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H
0 OF IGUSA VARIETIES VIA AUTOMORPHIC FORMS

by Arno Kret & Sug Woo Shin

Abstract. Ů Our main theorem describes the degree 0 cohomology of non-basic Igusa varieties
in terms of one-dimensional automorphic representations in the setup of mod p Hodge-type
Shimura varieties with hyperspecial level at p. As an application we obtain a completely new
approach to two geometric questions. Firstly, we deduce irreducibility of Igusa towers and its
generalization to non-basic Igusa varieties in the same generality, extending previous results
by Igusa, Ribet, FaltingsŰChai, Hida, and others. Secondly, we verify the discrete part of the

Hecke orbit conjecture, which amounts to the assertion that the irreducible components of a

non-basic central leaf belong to a single prime-to-p Hecke orbit, generalizing preceding works by
Chai, Oort, Yu, et al. We also show purely local criteria for irreducibility of central leaves. Our

proof is based on a LanglandsŰKottwitz type formula for Igusa varieties due to Mack-Crane, an

asymptotic study of the trace formula, and an estimate for unitary representations and their
Jacquet modules in representation theory of p-adic groups due to HoweŰMoore and Casselman.

Résumé (H0 des variétés dŠIgusa via les formes automorphes). Ů Notre théorème principal dé-
crit la cohomologie en degré 0 des variétés dŠIgusa non basiques en termes de représentations
automorphes de dimension 1 dans le cadre des réductions modulo p des variétés de Shimura de
type Hodge avec niveau hyper-spécial en p. Nous obtenons comme application une approche
complètement nouvelle de deux questions géométriques. Premièrement, nous déduisons lŠirré-
ductibilité de la tour dŠIgusa et sa généralisation aux variétés dŠIgusa non basiques dans la même
généralité, ce qui étend des résultats dŠIgusa, Ribet, Falting-Chai, Hida, et dŠautres. Deuxiè-
mement, nous vériĄons la partie discrète de la conjecture des orbites de Hecke, qui revient à

lŠassertion que les composantes irréductibles dŠune feuille centrale non basique appartiennent

à une unique orbite sous lŠaction de lŠalgèbre de Hecke première à p, ce qui généralise des
travaux de Chai, Oort, Yu, entre autres. Nous démontrons aussi des critères purement locaux

dŠirréductibilité de la feuille centrale. Notre preuve est basée sur une formule de type Langlands-

Kottwitz pour les variétés dŠIgusa due à Mack-Crane, sur une étude asymptotique de la formule
des traces, et sur une estimée pour les représentations unitaires et leurs modules de Jacquet en
théorie des représentations des groupes p-adiques due à Howe-Moore et à Casselman.
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1. Introduction

Igusa varieties were studied by Igusa [Igu68] and KatzŰMazur [KM85] in the case

of modular curves. HarrisŰTaylor and Mantovan [HT01, Man05] have generalized

the construction to PEL-type Shimura varieties. Recently CaraianiŰScholze [CS17]

gave a slightly different deĄnition in the PEL case which gives the same cohomol-

ogy. Hamacher, Zhang, and HamacherŰKim went further to deĄne Igusa varieties for

Hodge-type Shimura varieties [Ham17, Zha15, HK19]. In the (µ-)ordinary setting,

Igusa varieties are also referred to as Igusa towers. (Often the deĄnitions differ in a

minor way.) There are versions of Igusa varieties as p-adic formal schemes or adic

spaces over p-adic Ąelds, but we concentrate on the characteristic p varieties in this

paper. We mention that function-Ąeld analogues of Igusa varieties are studied in a

forthcoming paper by Sempliner; see also [Zho20, Ex. 4.7.15].

The ℓ-adic cohomology of Igusa varieties (with ℓ ̸= p) has several arithmetic ap-

plications. In [HT01, Man05, HK19], the authors prove a formula computing the

cohomology of Shimura varieties in terms of that of Igusa varieties and RapoportŰ

Zink spaces. This means that, if we understand the cohomology of Igusa varieties

well enough, then our knowledge of cohomology can be propagated from RapoportŰ

Zink spaces to Shimura varieties or the other way around. This is the basic principle

underlying [Shi11, Shi12] on the global Langlands correspondence and the Kottwitz

conjecture. For another application, a description of ℓ-adic cohomology of Igusa vari-

eties was one of the main ingredients in [CS17, CS19] to prove vanishing of cohomology

of certain Shimura varieties with ℓ-torsion coefficients, which in turn supplied a crit-

ical input for a recent breakthrough on the Ramanujan and SatoŰTate conjecture for

cuspidal automorphic representations of GL2 of Şweight 2Ť over CM Ąelds [ACC+23].

Thus an important long-term goal is to compute the ℓ-adic cohomology of Igusa

varieties with a natural group action. A major Ąrst step is a LanglandsŰKottwitz style

trace formula for Igusa varieties, which has been obtained for Shimura varieties of

Hodge type at hyperspecial level in [Shi09, Shi10, MC22] building upon [HT01, Ch. 5]

in analogy with [LR87, Kot92b, KSZ]. One wishes to turn that into an expression

of the cohomology via automorphic forms, but this requires a solution of various
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complicated problems; some are tractable but others are out of reach in general, most

notably an endoscopic classiĄcation and ArthurŠs multiplicity formula for the relevant

groups.

The main objective of this paper is twofold. Firstly, we describe H0 of Igusa vari-

eties via one-dimensional automorphic representations over non-basic Newton strata

of Hodge-type Shimura varieties at hyperspecial level.(1) This mirrors the well-known

fact that H0 of complex Shimura varieties is governed by one-dimensional automor-

phic representations. Secondly, to achieve this, we develop a method and obtain var-

ious technical results with a view towards the entire cohomology of Igusa varieties

(as an alternating sum over all degrees). Our method, partly inspired by Laumon

[Lau05] and also by FlickerŰKazhdan [FK88], should prove useful for studying ℓ-adic

cohomology of Shimura varieties as well.

Our result on H0 not only sets a milestone in its own right, but also reveals deep

geometric information. Namely, our theorem readily implies the discrete Hecke or-

bit conjecture for Shimura varieties and the irreducibility of Igusa varieties in the

same generality as above. (The irreducibility means that Igusa varieties are no more

reducible than the underlying Shimura varieties in some precise sense.) Our work pro-

vides a completely new approach and perspective to these two problems by means of

automorphic forms and representation theory.

One of our main novelties consists in a careful asymptotic argument via the trace

formula to single out H0 (or compactly supported cohomology in the top degree)

without reliance on any classiĄcation. This is essential for obtaining an unconditional

result. Since the ŞvariableŤ for asymptotics is encoded in the test function at p, a good

amount of local harmonic analysis naturally enters the picture. Another feature of our

approach is to allow induction on the semisimple rank of the group; this would make

little sense in a purely geometric argument as endoscopy is hard to realize in the

geometry of Shimura varieties.

Roughly speaking, cohomology of Igusa varieties is closely related to that of Shimu-

ra varieties via the Jacquet module operation at p, relative to a proper parabolic

subgroup in the non-basic case. To show that only one-dimensional automorphic rep-

resentations contribute to H0 of Igusa varieties, the key representation-theoretic in-

put is an estimate for the central action on Jacquet modules due to Casselman and

HoweŰMoore. Though there is no direct link, it would be interesting to note that

a similar situation occurs in the context of beyond endoscopy (e.g., [FLN10, ğ5]),

where the leading term in asymptotics is accounted for by the Şmost non-temperedŤ

(namely one-dimensional) representations. This is also analogous to the spectral gap,

which plays a crucial role in the Hecke equidistribution theorems in characteristic zero

(cf. Section 1.3 below).

(1)In the basic case, Igusa varieties are 0-dimensional, and it can be deduced from [MC22] that

their H0 is expressed as the space of algebraic automorphic forms on an inner form of G. Such a

description goes back to Serre [Ser96] for modular curves, and Fargues [Far04, Ch. 5] in the PEL

case.
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1302 A. Kret & S. W. Shin

1.1. The main theorem. Ð Let (G,X) be a Shimura datum of Hodge type with reĆex

Ąeld E ⊂ C. Assume that the reductive group G over Q admits a reductive model

over Zp, and takeKp := G(Zp). (NamelyG is unramiĄed at p, andKp is a hyperspecial

subgroup.) Write Gad for the adjoint group of G. We do not assume p > 2 as the case

p = 2 is covered in [KSZ, MC22].

Fix Ąeld maps Q ↪→ Qp, Qp ≃ C, and Qℓ ≃ C (which will be mostly implicit).

The resulting embedding E ↪→ Qp induces a place p of E above p. Let k(p) denote

the residue Ąeld of E at p, which embeds into the residue Ąeld Fp of Qp. Thereby

we identify k(p) ≃ Fp. Let SKp
denote the integral canonical model over OEp

with

a G(A∞,p)-action. In the main text, it is sometimes important to pass to Ąnite level

away from p in order to apply a Ąxed-point formula. However, we will ignore this point

and pretend that we are always at inĄnite level away from p to simplify exposition.

An embedding of (G,X) into a Siegel Shimura datum determines a G(A∞,p)-

equivariant map from SKp to a suitable Siegel moduli scheme over OEp
. Via pullback,

we obtain a universal abelian scheme A over SKp
, which can be equipped with a fam-

ily of étale and crystalline tensors over geometric points x → SKp,k(p). This assigns

to x the p-divisible group Ax[p
∞] (with G-structure, encoded by the family of crys-

talline tensors).

Let µp : Gm → GQp
denote the ŞHodgeŤ cocharacter arising from (G,X) (via

Qp ≃ C). This cuts out a Ąnite subset B(GQp
, µ−1
p ) in the Kottwitz set B(GQp

)

of G-isocrystals. Fix an element [b] ∈ B(GQp
, µ−1
p ). (The containment ensures that

the Newton stratum Nb below is nonempty.) Then [b] determines a p-divisible group

with G-structure over Fp up to isogeny via Dieudonné theory and the embedding

of Shimura data above. Choose (the isomorphism class of) a p-divisible group with

G-structure Σb in the isogeny class, which amounts to specifying b ∈ G(Q̆p) (up to

σ-conjugation under G(Z̆p)) whose image in B(GQp
) is [b].

We obtain a Newton cocharacter νb from b, which may be conjugated to be dom-

inant with respect to a suitable Borel subgroup B of GQp deĄned over Qp. Write ρ

for the half sum of all B-positive roots. For simplicity, assume that Σb is deĄned

over k(p) and that [k(p) : Fp]νb is a cocharacter, not just a fractional cocharacter.

(In practice, these assumptions are unnecessary since it is sufficient to have a Ąnite

extension of k(p) in the last sentence.)

Write Jb for the Qp-group of self-quasi-isogenies of Σb (preserving G-structure)

over Fp, and J int
b for the subgroup of Jb(Qp) consisting of automorphisms. Then J int

b

is an open compact subgroup of Jb(Qp). As a general fact, Jb is an inner form of a

Qp-rational Levi subgroup Mb of GQp . We say that b is basic if νb is a central in GQp ,

or equivalently if Mb = GQp
(namely if Jb is an inner form of GQp

). The element b is

Q-non-basic if the image of b in B(Gad
Qp

) is non-basic in every Q-simple factor of Gad,

cf. DeĄnition 5.3.2. If Gad is Q-simple then this is equivalent to the condition that b

is non-basic.

The central leaf Cb (resp. Newton stratum Nb) is the locus of x ∈ SKp
on which the

geometric Ąbers of Ax[p
∞] are isomorphic (resp. isogenous) to Σb. Thus Nb depends
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only on [b]. By construction, Cb and Nb are stable under the G(A∞,p)-action on SKp
.

We also deĄne the Igusa variety Igb over SKp,k(p) to be the parameter space of

isomorphisms between Σb and Ax[p
∞]. The obvious action of J int

b on Igb naturally

extends to a Jb(Qp)-action. Below are some basic facts (Sections 5.3, 6.1, and 6.2).

Put q := #k(p).

Fact 1. Cb is (formally) smooth over k(p) and closed in Nb,

Fact 2. Cb is equidimensional of dimension ⟨2ρ, νb⟩,

Fact 3. Igb is a pro-étale J int
b -torsor over the perfection of Cb,

Fact 4. In the completely slope divisible case, the qr-th power Frobenius on Igb
coincides with the action of νb(q

r) ∈ ZJb(Qp) for sufficiently divisible r.

Fact 5. As an Fp-scheme with a G(A∞,p)×Jb(Qp)-action, Igb (up to isomorphism)

depends on b only through [b].

In particular, dim Igb = ⟨2ρ, νb⟩, and every connected component of Igb,Fp
(resp.

Cb,Fp
) is irreducible.

Our main theorem describes the connected components (= irreducible components)

of Igusa varieties over Fp together with the G(A∞,p)×Jb(Qp)-action. Let us introduce

some notation. Write G(Qp)
ab for the abelianization of G(Qp) as a topological group.

There is a canonical map ζb : Jb(Qp)→→ G(Qp)
ab coming from the fact that Jb is an

inner form of a Levi subgroup of GQp
, cf. Section 6.1 below. Each one-dimensional

smooth representation πp of G(Qp) factors through G(Qp)
ab, giving rise to a one-

dimensional representation πp ◦ ζb of Jb(Qp).

Theorem A (Theorem 6.1.4). Ð Assume that b is Q-non-basic with [b] ∈ B(GQp
, µ−1
p ).

Then there is a G(A∞,p)× Jb(Qp)-module isomorphism

H0(Igb,Qℓ) ≃
⊕
π
π∞,p ⊗ (πp ◦ ζb),

where the sum runs over one-dimensional automorphic representations

π = π∞,p ⊗ πp ⊗ π∞

of G(A) such that π∞ is trivial on the preimage of the neutral component Gad(R)0

in G(R).

Before we sketch the idea of proof, let us discuss two geometric applications.

1.2. Application to irreducibility of Igusa towers and a generalization

In Hida theory of p-adic automorphic forms, an important role is played by Igusa

varieties over the ordinary Newton stratum, namely when the underlying p-divisible

group is ordinary. In this case, Igusa varieties (and their natural extension to p-adic

formal schemes) are usually referred to as Igusa towers. Recently Eischen and Manto-

van [EM21] developed Hida theory in the more general µ-ordinary PEL-type situation,

where Howe [How20] (and its sequel) also shed new light on the role of Igusa varieties

(à la CaraianiŰScholze). Igusa towers are also featured in AndreattaŰIovitaŰPilloniŠs

work [AIP16, AIP18] on overconvergent automorphic forms.

J.É.P. Ð M., 2023, tome 10
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A key property of Igusa towers is irreducibility. This property has an application to

the q-expansion principle for p-adic automorphic forms, which is a basic ingredient for

the construction of p-adic L-functions. See p. 96 in [Hid04] for the relevant remark, and

also refer to Th. 3.3 (Igusa), 4.21 (Ribet), 6.4.3 (FaltingsŰChai), and Cor. 8.17 (Hida)

therein for the known cases (elliptic modular, Hilbert, Siegel, and PEL type A/C cases,

respectively, all over the ordinary stratum) and further references. Irreducibility in

the µ-ordinary case of PEL type A was proved in [EM21]. Such a result was obtained

for Igusa varieties of a speciĄc PEL type A by Boyer [Boy07] without assuming µ-

ordinariness.

There are various methods to show the irreducibility as explained in [Cha08] and

the introduction of [Hid11], e.g., by using the automorphism group of the function

Ąelds of Shimura varieties in characteristic 0 or by showing that the family of abelian

varieties has large monodromy. As an application of Theorem A, we obtain an entirely

different representation-theoretic proof and also a natural generalization from the

µ-ordinary case to the general Q-non-basic case (and from the PEL case to the case

of Hodge type). In the non-µ-ordinary case, Igusa varieties lie over a central leaf rather

than an entire Newton stratum, but our method is insensitive to such a distinction.

Write Jb(Qp)
′ := ker(ζb : Jb(Qp)→ G(Qp)

ab). Our result is as follows.

Theorem B. Ð Assume that b is Q-non-basic. The stabilizer subgroup in Jb(Qp) of

each connected component of Igb is equal to Jb(Qp)
′.

Roughly speaking, the stabilizer subgroup cannot be larger than Jb(Qp)
′, and this

should be thought of as saying that Igusa varieties are at least as reducible as Shimura

varieties. The point of the theorem is that, conversely, the stabilizer is as large as

possible under the given constraint; so Igusa varieties are ŞirreducibleŤ in the sense

that they are no more reducible than Shimura varieties. (This is made precise by

Corollary 8.1.2 below.) The proof is almost immediate from the Jb(Qp)-action on H0

described in Theorem A. See Section 8.1 below for further details.

1.3. Application to the discrete Hecke orbit conjecture. Ð In 1995 [Oor19, ğ15]

(also see [EMO01, Prob. 18]), Oort proposed the Hecke Orbit (HO) conjecture that

the prime-to-p Hecke orbit of a point should be Zariski dense in the central leaf

containing it, if the point lies outside the basic stratum (if Gad is simple). The reader

is referred to [CO19] for an excellent survey of the HO conjecture with updates. Oort

drew analogy with the AndréŰOort conjecture for a Shimura variety in characteristic

zero, which asserts that the irreducible components of the Zariski closure of a set

of special points are special subvarieties. (See [Tsi18, PST21] and references therein

for recent results on the AndréŰOort conjecture.) A common feature is that a set

of points with an extraordinary structure (being a prime-to-p Hecke orbit or special

points) is Zariski dense in a distinguished class of subvarieties. We can also compare

the HO conjecture with the Hecke equidistribution theorems for locally symmetric

spaces in characteristic zero [COU01, EO06], stating roughly that the Hecke orbit

of an arbitrary point is equidistributed in the locally symmetric space in a suitable
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sense. (In particular, the Hecke orbit is dense in the entire space even for the analytic

topology, to be contrasted with the phenomenon in characteristic p.) It is also worth

noting works to investigate Hecke orbits for the p-adic topology [GK21, HMRL20].

Chai and Oort veriĄed the HO conjecture for Siegel modular varieties [Cha06,

Th. 3.4] (details to appear in a monograph), in particular the irreducibility of leaves

[Cha05, CO11]. The conjecture is also known for Hilbert modular varieties [Cha06,

Th. 3.5] due to Chai and Yu. (Also see [YCO20].) The HO conjecture has seen several

new results in recent years. Shankar proved the conjecture for DeligneŠs Şstrange

modelsŤ (in the sense of [Del71, ğ6]) in an unpublished preprint. Zhou [Zho19] settled

the HO conjecture in the ordinary locus of some quaternionic Shimura varieties along

the way to realize a geometric level raising between Hilbert modular forms. MaulikŰ

ShankarŰTang [MST22] proved the HO conjecture in the ordinary locus of GSpin

Shimura varieties. Xiao [Xia20] proved partial results on the HO conjecture in the

case of PEL type A and C.

Chai [Cha05, Cha06] proposed the strategy to divide the HO conjecture into two

parts, that is, the discrete part (HOdisc) and the continuous part (HOcont), corre-

sponding to global and local geometry, respectively. In a nutshell, (HOdisc) asserts

that the prime-to-p Hecke action is transitive on the set of irreducible components

of each central leaf. Then (HOcont) is designed to tell us that the closure of each

prime-to-p Hecke orbit has the same dimension as the ambient central leaf, so that

(HOdisc) and (HOcont) together imply the HO conjecture.

We deduce the following result on (HOdisc) from Theorem A. (See Section 8.2 for

details.)

Theorem C. Ð For Hodge-type Shimura varieties with hyperspecial level at p, (HOdisc)

is true for every central leaf contained in a Q-non-basic Newton stratum.

To our knowledge, this is the Ąrst general theorem on (HOdisc). Let us remark

on the proof. Since (HOdisc) means transitivity of the G(A∞,p)-action on π0(Cb), it

is equivalent to the multiplicity one property of the trivial G(A∞,p)-representation

in H0(Cb,Qℓ) = H0(Ig,Qℓ)
J int
b . To prove Theorem C, it is thus enough to observe

that if π∞,p is trivial then πp and π∞ must be trivial as well in the formula of

Theorem A. This is an easy consequence of the weak approximation that G(Q) is

dense in G(Qp)×G(R). (The same approximation holds more generally, at least if G

splits over an unramiĄed extension.)

