoric
 193 part of deformation, failing to capture shear-dominated fracture scenarios (Fig. 3). Thus, further
 194 efforts have been made to improve the peridynamic model by using modified versions of
 195 Timoshenko beam theory adapted for this numerical method which led to the addition of shear
 196 stiffness and rotational stiffness coefficient [47, 61]. However, the purpose of this paper is to use
 197 the exact Timoshenko stiffness matrix with a peridynamic equivalent of the shear influence factor
 198 and reduce the number of stiffness coefficients to tensile and shear (similarly to Gerstle's [60, 61]
 199 work and to classical continuum mechanics where material properties are characterized through
 200 the Young's and shear moduli). Given that the particles are now not only allowed to have linear
 201 displacement but can also rotate, the new peridynamic equations of motion are:

$$\rho \ddot{\mathbf{u}}(\mathbf{x}, t) = \int_{H_x}^{\square} \mathbf{f}(\boldsymbol{\eta}, \boldsymbol{\xi}, \theta_i, \theta_j) dV_{\mathbf{x}'} + \mathbf{b}(\mathbf{x}, t) , \quad (19)$$

$$J_\rho \ddot{\boldsymbol{\theta}}(\mathbf{x}, t) = \int_{H_x}^{\square} \mathbf{m}(\boldsymbol{\eta}, \boldsymbol{\xi}, \theta_i, \theta_j) dV_{\mathbf{x}'} + \mathbf{n}(\mathbf{x}, t) , \quad (20)$$

202 where $\ddot{\boldsymbol{\theta}}$ is the angular acceleration of the particle, \mathbf{n} is an external body moment density field, \mathbf{m}
 203 is a pairwise moment vector in units of force times length per unit volume squared, and J_ρ is the
 204 specific angular mass moment of inertia of a particle.



205

206 **Fig. 3.** Euler-Bernoulli and Timoshenko beam deformation comparison under shear loads.

207 For a two-node, 2D beam, there are two pairwise translational and one pairwise rotational degree
208 of freedom, thus, the Timoshenko stiffness matrix reduces to a six-by-six matrix:

$$\begin{pmatrix} f_{xi} \\ f_{yi} \\ m_{zi} \\ f_{xj} \\ f_{yj} \\ m_{zj} \end{pmatrix} = \begin{bmatrix} \frac{EA}{L} & 0 & 0 & -\frac{EA}{L} & 0 & 0 \\ 0 & \frac{12EI_x}{(1+\varphi_x)L^3} & \frac{6EI_x}{(1+\varphi_x)L^2} & 0 & -\frac{12EI_x}{(1+\varphi_x)L^3} & \frac{6EI_x}{(1+\varphi_x)L^2} \\ 0 & \frac{6EI_x}{(1+\varphi_x)L^2} & \frac{(4+\varphi_x)EI_x}{(1+\varphi_x)L} & 0 & -\frac{6EI_x}{(1+\varphi_x)L^2} & \frac{(2-\varphi_x)EI_x}{(1+\varphi_x)L} \\ -\frac{EA}{L} & 0 & 0 & \frac{EA}{L} & 0 & 0 \\ 0 & -\frac{12EI_x}{(1+\varphi_x)L^3} & -\frac{6EI_x}{(1+\varphi_x)L^2} & 0 & \frac{12EI_x}{(1+\varphi_x)L^3} & -\frac{6EI_x}{(1+\varphi_x)L^2} \\ 0 & \frac{6EI_x}{(1+\varphi_x)L^2} & \frac{(2-\varphi_x)EI_x}{(1+\varphi_x)L} & 0 & -\frac{6EI_x}{(1+\varphi_x)L^2} & \frac{(4+\varphi_x)EI_x}{(1+\varphi_x)L} \end{bmatrix} \begin{pmatrix} u_i \\ v_i \\ \theta_i \\ u_j \\ v_j \\ \theta_j \end{pmatrix}, \quad (21)$$

209

210 where f_x , f_y , and m_z are the axial force, transversal force, and out-of-plane moment, respectively.
211 The subfix i and j denote the node at the coordinate system and at the end of the beam (cf., Fig. 3),
212 respectively (or in the peridynamic sense, the node of interest and its neighbor). The geometrical
213 parameters L , A , and I_x refer to the length, cross-sectional area, and second moment of inertia of
214 the beam respectively. Furthermore, to predict the shear deformation, the shear influence factor,
215 φ_x , is defined as follows:

$$\varphi_x = \frac{12EI_x}{k_sAGL^2} , \quad (22)$$

216 where G is the shear modulus and k_s is the shape factor for the cross-sectional area of the beam.
 217 For the purposes of this study, the “cross-section” of the bond is assumed to be circular, thus, the
 218 shape factor has a value of 10/9 [61].

219 It is worth noting that in the peridynamic framework, material properties such as Young’s modulus
 220 and shear modulus do not appear explicitly, and the bonds do not have a known cross-sectional
 221 area or a second moment of inertia. Instead, the tensile and shear stiffness coefficients encompass
 222 these characteristics and are, from now on, defined as $c = EA$, and $\kappa = EI_x$, respectively.
 223 Furthermore, the length of the bond in the undeformed configuration, ξ , corresponds to the beam
 224 length. Given that the sum of all forces and moments from all bonds attached only to the node of
 225 interest is needed to compute its acceleration, the Timoshenko stiffness matrix can be truncated to
 226 a six-by-three matrix as such:

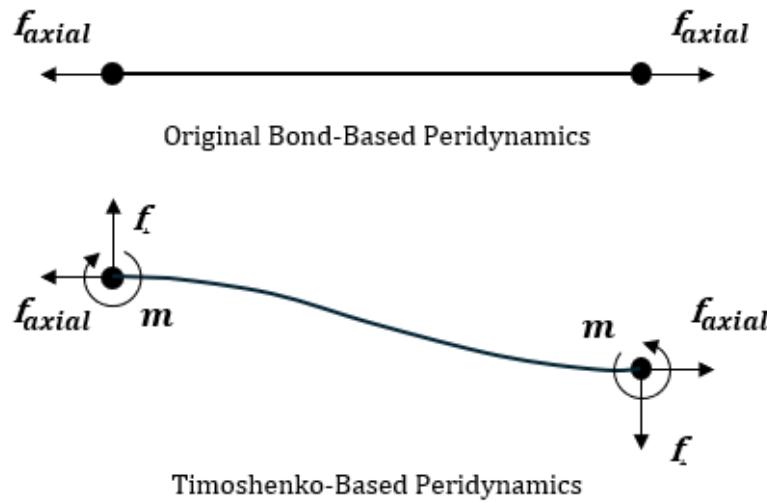
$$\begin{Bmatrix} f_{xi} \\ f_{yi} \\ m_{zi} \end{Bmatrix} = \begin{bmatrix} \frac{c}{\xi} & 0 & 0 & -\frac{c}{\xi} & 0 & 0 \\ 0 & \frac{12\kappa}{(1 + \varphi_x)\xi^3} & \frac{6\kappa}{(1 + \varphi_x)\xi^2} & 0 & -\frac{12\kappa}{(1 + \varphi_x)\xi^3} & \frac{6\kappa}{(1 + \varphi_x)\xi^2} \\ 0 & \frac{6\kappa}{(1 + \varphi_x)\xi^2} & \frac{(4 + \varphi_x)\kappa}{(1 + \varphi_x)\xi} & 0 & -\frac{6\kappa}{(1 + \varphi_x)\xi^2} & \frac{(2 - \varphi_x)\kappa}{(1 + \varphi_x)\xi} \end{bmatrix} \begin{Bmatrix} u_i \\ v_i \\ \theta_i \\ u_j \\ v_j \\ \theta_j \end{Bmatrix} . \quad (23)$$

227
 228 This novel recasting of the MPPD Timoshenko stiffness matrix maintains the shear influence
 229 factor as a length-dependent variable, similar to the original Timoshenko stiffness matrix. Thus,
 230 shorter bonds will be subjected to higher and more accurate shear forces, leading to earlier failure
 231 as compared to previous MPPD models where this differentiation was not accounted for.
 232 Assuming local isotropy, using the relationship between the Young’s modulus and shear modulus,
 233 the shear influence factor is reformulated in peridynamic form as:

$$\varphi_x = \frac{12EI_x}{k_sAGL^2} = \frac{12EI_x}{\frac{10}{9}AL^2} \times \frac{2(1 + \nu)}{E} = \frac{108\kappa(1 + \nu)}{5c\xi^2} . \quad (24)$$

234 Now, the Timoshenko beam theory has been implemented into the peridynamic framework, adding
 235 one translational and one rotational degree of freedom for a 2D case (Fig. 4). To obtain the two

236 stiffness constants in terms of the classical material properties, the strain energy density expression
 237 from continuum mechanics is equated to the new expression found from Timoshenko MMPD in
 238 terms of the unknown constants. For the case of isotropic expansion (uniform strain field), the
 239 bonds are only stretched axially, and no shear effects are seen. Thus, following the same procedure
 240 as Silling [34], the same axial micromodulus equation as in Eq. (15) is obtained. To acquire the
 241 expression for the shear micromodulus, a similar procedure is followed but applying a uniform
 242 shear field. The micropotential is then described by Eq. (25) as:



243

244 **Fig. 4.** Degrees of freedom on original bond-based and Timoshenko-based peridynamics.

$$w = \frac{1}{2} d^T \begin{bmatrix} c \\ \xi & 0 \\ 0 & \frac{12\kappa}{\xi^3(1 + \varphi_x)} \end{bmatrix} d , \quad (25)$$