We also consider the following strengthening of (HOdisc):

(HO+
disc) The map π0(Cb) → π0(ShKp

) induced by the immersion Cb → ShKp
is a

bijection.

This is known as Şirreducibility of central leavesŤ, as it means that Cb is irreducible

in every component of ShKp
. Since G(A∞,p) is known to act transitively on π0(ShKp

),

e.g., by weak approximation, and since π0(Cb) → π0(ShKp
) is G(A∞,p)-equivariant,

it is clear that (HO+
disc) implies (HOdisc).

J.É.P. Ð M., 2023, tome 10
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We prove purely local criteria for (HO+
disc), either in terms of groups at p or in terms

of the stabilizers of points on some affine DeligneŰLusztig varieties (Theorem 8.2.9).

Using these criteria, we deduce (HO+
disc) in the µ-ordinary case, but obtain a coun-

terexample in general with the help of Rong Zhou. See Section 8.2 below for further

details. (In the earlier version of this paper arXiv:2102.10690v1, we incorrectly

asserted that (HO+
disc) was true in general. The mistake occurred during the initial

reduction in the proof of Lemma 8.1.1, where changing b to a σ-conjugate element

cannot be justiĄed; we thank van Hoften for pointing it out to us.)

1.4. Some details on the proof of Theorem A. Ð Changing Σb by a quasi-isogeny,

as this does not affect Igb up to isomorphism, we may assume that Σb is completely

slope divisible and deĄned over a Ąnite Ąeld. Then Igb can be written, up to perfection,

as the projective limit of smooth varieties of Ąnite type deĄned over Fpr for a suffi-

ciently divisible r ∈ Z>0. (In the main text, we use Igb to denote the version without

perfection.) This allows us to apply a Lefschetz trace formula technique to compute

the cohomology of Igb at a Ąnite level. Via Poincaré duality, Theorem A may be

rephrased in terms of the top degree compact-support cohomology H
⟨4ρ,νb⟩
c (Igb,Qℓ),

which we may access by the LangŰWeil estimate.

Adapting the LanglandsŰKottwitz method to Igusa varieties, as worked out in

[Shi09] and Mack-CraneŠs thesis [MC22], one obtains a formula of the form

Tr(ϕ∞,pϕp × Frobjpr |Hc(Igb,Qℓ)) = (geometric expansion), j ∈ Z≫1,

where ϕ∞,pϕp ∈ H(G(A∞,p) × Jb(Qp)) and j ∈ Z≫1. In fact, one can show that

the Frobpr -action on Igb is represented by the action of a central element of Jb(Qp).

Thereby ϕp × Frobjpr in (1.4.1) may be replaced with a translate ϕ
(j)
p ∈ H(Jb(Qp))

of ϕp by a central element. The geometric expansion is a linear combination of orbital

integrals of ϕ∞,pϕ
(j)
p on G(A∞,p)×Jb(Qp) over a certain set of conjugacy classes. The

stabilized formula takes the form

(1.4.1) Tr(ϕ∞,pϕ(j)p |Hc(Igb,Qℓ)) =
∑

e

(constant) · ST e
ell(f

e,pf e,(j)p ), j ∈ Z≫1,

where the sum runs over endoscopic data e for G (Section 2.6), and f e,pf
e,(j)
p is a

suitable function on the corresponding endoscopic group Ge. By ST e
ell we mean the

elliptic part of the stable trace formula for Ge. The most nontrivial point in the

stabilization is the ŞtransferŤ at p. Indeed, as Ge is not an endoscopic group of Jb,

this requires a special construction as detailed in Section 3.

Ideally we would turn the right hand side of (1.4.1) into a spectral expansion and

determine not only H
⟨4ρ,νb⟩
c (Igb,Qℓ) but Hc(Igb,Qℓ) in the Grothendieck group of

G(A∞,p) × Jb(Qp)-representations. This is the long-term goal stated earlier. On the

analogous problem for Shimura varieties, a road map has been laid out in [Kot90],

which can be mimicked for Igusa varieties to some extent. However there are serious

obstacles: (1) An endoscopic classiĄcation for most reductive groups is out of reach;

exactly the same issue occurs for Shimura varieties as well. (2) The geometric side
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(stable elliptic terms) is very difficult to compare with the spectral side. One could

imagine making the comparison more tractable by passing from Hc to intersection

cohomology, following the strategy for Shimura varieties to ŞĄll inŤ the stable non-

elliptic terms, but no theory of compactiĄcation is available for Igusa varieties to

allow it. (FrankeŠs formula for Hc of locally symmetric spaces [Fra98] suggests that

one should expect a similarly complicated answer for Hc of Igusa varieties.)

Our goal is to extract spectral information on H
⟨4ρ,νb⟩
c (Igb,Qℓ) from the leading

terms in (1.4.1) in the variable j via the LangŰWeil estimate. Thus we can get away

with less by proving equalities up to error terms of lower order. To bypass (1) and (2),

a key is to show that (stable) non-elliptic terms as well as endoscopic (a.k.a. unstable)

terms have slower growth in j than the (stable) elliptic terms. This is the technical

heart of our paper taking up Section 4. Let us provide more details.

The basic strategy is an induction on the semisimple rank, based on our observation

that some key property of the function f
e,(j)
p is replicated after taking an endoscopic

transfer or a constant term. (For instance, we need to pass along the Newton cochar-

acter through the inductive steps.) So we want to prove a bound on the trace formula

for a quasi-split group over Q, with a test function fpf
(j)
p satisfying such a prop-

erty. The desired bound partly comes from a root-theoretic computation, involving

a curious interaction between p and ∞ such as ŞevaluatingŤ the Newton cocharacter

(coming from p) at the inĄnite place (Lemma 4.1.1). The most interesting component

in this part of the argument is

(∗) a spectral expansion of Tell, the elliptic part of the trace formula.

The problem is actually about ST e
ell in (1.4.1), but we can replace ST e

ell with Tell

for Ge once the difference is shown to have lower order of growth. The archimedean

test function is stable cuspidal in our setting, so we have ArthurŠs simple trace formula

[Art89] of the following shape:

(1.4.2) Tdisc(f
e,pf e,(j)p ) = Tell(f

e,pf e,(j)p )

+ (geometric terms on proper Levi subgroups).

The proper Levi terms at Ąnite places look similar to the elliptic part of the trace

formula for proper Levi subgroups, but a complicated behavior is seen at the inĄnite

place due to stable discrete series characters along non-elliptic maximal tori of the

ambient group. On different open Weyl chambers, we have different character for-

mulas in terms of Ąnite dimensional characters of the Levi subgroup, so this quickly

spirals out of control in the induction. Adapting an idea of Laumon [Lau97] from

the non-invariant trace formula, we overcome the difficulty by imposing a regular-

ity condition on the test function at an auxiliary prime q (̸= p) and show that the

Q-conjugacy classes with nonzero contributions land in a single Weyl chamber. Then

a Ąnite dimensional character of a Levi subgroup is itself a stable discrete series char-

acter of the same Levi subgroup along elliptic maximal tori of the Levi, so that the

inductive argument can continue. (No information is lost by the auxiliary hypothesis
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at q, cf. Section 7.6 below.) This technique should prove useful for investigation of

compactly supported cohomology of Igusa varieties and Shimura varieties alike.

Returning to our problem, the above argument turns (1.4.1) into

Tr(ϕ∞,pϕ(j)p |Hc(Igb,Qℓ)) =
∑

π∗

m(π∗) Tr(f∗,pf∗,(j)p ) + (error terms),

where f∗,pf
∗,(j)
p is the test function on the quasi-split inner form G∗ of G (i.e., when

Ge = G∗), and the sum runs over discrete automorphic representations of G∗(A).

At this point, we apply a trace identity. Let ϕ
∗,(j)
p denote a transfer of ϕ

(j)
p from Jb

to its quasi-split inner form Mb. For each irreducible smooth representation π∗ of

G∗(Qp), we have (Lemma 3.1.2)

Trπ∗
p(f

∗,(j)
p ) = Tr J(π∗

p)(ϕ
∗,(j)
p ),

where J is the normalized Jacquet module relative to the parabolic subgroup deter-

mined by νb whose Levi component is Mb. Since b is non-basic, Mb is a proper Levi

subgroup. Moreover the translation (j) is given by a central element satisfying a posi-

tivity condition with respect to νb. In these circumstances, we make a crucial use of an

estimate due to Casselman and HoweŰMoore (Section 2.1), showing that J(π∗
p)(ϕ

∗,(j)
p )

has the highest growth if and only if dimπ∗
p = 1. A strong approximation argu-

ment (Section 2.5) promotes this to the condition that dimπ∗ = 1, under a group-

theoretic condition guaranteed in our setting. Moreover, it is not hard to transfer

one-dimensional representations from Mb(Qp) to Jb(Qp) compatibly with the transfer

of functions (Section 2.3). We complete the proof of Theorem A by putting this Ąnal

piece of the puzzle.

1.5. A remark on the non-hyperspecial case. Ð This paper focuses on the case of

hyperspecial level at p mainly because the trace formula for Igusa varieties [MC22]

is available only in that case. Once the trace formula becomes available for Shimura

varieties with parahoric level at p (cf. Section 1.7 below), the methods and results of

this paper should extend to that case. To avoid group-theoretic subtleties (e.g., Re-

mark 2.3.4 below), assume that G is quasi-split over Qp. Then Theorems A and B are

expected to remain true (with a modiĄed deĄnition of J int
b ). As for Theorem C, a cru-

cial group-theoretic ingredient is that the diagonal embedding G(Q)→ G(Qp)×G(R)

has dense image (weak approximation). If G does not split over an unramiĄed exten-

sion of Qp, then the weak approximation can be false, in which case our argument

does not apply. In fact, OkiŠs example [Oki23] suggests that the analogue of Theo-

rem C is false in general, since the prime-to-p Hecke action is not even transitive on

the set of connected components of the underlying Shimura variety.

1.6. The basic case. Ð We comment on the description of H0 in the complementary

case when b is basic, in the setting of Section 1.1. Since it is not the focus of this

paper, we will be brief. In the basic case, Igusa varieties are 0-dimensional by Fact 2

above. It follows from [HZZ21, Prop. 5.2.2] and the argument of [MC22, ğ3.2] that
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there is a G(A∞,p)× Jb(Qp)-equivariant bijection

(1.6.1) Igb(Fp) ≃ I(Q)\G(A∞,p)× Jb(Qp),

where I is an inner form of G over Q such that I(A∞,p) ≃ G(A∞,p), I(Qp) ≃ Jb(Qp),

and I(R) is compact modulo center. (This I is the same as in [HZZ21].) Here I(Q)

acts by left multiplication on G(A∞,p)× Jb(Qp) via

I(Q) ↪−→ I(A∞) ≃ G(A∞,p)× Jb(Qp).

(The embedding is canonical up to G(A∞,p)×Jb(Qp)-conjugacy.) Hence the analogue

of Theorem A in the basic case is that H0(Igb,Qℓ) is the space of algebraic auto-

morphic forms on the inner form I. In particular, H0 is Şmuch largerŤ in the basic

case.

Since Cb(Fp) is the quotient of Igb(Fp) by an open compact subgroup of Jb(Qp)

(Lemma 6.1.1.(1) is still valid when b is basic), we can deduce from (1.6.1) and the

weak approximation for I (applied as in the proof of Lemma 5.2.2) that the full Hecke

orbit conjecture is true; this is equivalent to (HOdisc) in the case at hand. On the other

hand, we see that (HO+
disc) is generally false if b is basic.

1.7. Work of van Hoften and Xiao. Ð Pol van Hoften and Luciena Xiao Xiao [vH10,

vHX21] prove the irreducibility of Igusa varieties (but not Theorems A and C of our

paper) and give a counterexample to (HO+
disc).(2) Their method is more geometric

and totally different from ours in that no use is made of automorphic forms. Further

goals in their work and ours are disparate. For instance, [vH10] proves new results on

the stratiĄcation of Shimura varieties and the LanglandsŰRapoport conjecture in the

parahoric case, whereas our work is a stepping stone for understanding the cohomology

of Igusa varieties in all degrees. The two threads could have a future intersection

though, as the LanglandsŰRapoport conjecture in the parahoric case ought to be

an important ingredient for deriving the analogue for Igusa varieties in that case,

extending [MC22] from the hyperspecial case.

1.8. A guide for the reader. Ð The bare-bones structure of our argument is as

follows.

Jacquet module

estimate (ğ2.1,ğ2.5)

+

trace formula estimate (ğ4)

+

stable trace formula

for Hc(Igb,Qℓ) (ğ7.5)

Lem. 6.2.2

Th. 7.1.1
//

Th. 6.1.4

on H0(Igb,Qℓ)

via auto. forms

(main theorem)
ğ8.2

//

ğ8.1
//

irreducibility

of Igb

+

discrete

HO conjecture

(2)The counterexample in [vHX21, ğ6.3] is about (HO+

disc
), but not (HOdisc), cf. Section 8.2 of

this paper. Note that the maps in Th. 6.2.1 and Cor. 6.2.2 therein are not asserted to be equivariant

for the prime-to-p Hecke actions. In fact, our Theorem C suggests that those maps should not be

equivariant in general.
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On a Ąrst reading, we suggest that all complexities arising from central characters

and z-extensions should be skipped, e.g., by assuming that all central character data

are trivial. In fact this should be the case in many examples. The central character

datum is always trivial on the level of G appearing in the Hodge-type datum, but we

allow it to be nontrivial mainly because we do not know whether H in the endoscopic

datum (Section 2.6) can always be chosen to be an L-group. Another good idea is to

start reading in Section 5, especially if oneŠs main interests lie in geometry, referring

to the earlier sections only as needed and taking the results there for granted.

Sections 2 and 3 consist of mostly background materials in local harmonic analysis

and representation theory. Though we claim little originality, there may be some

novelty in the way we organize and present them. Some statements would be of

independent interest. Section 4 is perhaps the most technical as this is where the

main trace formula estimates are obtained. As such, most readers may want to take

the results in Section 4.2 on faith and proceed, returning to them as needed.

Sections 5 and 6 introduce the main geometric players, namely Shimura varieties,

central leaves, and Igusa varieties. Except for Section 5.1, we are always in the Hodge-

type case with hyperspecial level at p. Our main theorem on Igusa varieties is stated in

Section 6.1. After reduction steps in Sections 6.2Ű7.1 and some recollection of the trace

formula setup up to Section 7.5, the proof of the theorem is completed in Section 7.6.

Lastly Section 8 is devoted to the main geometric applications on irreducibility of

Igusa varieties and a local criterion for the discrete Hecke orbit conjecture.

1.9. Notation

Ű The trivial character (of the group that is clear from the context) is denoted

by 1.

Ű If T is a torus over a Ąeld k with algebraic closure k, X∗(T ) := Homk(T,Gm) and

X∗(T ) := Homk(Gm, T ). When R is a Z-algebra, we write X∗(T )R := X∗(T ) ⊗Z R

and X∗(T )R := X∗(T )⊗Z R.

Ű D := lim
←−

Gm is the protorus (over an arbitrary base), where the transition maps

are the n-th power maps.

Ű Z̆p := W (Fp), Q̆p := Frac Z̆p, and σ ∈ Aut(Q̆p) is the arithmetic Frobenius.

By Zur
p (resp. Qur

p ) we mean the subring of elements in Z̆p (resp. Q̆p) which are alge-

braic over Qp.

Ű P(S) is the power set of a set S.

Ű If H is an algebraic group over a Ąeld k, we write H0 ⊂ H for its neutral

component.

Let G be a connected reductive group over a Ąeld k of characteristic 0.

Ű If k is a Ąnite extension of k0, then Resk/k0G denotes the restriction of scalars

group.

Ű If k′ is an extension Ąeld of k then Gk′ := G×Spec k Spec k
′.

Ű Gder is the derived subgroup, ϱ : Gsc → Gder ⊂ G the simply connected cover, ZG
the center (we also write Z(G)), Gad := G/ZG the adjoint group, and Gab := G/Gder
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the maximal commutative quotient. Write AG ⊂ ZG for the maximal split subtorus

over k.

Ű G(k)? is the set of semisimple (resp. regular semisimple, resp. strongly regular)

elements in G(k) for ? = ss (resp. reg, resp. sr). We put T (k)? := T (k) ∩ G(k)? for

? ∈ {reg, sr}.

Ű If k is a local Ąeld and G a reductive group over k, write I(G(k)) and S(G(k))

for the spaces of invariant and stable distributions on G(k). (For more details, see

Section 2.2). By Irr(G(k)) we mean the set of isomorphism classes of irreducible

admissible representations of G(k).

Ű When k = Qp, two elements δ, δ′ ∈ G(Q̆p) are (G(Q̆p), σ)-conjugate (resp.

(G(Z̆p), σ)-conjugate) if there exists a g ∈ G(Q̆p) (resp. g ∈ G(Z̆p)) such that δ′ =

σ(g)δg−1.

Let T (resp. S) be a maximal torus (resp. maximal split torus) of G over k with

T ⊃ S. Let M0 be a minimal k-rational Levi subgroup containing T .

Ű Φ(T,G) is the set of absolute roots, Φ(S,G) = Φk(S,G) the set of k-rational

roots.

Ű Ω
G

= Ω(T,G) for the Weyl group over k, and ΩGk = Ω(S,G) for the k-rational

Weyl group. We often omit k from Φk(S,G) and ΩGk when it is clear from the context.

Ű L(G) or Lk(G) is the set of all k-rational Levi subgroups of G containing M0.

Write L<(G) := L(G)\{G}.

Lemma 1.9.1. Ð If Gder is simply connected then every k-rational Levi subgroup of G

has simply connected derived subgroup.

Proof. Ð This can be checked after base change to k, so assume k = k. For every

maximal torus T ⊂ G, the cocharacter lattice X∗(T ) modulo the coroot lattice is

torsion free by hypothesis. Thus X∗(T ) modulo the lattice generated by an arbitrary

subset of simple coroots is torsion free, implying that every Levi subgroup of G has

simply connected derived subgroup. □

Acknowledgements. Ð AK and SWS are grateful to Erez Lapid, Gordan Savin, and

Maarten Solleveld for pointing them in the right direction regarding Section 2.1.

We thank Xuhua He, Pol van Hoften, and Rong Zhou for discussions about Section 8.2,

and especially Zhou for providing us with Example 8.2.12 below. We also sincerely

thank the anonymous referee for his/her helpful comments and suggestions.

2. Preliminaries in representation theory and endoscopy

2.1. Estimates for Jacquet modules of unitary representations. Ð Here we recall

some facts from work of HoweŰMoore [HM79] and Casselman [Cas95] in order to

bound the absolute value of central characters in the Jacquet modules of unitary

representations of p-adic reductive groups.

We consider the following setup and notation.
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Ű Let F be a non-archimedean local Ąeld of characteristic 0. We write valF , OF ,

k, q, ϖ = ϖF respectively for the normalized valuation of F , the ring of integers

of F , the residue Ąeld of F , the cardinality of k, and an uniformizer of F so that

valF (ϖF ) = 1,

Ű G is a connected reductive group over F with center Z = ZG,

Ű Rep(G) is the category of smooth representations of G(F ),

Ű P =MN is a Levi decomposition of an F -rational proper parabolic subgroup ofG,

Ű AM is the maximal F -split torus in the center of M ,

Ű ∆ is the set of roots of AM in N ,

Ű A−
P := {x ∈ AM (F ) : |α(x)| ⩽ 1, ∀α ∈ ∆},

Ű A−−
P := {x ∈ AM (F ) : |α(x)| < 1, ∀α ∈ ∆},

Ű δP :M(F )→ R×
>0 is the modulus character given by

δP (m) := |det(Ad(m),LieN(F ))| .

Ű JP : Rep(G) → Rep(M) is the normalized Jacquet module functor, so JP (π)

equals πN ⊗ δ
−1/2
P with πN denoting the N(F )-coinvariants of π,

Ű IGP : Rep(M) → Rep(G) is the normalized parabolic induction functor, send-

ing πM to the smooth induction of πM ⊗ δ
1/2
P from P (F ) to G(F ).

Ű When R ∈ Rep(M) has Ąnite length, write Exp(R) for the set of AM (F )-

characters appearing as central characters of irreducible subquotients of R.

Lemma 2.1.1. Ð If G is simply connected, F -simple, and F -isotropic, then every

normal subgroup of G(F ) is either G(F ) itself or contained in Z(F ).

Proof. Ð A normal subgroup N of G(F ) not contained in Z(F ) is open of Ąnite

index in G(F ) by [PR94, Prop. 3.17] since G is F -simple. Since G(F ) is F -isotropic

and simply connected, G(F ) is generated by the F -points of the unipotent radicals

of F -rational parabolic subgroups [PR94, Th. 7.6]. Thus, by TitsŠ theorem proved in

[Pra82], every open proper subgroup of G(F ) is compact. On the other hand, N is

easily seen to be non-compact by considering the adjoint action of a maximal F -split

torus on a root subgroup.(3) Therefore, N = G(F ). □

Proposition 2.1.2 (HoweŰMoore). Ð Assume that Gsc is F -simple. Let π be an in-

Ąnite dimensional irreducible unitary representation of G(F ). Then there exists an

integer 2 ⩽ k <∞ such that every matrix coefficient of π belongs to Lk(G(F )/Z(F )).

Proof. Ð This follows from the explanation on pp. 74Ű75 of [HM79] below Th. 6.1,

once we verify the following claim: if π(g) is a scalar operator for g ∈ G(F ) then

g ∈ Z(F ). Taking a z-extension of G, we reduce to the case when Gder is simply

connected. Pulling back π via the multiplication map Z(F ) × Gder(F ) → G(F ) and

passing to one of the Ąnitely many constituents (cf. [Xu16, Lem. 6.2]) which is inĄnite-

dimensional, we may assume that G is itself F -simple and simply connected. Now Z ′

(3)For instance, see the proof of Proposition 3.9 in http://virtualmath1.stanford.edu/~conrad/

JLseminar/Notes/L2.pdf for details.

J.É.P. Ð M., 2023, tome 10



H0 of Igusa varieties 1313

be the group of g ∈ G(F ) such that π(g) is a scalar. Then Z ′ is a normal subgroup

of G(F ), and Z ′ ̸= G(F ) since dimπ = ∞. Therefore, Z ′ ⊂ Z(F ) by Lemma 2.1.1,

proving the claim. □

Proposition 2.1.3 (Casselman). Ð Let π be an irreducible unitary representation of

G(F ). For every ω ∈ Exp(πN ) and every a ∈ A−
P , we have the inequality

(2.1.1) |ω(a)| ⩽ 1.

If Gsc is F -simple and a ∈ A−−
P , then the equality holds if and only if dimπ <∞.

Proof. Ð The inequality (2.1.1) follows from the obvious extension of [Cas95, ğ4.4]

(where p <∞ is assumed) to cover the case p =∞. (For instance, [Cas95, Lem. 4.4.3,

Prop. 4.4.4] have the analogues for p = ∞, with ŞboundedŤ in place of ŞsummableŤ

and Ş|χ(x)| ⩽ 1Ť in place of Ş|χ(x)| < 1Ť.)

As for the last assertion, suppose that dimπ =∞. In the notation of [Cas95, ğ2.5],

Proposition 2.1.2 tells us that the matrix coefficient is Lk, i.e., |cv,ṽ|
k is integrable

modulo center for some 2 ⩽ k < ∞. Applying [Cas95, Cor. 4.4.5] to p = k, F = cv,ṽ

and a ∈ A−−
P , we obtain that |ω(a)δ

−1/k
P (a)| < 1. Therefore, |ω(a)| < 1. For the

converse, suppose that dimπ < ∞. Then kerπ is an open subgroup of G(F ). As the

open subgroup N(F ) ∩ kerπ of the unipotent subgroup N(F ) acts trivially on π,

we see that N(F ) itself acts trivially on π. (Use conjugation by AM (F ).) Therefore,

Exp(πN ) consists of the central character ω of π (restricted to M(F )) only, which is

unitary. In particular, |ω(a)| = 1 for all a ∈ A−−
P □

Remark 2.1.4. Ð Proposition 2.1.3 is sharp in general.

For example, consider G = GL2(F ) with P (resp. N) consisting of upper triangu-

lar (resp. upper triangular unipotent) matrices. The complementary series represen-

tations πε = IGP (| · |
ε, | · |−ε) with ε ∈ R with 0 < ε < 1/2 are irreducible and unitary.

We have

(πε)N = JN (πε)⊗ δ
1/2
P = δ

1/2
P ⊗

(
(| · |ε, | · |−ε)⊕ (| · |−ε, | · |ε)

)

= (| · |ε+1/2, | · |−ε−1/2)⊕ (| · |−ε+1/2, | · |ε−1/2).

So in this case, Exp((πε)N ) contains the character ω = (|·|−ε+1/2, |·|ε−1/2) of Q×
p ×Q

×
p .

Then a =
(
p 0
0 1

)
∈ A−−

P . We get ω(a) = pε−1/2 which gets arbitrarily close to 1 as ε

tends to 1/2.

Lemma 2.1.5. Ð Assume that Gad has no F -anisotropic factor. Then every irreducible

smooth representation of G(F ) is either one-dimensional or inĄnite-dimensional.

Proof. Ð We may assume that Gder is simply connected via z-extensions. Suppose

that π is a Ąnite-dimensional irreducible smooth representation of G(F ). Then the

normal subgroup kerπ ∩ Gder(F ) of Gder(F ) is open. Lemma 2.1.1 implies that

kerπ∩Gder(F ) = Gder(F ), thus π factors through the abelian quotient G(F )/Gder(F ).

Therefore, dimπ = 1, completing the proof. □
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2.2. Local Hecke algebras and their variants. Ð We retain the notation from

the preceding section but allow the local Ąeld F to be either non-archimedean or

archimedean. A basic setup of local Hecke algebras will be introduced, partly follow-

ing [Art96, ğ1].

Fix a Haar measure on G(F ) and a maximal compact subgroup K ⊂ G(F ). Let

G(F )sr denote the subset of strongly regular elements g ∈ G(F ), namely the semisim-

ple elements whose centralizers in G are (maximal) tori. By [Ste65, 2.15], G(F )sr

is open and dense in G(F ) (for both the Zariski and non-archimedean topologies).

Write R(G) for the space of Ąnite C-linear combinations of irreducible characters

of G(F ), which is a subspace in the space of functions on G(F )sr. We also identify

R(G) with the Grothendieck group of smooth Ąnite-length representations of G(F )

with C-coefficients. Let H(G) = H(G(F )) denote the space of smooth compactly sup-

ported bi-K-Ąnite functions on G(F ). Let I(G) denote the invariant space of functions

on G(F ), namely the quotient of H(G) by the ideal generated by functions of the form

g 7→ f(g) − f(hgh−1) with h ∈ G(F ) and f ∈ H(G). From [Kaz86, Th. 0], we see

that f ∈ H(G) has trivial image in I(G) if and only if its orbital integral vanishes on

G(F )sr if and only if Trπ(f) = 0 for all irreducible tempered representations of G(F );

moreover, the same is true if G(F )sr is replaced with G(F ) and if the temperedness

condition is dropped. By abuse of notation, we frequently write f ∈ I(G) to mean

a representative f ∈ H(G) of an element in I(G). The trace PaleyŰWiener theorem

[BDK86] describes I(G) as a subspace of C-linear functionals on R(G) via

(2.2.1) f 7−→

(
Θ 7→

∫

G(F )sr

f(g)Θ(g)dg

)
.

If R(G) is thought of as a Grothendieck group, the above map is simply f 7→ (π 7→

Trπ(f)).

Denote by S(G) the quotient of H(G) by the ideal generated by functions each of

which has vanishing stable orbital integrals on G(F )sr. Thus we have natural surjec-

tions H(G)→→ I(G)→→ S(G). By R(G)st we mean the subspace of R(G) consisting of

stable linear combinations (i.e., constant on each stable conjugacy class in G(F )sr).

Then S(G) is identiĄed with a subspace of functions on R(G)st via (2.2.1) (since

Θ ∈ R(G)st now, the image depends only on the image of f in S(G)); the subspace

is characterized by [Art96, Th. 6.1, 6.2] in the p-adic case, cf. last paragraph on p. 491

of [Xu17]. Via the obvious quotient map I(G) → S(G) and the restriction map from

R(G) to R(G)st, we have a commutative diagram

I(G) //

Tr
��

S(G)

Tr
��

HomC-linear(R(G),C) // HomC-linear(R(G)
st,C).

Let us extend the setup so far to allow a Ąxed central character. By a local central

character datum for G, we mean a pair (X, χ), where

Ű X is a closed subgroup of Z(F ) equipped with a Haar measure µX on X,

Ű χ : X→ C× is a smooth character.
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Let H(G,χ−1) = H(G(F ), χ−1) denote the space of smooth bi-K-Ąnite functions f

on G(F ) which have compact support modulo X and satisfy f(xg) = χ−1(x)f(g) for

x ∈ X and g ∈ G(F ). The χ-averaging map

H(G) −→ H(G,χ−1), f 7−→

(
g 7→

∫

X

f(gz)χ(z)dµX

)
,

is a surjection. We have the obvious deĄnitions of I(G,χ−1) and S(G,χ−1), the

χ-averaging maps I(G) → I(G,χ−1) and S(G) → S(G,χ−1), as well as the quotient

maps

H(G,χ−1) −→−→ I(G,χ−1) −→−→ S(G,χ−1).

We can think of I(G,χ−1) as a subspace of functions on R(G,χ), the subspace of R(G)

generated by irreducible characters with central character χ. Analogously S(G,χ−1)

is the subspace of functions on R(G,χ)st deĄned similarly.

2.3. Transfer of one-dimensional representations. Ð Let G and G∗ be connected

reductive groups over a non-archimedean local Ąeld F of characteristic zero, with G∗

quasi-split over F . Let ξ : GF
∼
−→ G∗

F
be an inner twisting, namely an F -isomorphism

such that ξ−1σ(ξ) is an inner automorphism of GF for every σ ∈ Gal(F/F ). As in

Section 1.9, we have canonical F -morphisms ϱ : Gsc → G and ϱ∗ : G∗
sc → G∗. DeĄne

an F -torus and two topological groups

Gab := G/Gder, G(F )♭ := cok(Gsc(F )
ϱ
−−→ G(F )), G(F )ab := G(F )/G(F )der,

where G(F )der is the commutator subgroup of G(F ) as an abstract group, which is

closed in G(F ). (This is clear if G is a torus. If not, G(F )der is not contained in

ZGder
(F ) so an open subgroup in Gder(F ) by [PR94, Th. 3.3], after reducing to the

simply connected and F -simple case via z-extensions.) Moreover, G(F )der is contained

in im(G(F )sc → G(F )) [Del79, 2.0.2], so there are natural morphisms

(2.3.1) G(F ) −→−→ G(F )ab −→−→ G(F )♭ −→−→ G(F )/Gder(F ) ↪−→ Gab(F ).

In particular, G(F )♭ is an abelian group. The last two maps in (2.3.1) are isomor-

phisms if Gder = Gsc by KneserŠs vanishing theorem for H1 of simply connected

groups (applicable since F is non-archimedean). The deĄnition and discussion above

applies to G∗ in the same way.

Let 1 → Z1 → G1
α
→ G → 1 be a z-extension of G over F . Since G1 → G

induces Gad
1

∼
−→ Gad, the classifying data for inner twists of G1 and those of G

are identiĄed (up to isomorphism). Thus we may assume that there is a z-extension

1→ Z1 → G∗
1
α∗

→ G∗ → 1 with an inner twisting ξ1 : G1,F
∼
−→ G∗

1,F
such that ξ1 and ξ

form a commutative square together with the maps α and α∗. The map G1,der → Gder

induced by α is a simply connected cover, allowing an identiĄcation G1,der = Gsc.

Likewise we have G∗
1,der = G∗

sc.
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Lemma 2.3.1. Ð There is a row-exact commutative diagram where the vertical maps

are isomorphisms:

1 // Z1(F )/Z1(F ) ∩G1,der(F ) //

≀
��

G1(F )
♭ = Gab

1 (F )

≀
��

// G(F )♭ //

≀
��

1

1 // Z1(F )/Z1(F ) ∩G
∗
1,der(F )

// G′
1(F )

♭ = G∗,ab
1 (F ) // G∗(F )♭ // 1.

Here the second vertical map is given by the isomorphism Gab
1

∼
−→ G∗,ab

1 induced

by ξ, and the Ąrst and third vertical maps are induced by the second. Moreover the

isomorphism G(F )♭
∼
−→ G∗(F )♭ is canonical, i.e., independent of the choice of z-

extensions.

We will write ξ♭ : G(F )♭
∼
−→ G∗(F )♭ for the canonical isomorphism.

Proof. Ð The row-exactness in the diagram is straightforward from the deĄni-

tion. The map ξ1 induces an F -isomorphism Gab
1

∼
−→ G∗,ab

1 and restricts to an

F -isomorphism from Z1 onto Z1. Thus the Ąrst two vertical maps are isomor-

phisms, which implies that the last vertical map is also. To check the last assertion,

if G1
α1−→ G and G2

α2−→ G are two z-extensions, then the Ąber product of G1 and G2

over G is also a z-extension. So we may assume that there is a surjection between

the two z-extensions, in which case the last assertion is clear. □

Lemma 2.3.2. Ð If Gsc has no F -anisotropic factor, then G(F )♭ = G(F )ab.

Proof. Ð We may assume that G is not a torus. Via a z-extension, we reduce to the

case when Gsc = Gder. Then G(F )der is a noncentral normal subgroup of Gder(F ).

Applying Lemma 2.1.1 to each F -simple factor of Gder, we deduce that G(F )der =

Gder(F ), hence G(F )♭ = G(F )ab. □

Corollary 2.3.3. Ð If Gsc has no F -anisotropic factor, then the following four groups

(under multiplication) are in canonical isomorphisms with each other:

(1) the group of smooth characters G(F )→ C×,

(2) the group of smooth characters G(F )♭ → C×,

(3) the group of smooth characters G∗(F )♭ → C×,

(4) the group of smooth characters G∗(F )→ C×,

where the maps from (2) to (1) and from (3) to (4) are given by pullbacks, and the

map between (2) and (3) is via the isomorphism of Lemma 2.3.1. With no assump-

tion on Gsc, we still have canonical isomorphisms between (2), (3), and (4), and

a canonical embedding from (2) to (1).

Proof. Ð Since G(F )ab is the maximal abelian topological quotient of G(F ), we can

replace G(F ) with G(F )ab in (1), and likewise for (4). From (2.3.1) and Lemma 2.3.1,

we have

G(F )ab −→−→ G(F )♭ ≃ G∗(F )♭ ←−←− G∗(F )ab.
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Lemma 2.3.2 tells us that the last map is always an isomorphism (since G∗ has no

F -anisotropic factor); so is the Ąrst map ifG has no F -anisotropic factor. The corollary

follows. □

Remark 2.3.4. Ð The only nontrivial F -anisotropic simply connected simple group

over F is of the form ResF ′/FSL1(D) for a central division algebra D over a Ąnite

extension F ′ of F with [D : F ] = n2 and n ⩾ 2. So the condition in the corollary is

that Gsc has no such factor. Two exemplary cases are (i) G = GL1(D), G∗ = GLn(F )

and (ii) G = SL1(D), G∗ = SLn(F ). In (i), it is standard (e.g., [Rie70, Intro.]) that

G(F )der = Gder(F ), and the four sets are still isomorphic. However, in (ii), G(F )der

is the group of 1-units in the maximal order of D by [Rie70, ğ5, Cor.]. In particular,

(1) is a nontrivial group, whereas (2) and (3) are evidently trivial, thus (4) is trivial

by the corollary.

Remark 2.3.5. Ð One can also construct a natural map from (4) to (1) through

the continuous cohomology H1(WF , Z(Ĝ)) = H1(WF , Z(Ĝ
∗)) following Langlands.

(This works for archimedean local Ąelds F as well.) Indeed, [Xu16, App. A] explains

the isomorphism between H1(WF , Z(Ĝ
∗)) and (4), and a map from H1(WF , Z(Ĝ

∗))

to (1).(4)

Let g ∈ G(F )ss and g∗ ∈ G∗(F )ss. When Gder = Gsc, we say g and g∗ are matching

if their F -conjugacy classes correspond via ξ. In general, matching is deĄned by lift-

ing ξ to an inner twisting between z-extensions of G and G∗ as in [Kot82, pp. 799Ű800]

(specialized to the case E = F ). From loc. cit. we see that the notion of matching is

independent of the choice of z-extensions, and depends only on the G(F )-conjugacy

class of ξ.

Since G∗ is quasi-split, every g admits a matching element in G∗(F ) (again by

[loc. cit.]). When g and g∗ are matching, we have an inner twisting between the con-

nected centralizers Ig, Ig∗ in G,G∗ by [Kot82, Lem. 5.8]. Fix Haar measures on the

pairs of inner forms (G(F ), G∗(F )) and (Ig(F ), Ig∗(F )) compatibly in the sense of

[Kot88, p. 631] to deĄne (stable) orbital integrals at g and g∗, cf. [Kot88, pp. 637Ű638].

Write e(G) ∈ {±1} for the Kottwitz sign. Now f ∈ H(G(F )) and f∗ ∈ H(G∗(F )) are

said to be matching if for every g∗ ∈ G∗(F )sr, we have the identity of stable orbital

integrals

(2.3.2) SOg∗(f
∗) =

{
SOg(f), if there exists a matching g ∈ G(F )ss,

0, if there is no such g ∈ G(F )ss.

Remark 2.3.6. Ð The sign convention in (2.3.2) is chosen in favor of simplicity. (See

also Remark 7.4.1 below.) One could require SOg∗(f
∗) = e(G)SOg(f) instead, so that

(4)The latter map is asserted to be also an isomorphism in [Xu16, App. A], but this is false for

G = SL1(D) (in which case Z(Ĝ) = {1}) as explained in Remark 2.3.4. In loc. cit., for a simply

connected group G′ over F , it is said that all continuous characters G′(F ) → C× are trivial, but this

is not guaranteed unless Gsc has no F -anisotropic factor (e.g., this is okay for G∗). This mistake is

surprisingly prevalent in the literature.
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the Kottwitz sign e(G) plays the role of transfer factor, but that would introduce e(G)

in the trace identity of Lemma 2.3.7.

A standard fact (cf. Section 2.6 below) from [Wal97] is every f admits a match-

ing f∗ as above, called a (stable) transfer of f . If the Harish-Chandra character Θπ∗

of π∗ ∈ Irr(G∗(F )) is stable, i.e., Θπ∗(g∗1) = Θπ∗(g∗2) whenever g∗1 , g
∗
2 ∈ G

∗(F )sr are

stably conjugate, then the value Trπ∗(f∗) =
∫
G∗(F )sr

f∗(g∗)Θπ∗(g∗)dg∗ is determined

by the stable orbital integrals of f∗ on G∗(F )sr. This follows from the stable version

of the Weyl integration formula, cf. (2.3.3) below. The analogue holds true with G

and f in place of G∗ and f∗. Note that Θπ∗ is stable if dimπ∗ = 1. (This can be

checked after reducing via z-extensions to the case when G∗
sc = G∗

der.)

Lemma 2.3.7. Ð Let f ∈ H(G(F )) and f∗ ∈ H(G∗(F )) be matching functions. Let

π∗ : G∗(F ) → C× be a smooth character. If π : G(F ) → C× is given by π∗ via

Corollary 2.3.3 then
Trπ(f) = Trπ∗(f∗).

Proof. Ð As dimπ = dimπ∗ = 1, we have Θπ(g) = π(g) and Θπ∗(g∗) = π∗(g∗)

for g ∈ G(F ), g∗ ∈ G∗(F ). Above the lemma, we observed that Θπ∗ is stable. This

implies that Θπ is stable. For a maximal torus T of G over F , write W (T ) for the

associated Weyl group. By the stable Weyl integration formula,

(2.3.3) Trπ(f) =

∫

G(F )sr

f(g)Θπ(g)dg =
∑

T

1

|W (T )|

∫

T (F )sr

SOt(f)Θπ(t)dt,

where the sum runs over a set of representatives for stable conjugacy classes of max-

imal tori of G over F . The analogous formula holds for G∗(F ). From here, the proof

is an easy exercise using (2.3.2) and the following fact coming from quasi-splitness of

G∗(F ): every maximal torus of G(F ) is a transfer of that of G∗(F ) in the sense of

[Kot84b, 9.5]. □

Remark 2.3.8. Ð The correspondence of Lemma 2.3.7 need not be the JacquetŰLang-

lands correspondence when G∗ = GLn. E.g., if G = GL1(D) for a central division

algebra D over a p-adic Ąeld F with n > 1, then the trivial representation of D×

corresponds to the Steinberg representation of GLn(F ) under JacquetŰLanglands,

but to the trivial representation of GLn(F ) in the lemma.