245 where d is the two-node's beam displacement vector, and the strain energy density is computed
 246 using Eq. (7). Originally, in 2D, this is a one-by-six vector holding the two translational and one
 247 rotational degrees of freedom of both nodes, but under the assumption of isotropic expansion
 248 around the node of interest, this can effectively be reduced to a one by two vector [65]. Thus,

$$d = [u_i \ v_i \ \theta_i \ u_j \ v_j \ \theta_j] , \quad (26)$$

249 becomes,

$$d = [u_j \ v_j] = [\gamma_{xy}\xi \sin 2\phi \ \gamma_{xy}\xi \cos 2\phi] , \quad (27)$$

250 where γ_{xy} is the shear strain, and ϕ is the counterclockwise angle between the bond and the positive
 251 x-axis. Next, the local peridynamic strain energy density is computed as:

$$W_{PD} = \frac{h}{4} \int_0^\delta \int_0^{2\pi} d^T \begin{bmatrix} \frac{c}{\xi} & 0 \\ 0 & \frac{12\kappa}{\xi^3(1+\varphi_x)} \end{bmatrix} d\xi d\phi d\xi . \quad (28)$$

252 Integrating, the peridynamic strain energy density becomes,

$$W_{PD} = \frac{h}{4} \left[\frac{c\pi\delta^3}{12} + \frac{12\kappa\pi\delta}{\varphi_x + 1} \right] \gamma_{xy}^2 . \quad (29)$$

253 For plane stress conditions, the strain energy density from continuum mechanics is:

$$W_{CM} = \frac{1}{2} \{0 \quad 0 \quad \gamma_{xy}\} \frac{E}{1-\nu^2} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1-\nu}{2} \end{bmatrix} \begin{Bmatrix} 0 \\ 0 \\ \gamma_{xy} \end{Bmatrix} = \frac{E}{1-\nu} \gamma_{xy}^2 . \quad (30)$$

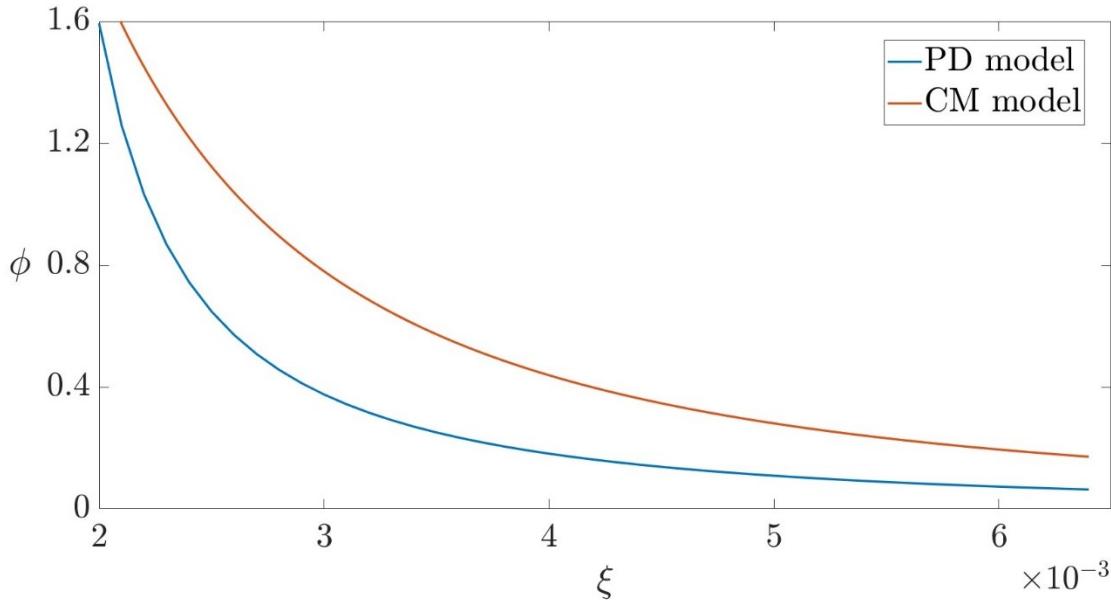
254 Equating the terms in Eqs. (29) and (30), and solving for the shear micromodulus, the expression
 255 for plane stress conditions becomes:

$$\kappa = \frac{E(1-3\nu)(\varphi_x + 1)}{24\pi h \delta (1-\nu^2)} . \quad (31)$$

256 The shear stiffness coefficient is derived from an innovative formulation that incorporates sliding
 257 deformations in accordance with Timoshenko's beam theory. This is accomplished by accounting
 258 for the length-dependent shear influence factor. The model accommodates a broad spectrum of
 259 Poisson's ratios, unlike the original BBPD, which resulted in a fixed value for this material
 260 property. Nevertheless, similarly to other MPPD models, there is a Poisson's ratio upper limit.
 261 Gerstle's MPPD model presented a lower upper limit of 1/4 [60, 61], while previous MPPD models
 262 utilizing adaptations of the Timoshenko theory without an explicit formulation of the shear
 263 influence factor also show an upper limit of 1/3 for this property [64, 65]. It is worth noting that
 264 this range covers a grand majority of isotropic brittle materials, which usually have values between
 265 0.15 to 0.33. Substituting Eqs. (15) and (31) into Eq. (24), the shear influence factor is reformulated
 266 as:

$$\varphi_x = \frac{1}{\frac{20}{3(1-3\nu)} \left(\frac{\xi}{\delta} \right)^2 - 1} , \quad (32)$$

267 which is now only a function of the bond length, the horizon radius, and the Poisson's ratio. As
 268 seen in Fig. 5, the peridynamic shear influence factor behaves very similarly to Timoshenko's
 269 shear influence factor as the length of the beam changes and all other variables are held constant.
 270 For comparison purposes, the shear influence factor in both cases was computed using equivalent
 271 geometrical properties by matching the axial stiffness coefficient previously defined as $c = EA$.



272

273 **Fig. 5.** Classical Timoshenko vs MPPD shear influence factor. Bond length ranges from $\Delta x = 0.002\text{m}$ to
 274 0.0064 m .

275 Similarly, using the beam analogy once again, the critical shear strain of a bond is related to the
 276 critical axial strain as follows:

$$\gamma_0 = \frac{s_0 c \xi^2}{12\kappa} , \quad (33)$$

277 where γ is defined as,

$$\gamma = \frac{v_j - v_i}{\xi} . \quad (34)$$

278 Then, the proposed method is implemented by discretizing Eqs. (19) and (20), turning the
 279 integral over the horizon into a summation of the contribution of each neighboring node to the
 280 forces and moments as follows:

281

$$\rho \ddot{\mathbf{u}}_i^n = \sum_{j=1}^m \mathbf{f}(\mathbf{u}_m^n - \mathbf{u}_i^n, \mathbf{x}_n - \mathbf{x}_i, \theta_i, \theta_j) V_j + \mathbf{b}_i^n \quad , \quad (35)$$

$$J_\rho \ddot{\theta}_i^n = \sum_{j=1}^m \mathbf{m}(\mathbf{u}_m^n - \mathbf{u}_i^n, \mathbf{x}_n - \mathbf{x}_i, \theta_i, \theta_j) V_j + \mathbf{n}_i^n \quad , \quad (36)$$

282 where n is the time step, and the subscripts denote the node number, so that

$$\mathbf{u}_i^n = \mathbf{u}(\mathbf{x}_i, t^n) \quad . \quad (37)$$

283 Comparably to the approach used in finite element methods, in peridynamics the stresses are
284 applied as an external force per unit volume acting on the surface nodes, represented by the term
285 \mathbf{b}_i^n in Eq. (35). Once the acceleration is computed, the explicit time integration to find the new
286 position and velocity is done using the Velocity-Verlet algorithm [70]:

$$\dot{\mathbf{u}}_{n+\frac{1}{2}} = \dot{\mathbf{u}}_n + \frac{\Delta t}{2} \ddot{\mathbf{u}}_n \quad , \quad (38)$$

$$\mathbf{u}_{n+\frac{1}{2}} = \mathbf{u}_n + \Delta t \dot{\mathbf{u}}_{n+\frac{1}{2}} \quad , \quad (39)$$

$$\dot{\mathbf{u}}_n = \dot{\mathbf{u}}_{n+\frac{1}{2}} + \frac{\Delta t}{2} \ddot{\mathbf{u}}_{n+1} \quad , \quad (40)$$

287 where $n + \frac{1}{2}$ denotes a half time step, and Δt is the time step size.

288 **3. Results and Discussion**

289 In this section, the performance of the new Timoshenko MPPD is first compared to a benchmark
290 elastic solution and later to the original BBPD, and the extended non-ordinary SBPD under in-
291 plane dynamic loading conditions. The numerical outcomes are then verified against experimental
292 results for well-known benchmark problems obtained from the literature, such as dynamic
293 branching under pure mode I and the Kalthoff-Winkler experiment for mixed-mode dynamic
294 fracture [72-76]. Later, the effects of varying Poisson's ratio and loading rates on crack paths are
295 investigated using the proposed model.

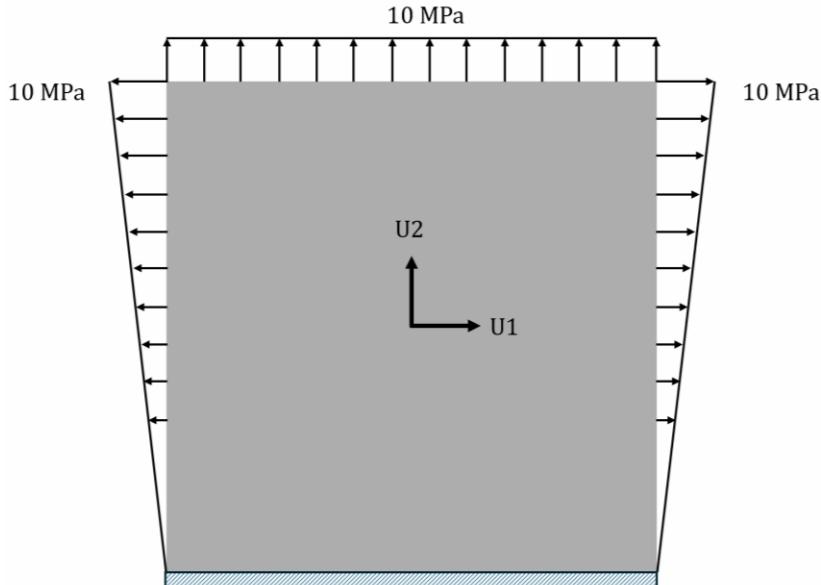
296

297

298

299 *3.1. Benchmark Elastic Problem*

300 A known isotropic linear-elastic benchmark problem is solved in this section using the proposed
301 Timoshenko-based MPPD model and verified against the FEM analysis. Fig. 6 shows the boundary
302 conditions for the problem.



303

304 **Fig. 6.** Elasticity benchmark problem BC's.

305

306 Similarly to the work done in [47], the square plate has a Young's modulus of 70 GPa and a
307 Poisson's ratio of 0.25. The structured mesh has a size of $\Delta x = 0.01$ m, and the horizon radius was
308 chosen to be $\delta = 3\Delta x$. Fig. 7 shows the results for both the proposed model and the FEM solution.

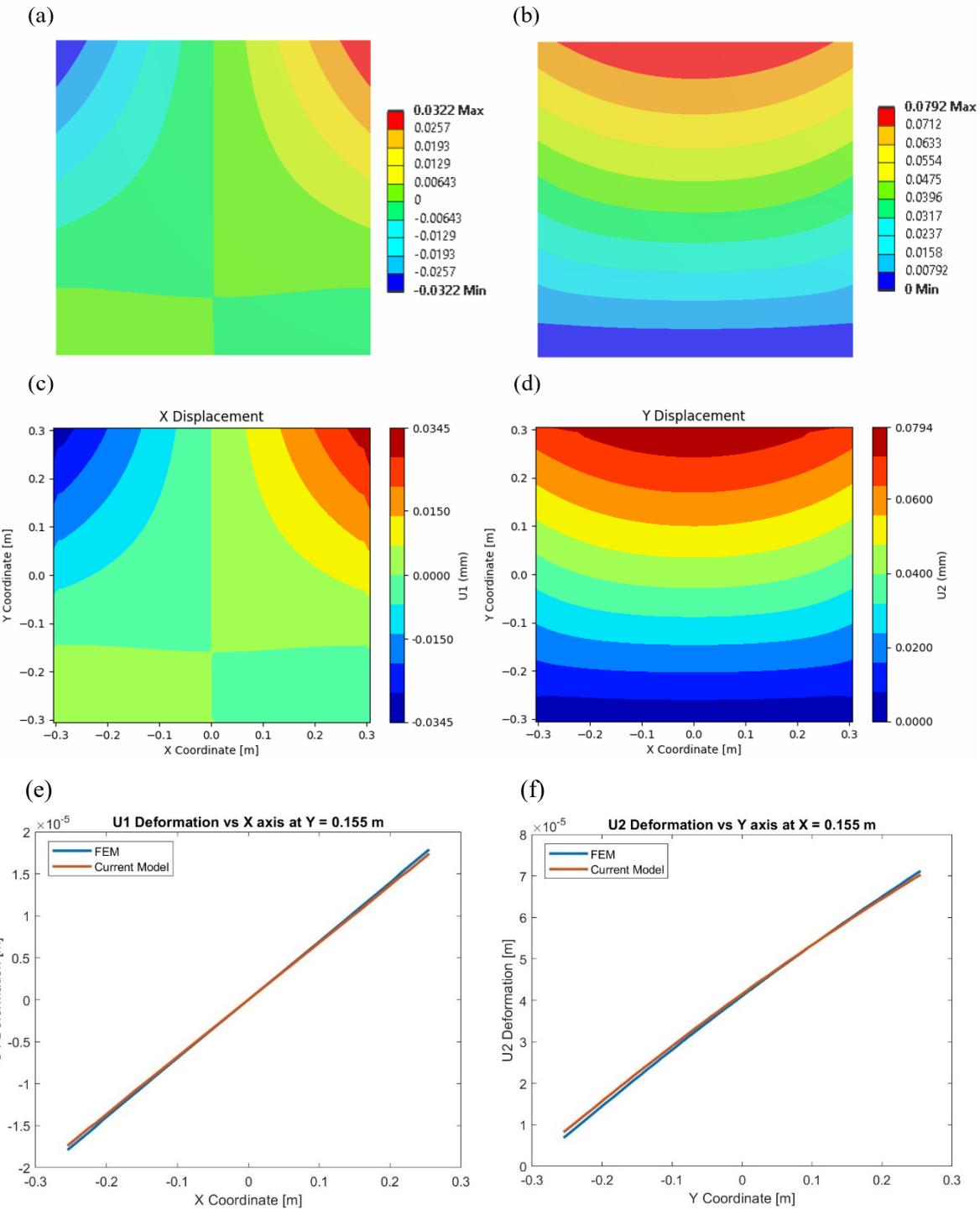
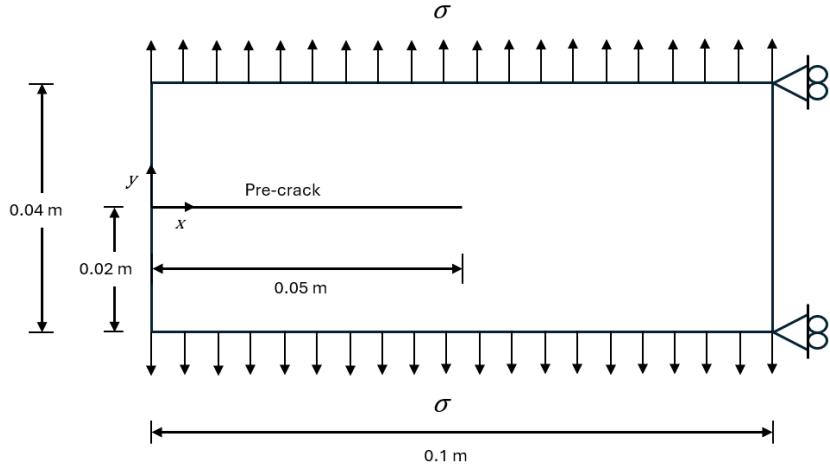


Fig. 7. Elastic benchmark problem solution from FEM for a) x-displacement, b) y-displacement, and the proposed model for c) x-displacement, d) y-displacement in addition to the comparison along $y=0.155\text{ m}$ for e) x-displacement, and along $x=0.155\text{ m}$ for f) y-displacement.

313 It is apparent that the displacement field is accurately approximated by the proposed model. As
314 can be seen in Fig. 7a and 7c, the maximum x-displacement is 0.0322 mm and 0.0345 mm,
315 respectively, denoting a 7.1% error. In the y-direction, Fig. 7b and 7d show a maximum
316 displacement of 0.0792 mm and 0.0794 mm, indicating a 0.25% error. Moreover, the average
317 percent error along the vertical line located at $x = 0.155$ m, is 3.25% and the average percent error
318 along the horizontal line placed at $y = 0.155$ m is 2.19%. These lines were chosen with the intention
319 to investigate discrepancies in high gradient regions away from the edges. Regarding maximum
320 percent error, at the vertical line, the y-displacement percent error is 19.9% and in the horizontal
321 line the x-displacement percent error is 2.8%. It is worth noting that the high maximum error in
322 the vertical line is due to small deformation values involved in this location, which is close to the
323 fixed boundary. The displacement discrepancy at this point, however, is only 1.37×10^{-6} m,
324 which is a 0.002% when compared to the maximum displacement. Given that the mesh size and
325 peridynamic horizon are the same as in other MPPD models, it shows that the variable shear
326 influence factor has a significant impact over the results. For instance, in the work done in [47],
327 the maximum error was around 15%. Indeed, while the presented model demonstrates high
328 accuracy in predicting FEM results, its performance may slightly vary depending on the problem
329 size and other discretization parameters.

330 *3.2. Pure Mode I Dynamic Branching*

331 To investigate the validity of the presented model, a benchmark problem illustrated in Fig. 8 is
332 simulated using the proposed Timoshenko MPPD, and compared to results obtained from original
333 BBPD, extended NO-SBPD, and experiments. Table 1 summarizes the material properties of
334 Duran 50, which is used for this model.



335

336 **Fig. 8.** Loading and boundary conditions for mode I dynamic brittle fracture on edge-crack specimen.

337 **Table 1.** Duran 50 material properties [77].