2.4. Lefschetz functions on real reductive groups. Ð Let G be a connected reduc-

tive group over R containing an elliptic maximal torus. Fix a maximal compact sub-

group K∞ ⊂ G(R). Denote by G(R)+ the preimage of the neutral component Gad(R)0

(for the real topology) under the natural map G(R)→ Gad(R).

Lemma 2.4.1. Ð We have G(R)+ = Z(R) · ϱ(Gsc(R)).

Proof. Ð Since Gsc(R) is connected, clearly ϱ(Gsc(R)) maps into Gad(R)0. Therefore,

G(R)+ ⊃ Z(R) · ϱ(Gsc(R)). We have surjections

Gsc(R)
0 × Z(R)0 −→−→ G(R)0 −→−→ Gad(R)0

by [Mil05, Prop. 5.1]. This implies that G(R)+ ⊂ Z(R)G(R)
0 = Z(R) · ϱ(Gsc(R)). □
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Let ξ be an irreducible algebraic representation of GC, and ζ : G(R) → C× be

a continuous character. By restriction ξ yields a continuous representation of G(R)

on a complex vector space, which we still denote by ξ. Write ωξ : Z(R) → C× for

the central character of ξ. By Π∞(ξ, ζ) we mean the set of isomorphism classes of

irreducible discrete series representations whose central and inĄnitesimal characters

are equal to those of the contragredient of ξ ⊗ ζ. This is a discrete series L-packet by

the construction of [Lan89], which assigns to Π∞(ξ, ζ) an L-parameter

φξ,ζ : WR −→
LG.

Thus we also write Π∞(φξ,ζ) for Π∞(ξ, ζ). We have ξ⊗ ζ ≃ ξ′⊗ ζ ′ as representations

of G(R) if and only if there exists an algebraic character χ of GC such that ξ′ = ξ⊗χ

and ζ ′ = ζ ⊗ χ−1. In this case Π∞(ξ, ζ) = Π∞(ξ′, ζ ′), and φξ,ζ ≃ φξ′,ζ′ . In fact

|Π∞(ξ, ζ)| is a constant d(G) ∈ Z⩾1 depending only on G. When ξ = 1, we also write

Π∞(ζ) and fζ for Π∞(ξ, ζ) and fξ,ζ .

Write AG for the maximal split torus in the center of G. Let χ : AG(R)
0 → C×

be a continuous character. Let Irrtemp(G(R), χ) be the set of (isomorphism classes of)

irreducible tempered representations of G(R) whose central character equals χ on

AG(R)
0. Write H(G(R), χ−1) for the space of smooth K∞-Ąnite functions on G(R)

with central character χ−1. Following [Art89, ğ4], f ∈ H(G(R), χ−1) is said to be

stable cuspidal if Trπ(f) is constant as π varies over each discrete series L-packet and

if Trπ(f) = 0 for every π ∈ Irrtemp(G(R), χ) outside of discrete series.

Fix a Haar measure on G(R) and the Lebesgue measure on AG(R)
0, so as to

determine a Haar measure on G(R)/AG(R)
0. Choose a pseudo-coefficient fπ ∈

H(G(R), ωξζ) for each π ∈ Π∞(ξ, ζ) à la [CD85]. Although it is not unique, the

orbital integrals of fπ are uniquely determined by the property that Trπ(fπ) = 1 and

that Trπ′(fπ) = 0 for π′ ∈ Irrtemp(G(R), (ωξζ)
−1) and π′ ̸≃ π. An averaged Lefschetz

function associated with (ξ, ζ) is deĄned as

(2.4.1) fξ,ζ := |Π∞(ξ, ζ)|−1
∑

π∈Π∞(ξ,ζ)

fπ ∈ H(G(R), ωξζ).

By construction, fξ,ζ is stable cuspidal in the above sense.

For elliptic γ ∈ G(R), let Iγ denote its connected centralizer in G(R), and e(Iγ) ∈

{±1} its Kottwitz sign. Let Icpt
γ denote an inner form of Iγ over R that is anisotropic

modulo ZG. From [Kot92a, p. 659], as our Oγ(fξ,ζ) equals d(G)−1SOγ∞(f∞) there,

we see that

(2.4.2) Oγ(fξ,ζ)

=

{
d(G)−1vol(AG(R)

0\Icpt
γ (R))−1ζ(γ)e(Iγ) Tr ξ(γ), γ : elliptic,

0, γ : non-elliptic.

In (2.4.2), the Haar measure on Icpt
γ (R) is chosen to be compatible (in the sense of

[Kot88, p. 631]) with the measure on Iγ(R) used in the orbital integral, to compute

vol(AG(R)
0\Icpt

γ (R)) with respect to the Lebesgue measure on AG(R)
0. Again by
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[Kot92a, p. 659],

(2.4.3) SOγ(fξ,ζ) =

{
vol(AG(R)

0\Icpt
γ (R))−1ζ(γ) Tr ξ(γ), γ : elliptic,

0, γ : non-elliptic.

Let G∗ be a quasi-split group over R with inner twisting GC
∼
−→ G∗

C, through which

ξ, ζ above are transported to G∗. Thereby we obtain an averaged Lefschetz function

f∗ξ,ζ on G∗(R).

Lemma 2.4.2. Ð The function f∗ξ,ζ is a transfer of fξ,ζ (in the sense of (2.3.2)).

Proof. Ð This is immediate from (2.4.3). □

Lemma 2.4.3. Ð Assume that ξ = 1. Let π : G(R) → C× be a continuous charac-

ter whose central character equals ζ−1 when restricted to AG(R)
0. Then π|G(R)+ =

ζ−1|G(R)+ if and only if π|Z(R) = ζ−1|Z(R). If the equivalent conditions hold then

Tr(fζ |π) = 1 if π = ζ−1; otherwise Tr(fζ |π) = 0.

Proof. Ð The Ąrst assertion is clear from Lemma 2.4.1. For the second assertion, it fol-

lows from (2.4.2) via the Weyl integration formula that Tr(fζ |π) = vol(K)−1
∫
K
ζ(k)

π(k)dk, where K is a maximal compact-modulo-AG(R)
0 subgroup of G(R). The inte-

gral vanishes unless π = ζ−1 on K, in which case π = ζ−1 on the entire G(R) (since K

meets every component of G(R)) and Tr(fζ |π) = 1. □

2.5. One-dimensional automorphic representations. Ð Now let G be a connected

reductive group over a number Ąeld F . Let v be a place of F and set Gv := GFv
.

We have a Ąnite decomposition of Gsc into F -simple factors

(2.5.1) Gsc =
∏

i∈I

Gi, with Gi = ResFi/FHi,

for a Ąnite extension Fi/F and an absolutely Fi-simple simply connected group Hi

over each Fi. Accordingly Gad =
∏
i∈I G

ad
i . Note that we have a natural compos-

ite map G → Gad → Gad
i for each i ∈ I, where the last arrow is the projection

onto the i-component. Let Pv = MvNv be a Levi decomposition of a parabolic sub-

group of Gv. We consider the following assumption, where ŞnbŤ stands for non-basic

(cf. DeĄnition 5.3.2 and Lemma 5.3.7 below).

(Q-nb(Pv)) The image of Pv in (Gad
i )v is a proper parabolic subgroup for every i ∈ I.

The assumption implies that Gad has no nontrivial F -simple factor that is aniso-

tropic over Fv, thus so the embedding Gsc(F ) ↪→ Gsc(A
v
F ) has dense image by strong

approximation. When Gad is itself F -simple, (Q-nb(Pv)) is simply saying that Pv is

a proper parabolic subgroup of Gv.

Lemma 2.5.1. Ð Assume that Gder = Gsc and that Gi is isotropic over Fv for every

i ∈ I. Let π be a discrete automorphic representation of G(AF ), and π′ an irreducible
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Gder(AF )-subrepresentation of π. Decompose π′ = ⊗iπ
′
i according to Gder(AF ) =∏

i∈I Gi(AF ). Write

Gi(Fv) = Hi(Fi ⊗F Fv) =
∏

w|v

Hi(Fi,w),

where w runs over the set of places of Fi above v, and decompose π′
i,v = ⊗w|vπ

′
i,w

accordingly. If for every i ∈ I, there exists w|v such that π′
i,w is trivial, then dimπ = 1.

Proof. Ð By strong approximation, the embedding Hi(Fi) ↪→ Hi(A
w
Fi
) has dense im-

age for each i ∈ I. Since the underlying space of π′
i consists of automorphic forms

which are left-invariant under Hi(Fi), and since π′
i,w is trivial, the argument for

[KST20, Lem. 6.2] shows that π′
i is trivial on the entire Hi(AFi). Hence π′ is triv-

ial. Since G(AF )/Gder(AF ) is abelian, we deduce that dimπ = 1 as π is generated

by π′ as a G(AF )-module. □

Write AG for the maximal Q-split torus in the center of ResF/QG.

Corollary 2.5.2

Let π be an irreducible G(AF )-subrepresentation of L2
disc(G(F )\G(AF )/AG(R)

0)

and let ωv ∈ Exp(JPv
(πv)). Then

(2.5.2) |ωv(a)| ⩽ δ
−1/2
Pv

(a), a ∈ A−−
Pv
.

Now assume (Q-nb(Pv)). Then the equality holds for some a ∈ A−−
Pv

if and only if the

equality holds for all a ∈ A−−
Pv

if and only if dimπ = 1.

Proof. Ð The inequality in (2.5.2) is immediate from Proposition 2.1.3 and the nor-

malization JPv
(πv) = (πv)Nv

⊗ δ
−1/2
Pv

. It remains to check the three conditions for the

equality are equivalent. The only nontriviality is to show that dimπ = 1, assuming

that |ωv(a)| = δ
−1/2
Pv

(a) for some a ∈ A−−
Pv

.

We may assume Gder = Gsc via z-extensions. We decompose

P ′
v := Pv ∩Gder =

∏

i∈I

∏

w|v

Pv,i,w according as (Gder)v =
∏

i∈I

∏

w|v

(Hi)w,

where w runs over places of Fi above v. Similarly AP ′
v
=

∏
i,w APv,i,w

. Assumption

(Q-nb(Pv)) tells us that for every i, there exists w|v such that Pv,i,w is a proper

parabolic subgroup of (Hi)w. In particular, Gi,v is isotropic for every i. So we can

apply Lemma 2.5.1. Adopting the setup and notation from there, it suffices to show

that for every i, there exists a place w|v such that π′
i,w = 1. In fact, we only need to

Ąnd w|v such that dimπ′
i,w <∞ by Lemma 2.1.5 and Corollary 2.3.3.

The central isogeny Z×Gder → G induces a map AGv
×AP ′

v
→ APv

, which has Ąnite

kernel and cokernel on the level of Fv-points. Replacing a with a Ąnite power, we may

assume that a is the image of (a0, a
′) ∈ AGv

(Fv)×AP ′
v
(Fv), so that |ω(a)| = |ω(a′)|.

(The central character of π′
v is unitary on AGv (Fv), so |ω(a0)| = 1.) Write a′ =

(ai,w)i,w and ωv|AP ′
v
(Fv) = (ωv,i,w)i,w according to the decomposition of P ′

v above.
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We have |ωv,i,w(ai,w)| ⩽ δ
−1/2
Pv,i,w

(ai) by Proposition 2.1.3, while
∏
i,w |ωv,i,w(ai,w)| =∏

i,w δ
−1/2
Pv,i,w

(ai,w) from our running assumption. Therefore

|ωv,i,w(ai,w)| = δ
−1/2
Pv,i,w

(ai,w), ∀i ∈ I.

Since JP ′
v
(π′
v) ⊂ JPv

(πv), we see that ωv|AP ′
v
(Fv) ∈ Exp(JP ′

v
(π′
v)). Thus we have

ωv,i,w ∈ Exp(JPv,i,w
(π′
v,i,w)).

Finally for each i, we apply the equality criterion of Proposition 2.1.3 at a place w

where Pv,i,w is proper in (Hi)w. Thereby we deduce that dimπ′
i,w <∞ as desired. □

Let ξ:GF
∼
−→G∗

F
be an inner twisting, with G∗ a connected reductive group over F .

Lemma 2.5.3. Ð One-dimensional automorphic representations of G(AF ) are in a

canonical bijection with those of G∗(AF ), compatibly with the bijection of Corol-

lary 2.3.3 at every place of F .

Proof. Ð DeĄne G(AF )
♭ := cok(Gsc(AF )

ϱ
→ G(AF )). Similarly we have G∗(AF )

♭,

G(F )♭, and G∗(F )♭. Adapting the arguments of Section 2.3 via z-extensions, we see

that G(AF )
♭ is an abelian group and that there exists a canonical isomorphism

G(AF )
♭ ≃ G∗(AF )

♭ compatible with the isomorphism of Lemma 2.3.1 at every place

of v and that the above isomorphism carries G(F )♭ onto G∗(F )♭.

Again by taking a z-extension, we can assume that Gsc = Gder. It suffices to

show that the inclusion Gder(F )G(AF )der ⊂ Gder(AF ) has dense image so that every

one-dimensional automorphic representations of G(AF ) factors through G(AF )
♭ (and

likewise for G∗). Since G(AF )der contains G(Fv)der = Gder(Fv) whenever G is quasi-

split over Fv (Lemma 2.3.2), the desired density follows from the strong approximation

for Gder. □

To state the next lemma, deĄne a (global) central character datum to be a pair

(X, χ) as follows, where
∏′
v means the restricted product over all places of F .

Ű X =
∏′
v Xv is a closed subgroup of Z(AF ) such that Z(F )X is closed in Z(AF ),

and

Ű χ =
∏
v χv : X ∩ Z(F )\X → C×, with χv : Xv → C× a continuous character.

(Implicitly for each x = (xv) ∈ X, we have χv(xv) = 1 for almost all v, so that χ is

well deĄned on X.)

Lemma 2.5.4. Ð Let (X, χ) be a central character datum for G. Let v be a Ąnite place

of F , and gv ∈ G(Fv) such that the image of gv in G(Fv)
ab is not contained in the

image of Xv. Then there exists a one-dimensional automorphic representation π of

G(AF ) with π|X = χ such that πv(gv) ̸= 1.

Proof. Ð Replacing G with a z-extension and (X, χ) with its pullback to the z-exten-

sion, we may assume that Gder = Gsc. Then we may replace G with Gab as (X, χ)

factors through a central character datum for Gab. Thus we assume that G = T is

a torus. By assumption gv ∈ T (Fv) lies outside Xv, and viewing gv as an element of
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T (AF ) via the obvious embedding T (Fv) ↪→ T (AF ), we see that gv does not belong

to the subgroup T (F )X of T (AF ). Thus the proof is complete by the fact (from Pon-

tryagin duality) that, for every non-identity element x in a locally compact Hausdorff

abelian group X, there exists a unitary character of X whose value is nontrivial at x.

(Take X = T (AF )/T (F )X and x = gv.) □

2.6. Endoscopy with fixed central character. Ð Let F be a local or global Ąeld of

characteristic 0. Let G be a connected reductive group over F with an inner twisting

GF
∼
−→ G∗

F
with G∗ quasi-split over F . Let E(G) (resp. Eell(G)) denote a set of

representatives for isomorphism classes of endoscopic (resp. elliptic endoscopic) data

for G as deĄned in [LS87, KS99]. A member of E(G) is represented by a quadruple

e = (Ge,Ge, se, ηe) consisting of a quasi-split group Ge, a split extension Ge of WF

by Ĝe, se ∈ ZGe , and ηe : Ge ↪→ LG satisfying the conditions detailed in loc. cit.

Write Out(e) for the outer automorphism group [KS99, p. 19]. In particular, e∗ :=

(G∗, LG∗, 1, id) ∈ Eell(G). Write E<ell(G) := Eell(G)\{e
∗}.

From now on, let e ∈ E(G). Set

ι(G,Ge) := τ(G)τ(Ge)−1|Out(e)|−1 ∈ Q.

Throughout Section 2.6, we make the following assumption, which will be removed

via z-extensions in the next subsection. (The assumption is known to be true if e = e∗,

when it is evident, or if Gder is simply connected, by [Lan79, Prop. 1].)

Ű (assumption) Ge = LGe.

For now we restrict to the case when F is local. Let e be as above. Consider

a local central character datum (X, χ) for G as in Section 2.2. Let Xe ⊂ ZGe(F )

denote the image of X under the canonical embedding ZG ↪→ ZGe . Thus we can

identify X = Xe. We say a semisimple element γe ∈ Ge(F ) is strongly G-regular

if γe corresponds to (the G(F )-conjugacy class of) an element of G(F )sr via the

correspondence between semisimple conjugacy classes in Ge(F ) and those in G(F )

[LS87, 1.3]. Write Ge(F )G-sr ⊂ G
e(F ) for the subset of strongly G-regular elements.

Thanks to the proof of the transfer conjecture and the fundamental lemma [Wal06,

CL10, Ngô10], we know that each f ∈ H(G(F )) admits a transfer f e ∈ H(Ge(F ))

whose stable orbital integrals on strongly G-regular semisimple elements are deter-

mined by the following formula, where the sum runs over strongly regular G(F )-

conjugacy classes, and ∆(·, ·) denotes the transfer factor as in [LS87] (see the remark

below on normalization).

(2.6.1) SOγe(f e) =
∑

γ∈G(F )sr/∼

∆(γe, γ)Oγ(f), γe ∈ Ge(F )G-sr.

The assignment of f e to f is not unique on the level of Hecke algebras, but (2.6.1)

determines a well-deĄned map LSe : I(G)→ S(Ge).

The transfer satisĄes an equivariance property. For each z ∈ ZG(F ) ⊂ ZGe(F ),

deĄne the translates fz, f
e
z of f, f e by fz(g) = f(zg) and f ez (h) = f e(zh). The equivari-

ance of transfer factors under translation by central elements (see [LS87, Lem. 4.4.A])
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implies that f ez is a transfer of λe(z)fz for a smooth character λe : ZG(F )→ C×. The

character λe is independent of f e and f , and its restriction λe|Z0
G(F ) can be described

as follows. Consider the composite map

(2.6.2) WF −→
LGe ηe

−−−→ LG −→ LZ0
G,

where the last map is dual to the embedding Z0
G ↪→ G. Then λe|Z0

G(F ) is the character

of Z0
G(F ) corresponding to the composite map above by [KSZ, Lem. 7.4.6]. DeĄne a

smooth character χe : Xe → C× by the relation

(2.6.3) χe(z) = λe(z)−1χ(z), z ∈ X = Xe.

In light of the equivariance property above, the transfer map LSe : I(G) → S(Ge)

descends to

(2.6.4) LSe : I(G,χ−1) −→ S(Ge, χe,−1)

via averaging, still denoted by LSe for simplicity. The identity (2.6.1) still holds if

f e = LSe(f) under (2.6.4). In the special case of e = e∗ (so that χe = χ), we write

f∗ ∈ H(G∗(F ), χ−1) for a transfer of f ∈ H(G(F ), χ−1). If X = {1} then f∗ here

coincides with the one in Section 2.3, noting that e(G) in (2.3.2) plays the role of

transfer factor.

The fundamental lemma tells us the following. Assume that G and e are unramiĄed;

the latter means that Ge is an unramiĄed group and that the L-morphism ηe is

inĆated from a morphism of L-groups with respect to an unramiĄed extension of F .

We Ąx pinnings for G and Ge deĄned over F , which determine hyperspecial subgroups

K ⊂ G(F ) and Ke ⊂ Ge(F ) as in [Wal08, ğ4.1]. The Haar measures on G(F ) and

Ge(F ) are normalized to assign volume 1 to K and Ke. We also assume that χ is

unramiĄed, i.e., χ is trivial on X∩K. We normalize the transfer factors canonically as

in [LS87] (which is possible as G is quasi-split). Then LSe can be realized by a linear

map of the unramiĄed Hecke algebras (deĄned relative to K and Ke)

ξe,∗ : Hur(G(F ), χ−1) −→ Hur(Ge(F ), χe,−1).