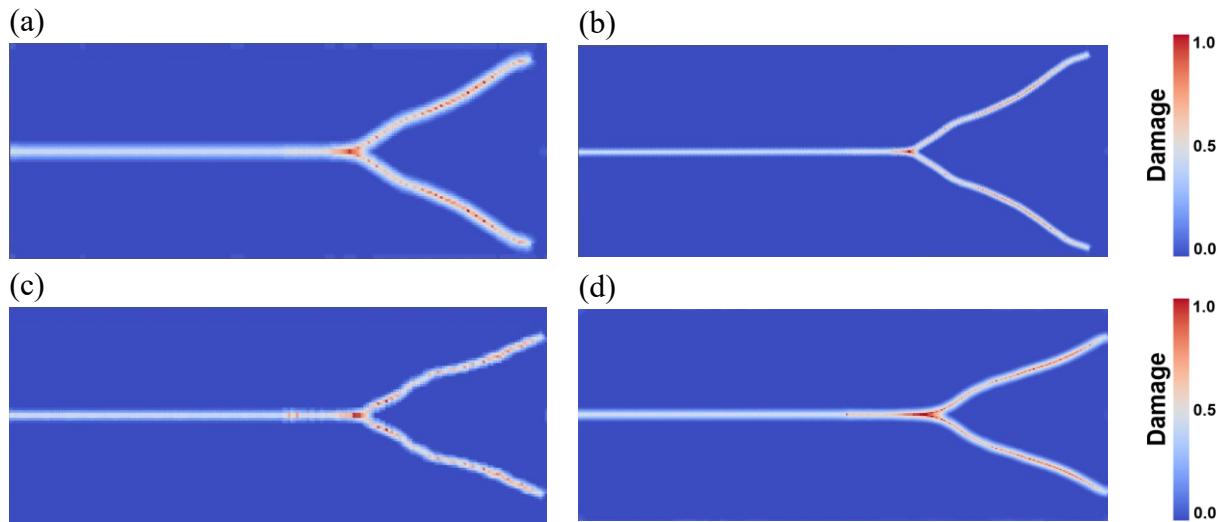
Young's Modulus, E (GPa)	Poisson's Ratio	Density (kg/m ³)	Fracture Energy, G_0 (kJ/m ²)
65	0.2	2235	0.2

338

339 The test sample consists of a thin 10 by 4 cm plate with a 5 cm edge crack. Duran 50 is a brittle
 340 material commonly used in this benchmark problem, both in numerical and experimental tests [70,
 341 71, 72, 76], and thus it is chosen for the validation of the proposed model herein. The sample is
 342 symmetrically loaded with a sudden stress of 12 MPa on the upper and lower edges while
 343 preventing displacement on the x -direction of the rightmost edge. As described in [71] and [77],
 344 peridynamic models are sensitive to the choice of grid size and horizon radius. A highly refined
 345 mesh with a large horizon radius would lead to extremely long computational time while not
 346 necessarily obtaining a significantly better solution than a simpler model with a lesser number of
 347 nodes and a shorter horizon radius. Thus, two types of convergence analysis are performed to find
 348 an optimal grid size and horizon radius, the m -convergence and the δ -convergence. For the m -
 349 convergence, the horizon radius δ is kept constant while the grid size is changed, while for the δ -
 350 convergence, the ratio between the horizon radius and the grid size is kept constant, and the grid
 351 size is changed. Fig. 9 shows both convergence analyses, with the δ -convergence on the top (Fig.
 352 9a and 9b), and the m -convergence on the bottom (Fig. 9c and 9d).

353 The δ -convergence analysis was performed by fixing the horizon-to-grid size ratio to 4 (i.e., $m =$
 354 4) and using two grid sizes ($\Delta x = 0.5$ mm and $\Delta x = 0.25$ mm), shown in Fig. 9a and 9b,

355 respectively. Both results show similar crack paths and branching phenomena as expected.
 356 However, the computational times are significantly different, with a 20-minute run for the $\Delta x =$
 357 0.5 mm grid and 3.5 hours for the $\Delta x = 0.25$ mm grid. In the m-convergence analysis, a constant
 358 radius of 1.5 mm is chosen, and two grid sizes of $\Delta x = 0.5$ mm ($m = 3$) and $\Delta x = 0.25$ mm ($m = 6$)
 359 are used (see Fig. 9c and 9d) [71, 77]. While a more refined mesh (i.e., a larger m-ratio) results in
 360 a more concise crack, the overall crack path and crack length are almost identical to the coarser
 361 grid, which requires a computational time one order of magnitude smaller. Thus, the grid size of
 362 0.5 mm and the m-ratio of 3.2 will be used for the numerical investigations of this study.

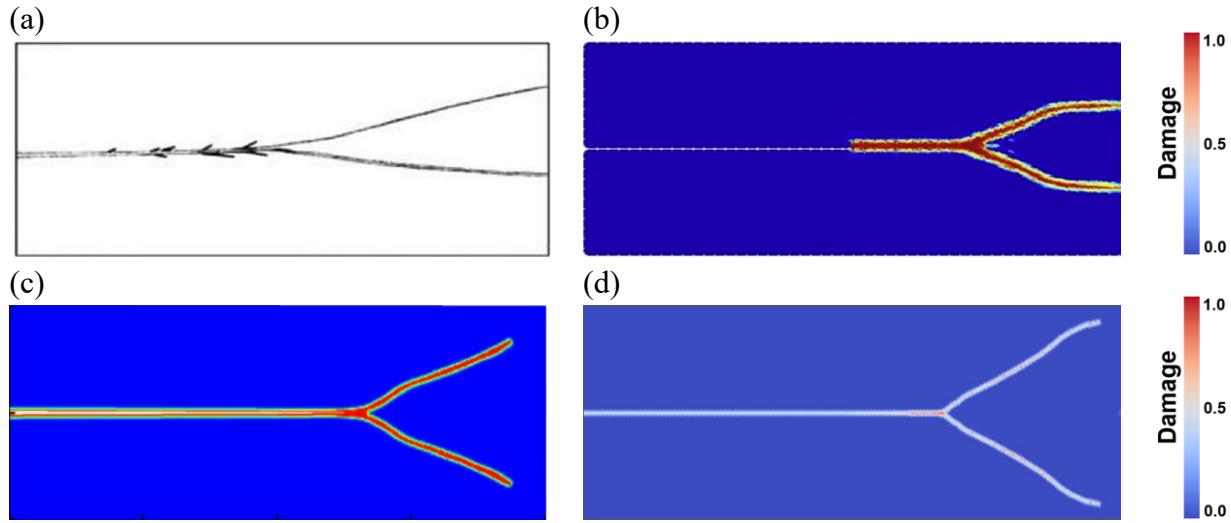


363 **Fig. 9.** Study on m-convergence analysis with $m = 4$ and a) $\Delta x = 0.5$ mm, and b) $\Delta x = 0.25$ mm. δ -
 364 convergence analysis with $\delta = 1.5$ mm and c) $\Delta x = 0.5$ mm, and d) $\Delta x = 0.25$ mm.

365 However, to facilitate a better comparison with other numerical methods reported in the literature
 366 (see [77]), the grid size for the next model is specifically chosen as $\Delta x = 0.25$ mm. This selection
 367 aligns with the grid size used in [77], which also has a value of 0.25 mm, resulting in a total of
 368 64,000 discrete material points.

369 To ensure the numerical stability of the explicit simulation, the time step also needs to be chosen
 370 carefully. The maximum time step size is dictated by the time a stress wave requires to propagate
 371 through a single grid size unit [34]. In this study, a safety factor of 1/5 is applied as a rule of thumb
 372 to guarantee numerical stability and accuracy. Following the work done in [71, 72], the total real
 373 simulation time is set to 50 μ s, and the horizon radius (δ) is $m \times \Delta x$ where m is equal to 3.2. Note
 374 that the m is chosen to be 3.2 as it has been reported in the literature that the values between 3 and
 375 4 yield accurate results with the lowest computational cost [51, 56, 71]. The CPU simulation time

376 for this model was 3.5 hours on an 11th Gen Intel(R) Core (TM) i7-11850H @ 2.50GHz. Fig. 10
 377 shows the results for all the aforementioned cases at 46 μ s, right before the crack propagates
 378 through the rightmost edge.



379 **Fig. 10.** Pure mode I dynamic crack branching under symmetrical loading (12 MPa) for a) experiment by
 380 Ravi-Chandar and Knauss [76], b) extended NOSB [77], c) BBPD [71], and d) the present
 381 numerical method.

382 It is apparent that the present model shows crack propagation and branching as expected from
 383 experimental observations and as predicted by both BBPD and extended NO-SBPD models. The
 384 initial bifurcation angle is consistent between models as shear effects are not significant on the
 385 onset of bifurcation. However, shortly after branching the two new crack tips are subjected to shear
 386 forces leading to a gradual change of the crack paths and returning to a horizontal propagation (as
 387 observed in Ravi-Chandar's and Knauss' experiment [76]). This phenomenon cannot be seen in
 388 the original BBPD results, but it is captured by both the extended NO-SBPD model and the present
 389 model.

390 Fig. 11 shows the crack propagation speed over time for the proposed model, the original BBPD
 391 [70], the extended NO-SBPD [77], and the maximum experimental speed [78], using a grid spacing
 392 of $\Delta x = 0.5$ mm in all models for a more rigorous comparison between results. As can be seen in
 393 this figure, the proposed Timoshenko MMPD model has an overall better performance compared
 394 to the other two models considering both the accuracy of the results and the computational time.
 395 The maximum crack propagation speed found by the current model was 1708 m/s, which is 8%
 396 higher than the maximum theoretical speed, while the original BBPD model shows a 25.6%

397 overshoot with a maximum velocity of 1985 m/s. The extended NO-SBPD shows a better
 398 agreement with the theoretical values at approximately 5% overshoot. However, the presented
 399 model is mathematically simpler and hence less computationally expensive for a comparable
 400 result.

401 Note that the crack speed is calculated using the following equation:

$$V_{tip} = \frac{\|\mathbf{x}_n - \mathbf{x}_{n-1}\|}{t_n - t_{n-1}}, \quad (35)$$

402 where V_{tip} , \mathbf{x}_n , \mathbf{x}_{n-1} , t_n , and t_{n-1} , are the crack tip velocity, the crack tip position in the current
 403 and previous time steps, and the real simulation time in the current and previous time steps,
 404 respectively.



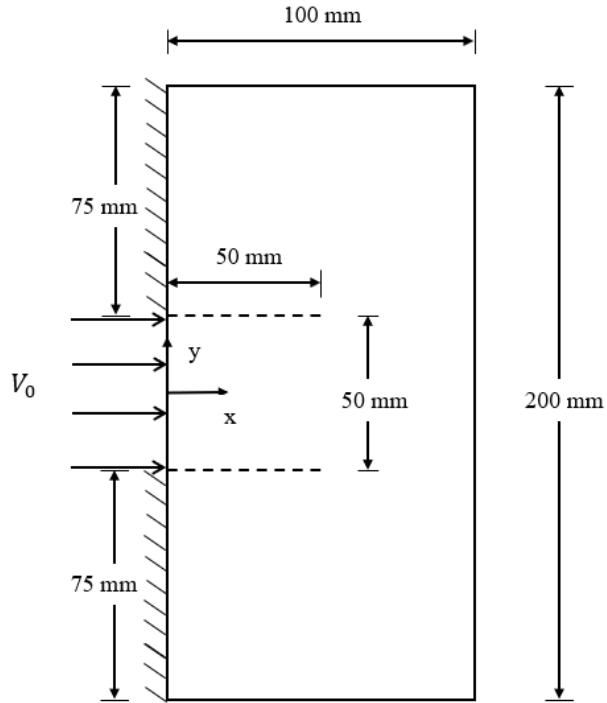
405

406 **Fig. 11.** Crack propagation speed comparison between the proposed model, the original BBPD [70],
 407 extended NO-SBPD [77], and the maximum experimental velocity [78].

408 3.3. Kalthoff-Winkler Experiment

409 The Kalthoff-Winkler experiment is a well-known benchmark problem for in-plane mixed-mode
 410 dynamic crack propagation for which extensive experimental and numerical results can be found
 411 in the literature. Fig. 12 illustrates the geometry and boundary conditions for the test setup, which
 412 consists of a thin rectangular 100 by 200 mm plate with two symmetrically placed 50 mm edge

413 cracks, and a velocity constraint is imposed on the edge between the cracks. The material
 414 properties are those of maraging steel and can be found in Table 2.



415

416 **Fig. 12.** Boundary conditions for the Kalthoff-Winkler mixed-mode dynamic fracture experiment.

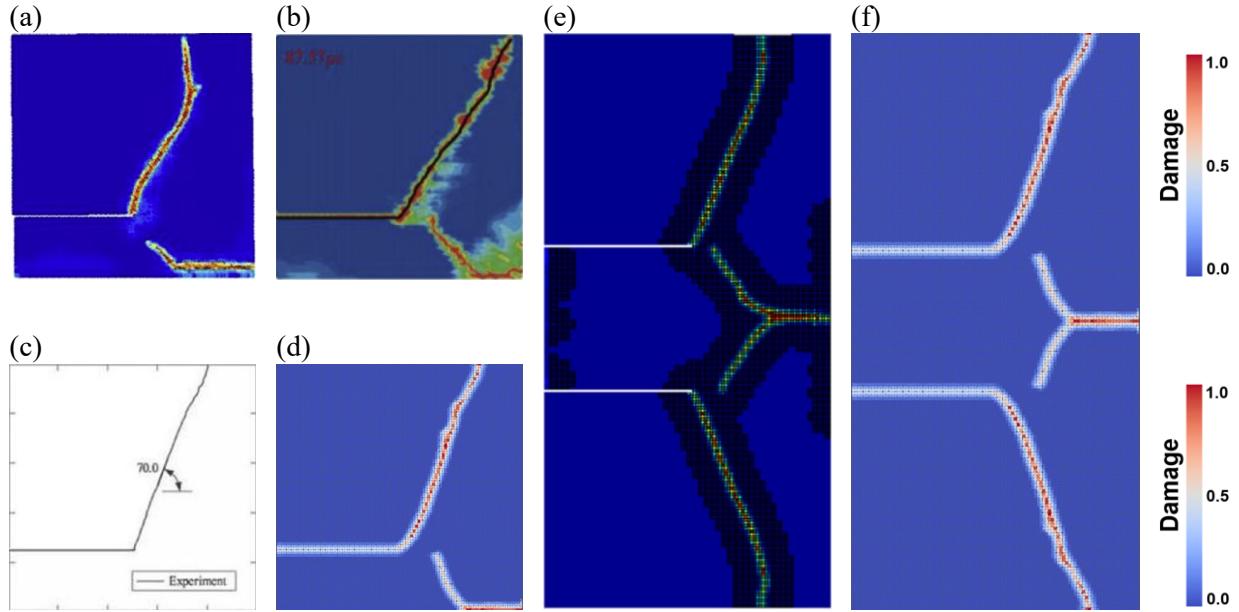
417

418 **Table 2.** Maraging steel material properties [77].

Young's Modulus, E (GPa)	Poisson's Ratio	Density (kg/m ³)	Fracture Energy, G_0 (kJ/m ²)
190	0.3	8000	22.17

419

420 For a better comparison, in this case, the grid spacing for the numerical simulation is chosen to be
 421 the same as in the simulations carried out by Zhou et al. [77], and by Dipasqual et al. [79], where
 422 $\Delta x = 1$ mm. The total number of material points is 20,000 and the time step is chosen in the same
 423 manner as explained in the previous benchmark example. An initial velocity of 16.5 m/s is applied
 424 to the leftmost edge at $-25 \leq y \leq 25$ mm, and the real simulation time is 90 μ s. Note that the
 425 coordinate system is placed in the middle of the specimen on the left edge. Similarly, the m-ratio
 426 between the horizon radius and grid size is set to $m = 3.2$. Fig. 13 shows the results obtained
 427 experimentally, and using XFEM, BBPD, extended NO-SBPD, and the proposed model.



428 **Fig. 13.** Results for Kalthoff-Winkler setup a) extended NOSB by Zhou et al. [77], b) XFEM by
 429 Belytscho et al. [80], c) original Kalthoff-Winkler experiment [74], d) proposed model, e) BBPD by
 430 Dipasqual et al. [79], and f) proposed model for the full specimen.

431 While the experiment setup is the one described earlier, it is common to apply symmetric boundary
 432 conditions at $y = 0$ and simulate only one-half of the test article to save computational resources
 433 as seen in several examples in Fig. 13. For the present study, however, the full test article was
 434 simulated as seen in Fig. 13f, and a crop of only the upper part is shown in Fig. 13d for better
 435 visualization and comparison.

436 As expected from classical fracture mechanics and seen in the Kalthoff-Winkler experiment, under
 437 in-plane shear-dominant loading conditions, the crack initiation angle is close to 70° [2,5]. All
 438 numerical models presented in Fig. 13 capture this phenomenon accurately, with the exception of
 439 XFEM having a slightly lower slope. However, there is a noticeable difference towards the end of
 440 the simulation as the crack approaches the upper edge. Both BBPD [79] and extended NO-SBPD
 441 [77] show the crack path deviating upwards becoming almost vertical towards the edge. However,
 442 the original experimental results [74] show the crack maintaining a straight fashion until the end
 443 with some minor kinking. This is also seen in the XFEM results [80] but the crack leans towards
 444 the end more than the one seen in the experiment or other numerical results. The Timoshenko
 445 MPPD model presented here, captures the crack initiation angle, and the entire crack path
 446 accurately being almost identical to the experimental results, proving its capabilities to capture
 447 shear effects on brittle materials. It is worth noting that while not seen in the experiment carried

448 out by Kalthoff and Winkler [74], a second crack naturally forms at the center of the specimen on
449 the rightmost edge and starts propagating as a Mode I fracture that later branches symmetrically.
450 This phenomenon is also observed in all other numerical results presented in Fig. 13, exhibiting a
451 similar crack pattern.

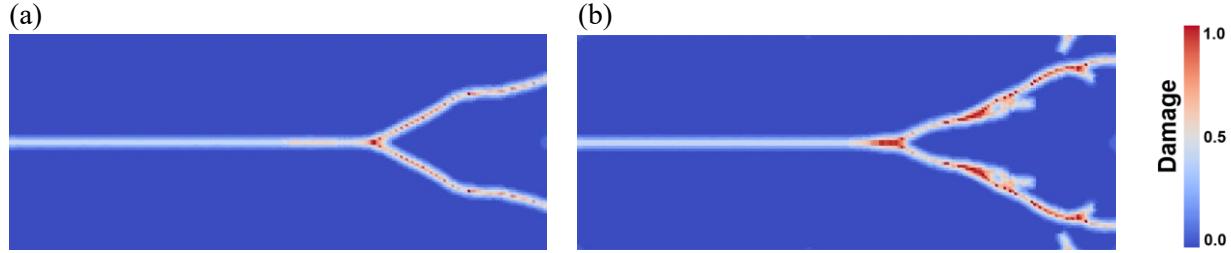
452 *3.4 Further Numerical Results*

453 In the following section, the effects of loading rate and Poisson's ratio on mixed-mode dynamic
454 fracture behavior are investigated. The two benchmark problems discussed in Sections 3.2 and 3.3
455 are subjected to higher stresses and initial velocities respectively while keeping all the rest of the
456 parameters the same for a more insightful qualitative analysis of the effects of higher loading rates.
457 Similarly, the effects of different Poisson's ratios on crack propagation are studied on those same
458 specimens. Finally, the Kalthoff-Winkler experiment setup is modified by changing the crack
459 orientation angles and tested under various initial conditions.

460 *3.4.1 Effects of loading rate*

461 In this section, the effect of loading rate for pure mode I and in-plane loading conditions is
462 investigated by subjecting the specimens from Sections 3.2 and 3.3 to two different loading rates.
463 Additionally, these effects are also investigated in two modified Kalthoff-Winkler setup models.