We turn to the case of global Ąeld F . Recall that Z is the center of G. Let (X, χ)

be a global central character datum (Section 2.5). As in the local case, we deĄne Xe =∏
v X

e
v to be the image of X under the canonical embedding ZG(AF ) ↪→ ZGe(AF ). We

have χe :=
∏
v χ

e
v : Xe → C×, where χe

v was given by the local consideration above,

so that functions in H(G(AF ), χ
−1) transfer to those in H(Ge(AF ), (χ

e)−1). Denote

by λe =
∏
v λ

e
v : ZG(F )\ZG(AF )→ C× the character with λev as in the local context

above. (The ZG(F )-invariance of λe follows from the equivariance of transfer factors

[LS87, Lem. 4.4.A] and the product formula [LS87, Cor. 6.4.B].) The restriction of λ

to Z0
G(AF ) corresponds to the composite map (2.6.2) (with F now global). There is

an equality χe = λe,−1χ as characters on X = Xe as in (2.6.3) since this holds at

every place of F . In particular, χe is trivial on ZG(F ) ∩ Xe, and (Xe, χe) is a central

character datum for Ge.
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Remark 2.6.1. Ð The local transfer factors are well deĄned only up to a nonzero

scalar (unless G is quasi-split or Ge = G∗, if no further choices are made), so we

always choose a normalization implicitly, for instance throughout Section 3. Scaling

the transfer factor results in scaling the transfer map (2.6.4). However, according to

[LS87, ğ6.4], we may and will choose a normalization at each place such that the

product of local transfer factors over all places is the canonical global transfer factor.

This will not introduce ambiguity in our main argument as it takes place in the global

context.

It simpliĄes some later arguments if e is chosen to enjoy a boundedness property.

We say that a subgroup of LG = Ĝ⋊WF is bounded if its projection to Ĝ⋊Gal(E/F )

is contained in a compact subgroup for some (thus every) Ąnite Galois extension E/F

containing the splitting Ąeld of G.

Lemma 2.6.2. Ð In either local or global case, we can choose the representative e =

(Ge,Ge, se, ηe) in its isomorphism class to satisfy the following condition: ηe(WF ) is a

bounded subgroup of LG. (We restrict ηe to WF via the splitting WF → Ge built into

the data.)

Remark 2.6.3. Ð BergeronŰClozel [BC17, Lem. 3.7] proved a similar lemma when

F = R.

Proof. Ð Since ηe|Ĝe will be Ąxed throughout, we use it to identify Ĝe with a subgroup

of Ĝ. We take the convention that all cocycles/cohomology below are continuous

cocycles/cohomology.

It suffices to show that there exists an L-morphism ηe0 : Ge → LG extending

ηe|Ĝe such that ηe0(WF ) is bounded. Indeed, e0 = (Ge,Ge, se, ηe0) is then the desired

representative.

To prove the existence of ηe0 as above, we reduce to the case that Gder = Gsc and

that Ge = LGe via a z-extension. (In the notation of Section 2.7 below, the idea is to

multiply ηe1 by a suitable 1-cocycle c : WF → Z(Ĝ1) to make the image of (c · ηe1)WF

contained in LG and still bounded.) In the case that Gder = Gsc and Ge = LGe,

our approach is to reĄne the proof of [Lan79, Prop. 1], where Langlands shows that

ηe|Ĝe extends to an L-morphism ηe0 : LGe → LG under the hypothesis but without

guaranteeing boundedness of image. To construct ηe0 (denoted ξ therein), Langlands

reduces to the elliptic endoscopic case, chooses a sufficiently large Ąnite extension

K/F , and then constructs ξ′ : WK/F →
LG such that ηe0(g ⋊ w) := ηe(g)ξ′(w) gives

the desired L-morphism. (In the current proof, we follow Langlands to use the Weil

group WK/F to form the L-group, i.e., LG = Ĝ ⋊WK/F .) It is enough to arrange

that ξ′ has bounded image in LanglandsŠs construction.

Write N̂ for the normalizer of T̂ (which is LT 0 in loc. cit.) in Ĝ. Let N̂c
(resp. Z(Ĝe)c) denote the maximal compact subgroup of N̂ (resp. Z(Ĝe)). The

starting point is a set-theoretic map ξ′ :WK/F →
LG satisfying the second displayed
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formula on p. 709 therein. Such a ξ′ is chosen using the LanglandsŰShelstad repre-

sentative of each Weyl group element ω, denoted by n(ω) ∈ N̂ in [LS87, ğ2.1]. (The

point is that the σ-action ωT/G(σ) on LT 0 and the action ω1(σ) differ by the Weyl

action ω2(σ) in his notation. See the seventh displayed formula on p. 703.) In fact

n(ω) ∈ N̂c since it is a product of Ąnite-order elements in N̂ . Thereby ξ′ has image

in N̂c ⋊WK/F (thus bounded). It follows that the 2-cocycle of WK/F given by

aw1,w2
= ξ′(w1)ξ

′(w2)ξ
′(w1w2)

−1

has values in Z(Ĝe)c (not just Z(Ĝe) as in [Lan79, p. 709]). We need to verify the

claim that the 2-cocycle is trivial in H2(WK/F , Z(Ĝ
e)c); then ξ′ can be made a homo-

morphism after multiplying a Z(Ĝe)c-valued 1-cocycle, keeping its image bounded, so

we will be done. In fact, thanks to Lemma 2 therein (stated for Z(Ĝe) but also appli-

cable to Z(Ĝe)c since both groups have the same group of connected components), we

may assume that aw1,w2 ∈ (Z(Ĝe)c)
0. Then the claim follows from a variant of Lem. 4

therein, with S replaced by the maximal compact subtorus in the statement and proof.

(In particular, the map (1) on p. 719 is still surjective if S1 and S2 are replaced with

their maximal compact subtori, by considering unitary characters.) □

2.7. Endoscopy and z-extensions. Ð Here we explain a general endoscopic transfer

with Ąxed central character by removing the assumption that Ge = LGe in Section 2.8

via z-extensions. For the time being, let the base Ąeld F of G be either local or global.

Fix a z-extension over F

1 −→ Z1 −→ G1 −→ G −→ 1.

Let e = (Ge,Ge, se, ηe) ∈ E<ell(G). As explained in [LS87, ğ4.4] (see also [KSZ, ğ7.2.6]),

we have a central extension

1 −→ Z1 −→ Ge
1 −→ Ge −→ 1,

and e can be promoted to an endoscopic datum e1 = (Ge
1,
LGe

1, s
e
1, η

e
1) for G1 such

that ηe1 : LGe
1 ↪→

LG extends ηe : Ge ↪→ LG. Moreover, changing e1 and e in their

isomorphism classes if necessary, we may ensure that ηe1(WF ) and ηe(WF ) are bounded

subgroups in LG1 and LG, respectively. Indeed, this is done in the course of proof

of Lemma 2.6.2 in the general case. Write X1 (resp. Xe
1) for the preimage of X in G1

(resp. Ge
1), and χ1 : X1 → C× for the character pulled back from χ.

To describe endoscopic transfers, it is enough to work locally, so let F be a local

Ąeld. Applying Section 2.8 to G1 and e1 in place of G and e, we obtain an identiĄcation

Xe
1 = X1 under the canonical embedding ZG1 ↪→ ZGe

1
as well as characters λe1 :

ZG1
(F ) → C× and χe

1 : Xe
1 = X1 → C× such that χe

1 = λe,−1
1 χ1 as characters

on Xe
1 = X1. Again λe1|Z0

G1
(F ) corresponds to the parameter (2.6.2) (with Ge

1, G1

replacing Ge, G). We also have a transfer

LSe : I(G,χ−1) = I(G1, χ
−1
1 )

(2.6.4)
−−−−−−→ S(Ge

1, χ
e,−1),

where the equality is induced by G1(F )→→ G(F ).
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2.8. The trace formula with fixed central character. Ð In this subsection, G is a

connected reductive group over Q. Let AG denote the maximal Q-split torus in ZG,

and AGR
denote the maximal R-split torus in ZGR

. Put

AG,∞ := AG(R)
0, AGR,∞ := AGR

(R)0.

Let χ0 : AG,∞ → C× denote a continuous character. By L2
disc,χ0

(G(Q)\G(A)) we mean

the discrete spectrum in the space of square-integrable functions (modulo AG,∞) on

G(Q)\G(A) which transforms under AG,∞ by χ0. Let (X =
∏
v Xv, χ =

∏
v χv) be a

central character datum as in Section 2.5. Henceforth we always assume that

AG,∞ ⊂ X∞.

We can deĄne L2
disc,χ(G(Q)\G(A)) in the same way as L2

disc,χ0
(G(Q)\G(A)). Let

Adisc,χ(G) stand for the set of isomorphism classes of irreducible G(A)-subrepresenta-

tions in L2
disc,χ(G(Q)\G(A)). The multiplicity of π∈Adisc,χ(G) in L2

disc,χ(G(Q)\G(A))

is denoted m(π).

DeĄne H(G(A), χ−1) := ⊗′
vH(G(Qv), χ

−1
v ) as a restricted tensor product. Each

f ∈ H(G(A), χ−1) deĄnes a trace class operator, yielding the discrete part of the

trace formula:

(2.8.1) TGdisc,χ(f) := Tr
(
f |L2

disc,χ(G(Q)\G(A))
)
=

∑

π∈Adisc,χ(G)

m(π) Tr(f |π).

Fix a minimal Q-rational Levi subgroup M0 ⊂ G. Write L for the set of Q-rational

Levi subgroups of G containing M0. DeĄne the subset Lcusp ⊂ L of relatively cuspidal

Levi subgroups; by deĄnition, M ∈ L belongs to Lcusp exactly when the natural map

AM,∞/AG,∞ → AMR,∞/AGR,∞ is an isomorphism. Let M ∈ L and γ ∈ M(Q) be a

semisimple element. Write Mγ for the centralizer of γ in M , and IMγ := (Mγ)
0 for

the identity component. Write ιM (γ) ∈ Z⩾1 for the number of connected components

of Mγ containing Q-points. Write |ΩM | for the order of the Weyl group of M . For γ ∈

M(Q), let StabMX (γ) denote the set of x ∈ X such that γ and xγ are M(Q)-conjugate.

Note that StabMX (γ) is necessarily Ąnite (by reducing to the case of general linear

groups via a faithful representation). When M = G, we often omit M , e.g., Iγ = IGγ
and ι(γ) = ιG(γ).

Fix Tamagawa measures on M(A) and IMγ (A) for M ∈ Lcusp and Ąx their decom-

position into Haar measures on M(A∞) and M(R) (resp. IMγ (A∞) and IMγ (R)). This

determines a measure on the quotient IMγ (A)\M(A), which is used to deĄne the adelic

orbital integral at γ in M , and similarly over Ąnite-adelic groups. We also Ąx Haar

measures on X and X∞. We equip IMγ (Q) and XQ := X ∩ Z(Q) with the counting

measures and AG(R)
0 with the multiplicative Lebesgue measure. Thereby we have

quotient measures on IMγ (Q)\IMγ (A)/X, XQ\X/AG(R)
0, and X∞/AG(R)

0.

We deĄne the elliptic part of the trace formula as

(2.8.2) TGell,χ(f) :=
∑

γ∈Γell,X(G)

|StabGX(γ)|
−1ι(γ)−1vol(Iγ(Q)\Iγ(A)/X)Oγ(f),
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for f ∈ H(G(A), χ−1) and where Γell,X(G) is the set of X-orbits of elliptic conjugacy

classes of G.

Now we assume that GR contains an elliptic maximal torus. Let ξ be an irreducible

algebraic representation of GC, and ζ : G(R) → C× a continuous character. Let

M ∈ Lcusp and T∞ an R-elliptic torus in M . Arthur introduced the function ΦM (γ, ξ)

in γ ∈ T∞(R) in [Art89, (4.4), Lem. 4.2]. (See Lemma 4.4.1 below for a concrete

description.)

Let γ ∈M(Q) and suppose that γ is elliptic in M(R). Denote by IM,cpt
γ a compact-

mod-center inner form of (IMγ )R. We choose a Haar measure on IM,cpt
γ (R) compatibly

with that on IMγ (R). Write q(Iγ) ∈ Z⩾0 for the real dimension of the symmetric space

associated with the adjoint group of (IMγ )R. Following [Art89, (6.3)], deĄne

(2.8.3) χ(IMγ ) := (−1)q(Iγ)τ(IMγ )vol(AIMγ ,∞\I
M,cpt
γ (R))−1d(IMγ ).

For f∞ ∈ H(G(A∞), (χ∞)−1), let f∞M ∈ H(M(A∞), (χ∞)−1) denote the constant

term, cf. Section 3.2 and Section 3.5 below. Dalal extended ArthurŠs Lefschetz number

formula [Art89, Th. 6.1] to the setting with Ąxed central characters. It is a harmless

condition that is satisĄed in our main setup, but we expect it to be superĆuous.

Proposition 2.8.1. Ð Let (X, χ), ξ, ζ be as above. Then for each f∞ ∈ H(G(A∞),

(χ∞)−1),

TGdisc,χ(fξ,ζf
∞)

=
1

d(G)

∑

M∈Lcusp

(−1)dim(AM/AG)

vol(XQ\X/AG,∞)

|ΩM |

|ΩG|

∑

γ

χ(IMγ )ζ(γ)ΦM (γ, ξ)OMγ (f∞M )

ιM (γ) · |StabMX (γ)|
,

where the second sum runs over the X-orbits on the set of R-elliptic conjugacy classes

of M(Q).

Proof. Ð This is [Dal22, Cor. 6.5.1]. We just note the difference of notation: his

AG,rat, AG,∞ are our AG,∞, AGR,∞, respectively. □

2.9. The stable trace formula. Ð LetH be a quasi-split group over Q. Let (XH , χH)

be a central character datum for H. Write Σell,χH
(H) for the set of stable elliptic con-

jugacy classes in H(Q) modulo XH , namely two stable conjugacy classes are equivalent

if one is mapped to the other by multiplying an element x ∈ XH . Following [KSZ,

ğ8.3.7], deĄne

STHell,χH
(h) := τXH

(H)
∑

γH∈Σell,χH
(H)

|StabXH
(γH)|−1SOH(A)

γH (h),

for h ∈ H(H(A), χ−1
H ).

Consider a central character datum (X, χ) forG as well as f=⊗′
vfv∈H(G(A), χ−1).

For each e ∈ E<ell(G), we have e1 and a central character datum (Xe
1, χ

e
1) (whose v-com-

ponents are given as in the preceding subsection). Write f e1,v ∈ H(Ge
1(A), (χ

e
1)

−1) for

a transfer of fv at each v. Put f e1 := ⊗′
vf

e
1,v. For e = e∗, we transfer f to f∗ ∈

H(G∗(A), χ−1) as in Section 2.6.
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Proposition 2.9.1. Ð Let f = ⊗′
vfv ∈ H(G(A), χ−1). Assume that there exists a

Ąnite place q such that Og(fq) = 0 for every g ∈ G(Qq)ss that is not regular. With f∗

and f e1 as above, we have

TGell,χ(f) = STG
∗

ell,χ(f
∗) +

∑

e∈E<
ell

(G)

ι(G,Ge)ST
Ge

1(A)
ell,χe

1
(f e1).

Proof. Ð By hypothesis, the stable orbital integral of f e1,q vanishes outside G-regular

semisimple conjugacy classes. When the central character datum is trivial, the sta-

bilization of regular elliptic terms is due to Langlands [Lan83], cf. [Kot86, Th. 9.6],

[KS99, ğ7.4], [Lab99]. For general central character data, the argument is essentially

the same if one uses the LanglandsŰShelstad transfer with Ąxed central character as

in Section 2.6. □

The following Ąniteness result is going to tell us that the sum in Theorem 7.5.1

(and a similar sum in Theorem 7.1.1 below) is Ąnite for each choice of ϕ∞,p.

Lemma 2.9.2

(1) Let v be a rational prime such that GQv
and χv are unramiĄed. Let fv ∈

Hur(G(Qv), χ
−1
v ). Then fv transfers to the zero function on Ge

1(Qv) for each e =

(Ge,Ge, se, ηe) ∈ E<ell(G) if Ge is ramiĄed over Qv.

(2) Let S be a Ąnite set of rational primes. The set of e ∈ E<ell(G) such that Ge
Qv

is

unramiĄed at every rational prime v /∈ S is Ąnite.

Proof. Ð Part (1) follows from [Kot86, Prop. 7.5]. Part (2) is well known; see [Lan83,

Lem. 8.12]. □

3. Jacquet modules, regular functions, and endoscopy

Throughout this section, let F be a Ąnite extension of Qp with a uniformizer ϖ

and residue Ąeld cardinality q. The valuation on F is normalized such that |ϖ| = q−1.

Let G be a connected reductive group over F . We study how certain maps of invari-

ant or stable distributions between G and its Levi subgroups interact with Jacquet

modules and endoscopy, based on [Shi10, Xu17].

3.1. ν-ascent and Jacquet modules. Ð Let ν : Gm → G be a cocharacter deĄned

over F . Let Mν denote the centralizer of ν in G, which is an F -rational Levi subgroup.

The maximal F -split torus in the center of Mν is denoted by AMν .

Write Pν (resp. P op
ν ) for the F -rational parabolic subgroup of G which contains

Mν as a Levi component and such that ⟨α, ν⟩ < 0 (resp. ⟨α, ν⟩ > 0) for every root α

of AMν
in Pν (resp. P op

ν ). The set of α as such is denoted by Φ+(Pν) (resp. Φ+(P op
ν )).

Let Nν , N
op
ν denote the unipotent radical of Pν , P

op
ν . For every α ∈ Φ+(P op

ν ), we have

|α(ν(ϖ))| = q−⟨α,ν⟩ < 1. Therefore, ν(ϖ) ∈ A−−
P op

ν
. The following deĄnition is a

rephrase of [Shi10, Def. 3.1].
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Definition 3.1.1. Ð We say that γ ∈ Mν(F ) is acceptable (with respect to ν) if the

action of Ad(γ) on (LieNop
ν )F is contracting, i.e., all its eigenvalues λ ∈ F have the

property that |λ| < 1.

By deĄnition, a ∈ AMν
(F ) is acceptable if and only if a ∈ A−−

P op
ν

. The subset of

acceptable elements is nonempty, open, and stable under Mν(F )-conjugacy. DeĄne

Hacc(Mν) ⊂ H(Mν) as the subspace of functions supported on acceptable elements.

We also write Hν-acc(Mν) to emphasize the dependence on ν. As in Section 2.2 we

often omit F for simplicity.

Lemma 3.1.2. Ð Let ϕ ∈ Hacc(Mν). There exists f ∈ H(G) with the following prop-

erties.

(1) For every g ∈ G(F )ss,

OGg (f) = δPν
(m)−1/2OMν

m (ϕ)

if there exists an acceptable m ∈Mν(F ) which is conjugate to g in G(F ) (in which case

m is unique up to Mν(F )-conjugacy, and the Haar measures are chosen compatibly

on the connected centralizers of m and g), and OGg (f) = 0 otherwise.

(2) Tr(f |π) = Tr
(
ϕ|JP op

ν
(π)

)
for π ∈ Irr(G(F )).

Proof. Ð This is [Shi10, Lem. 3.9] except that we corrected typos in the statement.

The same proof still works with two remarks. Firstly, we removed the assumption in

loc. cit. that orbital integrals of ϕ vanish on semisimple elements with disconnected

centralizers. This is possible by reducing to the case of G with simply connected

derived subgroup (then Mν,der is also simply connected by Lemma 1.9.1) so that the

centralizers of semisimple elements are connected in both Mν and G. Secondly, the

mistake in loc. cit. occurs in line 1, p. 806, where it should read ϕ0 := ϕ · δ
−1/2
Pν

. □

Corollary 3.1.3. Ð Let ϕ and f be as in Lemma 3.1.2. For every g ∈ G(F )ss,

SOGg (f) = δPν (m)−1/2SOMν
m (ϕ)

if there exists an acceptable m ∈Mν(F ) which is conjugate to g in G(F ). Otherwise,

SOGg (f) = 0.