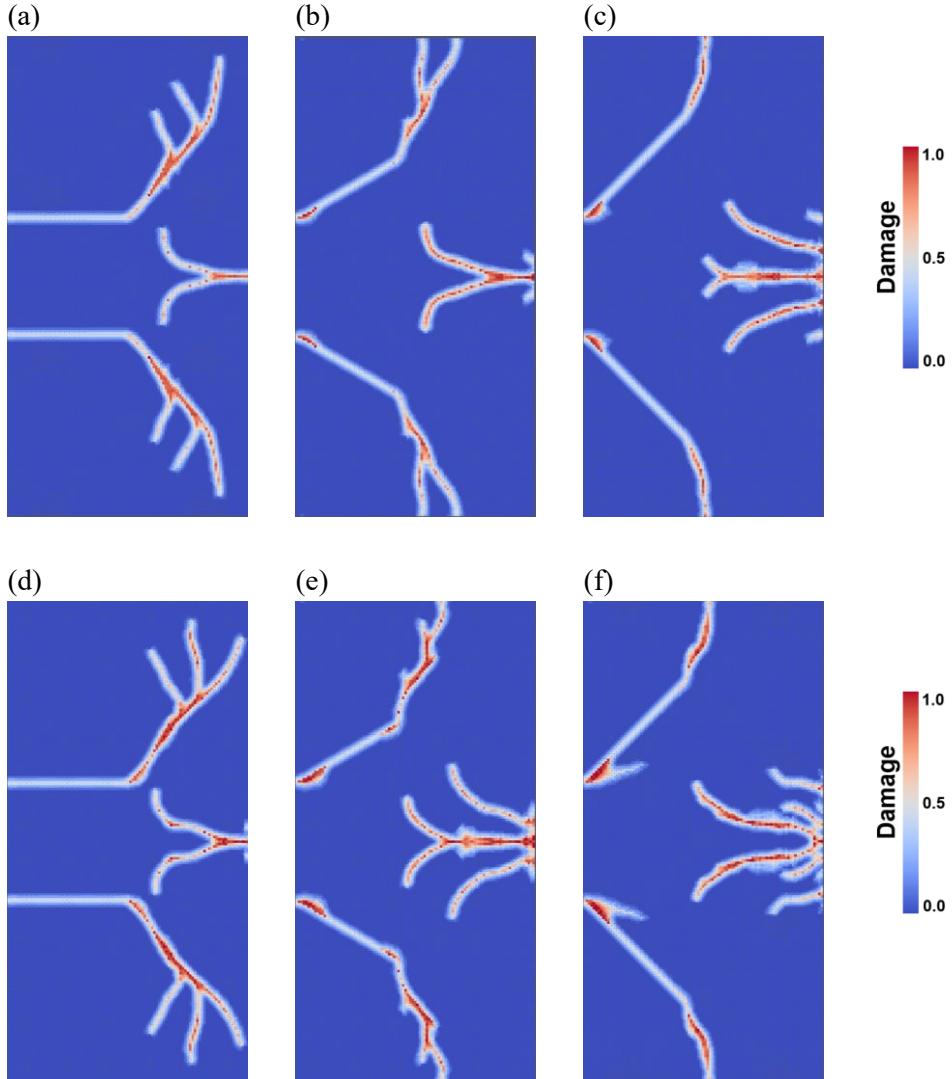
464 Under pure mode I conditions, all the material properties and geometrical parameters are identical
465 to the ones mentioned in Section 3.2, except for a coarser grid size of $\Delta x = 0.5$ mm, and a Poisson's
466 ratio of 0.3. The test article was subjected to a sudden load of 20 and 30 MPa as shown in Fig. 14.
467 For the 20 MPa loading case (Fig. 14a), a simple bifurcation pattern with no secondary branching
468 is observed, very similar to previous cases. However, the two crack tips present a sudden change
469 in propagation angle shortly after bifurcation, indicating a more prominent stress wave interference
470 pattern during crack growth. Constructive interference of these waves leads to localized areas with
471 greater stress that the crack tips propagate through. At a higher loading stress of 30 MPa (Fig. 14b),
472 the crack path shows a more complex pattern with secondary branching occurring due to the
473 aforementioned reasons. A higher number of crack fronts at higher loading rates is also expected
474 in order to dissipate the energy in the specimen once the material cannot store any more elastic
475 energy [71].



476 **Fig. 14.** Dynamic Mode I branching in Duran 50 at a) $\sigma = 20$ MPa and b) $\sigma = 30$ MPa.

477 For mixed-mode loading conditions, the exact same simulation parameters as in Section 3.3 is
 478 used, except for the initial velocities, which is set to 30 and 40 m/s for the analysis (Fig. 15a and
 479 15d, respectively). Two other variations of this test article are modeled for different mode mixities
 480 with crack orientation angles of 30° and 60° as shown in Fig. 15b and 15e, and Fig. 15c and 15f,
 481 respectively. Both test articles were also subjected to initial velocities of 30 and 40 m/s, as depicted
 482 in Fig. 15b and 15c, and Fig. 15e and 15f, respectively.

483 For the original Kalthoff-Winkler setup configuration, increasing the initial speed to 30 m/s leads
 484 to a slightly shallower crack initiation angle [2] and more prominent secondary branching, with
 485 secondary cracks forming at nearly right angles from the main branch. This additional branching
 486 is not seen in the original experiment at 16.5 m/s. As the crack angle is increased, the crack tip is
 487 closer to the edges of the specimen, and the shear deformations are not as significant around the
 488 crack tip. It is apparent that branching becomes less prominent as the crack angle is increased and
 489 the crack tip starts closer to the upper edge. In the 60° case this phenomenon is not observed and
 490 only crack kinking is seen. However, as the crack angle increases, the naturally occurring cracks
 491 along the middle of the rightmost edge begin to propagate earlier and branch more extensively,
 492 resulting in greater damage and increased energy release in this region. At 40 m/s the crack paths
 493 are similar to those seen at 30 m/s, presenting even shallower crack initiation angles and more
 494 branching events due to the higher energy dissipation rates required. It is also worth noting that a
 495 shear band forms in the configuration displayed in Fig. 15f, where the original crack meets the
 496 leftmost edge of the specimen. This shear band formation is similar to the results observed by
 497 Diana and Ballarini [46] showing the failure mode switching at higher loading rates.

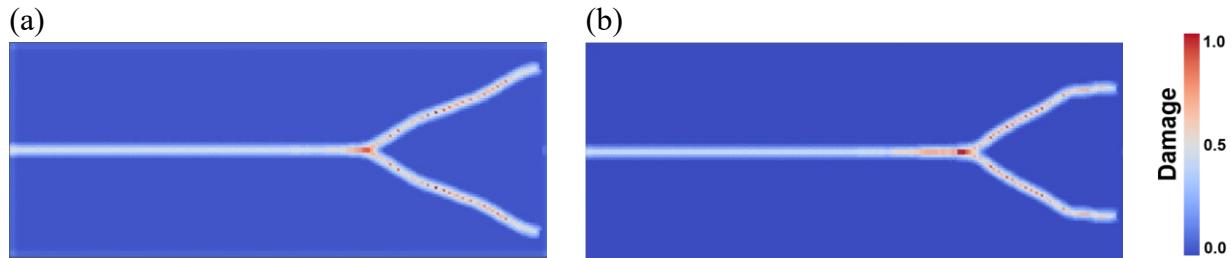


498 **Fig. 15.** Dynamic crack propagation in the modified Kalthoff-Winkler setup at 30 m/s for an initial
499 crack angle of a) 0°, b) 30°, c) 60°, and at 40 m/s with an initial crack angle of d) 0°, e) 30°, and f) 60°.

500 *3.4.2. Effects of Poisson's ratio*

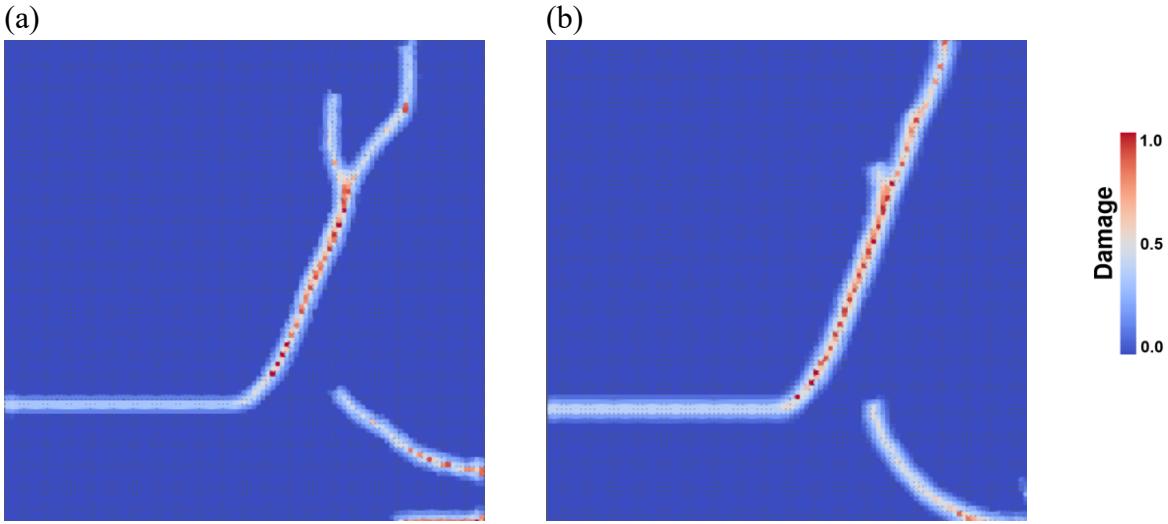
501 To investigate the effect of Poisson's ratio on mode I dynamic crack propagation, the simulation
502 setup from Section 3.2 is used ($\sigma = 12$ MPa). The geometrical and boundary conditions are kept
503 the same, the grid size is coarsened to $\Delta x = 0.5$ mm, and the model's prediction is computed for ν
504 = 0.1 and $\nu = 0.25$. The results shown in Fig. 16 indicate a clear dependency between the crack
505 branching initiation and Poisson's ratio, as well as the crack path after bifurcation. The path
506 maintains a consistent propagation angle after bifurcation for lower values of Poisson's ratio, while
507 for higher values the crack presents a tendency to kink towards a horizontal orientation as observed
508 in the results shown in Fig. 14 and Section 3.2. The earlier bifurcation and straight crack paths in

509 materials with lower Poisson's ratio, arise from its diminishing ability to deform perpendicular to
 510 the load direction. Under such circumstances, lesser amounts of work are stored in the form of
 511 elastic energy, thus resulting in cracks forming to dissipate the remaining energy. Equally, shear
 512 stresses are less prominent during axial loading, resulting in reduced kinking of the crack after
 513 branching.