Proof. Ð This is clear from the preceding lemma, using [Shi10, Lem. 3.5]. □

Definition 3.1.4. Ð In the setup of Lemma 3.1.2, we say that f is a ν-ascent of ϕ.

Recall the deĄnition of I(·) and the trace PaleyŰWiener theorem from Section 2.2.

According to [BDK86, Prop. 3.2], the Jacquet module induces the map

(3.1.1) Jν : I(Mν) −→ I(G), F 7−→
(
π 7→ F(JP op

ν
(π))

)
.

Write Iacc(Mν) for the image of Hacc(Mν) in I(Mν). Then Lemma 3.1.2 means that,

when ϕ ∈ Iacc(Mν), a ν-ascent of ϕ is well deĄned as an element of I(G), which

is nothing but Jν(ϕ). The lemma yields extra information on orbital integrals. Xu
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[Xu17, Prop. C.4] shows that (3.1.1) induces a similar map for the stable analogues,

which we denote by the same symbol:

(3.1.2) Jν : S(Mν) −→ S(G).

Write X∗
F (G) for the group of F -rational characters of G. DeĄne X∗

F (G)Q :=

X∗
F (G)⊗Z Q and aG := Hom(X∗

F (G)Q,R). We have the map

(3.1.3) HG : G(F ) −→ aG, g 7−→ (χ 7→ log |χ(g)|).

It is easy to see that HG is invariant under G(F )-conjugacy. Indeed, if g1, g2 become

conjugate in G(F ′) for a Ąnite extension F ′/F , then it boils down to the obvious fact

that HG′

(g1) = HG′

(g2), since the map HG is functorial with respect to G ↪→ G′ :=

ResF ′/FG.

For f ∈ H(G), deĄne the following subsets of aG:

(3.1.4)

suppaG
(f) := {HG(x) : x ∈ G(F )ss s.t. f(x) ̸= 0},

suppOaG
(f) := {HG(x) : x ∈ G(F )ss s.t. Ox(f) ̸= 0},

suppSOaG
(f) := {HG(x) : x ∈ G(F )ss s.t. SOx(f) ̸= 0}.

Obviously suppSOaG
(f) ⊂ suppOaG

(f) ⊂ suppaG
(f). Writing

P(∗) := collection of subsets of ∗,

we obtain a map suppaG
(resp. suppOaG

, suppSOaG
) from H(G) (resp. I(G), S(G)) to

P(aG).

We deĄne analogous objects for Mν in place of G. The injective restriction map

X∗
F (G)Q → X∗

F (Mν)Q induces a canonical surjection

(3.1.5) prG : aMν −→ aG.

Set aPν
:= aMν

and identify X∗(AMν
)R ≃ aPν

by µ ∈ X∗(AMν
) 7→ (χ 7→ ⟨χ, µ⟩). Then

it is an easy exercise to describe prG as the average map along Weyl orbits: if T is a

maximal torus of Mν (thus also of G) over F , and if the Weyl group is taken relative

to T , then

(3.1.6) prG(µ) = |Ω
G|−1

∑

ω∈ΩG

ω(µ) = |Ω
G
|−1

∑

ω∈Ω
G

ω(µ), µ ∈ X∗(AMν
)R.

Lemma 3.1.5. Ð The sets suppaG
(f), suppOaG

(f), and suppSOaG
(f) remain unchanged

if we restrict x in the deĄnition (3.1.4) to a subset D ⊂ G(F )reg that is open dense

in G(F ).

Proof. Ð Since the map HG is continuous with discrete image, for each y in

suppaG
(f), suppOaG

(f), or suppSOaG
(f), the preimage (HG)−1(y) is open and closed.

If y ∈ suppaG
(f) then suppaG

(f) ∩ (HG)−1(y) is nonempty open in G(F ) thus

intersects D. This proves the assertion for suppaG
(f).

Next let y ∈ suppOaG
(f). Then (HG)−1(y) ∩ D is open dense in (HG)−1(y).

If Ox(f) = 0 for every x ∈ (HG)−1(y) ∩D, we claim that

Ox(f) = 0, x ∈ (HG)−1(y) ∩G(F )ss.
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If x is regular, this follows from local constancy of Ox(f) on regular elements. A Sha-

lika germ argument then proves Ox(f) = 0 for non-regular semisimple x. (Com-

pare with the proof of Lemma 3.4.5 (1) below.) However, the claim contradicts

y ∈ suppOaG
(f). The lemma for suppOaG

(f) follows. Finally, the stable analogue is

proved likewise. □

Lemma 3.1.6. Ð The following diagrams commute.

Iacc(Mν)
Jν

//

suppOaMν

��

I(G)

suppOaG

��

P(aPν )
prG

// P(aG)

Sacc(Mν)
Jν

//

suppSOaMν

��

S(G)

suppSOaG

��

P(aPν )
prG

// P(aG)

Proof. Ð This follows from Lemma 3.1.2 and Corollary 3.1.3 since, for each m ∈

Mν(F ), the canonical map aMν
→ aG sends HMν (m) to HG(m). □

Let k ∈ Z and ϕ ∈ H(Mν). DeĄne ϕ(k)(l) := ϕ(ν(ϖ)−kl) for l ∈ Mν(F ) so that

ϕ(k) ∈ H(Mν). Since ν is central in Mν , this induces a map

(3.1.7) (·)(k) : I(Mν) −→ I(Mν).

Lemma 3.1.7. Ð If ϕ ∈ Hacc(Mν) then ϕ(k) ∈ Hacc(Mν) for all k ⩾ 0. Given ϕ ∈

H(Mν), there exists k0 = k0(ϕ) such that ϕ(k) ∈ Hacc(Mν) for all k ⩾ k0. The

analogue holds true with I in place of H. Moreover, letting f (k) denote the ν-ascent

of ϕ(k) for k ⩾ k0, we have

supp⋆aG

(
f (k)

)
= prG(supp⋆aMν

(ϕ(k))) = k ·HG(ν(ϖ)) + prG(supp⋆aMν
(ϕ)),

for ⋆ ∈ {O,SO} and where prG : aMν
→ aG is the canonical surjection.

Proof. Ð The assertions before ŞMoreoverŤ follow from the facts that ν(ϖ) is accept-

able and that ϕ has compact support. As for the last assertion, the second equality is

obvious, so we check the Ąrst equality. By Lemma 3.1.5 it is enough to verify Ąrstly

that if Og(f
(k)) ̸= 0 for g ∈ G(F )reg then HG(g) ∈ prG(suppOaMν

(ϕ(k))), and secondly

that if Om(ϕ(k)) ̸= 0 for m ∈ M(F )reg then prG(H
M (m)) ∈ suppOaG

(f (k)). This fol-

lows from Lemma 3.1.2 (1) and Lemma 3.1.6. The case of stable orbital integrals is

analogous. □

Let Groth(Mν(F )) denote the Grothendieck group of admissible representations of

Mν(F ).

Lemma 3.1.8. Ð Let π1, π2 ∈ Groth(Mν(F )). Assume that for each ϕ ∈ I(Mν), there

exists k0(ϕ) ∈ Z such that Trπ1(ϕ
(k)) = Trπ2(ϕ

(k)) for all k ⩾ k0(ϕ). Then π1 = π2
in Groth(Mν(F )).

Proof. Ð This is proved by the argument of [Shi09, p. 536]. □
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3.2. ν-ascent and constant terms. Ð Fix an F -rational minimal parabolic subgroup

P0 ⊂ P op
ν of G with a Levi factor M0 ⊂ Mν . Let P be another F -rational parabolic

subgroup of G containing P0, with a Levi factor M containing M0. Henceforth we

will often write L :=Mν .

We have the constant term map (compare with (3.1.1))

(3.2.1) CG
M : I(G) −→ I(M), F 7−→

(
(πM 7→ F(n-indGM (πM ))

)
,

where n-indGM : Groth(M(F ))→ Groth(G(F )) is the normalized parabolic induction

(which does not change if P is replaced with a different parabolic with Levi factor M).

On the level of functions, when f ∈ H(G), we can deĄne fM ∈ H(M) by an integral

formula (e.g., [Shi11, (3.5)]) so that

(3.2.2)
OGg (f) = 0, ∀g ∈ G(F )reg not conjugate to an m ∈M(F ),

OGm(f) = DG/M (m)1/2OMm (fM ), ∀G-regular m ∈M(F ),

where DG/M :M(F )→ R×
>0 denotes the Weyl discriminant of G relative to M . This

identity and parts (i) and (ii) of [Shi11, Lem. 3.3] tell us that f 7→ fM descends to

the map CG
M above. (Even though G is a general linear group in loc. cit. everything

applies to general reductive groups since that lemma is based on the general results

of [vD72].)

Since n-indGM induces a map R(M)st → R(G)st [KV16, Cor. 6.13], the map CG
M

descends to a map on the stable spaces, still denoted by the same symbol:

CG
M : S(G) −→ S(M).

DeĄne the following set of representatives for ΩL\ΩG/ΩM :

ΩGM,L := {ω ∈ ΩG : ω(M ∩ P0) ⊂ P0, ω
−1(L ∩ P0) ⊂ P0}.

For ω ∈ ΩGM,L, write Mω :=M ∩ ω−1(L), Pω :=M ∩ ω−1(Pν), and Lω := ω(M) ∩ L.

Note that Mω (resp. Lω) is an F -rational Levi subgroup of M (resp. L) and that ω

induces an isomorphism Mω
∼
−→ Lω, thus also ω : I(Mω)

∼
→ I(Lω) by

ϕ 7−→ (g 7→ ϕ(ω−1g)).

Since ν is central in L, its image lies in Lω. So νω := ω−1(ν) is a cocharacter of Mω.

Hence we have a chain of maps

I(L)
C L
Lω−−−−→ I(Lω)

ω−1

≃ I(Mω)
Jνω
−−−−−→ I(M).

Lemma 3.2.1. Ð If ϕ ∈ Iν-acc(L) then C L
Lω

(ϕ) is contained in Iν-acc(Lω).

Proof. Ð The proof of Lemma 3.3.5 below works verbatim: just replace stable orbital

integrals there with ordinary orbital integrals, and use (3.2.2). (Since Lemma 3.3.5 is

more general, we supply a detailed argument only for the latter.) □

J.É.P. Ð M., 2023, tome 10



1334 A. Kret & S. W. Shin

Lemma 3.2.2. Ð We have the following commutative diagram. The exact analogue is

true with S(·) in place of I(·).

I(L)
Jν

//

⊕C L
Lω

��

I(G)
CG
M

// I(M)

⊕
ω∈ΩG

M,L

I(Lω)
⊕ω−1

∼
//

⊕
ω∈ΩG

M,L

I(Mω)

∑
ω Jνω

OO

Proof. Ð Let ϕ ∈ I(L). We check that the images of ϕ in I(M) given in the two

different ways have the same trace against every πM ∈ Irr(M(F )):

Tr
(
C L
Lω

(Jν(ϕ))|πM
)
= Tr

(
Jν(ϕ)|n-indGL (πM )

)
= Tr

(
ϕ|JPν

(n-indGL (πM ))
)

=
∑

ω∈ΩG
M,L

Tr
(
ϕ|n-indLLω

(
ω(JPνω

(πM ))
))

=
∑

ω∈ΩG
M,L

Tr
(
Jνω (ω

−1(C L
Lω

(ϕ)))|πM

)
,

where the second last equality comes from BernsteinŰZelevinskyŠs geometric lemma

[BZ77, 2.12]. The S(·)-version is immediate from the I(·)-version proved just now, since

each map in the big diagram descends to a map between the stable analogues. □

3.3. ν-ascent and endoscopic transfer. Ð In this subsection we assume that G is

quasi-split over F . Let e = (Ge,Ge, se, ηe) be an endoscopic datum for G such that

Ge = LGe. (The last condition will be removed via z-extensions in Section 3.6.) Here

we Ąx ΓF -pinnings (Be,Te, {Xαe}) and (B,T, {Xα}) for Ĝe and Ĝ, respectively. (These

choices are implicit in the discussion of Section 2.6.) Conjugating ηe we may and will

assume that ηe(Te) = T and ηe(Be) ⊂ B.

We have a standard embedding LPν ↪→
LG and a Levi subgroup LMν ⊂

LPν as

in [Bor79, 3.3, 3.4]. Choose a subtorus S ⊂ T such that Cent(S, LG) = LMν . (This is

possible by [Bor79, Lem. 3.5].) Following [Xu17, ğ6], deĄne

ΩG(e, ν) := {ω ∈ ΩG |Cent(ω(S), LGe)→WF is surjective}

and Ωe,ν := ΩG
e

\ΩG(e,Mν)/Ω
Mν . For each ω ∈ Ωe,ν , we obtain an endoscopic datum

eω = (Ge
ω,
LGe

ω, s
e
ω, η

e
ω) for L =Mν

as follows. (Henceforth we view LGe as a subgroup of LG via ηe.) Pick g ∈ Ĝ such

that Int(g) induces ω on S. Then g LPνg
−1∩LGe is a parabolic subgroup of LGe with

Levi subgroup g LMνg
−1, so there is a corresponding standard parabolic subgroup

P e
ν = M e

νN
e
ν such that the standard embedding LP e

ν ↪→ LGe (resp. LM e
ν ↪→ LGe)

becomes g LPνg
−1 ∩ LGe (resp. g LMνg

−1 ∩ LGe) after composing with Int(ge) for

some ge ∈ Ĝe. Then there is a unique L-embedding ηeω : LM e
ν ↪→ LMν such that

Int(g) ◦ ηeω = ηe ◦ Int(ge). Set Ge
ω :=M e

ν , and seω := g−1sg ∈ M̂ν . Then it is a routine

exercise to check that (Ge
ω,
LGe

ω, s
e
ω, η

e
ω) is an endoscopic datum for Mν .
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There is a canonical embedding AMν
↪→ AMe

ν
= AGe

ω
(just like ZH ↪→ Z in

Section 2.6). Composing with ν : Gm → AMν , we obtain

νω : Gm −→ AGe
ω
.

By construction, Ge
ω = M e

ν is a Levi subgroup of Ge that is the centralizer of νω. In

particular, we have a map Jνω : S(Ge
ω)→ S(Ge) as in (3.1.2). Consider the following

commutative diagram

(3.3.1)

WF
// LGe

ω

ηeω
//

� _

Int(ge)

��

LMν
//

� _

Int(g)

��

LZ0
Mν

��

WF
// LGe

ηe
// LG // LZ0

G,

where the maps out of WF come from canonical splittings for the L-groups, the two

horizontal maps on the right are induced by Z0
Mν
⊂ Mν and Z0

G ⊂ G, the Ąrst two

vertical maps correspond to the Levi embeddings (coming fromGe
ω ⊂ G

e andMν ⊂ G)

followed by Int(ge) and Int(g) respectively, and Ąnally the rightmost vertical map is

induced by Z0
G ⊂ Z

0
Mν

. The left square in (3.3.1) commutes by Int(g)◦ηeω = ηe◦Int(ge)

above. The commutativity of the right square is obvious since Int(g) acts trivially on
LZ0

G. Denote by

λeω : Z0
Mν

(F ) −→ C× (resp. λe : Z0
G(F ) −→ C×)

the smooth character corresponding to the composite morphism from WF to LZ0
Mν

(resp. LZ0
G) in the Ąrst (resp. second) row. The character λe is the same as in Sec-

tion 2.6. The commutativity of (3.3.1) implies that λeω|Z0
G(F ) = λe. The canonical

splittings from WF to LGe
ω and LGe commute with the Levi embedding LGe

ω ↪→
LGe

without Int(ge), but the point is that Int(ge) on LGe is equivariant with the trivial

action on LZ0
G via the horizontal maps in (3.3.1).

Lemma 3.3.1. Ð Assume that ηe(WF ) is a bounded subgroup of LG in the sense above

Lemma 2.6.2. (This condition can always be ensured by that lemma.) Then λeω is a

unitary character.

Proof. Ð By assumption and commutativity of (3.3.1), ηeω(WF ) is a bounded sub-

group of LMν , whose image in LZ0
Mν

is a bounded subgroup accordingly. Therefore,

λeω is a unitary character via the Langlands correspondence for tori. □

Proposition 3.3.2. Ð The following diagram commutes.

I(Mν)
Jν

//

⊕LSe,ω
%%

I(G)
LSe

// S(Ge)

⊕
ω∈Ωe,ν

S(Ge
ω)

∑
ω Jνω

99
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Let ϕ ∈ C∞
c (Mν(F )). If f (k) = Jν(ϕ

(k)) then writing ϕ
(k)
ω := LSe,ω(ϕ)(k), we have

ϕ(k)ω = λeω(ν(ϖ))−kLSe,ω(ϕ(k)), LSe(f (k)) =
∑

ω∈Ωe,ν

λeω(ν(ϖ))kJνω

(
ϕ(k)ω

)
.

Remark 3.3.3. Ð When e is given by a Levi subgroup M as in Section 3.2 (so that

Ge = M), we have LSe = CG
M , LSe,ω = C L

Lω
, and the meaning of νω is consistent

between Section 3.2 and Section 3.3. We leave it to the interested reader to compare

the diagram above with that of Lemma 3.2.2.

Proof. Ð The Ąrst equality follows from the equivariance property of transfer as

discussed in the paragraph containing (2.6.3) (applied to z = ν(ϖ)−k, G = Mν ,

Ge = Ge
ω, and f = ϕ). The commutative diagram comes from (C.4) in [Xu17] (when θ

is trivial). This, together with the Ąrst equality, implies the last equality. □

Corollary 3.3.4. Ð Let ϕ(k), ϕ
(k)
ω , and f (k) be as in Proposition 3.3.2. Then

suppSOaGe

(
Jνω (ϕ

(k)
ω )

)
= k ·HGe

(νω(ϖ)) + prGe

(
suppSOaLω

(LSe,ω(ϕ))
)
, ω ∈ Ωe,ν ,

where prGe : aGe
ω
→→ aGe is the natural projection.

Proof. Ð By Lemma 3.1.7 and Proposition 3.3.2,

suppSOaGe

(
Jνω (ϕ

(k)
ω )

)
= prGe

(
suppSOaGe

ω
(ϕ(k)ω )

)
= prGe

(
suppSOaGe

ω
(LSe,ω(ϕ(k)))

)

= prGe

(
k ·HGe

ω (νω(ϖ)) + suppSOaGe
ω
(LSe,ω(ϕ))

)
.

We Ąnish by observing that prGe(HGe
ω (νω(ϖ))) = HGe

(νω(ϖ)). □

It is useful to know preservation of acceptability in the setting of Proposition 3.3.2

as this will allow an inductive argument in the proof of Corollary 4.2.3 below.

Lemma 3.3.5. Ð If ϕ ∈ Iacc(Mν) then ϕω := LSe,ω(ϕ) is contained in Sacc(G
e
ω).

Proof. Ð Suppose that SOγω (ϕω) ̸= 0 for a strongly Mν-regular element γω ∈ G
e
ω(F ).

We need to check that γω is νω-acceptable. (This is enough thanks to Lemma 3.1.5.)

From the orbital integral identity for SOγω (ϕω) (cf. (2.6.1)), we see the existence

of γ ∈Mν(F )sr whose stable conjugacy class matches that of γω such that Oγ(ϕ) ̸= 0.

The latter implies that γ is ν-acceptable. Write T , Tω for the centralizers of γ, γω
in Mν , Ge

ω, respectively. The matching of conjugacy classes tells us that there is a

canonical F -isomorphism i : T ≃ Tω which carries γ to γω, cf. [Kot86, ğ3.1]. (A priori,

i sends the stable conjugacy class of γ to that of γω and is canonical up to a Weyl

group orbit. But i is determined if required to send γ to γω.) Since ν is central in Mν ,

the map i necessarily carries ν to νω. Regarding T and Tω as maximal tori of G

and Ge, respectively, we have an injection i∗ : R(Ge
ω, Tω) ↪→ R(G, T ) between the sets

of roots induced by i (again [Kot86, ğ3.1]) such that

(3.3.2) ⟨α, νω⟩ = ⟨i
∗(α), ν⟩, α ∈ R(Ge

ω, Tω).
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We are ready to show that γω is νω-acceptable. Let α ∈ R(Ge
ω, Tω) such that

⟨α, νω⟩ > 0. We need to verify that |α(γω)| < 1, cf. DeĄnition 3.1.1. But ⟨i∗(α), ν⟩ > 0

by (3.3.2), so the ν-acceptability of γ implies that |i∗(α)(γ)| < 1. Since i∗(α)(γ) =

α(γω), the proof is Ąnished. □

3.4. C-regular functions and constant terms. Ð Assume that G is split over F and

Ąx a reductive model over OF , still denoted by G. Let T be a split maximal torus

of G over OF . Let C ∈ R>0.

Definition 3.4.1. Ð A cocharacter µ : Gm → T is C-regular if the following two

conditions hold.

(1) |⟨α, µ⟩| > C for every α ∈ Φ(T,G),

(2) |⟨α|AM
, prM (ωµ)⟩| > C for every proper Levi subgroup M of G containing T ,

every ω ∈ ΩG, and every α ∈ Φ(T,G)\Φ(T,M).

Write X∗(T )C-reg for the set of C-regular cocharacters.

Lemma 3.4.2. Ð The following are true.

(1) The subset X∗(T )C-reg of X∗(T ) is nonempty, and stable under both nonzero

Z-multiples and the ΩG-action.

(2) Let µ, µ0 ∈ X∗(T ). If µ is C-regular, then there exists k0 ∈ Z>0 such that

µ0 + kµ is C-regular for all k ⩾ k0.

Proof

(1) Let X∗(T )R,C-reg denote the subset of X∗(T )R deĄned by the same inequalities

as in DeĄnition 3.4.1. We choose an inner product on X∗(T )R invariant under the

Weyl group action. Clearly X∗(T )C-reg and X∗(T )R,C-reg are stable under nonzero

Z-multiples and the Weyl group action, and the latter is open. It suffices to verify the

claim that X∗(T )R,C-reg is nonempty. Indeed, if the claim is true, we choose an open

ball U ⊂ X∗(T )R,C-reg. For k ∈ Z>0 large enough, k · U contains a point of X∗(T ),

which then also lies in X∗(T )C-reg.

Let us prove the claim. Identify X∗(T )R with the standard inner product space Rn

via a linear isomorphism. Say that a measurable subset A ⊂ Rn has density 0 if

vol(A∩B(0, r))/vol(B(0, r))→ 0 as r →∞, where B(0, r) denotes the ball of radius r

centered at 0. We will show that the complement of X∗(T )R,C-reg in X∗(T )R is a

density 0 set. Since a Ąnite union of density 0 sets still has density 0, it is enough to

check that each of the conditions |⟨α, µ⟩| ⩽ C and |⟨α|AM
, prM (ωµ)⟩| ⩽ C deĄnes a

density 0 subset in X∗(T )R. Either condition deĄnes a subset of Rn of the form

(3.4.1) |a1x1 + · · ·+ anxn| ⩽ C

in the standard coordinates (x1, ..., xn), with a1, ..., an ∈ R. Moreover, not all aiŠs are

zero, since neither ⟨α, µ⟩ nor ⟨α|AM
, prM (ωµ)⟩ is identically zero on all µ ∈ X∗(T )R.

(In the case of ⟨α|AM
, prM (ωµ)⟩, the reason is that prM : X∗(T )R → X∗(AM ) is

surjective, and that α|AM
∈ X∗(AM ) is nontrivial since α /∈ Φ(T,M).) Now it is

elementary to see that (3.4.1) determines a density 0 subset. This proves the claim.
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(2) Since the pairings in DeĄnition 3.4.1 are linear in µ, it is enough to choose k0
such that (k0 − 1)C is greater than |⟨α, µ⟩| and |⟨α|AM

, prM (ωµ)⟩| for all α,M, ω as

in that deĄnition. □

DeĄne T (F )C-reg to be the union of µ(ϖF )T (OF ) as µ runs over the set of C-regular

cocharacters. For each M ∈ L(G) containing T , set

(3.4.2) aM,C := {a ∈ aM : |⟨α, a⟩| > C| log |ϖ||, ∀α ∈ Φ+(T,G)\Φ+(T,M)}.

Here we use the pairing X∗(T )R×X∗(T )R → R to compute ⟨α, a⟩, viewing a in X∗(T )R
via aM = X∗(AM )R ⊂ X∗(T )R. Recall that X∗(AM )R ≃ Hom(X∗(M)R,R) via a 7→

(χ 7→ ⟨χ, a⟩). Analogously X∗(AT )R ≃ Hom(X∗(T )R,R). Write prM : X∗(AT )R →

→ X∗(AM )R for the map induced by the restriction X∗
F (M) → X∗

F (T ). (This is the

analogue of prG in Section 3.1.)

Lemma 3.4.3. Ð Let M ⊊ G be a Levi subgroup containing T over F . Then the image

of T (F )C-reg under HM is contained in aM,C .

Proof. Ð Consider t := µ(ϖ) with µ ∈ X∗(T )C-reg. Then HM (t) ∈ Hom(X∗(M)R,R)

is identiĄed with the unique element a ∈ X∗(AM )R such that

⟨χ, a⟩ = log |χ(µ(ϖ))| = ⟨χ, µ⟩ log |ϖ|, χ ∈ X∗(M)R.

Let α ∈ Φ(T,G)\Φ(T,M). Since the composite of the restriction maps X∗
F (M)R →

X∗
F (T )R → X∗(AM )R is an isomorphism, we can Ąnd χ ∈ X∗

F (M)R such that χ|AM
=

α|AM
. Hence

⟨α, a⟩ = ⟨α|AM
, a⟩ = ⟨χ|AM

, a⟩ = ⟨χ, a⟩ = ⟨χ, µ⟩ log |ϖ| = ⟨χ|AT
, µ⟩ log |ϖ|

= ⟨χ, prM (µ)⟩ log |ϖ| = ⟨α|AM
, prM (µ)⟩ log |ϖ|.

Since µ is C-regular, |⟨α|AM
, prM (µ)⟩| > C. Hence |⟨α, a⟩| > C| log |ϖ||. □

The following deĄnition is motivated by [FK88, p. 195].

Definition 3.4.4. Ð Let C > 0. We say f ∈ H(G) is C-regular if supp(f) is contained

in the G(F )-conjugacy orbit of T (F )C-reg.(5) Write H(G)C-reg for the space of C-

regular functions.

Lemma 3.4.5. Ð Let f ′ ∈H(G). Assume that every g ∈G(F )reg such that Og(f
′) ̸=0

(resp. SOg(f
′) ̸= 0) is G(F )-conjugate (resp. stably conjugate) to an element of

T (F )C-reg. Then

(1) Og(f
′) = 0 (resp. SOg(f

′) = 0) if g ∈ G(F )ss is not regular, and

(2) there exists f ∈ H(G)C-reg such that f and f ′ have the same image in I(G)

(resp. S(G)).

(5)In practice it seems enough to impose the condition on suppO(f). However when producing

examples of C-regular f , often we have this condition satisĄed.
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Proof. Ð (1) If g ∈ G(F )ss is not regular then no regular element in a sufficiently small

neighborhood of g intersects the G(F )-orbit of T (F )C-reg. (Since every t ∈ T (F )C-reg

satisĄes |1− α(t)| = 1 for α ∈ Φ(T,G), no α(t) approaches 1.) Thus f ′ has vanishing

regular orbital integrals in a neighborhood of g. This implies that Og(f
′) = 0, by

an argument as in the proof of [Rog83, Lem. 2.6] via the Shalika germ expansion

around g. The case of stable orbital integrals is analogous.

(2) The point is that the G(F )-conjugacy orbit of T (F )C-reg is open and closed in

G(F ). (Since T (F )C-reg is open and closed in T (F ), and the map

G(F )/T (F )× T (F )C-reg −→ G(F )

induced by (g, t) 7→ gtg−1 is a local isomorphism.) Thus the product of f ′ and the

characteristic function on the latter orbit is smooth and compactly supported, and

thus belongs to H(G)C-reg. Denoting the product by f , we see that f and f ′ have

equal orbital integrals (resp. stable orbital integrals) on regular semisimple elements.

Therefore have the same image in I(G) (resp. S(G)). □

Corollary 3.4.6. Ð Fix a C-regular cocharacter µ : Gm → T . Let ϕ ∈ H(T ). Then

there exists an integer k0 = k0(ϕ) such that for every integer k ⩾ k0, the µ-ascent

of ϕ(k) is represented by a C-regular function on G(F ).

Proof. ÐThere is a Ąnite subsetX⊂X∗(T ) such that supp(ϕ)⊂
⋃
µ0∈X

µ0(ϖF)T (OF ).

Applying Lemma 3.4.2 to each µ0 ∈ X and also Lemma 3.1.7, we can Ąnd k0 =

k0(ϕ) ∈ Z⩾0 such that ϕ(k) is µ-acceptable and supp(ϕ(k)) ⊂ T (F )C-reg for all k ⩾ k0.

Write f (k) for a µ-ascent of ϕ(k). By Lemma 3.4.5 it suffices to check for each k ⩾ k0
and g ∈ G(F )reg that if Og(f

(k)) ̸= 0 then g is in the G(F )-orbit of T (F )C-reg. This

follows from the observed properties of ϕ(k) by Lemma 3.1.2. □

Lemma 3.4.7. Ð Let f ∈ H(G)C-reg, M ∈ L<(G), and e ∈ E<(G). The following are

true.

(1) CG
M (f) ∈ I(M) is represented by a function fM ∈ H(M) whose support is

contained in the M(F )-conjugacy orbit of T (F )C-reg. (In particular, fM is a C-regular

function on M(F ).)

(2) LSe(f) ∈ S(Ge) vanishes unless Ge is split over F . If Ge is split over F then

LSe(f) is represented by a C-regular function on Ge(F ).

Proof. Ð (1) We keep writing T (F )C-reg for the set of C-regular elements relative

to G, which contain C-regular elements relative to M . Since T (F )C-reg is invariant

under the Weyl group of G, an element γ ∈ M(F )ss is conjugate to an element of

T (F )C-reg in G(F ) if and only if it is so in M(F ). In light of Lemma 3.4.5, it suffices

to show the following: if Oγ(C
G
M (f)) ̸= 0 for regular semisimple γ ∈ M(F ) then γ is

M(F )-conjugate to an element of T (F )C-reg.

If γ is G-regular then we have from Section 3.2 that Oγ(f) = DG/M (γ)Oγ(C
G
M (f)),

which is nonzero only if γ is conjugate to an element of T (F )C-reg. If γ is regular but

outside the M(F )-orbit of T (F )C-reg, then a sufficiently small neighborhood V of γ
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does not intersect theM(F )-orbit of T (F )C-reg. On the other hand,G-regular elements

are dense in V . Since an orbital integral is locally constant on the regular semisimple

set, it follows that Oγ(C
G
M (f)) = 0.

(2) If T transfers to a maximal torus in Ge then Ge is split over F since T is a split

torus. Thus LSe(f) = 0 unless Ge is split over F . Now we assume that T transfers

to a maximal torus T e ⊂ Ge, equipped with an F -isomorphism T ≃ T e (canonical

up to the Weyl group action). Via the isomorphism we transport λ to λe : Gm → T e

and identify Φ(T e, Ge) as a subset of Φ(T,G). By abuse of notation, keep writing

T (F )C-reg for its image in T e(F ). Then C-regular elements of T e(F ) are contained in

T (F )C-reg.

Now the rest of the proof of (2) similar to that of (1), based on Lemma 3.4.5.

It suffices to check that if SOγe(LSe(f)) ̸= 0 for G-regular semisimple γe ∈ Ge(F )

then γe is stably conjugate to an element of T (F )C-reg. This is evident from the

transfer of orbital integral identity. □

Corollary 3.4.8. Ð For f ∈ H(G)C-reg and M ∈ L<(G), we have suppOaM
(CG
M (f)) ⊂

aM,C .

Proof. Ð Let fM be as in the preceding lemma. Then

suppOaM
(CG
M (f)) = suppOaM

(fM ) ⊂ suppaM
(fM ) ⊂ HM (T (F )C-reg) ⊂ aM,C ,

where the last inclusion comes from Lemma 3.4.3. □

The following lemma, to be invoked in the proof of Corollary 7.6.2, sheds light on

how much C-regular functions detect.

Lemma 3.4.9. Ð Let I be a Ąnite set and let C > 0. Let πi ∈ Irr(G(F )) and ci ∈ C

for i ∈ I. If ∑

i∈I

ci Trπi(f) = 0 ∀f ∈ H(G)C-reg

then
∑
i∈I ci · JP0

(πi) = 0 in Groth(G(F ))⊗Z C.

Proof. Ð Fix a regular cocharacter µ : Gm → T over F such that P0 = P op
µ . For each

ϕ ∈ H(T ), we have some integer k0 such that ϕ(k) are µ-acceptable for all k ⩾ k0 and

their µ-ascent f (k) are represented by C-regular functions by Corollary 3.4.6. Thanks

to Lemma 3.1.2,

0 =
∑

i∈I

ci Tr(f
(k)|πi) =

∑

i∈I

ci Tr(ϕ
(k)|JP0(πi)), ∀k ⩾ k0.

We conclude by Lemma 3.1.8. □

3.5. Fixed central character. Ð We explain that the facts thus far in Section 3

hold in the setup with Ąxed central character. Let ν : Gm → G be a cocharacter

over F and (Ge,Ge, se, ηe) an endoscopic datum for G with Ge = LGe. We can view X

as a closed subgroup of Mν(F ), G
e(F ), and Ge

ω(F ) of the preceding sections via the

canonical embeddings of Z(F ) into their centers.
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As before, Hacc(Mν , χ
−1) ⊂ H(Mν , χ

−1) is the subspace of functions which are

supported on acceptable elements. Taking the image, we also have Iacc(Mν , χ
−1)

and Sacc(Mν , χ
−1). Since acceptability is invariant under the translation by central

elements, the χ-averaging map induces a surjection Hacc(Mν)→ Hacc(Mν , χ
−1). The

analogous surjectivity holds for Iacc and Sacc.

The earlier results are valid in the setting of Ąxed central characters, with the

following minor modiĄcations. The proofs are omitted as no new ideas are required.

To adapt Section 3.1. Ð Averaging the ν-ascent map, we obtain

Jν : I(Mν , χ
−1) −→ I(G,χ−1), Jν : S(Mν , χ

−1) −→ S(G,χ−1)

satisfying the orbital integral and trace identities in Lemma 3.1.2 (with central char-

acter of π equal to χ) and Corollary 3.1.3. The obvious analogues of Lemmas 3.1.5

and 3.1.6 hold true (with no changes to the bottom rows in the latter lemma). The

map (·)(k) in (3.1.7) induces linear automorphisms on I(Mν , χ
−1) and I(G,χ−1). With

this, Lemmas 3.1.7 and 3.1.8 imply their natural analogues, restricting π1, π2 in the

latter lemma to those with central character χ.

To adapt Section 3.2. Ð Averaging the map H(G)→ H(M) given by f 7→ fM , we ob-

tain a map H(G,χ−1)→ H(M,χ−1), which induces

CG
M : I(G,χ−1) −→ I(M,χ−1)

satisfying the same orbital integral identity as in Section 3.2. We can also describe

CG
M by the same formula (3.2.1) from the space of linear functionals on R(G,χ) to

that on R(M,χ). Lemmas 3.2.2 and 3.2.1 carry over as written, with χ−1-equivariance

imposed everywhere.

To adapt Section 3.3. Ð The LanglandsŰShelstad transfer with Ąxed central character

was already considered in Section 2.6 by averaging the transfer without Ąxed central

character. With this in mind, we deduce the obvious analogues of Proposition 3.3.2,

Corollary 3.3.4, and Lemma 3.3.5. In particular, the diagram in that proposition yields

the following analogue.

I(Mν , χ
−1)

Jν
//

⊕LSe,ω
''

I(G,χ−1)
LSe

// S(Ge, χe,−1)

⊕
ω∈Ωe,ν

S(Ge
ω, χ

e,−1)

∑
ω Jνω

66

To adapt Section 3.4. Ð DeĄnition 3.4.4 extends obviously to H(G,χ−1) by the same

support condition. A key observation is that the notion of C-regularity is invariant

under Z(F )-translation, so that the latter deĄnition behaves well. More precisely, the

χ-averaging map from H(G) →→ H(G,χ−1) is still surjective when restricted to the

respective subspaces of C-regular functions. Using this, we carry over all results in
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Section 3.4 to the setup with Ąxed central character, restricting to χ−1-equivariant

functions and representations with central character χ.

3.6. z-extensions. Ð Throughout this section up to now, we assumed Ge = LGe on

the endoscopic datum e. When the assumption is not guaranteed, we pass from e

and G to e1 and G1 via z-extensions and pull back the central character datum from

(X, χ) to (X1, χ1) as explained in Section 2.7.

Let ν1 : Gm → G1 be a cocharacter lifting ν. (Such a ν1 is going to be chosen in

practice; see Section 7.4 below.) By DeĄnition 3.1.1, γ1 ∈ Mν1(F ) is ν1-acceptable

if and only if its image in Mν(F ) is ν-acceptable. Everything in this section goes

through with e1, G1, (X1, χ1), ν1 playing the roles of e, G, (X, χ), ν. We write λe1, λ
e
1,ω

for the characters λe, λeω of Section 3.3 in the setup for e1 and G1.

4. Asymptotic analysis of the trace formula

We prove key trace formula estimates in this section, to be applied to identify

leading terms in the trace formula for Igusa varieties in Section 7. The main estimate

is Theorem 4.2.2, whose lengthy proof is presented in Section 4.4. We work in a

purely group-theoretic setup, with no reference to Shimura or Igusa varieties in order

to enable an inductive argument on Q-semisimple rank. The point is that the trace

formula appearing in the intermediate steps need not arise from geometry.

4.1. Setup and some basic lemmas. Ð Throughout Section 4, G is a connected quasi-

split reductive group over Q.

Let (X, χ) be a central character datum as in Section 2.8. Let ξ be an irreducible

algebraic representation of GC and ζ : G(R) → C× be a continuous character such

that ξ⊗ζ has central character χ−1
∞ on X∞. The restriction χ∞|AG,∞

via AG,∞ ⊂ X∞

can be viewed as an element of X∗(AG)C, which is again denoted χ∞ by abuse of

notation.

We will write HG
v : G(Qv) → aGQv

for the function deĄned by Equation (3.1.3)

(which also makes sense for F = R). We have a canonical identiĄcation

(4.1.1) aG = X∗(AG)R = Hom(X∗
Q(G),R), a 7−→ (χ 7→ ⟨χ|AG

, a⟩).

A similar map induces identiĄcations aGQv
=X∗(AGQv

)R = Hom(X∗
Qv

(G),R). In par-

ticular, there is a natural surjection aGQv
→→ aG at each place v. Thereby we often

view the image of HG
v in aG.

Let λχ∞
denote the unique character making the following diagram commute. (The

existence is obvious since the composition AG,∞ → aG is an isomorphism.)

AG,∞
� � //

χ∞

44G(R)
HG

∞
// // aGR

// // aG = X∗(AG)R
λχ∞

// C×

Fix distinct primes p, q. Let ν : Gm → GQp be a cocharacter over Qp. Let ν ∈

Hom(X∗
Q(G),Q) denote the image of ν ∈ X∗(AMν

)Q = Hom(X∗
Q(Mν),Q) induced by
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Mν ↪→ G.(6) By deĄnition, ν(χ) = ν(χ) for χ ∈ X∗
Q(G). Viewing ν as a member of aG,

we can compute ⟨χ∞, ν⟩ ∈ C via the canonical pairing X∗(AG)C ×X∗(AG)C → C.

Lemma 4.1.1. Ð λχ∞
(HG

p (ν(p))) = p−⟨χ∞,ν⟩.

Proof. Ð By deĄnition HG
p (ν(p)) sends χ ∈ X∗

Q(G) to log |χ(ν(p))|p. Similarly for

a ∈ AG,∞, we have HG
∞(a) = (χ 7→ log |χ(a)|∞). We claim that HG

p (ν(p)) ∈ aGQp
and

HG
∞(ν(p)−1) ∈ aGR

have the same image in aG. To show this, choose r ∈ Z⩾1 such

that rν ∈ X∗(AG). Since aG is torsion-free it suffices to check that HG
p ((rν)(p)) =

HG
∞((rν)(p)−1), or equivalently that

|χ((rν)(p))|p = |χ((rν)(p))|
−1
∞ , χ ∈ X∗

Q(G).