514 **Fig. 16.** Dynamic Mode I branching comparison for $\sigma = 12$ MPa a) $\nu = 0.1$ and b) $\nu = 0.25$

515 For the Kalthoff-Winkler experiment, all geometrical, material, and simulation parameters from
 516 Section 3.3 were used with the exception of Poisson's ratio which was tested at values of 0.1 and
 517 0.2. Fig. 15 shows the upper half of the results for both cases. In the case of $\nu = 0.1$, while the
 518 crack initiation angle and initial stages of crack propagation are very similar to those seen in
 519 Section 3.3 with $\nu = 0.3$, there is a clear difference towards the end of the simulation where the
 520 crack branches for the case of $\nu = 0.1$ (which is not seen for higher values). It is also worth noting
 521 that naturally occurring secondary crack on the rightmost edge is no longer a single crack that
 522 branches out, but it consists of two cracks instead, one that propagates straight right in the middle
 523 of the specimen and a second crack that forms right above and curves upwards. When $\nu = 0.2$, the
 524 crack path is almost identical to the $\nu = 0.3$ case, showing very small changes in the main crack
 525 where initiation of bifurcation can be seen in a similar region observed for $\nu = 0.1$. The secondary
 526 crack originating on the rightmost edge presents a similar path to that observed for $\nu = 0.3$,
 527 however, crack branching occurs closer to the origin of the crack.



528 **Fig. 17.** Dynamic mixed-mode crack propagation comparison for Kalthoff-Winkler experiment at $V_0 =$
 529 16.5 m/s with different Poisson's ratios a) $v = 0.1$ and b) $v = 0.2$.

530 **4. Conclusion**

531 In this work, a new formulation for Bond-Based Peridynamics (BBPD) is presented by treating
 532 the bonds as Timoshenko beams, explicitly considering shear deformation effects, which is
 533 particularly important for short beams. This approach is advantageous because it accounts for the
 534 effect of shear in the deformation of the bonds, and the subsequent shear failure by incorporating
 535 a strain-based criterion which were originally neglected in the traditional BBPD. While previous
 536 researchers used the Timoshenko approach to MPPD, the shear influence factor was treated as
 537 constant and clustered as part of the shear stiffness coefficient. However, the core novelty of the
 538 current study is to consider a length-dependent shear influence factor which better resembles the
 539 underlying physics. It was revealed that the suggested Timoshenko Multipolar Peridynamics
 540 (MPPD) formulation is in good agreement with the experimental and numerical benchmark
 541 problems reported in the literature, denoting the validity and accuracy of the method. The study
 542 showed that adding extra degrees of freedom to the problem mitigates the Poisson's ratio limitation
 543 in the original BBPD allowing the model to use materials with Poisson's ratios up to $1/3$. While
 544 not completely resolving this issue, the proposed model addresses a wider range of brittle
 545 materials.

546 The current study comprehensively examined how the loading rate and Poisson's ratio influence
 547 dynamic crack propagation and branching. It was observed that the higher loading rates lead to
 548 more severe secondary branching due to the higher energy release rates, as well as a change in

549 crack initiation angle and propagation path. Moreover, this phenomenon can also be explained due
550 to the strong influence of constructive interference of stress waves in the crack front. Furthermore,
551 this study revealed that models with lower Poisson's ratio show more prominent branching events
552 than those with higher values due to the different deformation gradients in the material domain.
553 This phenomenon resulted from the material's limited capacity to deform perpendicular to the
554 principal stretch direction which localizes the strain and induces additional branching. This
555 branching effectively dissipated the energy that the material could no longer absorb elastically.
556 However, this influence is not as severe as that of the loading rate in the formation of secondary
557 branches and crack paths.

558 Understanding the behavior of brittle materials such as ceramics, glass, rocks, etc., under impact
559 scenarios is crucial during the design phases of structures involved in various industries spanning
560 from civil to aerospace engineering. The simplicity of the proposed model compared to State-
561 Based Peridynamic (SBPD), and higher accuracy than the original BBPD formulation, facilitates
562 its use for research and commercial applications. This work aims to improve predictions at a lower
563 computational cost. Further work should be done to obtain an energy-based shear failure criterion,
564 and to account for orthotropy in the material, expanding the use of the method to more complex
565 materials extensively used in engineering applications.

566 **Acknowledgements**

567 The authors would like to acknowledge National Science Foundation of the United States (NSF),
568 CMMI program, Mechanics of Materials and Structures (award # 2317406) for the financial
569 support of this research

570

571

572

573

574

575 **References**

576 [1] Liu W, Hu C, Li L, Zhang X, Peng L, Qiao Y, Yue Z. Experimental study on dynamic
577 notch fracture toughness of V-notched rock specimens under impact loads. *Eng Fract Mech*
578 2020;259:108109.

579 [2] Aliha M, Samareh-Mousavi S, Mirsayar M. Loading rate effect on mixed mode I/II brittle
580 fracture behavior of PMMA using inclined cracked SBB specimen. *Int J Solid Struct*
581 2021;232:111177.

582 [3] Zhou YX, Xia KW, Li XB, Li HB, Ma GW, Zhao J, Zhou ZL, Dai F. Suggested methods
583 for determining the dynamic strength parameters and mode-I fracture toughness of rock
584 materials. *Int J Rock Mech Min Sci* 2012;49:105–12.

585 [4] Wada H, Seika M, Kennedy TC, Calder CA, Murase K. Investigation of loading rate and
586 plate thickness effects on dynamic fracture toughness of PMMA. *Eng Fract Mech*
587 1996;54(6):805–811.

588 [5] Sundaram BM, Tippur HV. Dynamic mixed-mode fracture behaviors of PMMA and
589 polycarbonate. *Eng Fract Mech* 2017;176:186–212.

590 [6] Yoffe EH. The moving Griffith crack. *Philos Mag* 1951;42:739–50.

591 [7] Ball A. On the bifurcation of cone cracks in glass plates. *Philos Mag A* 1996;73:1093–103.

592 [8] Dai Y, Liu Y, Qin F, Chao YJ, Berto F. Estimation of stress field for sharp V-notch in
593 power-law creeping solids: An asymptotic viewpoint. *Int J Solids Struct* 2019;180-
594 181:189–204.

595 [9] Qiu P, Yue Z, Yang R. Mode I stress intensity factors measurements in PMMA by caustics
596 method: a comparison between low and high loading rate conditions. *Polym Test*
597 2019;76:273–285.

598 [10] Mirsayar MM. On the effective critical distances in three-dimensional brittle fracture via a
599 strain-based framework. *Eng Fract Mech* 2021;248:107740.

600 [11] Mirsayar MM, Shahbazian B. An energy-based criterion for mixed-mode I/II/III fracture
601 considering effective critical distances. *Eng Fract Mech* 2022;272:108674.

602 [12] Mirsayar M, Shahbazian B. A novel three-dimensional notch fracture criterion via effective
603 critical distances. *Int J Mech Sci* 2024;109149.

604 [13] Song JH, Wang H, Belytschko T. A comparative study on finite element methods for
605 dynamic fracture. *Comput Mech* 2008;42:239–250.

606 [14] Wu H, Ma G, Xia Y. Experimental study of tensile properties of PMMA at intermediate
607 strain rate. *Mater Lett* 2004;58(29):3681–3685.

608 [15] Mirsayar MM, Razmi A, Aliha MRM, Berto F. EMTSN criterion for evaluating mixed
609 mode I/II crack propagation in rock materials. *Eng Fract Mech* 2018;190:186–197.

610 [16] Ayatollahi MR, Aliha MRM. Mixed mode fracture in soda lime glass analyzed by using
611 the generalized MTS criterion. *Int J Solids Struct* 2009;46(2):311–321.

612 [17] Abraham FF, Brodbeck D, Rudge WE, Xu X. Instability of fracture – a computer-
613 simulation investigation. *Phys Rev Lett* 1994;73:272–5.

614 [18] Abraham FF, Brodbeck D, Rudge WE, Xu X. A molecular-dynamics investigation of rapid
615 fracture mechanics. *J Mech Phys Solids* 1997;45:1595–619.

616 [19] Marder M, Gross S. Origin of crack-tip instabilities. *J Mech Phys Solids* 1995;43:1–48.

617 [20] Belytschko T, Chen H, Xu J, Zi G. Dynamic crack propagation based on loss of
618 hyperbolicity and a new discontinuous enrichment. *Int J Numer Methods Engng*
619 2003;58:1873–905.

620 [21] Xu XP, Needleman A. Numerical simulations of fast crack growth in brittle solids. *J Mech
621 Phys Solids* 1994;42:1397–434.

622 [22] Camacho GT, Ortiz M. Computational modeling of impact damage in brittle materials. *Int
623 J Solids Struct* 1996;33:2899–938.

624 [23] Ortiz M, Pandolfi A. Finite-deformation irreversible cohesive elements for three-
625 dimensional crack-propagation analysis. *Int J Numer Methods Engng* 1999;44:1267–82.

626 [24] Rabczuk T, Belytschko T. Cracking particles: a simplified meshfree method for arbitrary
627 evolving cracks. *Int J Numer Methods Engng* 2004;61:2316–43.

628 [25] Zhou F, Molinari JF. Dynamic crack propagation with cohesive elements: a methodology
629 to address mesh dependency. *Int J Numer Methods Engng* 2004;59:1–24.

630 [26] Song J, Areias PMA, Belyschko T. A method for dynamic crack and shear band
631 propagation with phantom nodes. *Int J Numer Methods Engng*.

632 [27] Song JH, Wang H, Belytschko T. A comparative study on finite element methods for
633 dynamic fracture. *Comput Mech* 2008;42:239–50

634 [28] Mcauliffe C, Waisman H. A coupled phase field shear band model for ductile brittle
635 transition in notched plate impacts. *Comput Methods Appl Mech Eng* 2016;305:173–95.

636 [29] Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM. A phase-field description
637 of dynamic brittle fracture. *Comput Methods Appl Mech Eng* 2012;217:77–95.

638 [30] Diehl P, Lipton R, Wick T. A comparative review of peridynamics and phase-field models
639 for engineering fracture mechanics. *Comput Mech* 69, 1259–1293 (2022).

640 [31] Ramulu M, Kobayashi AS. Mechanics of crack curving and branching – a dynamic fracture
641 analysis. *Int J Fract* 1985;27:187–201.

642 [32] Santillán D, Mosquera JC, Cueto-Felgueroso L. Phase-field model for brittle fracture.
643 Validation with experimental results and extension to dam engineering problems. *Eng
644 Fract Mech* 2017;178:109–25.

645 [33] Wu J. A unified phase-field theory for the mechanics of damage and quasi-brittle failure. *J
646 Mech Phys Solids* 2017;103:72–99.

647 [34] Silling S A, Askari E. A meshfree method based on the peridynamic model of solid
648 mechanics. *Comput Struct* 2005;83(17-18):1526–1535.

649 [35] Silling SA. Reformulation of elasticity theory for discontinuities and long-range forces. *J
650 Mech Phys Solids* 2000;48:175–209.

651 [36] Silling SA, Zimmermann M, Abeyaratne R. Deformation of a peridynamic bar. *J Elast*
652 2003;73:173–90.

653 [37] Silling SA. Dynamic fracture modeling with a meshfree peridynamic code. *Computat Fluid
654 Solid Mech*, Elsevier 2003;641–4.

655 [38] Silling SA, Askari E. Peridynamic modeling of impact damage. PVP Vol 489, ASME
656 2004;197–205.

657 [39] Silling SA, Bobaru F. Peridynamic modeling of membranes and fibers. Int J Non-Linear
658 Mech 2005;40:395–409.

659 [40] Gerstle W, Sau N, Silling S. Peridynamic modeling of concrete structures. Nucl Eng Des
660 2007;237(12-13):1250–8.

661 [41] Butt SN, Timothy JJ, Meschke G. Wave dispersion and propagation in state-based
662 peridynamics. Comput Mech 2017;60:725–738.

663 [42] Bobaru F, Yang M, Alves LF, Silling SA, Askari E, Xu J. Convergence adaptive
664 refinement and scaling in 1D peridynamics. Int J Numer Methods Eng 2009;77(6):852–
665 877.

666 [43] Cheng Z, Zhang G, Wang Y, Bobaru F. A peridynamic model for dynamic fracture in
667 functionally graded materials. Compos Struct 2015;133:529–546.

668 [44] Bažant ZP, Luo W, Chau VT, Bessa MA. Wave dispersion and basic concepts of
669 peridynamics compared to classical nonlocal damage models. J Appl Mech
670 2016;83(11):111004

671 [45] Silling S A, Epton M, Weckner O, Xu J, Askari E. Peridynamic States and Constitutive
672 Modeling. J Elast 2007;88(2):151–184.

673 [46] Diana V, Ballarini R. Crack kinking in isotropic and orthotropic micropolar peridynamic
674 solids. Int J Solids Struct 2020;196–197:76–98.

675 [47] Yu H, Chen X, Sun Y. A generalized bond-based peridynamic model for quasi-brittle
676 materials enriched with bond tension–rotation–shear coupling effects. Comput Methods
677 Appl Mech Eng 2020;372:113405.

678 [48] Madenci E, Barut A, Phan N. Bond-Based Peridynamics with Stretch and Rotation
679 Kinematics for Opening and Shearing Modes of Fracture. J Peridyn Nonlocal Model 2021.

680 [49] Ren H, Zhuang X, Rabczuk T. A new peridynamic formulation with shear deformation for
681 elastic solid. J Micromech Mol Phys 2016;1(2):1650009.

682 [50] Nooru-Mohamed MB, Schlangen E, van Mier JGM. Experimental and numerical study on
683 the behavior of concrete subjected to biaxial tension and shear. *Adv Cement Based Mater*
684 1993;1(1):22–37.

685 [51] Liu W, Yang G, Cai Y. Modeling of failure mode switching and shear band propagation
686 using the correspondence framework of peridynamics. *Comput Struct* 2018;209:150–162.

687 [52] Mirsayar M. A generalized model for dynamic mixed-mode fracture via state-based
688 peridynamics. *Fatigue Fract Eng Mater Struct* 2023;46(1):244–58.

689 [53] Silling SA, Weckner O, Askari E, Bobaru F. Crack nucleation in a peridynamic solid. *Int*
690 *J Fract* 2010;162:219–27.

691 [54] Foster J, Silling S, Chen W. An energy based failure criterion for use with peridynamic
692 states. *Int J Multiscale Comput Eng* 2011;9(6):675–687.

693 [55] Lehoucq R, Silling S. Force flux and the peridynamic stress tensor. *J Mech Phys Solids*
694 2008;56(4):1566–1577.

695 [56] Silling S, Lehoucq R. Convergence of peridynamics to classical elasticity theory. *J Elast*
696 2008;93(1):13–37.

697 [57] Diana V, Casolo S. A bond-based micropolar peridynamic model with shear deformability:
698 elasticity, failure properties and initial yield domains. *Int J Solids Struct* 2019;160:201–
699 231.

700 [58] Diana V, Casolo S. A full orthotropic micropolar peridynamic formulation for linearly
701 elastic solids. *Int J Mech Sci* 2019;160:140–155.

702 [59] Voigt W. Theoretische studien über die elasticitätsverhältnisse der krystalle. *Abh Ges Wiss*
703 *Göttingen* 1887;34:3–51.

704 [60] Nikravesh S, Gerstle W. Improved state-based peridynamic lattice model including
705 elasticity, plasticity and damage. *Comput Model Eng Sci* 2018;116(3):323–47.

706 [61] Gerstle WH, Sau N, Sakhavand N. On Peridynamic Computational Simulation of Concrete
707 Structures. *Spec Publ* 2009;245–264.

708 [62] Boley, BA. On the Accuracy of the Bernoulli-Euler Theory for Beams of Variable Section.
709 ASME J Appl Mech 1963; 30(3): 373–378.

710 [63] Wu K, Zheng G, Chen G. Extending Timoshenko beam theory for large deflections in
711 compliant mechanisms. J Mech Robot 2023;15(6):061012.

712 [64] Wang Y, Zhou X, Wang Y, Shou Y. A 3-D conjugated bond-pair-based peridynamic
713 formulation for initiation and propagation of cracks in brittle solids. Int J Solids Struct.
714 2018;134:89–115.

715 [65] Yan X, Guo L, Li W. Improved Timoshenko beam-based micropolar peridynamic method
716 incorporating particle geometry. Eng Fract Mech 2021;254:107909.

717 [66] Banerjee JR, Williams FW. Coupled Bending-Torsional Dynamic Stiffness Matrix of an
718 Axially Loaded Timoshenko Beam Element. Int J Solids Struct 1994;31(6):749–62.

719 [67] Molina-Villegas JC, Ortega JE. Closed-form solution of Timoshenko frames with semi-
720 rigid connections. Structures 2023;48:212–25.

721 [68] Li J, Shen R, Hua H, Jin X. Coupled bending and torsional vibration of axially loaded thin-
722 walled Timoshenko beams. Int J Mech Sci 2004;46(2):299–320.

723 [69] Trageser J, Seleson P. Bond-Based Peridynamics: a Tale of Two Poisson’s Ratios. J
724 Peridyn Nonlocal Model 2020;2:278–88.

725 [70] Ha YD, Bobaru F. Studies of dynamic crack propagation and crack branching with
726 peridynamics. Int J Fract 2010;162(1-2):229–44.

727 [71] Ha YD, Bobaru F. Characteristics of dynamic brittle fracture captured with peridynamics.
728 Eng Fract Mech 2011;78(6):1156–68.

729 [72] Zhou X, Wang Y, Qian Q. High-speed crack propagation in a peridynamic framework. Eur
730 J Mech A/Solids 2016;60:277–99.

731 [73] Kalthoff JF. Shadow optical analysis of dynamic shear fracture. Opt Eng 1988;27(10):835-
732 40.

733 [74] Kalthoff JF, Winkler S. Failure mode transition at high rates of shear loading. Impact Load
734 Dyn Behav Mater 1988;1:185–95.

735 [75] Guo JS, Gao WC. Study of the Kalthoff–Winkler experiment using an ordinary state-based
736 peridynamic model under low velocity impact. *Adv Mech Eng*.
737 2019;11(5):1687814019852561.

738 [76] Ravi-Chandar K, Knauss WC. An experimental investigation into dynamic fracture: III.
739 On steady-state crack propagation and crack branching. *Int J Fract* 1984;26(2):141–54.

740 [77] Zhou X, Wang Y, Qian Q. Numerical simulation of crack curving and branching in brittle
741 materials under dynamic loads using the extended non-ordinary state-based peridynamics.
742 *Eur J Mech A/Solids* 2016;60:277–99.

743 [78] Bowden FP, Brunton JH, Field JE, Heyes AD. Controlled fracture of brittle solids and
744 interruption of electrical current. *Nature* 1967;216(5110):38–42.

745 [79] Dipasquale D, Zaccariotto M, Galvanetto U. Crack propagation with adaptive grid
746 refinement in 2D peridynamics. *Int J Fract* 2014;190(1-2):1–22.

747 [80] Belytschko T, Chen H, Xu J, Zi G. Dynamic crack propagation based on loss of
748 hyperbolicity and a new discontinuous enrichment. *Int J Numer Methods Eng*
749 2003;58(12):1873–1905.