Since χ((rν)(p)) ∈ Q is an integral power of p (as both χ and rν are algebraic),

we have |χ((rν)(p))|∞ = |χ((rν)(p))|−1
p = |χ((rν)(p))|−1

p . This proves the claim. Now

the claim implies that

λχ∞
(HG

p (ν(p))) = λχ∞
(HG

∞(ν(p)−1)) = χ∞(ν(p)−1) = p−⟨χ∞,ν⟩. □

If G is a connected reductive group over Q and S is a set of Q-places, we write

HG
S (γ) :=

∑

v∈S

HG
v (γ) ∈ aG.

If Sc is the complement of S, we write HG,Sc

:= HG
S .

Lemma 4.1.2. Ð Let G be a connected reductive group over Q.

(i) Let S be a set of Q-places. Let γ, γ′ ∈ G(Q). If γ and γ′ are conjugate in G(Q)

then we have HG
S (γ) = HG

S (γ
′) ∈ aG.

(ii) Let S be the set of all Q-places. Let γ ∈ G(Q), then HG
S (γ) = 0 ∈ aG.

Proof. Ð (i) Let F/Q be a Ąnite extension such that γ and γ′ are conjugate in G(F ).

Set G′ := ResF/QM . The natural embedding i : G → G′ allows to view γ, γ′ as

elements of G′(Q), and induces an injection aG ↪→ aG′ . Thus it suffices to prove

that HG′

S (γ) = HG′

S (γ′), since the map HG
S : G(AS) → aG is functorial with respect

to i. By the reduction in the preceding paragraph, we may assume that γ and γ′ are

conjugate in G(Q). Then the proof is trivial since HG
S is a homomorphism into an

abelian group.

(ii) Using the functoriality for G → Z ′
G from step 1, we may replace G by its

cocenter Z ′
G, then Z ′

G by the maximally split torus A inside Z ′
G, and Ąnally we

may replace A by Gm, in which case the statement boils down to the usual product

formula. □

If M ∈ Lcusp(G), we write ΓR-ell,X(M) for the set of γ ∈M(Q) such that γ ∈M(R)

is elliptic, and γ is taken up to M(Q)-conjugacy. The following will be useful when

studying Levi terms in the geometric side of the trace formula.

(6)In the notation of the preceding section, ν = prG(ν).
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Lemma 4.1.3. Ð Let M ∈ Lcusp(G) and let γ ∈ ΓR-ell,X(M) be a regular element.

Let P ⊂ G be a parabolic subgroup with Levi component M . Let ξ be an irreducible

representation of MC, and ζ : M(R)→ C× a continuous character. Write fMζ,ξ for the

function on M(R) given by (2.4.1). Then

vol(XQ\X/AG,∞)−1χ(IMγ )ζ(γ) Tr(γ; ξ)=d(M)vol(IMγ (Q)AIMγ ,∞\I
M
γ (A)/X)OMγ (fMξ,ζ).

Proof. Ð By Equation (2.8.3) we have

χ(IMγ ) = (−1)q(I
M
γ )τ(IMγ )vol(AIMγ,∞

\IM,cmpt
γ (R))−1d(IMγ ) = 1.

As γ is regular, IMγ is a torus and d(IMγ ) = 1. Additionally q(IMγ ) = 0 (as γ is elliptic)

and

τ(IMγ ) = vol(IMγ (Q)AIMγ ,∞\I
M
γ (A)).

Thus we obtain

χ(IMγ ) = vol(IMγ (Q)AIMγ ,∞\I
M
γ (A))vol(AIMγ,∞

\IM,cmpt
γ (R))−1.

Since γ is R-elliptic, we obtain from (2.4.2) that

ζ(γ) Tr(γ; ξ) = d(M)vol(AM,∞\I
M,cmpt
γ (R))OMγ (fMξ,ζ).

(we also used e(IMγ ) = 1; recall AM,∞ := AM (R)0). We obtain

vol(XQ\X/AG,∞)−1χ(IMγ )ζ(γ) Tr(γ; ξ)

= d(M)
vol(IMγ (Q)AIMγ ,∞\I

M
γ (A))

vol(XQ\X/AG,∞)

vol(AM,∞\I
M,cmpt
γ (R))

vol(AIMγ ,∞\I
M,cmpt
γ (R))

OMγ (fMξ,ζ)

= d(M)vol(IMγ (Q)AIMγ ,∞\I
M
γ (A)/X)OMγ (fMξ,ζ),

where we used that AM equals AIMγ because γ is elliptic. □

4.2. The main estimate and its consequences. Ð We prove the following bounds for

elliptic endoscopic groups and Levi subgroups of G, to be applied in Section 7.

The notation O(f(k)) (resp. o(k)) for a nonzero C-valued function f(k) on k ∈ Z

means that the quantity divided by |f(k)| has bounded absolute value (resp. tends

to 0) as k → +∞. In practice we take f(k) to be complex powers of p (so we take

absolute values). In our argument, every instance of o(f(k)) turns out to represent a

power-saving, namely it is bounded by a power of p with (the real part of) exponent

strictly smaller than the exponent for f(k).

Let us Ąx a Q-rational Borel subgroup B with Levi component T ⊂ B (which is

a maximal torus in G). We Ąx a Levi decomposition B = TN0. As before we write

AT ⊂ T for the maximal Q-split subtorus. Additionally we write Sp ⊂ TQp
for the

maximal Qp-split subtorus.

Part of our setup is a cocharacter ν : Gm → G over Qp. By conjugating, we may

and do assume that ν has image in T and that ν is B-dominant. Write ρ ∈ X∗(T )Q
for the half sum of all B-positive roots of T in G over Qp. Thus we have ⟨ρ, ν⟩ ∈
1
2Z>0. We transport various data over Qp or Qp to ones over C via an isomorphism

ιp : Qp ≃ C. (We will Ąx ιp in Section 5.2.)

J.É.P. Ð M., 2023, tome 10



H0 of Igusa varieties 1345

We also Ąx a prime q such that GQq
is a split group. (For the existence, choose

a number Ąeld F over which G splits. Then any prime q that splits completely in F

will do.) If needed for endoscopy, an auxiliary z-extension G1 of G over Q is always

chosen to be split over Qq; this is possible because GQq
is split. Thus the contents of

Section 3.4 and their adaptation to z-extensions apply to G and G1 over Qq. Since all

endoscopic groups appearing in the argument will be split over Qq (to be ensured by

Lemma 3.4.7 in the proof of Corollary 4.2.3), whenever choosing their z-extensions,

we take them to be also split over Qq without further comments.

Proposition 4.2.1. Ð Let f∞,p =
∏
v ̸=∞,p fv ∈ H(G(A∞,p), (χ∞,p)−1) and ϕp ∈

Hacc(Mν(Qp), χ
−1
p ). For k ∈ Z, write f

(k)
p ∈ H(G(Qp), χ

−1
p ) for a ν-ascent of ϕ

(k)
p as

in Section 3.2. Then

TGdisc,χ(f
(k)
p f∞,pfξ,ζ) = O

(
pk(⟨ρ,ν⟩−⟨χ∞,ν⟩)

)
.

Proof. Ð The left hand side equals∑

π∈Adisc,χ(G)

m(π) Tr(f (k)p |πp) Tr(f
∞,p|πp) Tr(fξ,ζ |π∞).

Write JP op
ν
(πp) =

∑
i ciτi in Groth(Mν(Qp)) with τi ∈ Irr(Mν(Qp)). Let ωτi denote

the central character of τi. Then

Tr(f (k)p |πp) = Tr
(
ϕ(k)p |JP op

ν
(πp)

)
=

∑

i

ci Tr(ϕ
(k)
p |τi) =

∑

i

ciωτi(ν(p))
k Tr(ϕp|τi).

We deĄne a character λA : G(Q)\G(A)→ R×
>0 as the composite

λA : G(Q)\G(A)
HG

−−−−→ aG
λχ∞

−−−−→ R×
>0.

Write λv for the restriction of λA to G(Qv) for a place v of Q. For each π ∈ Adisc,χ(G)

contributing to the sum, we see that π⊗λ−1
A is a unitary automorphic representation

of G(A) since π∞ ⊗ λ−1
∞ is unitary (by construction, π∞ ⊗ λ−1

∞ has trivial central

character on AG(R)
0). Thus πp⊗λ

−1
p is unitary. Applying Corollary 2.5.2 to π⊗λ−1

at p, we have ∣∣ωτi(ν(p))λ−1
p (ν(p))

∣∣ ⩽ δ
−1/2

P op
ν

(ν(p)) = p⟨ρ,ν⟩,

noting that ν(p) ∈ A−−
Pν

. We deduce via Lemma 4.1.1 that

|ωτi(ν(p))| ⩽ p⟨ρ,ν⟩|λp(ν(p))| = p⟨ρ,ν⟩−⟨χ∞,ν⟩.

By [BZ77, Cor. 2.13] the length of JP op
ν
(πp), namely

∑
i ci, can be bounded only in

terms of G. This completes the proof. □

We state the main trace formula estimate of this paper. The proof will be given in

Section 4.4 below.

Theorem 4.2.2 (main estimate). Ð Let G, (X, χ), p, q, ξ, ζ, ν be as deĄned in the begin-

ning of Section 4. Let

Ű f∞,p,q =
∏
v ̸=∞,p,q fv ∈ H(G(A∞,p,q), (χ∞,p,q)−1),

Ű ϕp ∈ Hacc(Mν(Qp), χ
−1
p ), and

Ű f
(k)
p ∈ H(G(Qp), χ

−1
p ) be a ν-ascent of ϕ

(k)
p , for k ∈ Z⩾0.
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Then there exists a constant C = C(f∞,q, ϕp) ∈ R>0 such that for each fq ∈

H(G(Qq), χ
−1
q )C-reg,

TGell,χ(f
(k)
p fqf

∞,p,qfξ,ζ) = TGdisc,χ(f
(k)
p fqf

∞,p,qfξ,ζ) + o
(
pk(⟨ρ,ν⟩−⟨χ∞,ν⟩)

)
.

As a corollary, we derive the stable analogue of Theorem 4.2.2. We keep the setup

of Theorem 4.2.2 and let f∞,p,q, ϕp, f
(k)
p be as in that theorem. For each e ∈ E<ell(G),

we have e1 = (Ge
1,
LGe

1, s
e
1, η

e
1) and a central character datum (Xe

1, χ
e
1) as in Section 2.7.

Moreover we choose the representatives e, e1 such that ηe(WF ) and ηe1(WF ) have

bounded images, as explained in Lemma 2.6.2 and Section 2.7. Let

f
(k),e
1 =

∏

v

f
(k),e
1,v ∈ H(Ge

1(A), (χ
e
1)

−1)

be a transfer of f
(k)
p fqf

∞,p,qfξ,ζ . Then we have the following bound.

Corollary 4.2.3. Ð In the setup of Theorem 4.2.2, there exists a constant C ∈ R>0,

depending on f∞,q, ϕp, ξ, ζ, such that for every fq ∈ H(G(Qq))C-reg, Ąrstly

STGell,χ(f
(k)
p fqf

∞,p,qfξ,ζ) =




TGdisc,χ(f

(k)
p f∞,p,qfqfξ,ζ) + o

(
pk(⟨ρ,ν⟩−⟨χ∞,ν⟩)

)
,

O
(
pk(⟨ρ,ν⟩−⟨χ∞,ν⟩)

)
,

and secondly for each e ∈ E<ell(G) (note that f
(k),e
1,q inherits C-regularity from fq),

ST
Ge

1

ell,χe
1

(
f
(k),e
1

)
= o

(
pk(⟨ρ,ν⟩−⟨χ∞,ν⟩)

)
.

Remark 4.2.4. Ð The inductive proof of the last bound only uses the fact that its

q-component is C-regular, the ∞-component is a Lefschetz function, and most im-

portantly the p-component is an ascent for a suitable cocharacter. We do not rely on

the fact that f
(k),e
1 is a transfer of a function on G(A).

Proof. Ð The second estimate is immediate from the Ąrst via Proposition 4.2.1. Let

us prove the Ąrst and third asymptotic formulas, by reducing the former to the latter.

We induct on the semisimple rank of G. (For each G, we prove the corollary for all

central character data and all ν.) When G is a torus, the estimate is trivial as STGell,χ =

TGell,χ = TGdisc,χ. We assume that G is not a torus and that Corollary 4.2.3 is true for

all groups which have lower semisimple rank than G. Put f (k) := f
(k)
p fqf

∞,p,qfξ,ζ .

Proposition 2.9.1 tells us that

STGell,χ(f
(k)) = TGell,χ(f)−

∑

e∈E<
ell(G)

ι(G,Ge)ST
Ge

1

ell,χe
1

(
f
(k),e
1

)
.

In light of Theorem 4.2.2, since the summand is nonzero only for a Ąnite set of e by

Lemma 2.9.2 (depending only on the Ąnite set of primes v where either GQv
or fv is

ramiĄed), it suffices to establish the last bound of the corollary. This task takes up

the rest of the proof.

If Ge
R contains no elliptic maximal torus or if AGe ̸= AG (equivalently if AGe

1
̸=

AG1
), then f e1,∞ is trivial as observed in [Kot90, p. 182, p. 189] so the desired estimate

is trivially true. Henceforth, suppose that Ge
R contains an elliptic maximal torus.
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Then f
(k),e
1,∞ is a Ąnite linear combination of fηe1 ,ζe1 over the set of (ηe1, ζ

e
1) such that

ηe1 ◦ϖηe1 ,ζ
e
1
≃ ϖξ,ζ . Proposition 3.3.2 and its adaptation to z-extensions according to

Sections 3.5 and 3.6 tell us that

f
(k),e
1,p =

∑

ω

λe1,ω(ν1(p))
kJν1,ω

(
ϕ
(k),e
1,p,ω

)
=

∑

ω

λe1,ω(ν1(p))
kf

(k),e
1,p,ω,

where we have put f
(k),e
1,p,ω := Jν1,ω

(
ϕ
(k),e
1,p,ω

)
for a ν1,ω-ascent of the operator ϕ

(k),e
1,p,ω ∈

Hacc(G
e
1,ν(Qp), (χ

e
1,p)

−1). Here we applied Lemma 3.3.5 (keeping Sections 3.5 and 3.6

in mind) to have the transfer ϕ
(k),e
1,p,ω of ϕ

(k)
1,p supported on ν1,ω-acceptable elements.

Recalling that ηe1(WF ) ⊂
LG1 is a bounded subgroup, we see from Lemma 3.3.1

that λe1,ω is a unitary character. Thus we are reduced to showing the existence of some

Ce > 0 such that the following estimate holds for ω and (ηe1, ζ
e
1) as above whenever

f e1,q is Ce-regular:

(4.2.1) ST
Ge

1

ell,χe
1

(
f e,∞,q,p
1 f e1,qf

(k),e
1,p,ωfηe1 ,ζe1

) ?
= o

(
pk(⟨ρ,ν⟩−⟨χ∞,ν⟩)

)
, k ∈ Z⩾0.

Indeed, take C to be the maximum of all Ce over the Ąnite set of e contributing to the

sum. Then for each C-regular fq, Lemma 3.4.7 tells us either that Ge
1 is split over Qq

and f e1,q is C-regular (thus also Ce-regular), or that Ge
1 is non-split over Qq and f e1,q

vanishes. Thus the bound (4.2.1) applies, and we will be done.

By the induction hypothesis, there exists Ce > 0 such that whenever f e1,q is

Ce-regular, the left hand side of (4.2.1) is O
(
pk(⟨ρ

e
1,ν1,ω⟩−⟨χe

1,∞,ν1,ω⟩)
)
, with ν1,ω ∈

X∗(AGe
1
) deĄned from ν1,ω in the same way ν from ν, and where ρe1 is the half sum

of positive roots of Ge
1 for which ν1,ω is a dominant cocharacter. (In other words, ρe1

is to ν1,ω as ρ is to ν.) Therefore, it is enough to check that

(a) ⟨ρe1, ν1,ω⟩ < ⟨ρ, ν⟩ (in Q).

(b) Re⟨χe
1,∞, ν1,ω⟩ = Re⟨χ∞, ν⟩.

Let us begin with (a). Since ⟨ρ, ν⟩ = ⟨ρ1, ν1⟩, with ρ1 deĄned for G1 as ρ is for G

(recall that ν1 : Gm → G1 is a lift of ν), the proof of (a) is reduced to the case when

G1 = G and ν1 = ν. We have an embedding Ĝe ↪→ Ĝ coming from ηe, which restricts

to Ĝe
ω ↪→ M̂ν . Here we have chosen ΓF -invariant pinnings for the dual groups such

that the restriction works as stated. We may and will arrange that the Borel subgroup

of Ĝ restricts to that of Ĝe. Fix a maximal torus T̂ ⊂ Ĝe
ω that is part of the pinning

for Ĝe
ω. Viewing T̂ also as a maximal torus in each of Ĝe and Ĝ, we write Φ∨(T̂ , Ĝ)

and Φ∨(T̂ , Ĝe) for the corresponding sets of coroots. Then

(4.2.2) ⟨ρe, νω⟩ =
∑

α∨∈Φ∨(T̂ ,Ĝe
ω)

⟨α∨,ν⟩>0

⟨α∨, ν⟩, ⟨ρ, ν⟩ =
∑

α∨∈Φ∨(T̂ ,Ĝ)
⟨α∨,ν⟩>0

⟨α∨, ν⟩.

Thus it suffices to verify that there exists a coroot α∨ ∈ Φ∨(T̂ , Ĝ) outside Ĝe such

that ⟨α∨, ν⟩ > 0. Write ν̂ ∈ X∗(T̂ ) for the dominant member in the Weyl orbit of

characters determined by ν. The centralizer of ν̂ in Ĝ is identiĄed with the dual

group M̂ν (namely ⟨α∨, ν⟩ = 0 if and only if α∨ is a coroot of M̂ν), so we will be done

if Lie M̂ν + Lie Ĝe is a proper subspace of Lie Ĝ. This is exactly proved in [KST20,
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Lem. 4.5(ii)] applied to G = Ĝ, M = M̂ν , and δ = se. (The proof of loc. cit. greatly

simpliĄes. One reduces to the case when the Dynkin diagram of G is connected as in

the Ąrst paragraph in the proof of that lemma. Then argue as in the fourth paragraph

of that lemma, with Xn = 0 and with the role of Xss played by the semisimple

element se.)

Now we prove (b). Since ⟨χ∞, ν⟩ = ⟨χ1,∞, ν1⟩, we reduce to showing (b) when

G1 = G and e1 = e (with possibly nontrivial central character data). Thus we drop

the 1Šs from the subscripts and check that

Re⟨χe
∞, ν⟩ = Re⟨χ∞, νω⟩.

We claim that ν = νω in X∗(AG)R = X∗(AGe)R. In the diagram below, the triangle

on the right commutes, and we want that the triangle on the left commutes as well.

Gmν





νω
��

ν
""

νω

))

AG AGe AMν

� � // AGe
ω

We choose maximal tori T ⊂ Mν ⊂ G and T e ⊂ Ge
ω ⊂ Ge with an isomorphism

TF ≃ T
e

F
to identify the absolute Weyl group Ω

Ge

as a subgroup of Ω
G

. (This is done

as in [Kot86, ğ3].) The isomorphism also identiĄes ν = νω. By (3.1.6), we have the

equalities

ν =
∣∣ΩG

∣∣−1 ∑

ω∈Ω
G

ω(ν), νω =
∣∣ΩG

e ∣∣−1 ∑

ω∈Ω
Ge

ω(ν).

Hence ν =
∣∣ΩG/ΩG

e∣∣−1 ∑
ω∈Ω

G
/Ω

Ge ω(νω) = νω. Indeed, the last equality follows since

νω ∈ X∗(AGe)R = X∗(AG)R, which tells us that ω(νω) = νω for ω ∈ Ω
G

.

Applying (2.6.3) at the archimedean place, we have χ∞ = λe∞χ
e
∞ as characters of

AG(R). Since λe∞ is unitary, |χ∞| = |χ
e
∞|. Since ν ∈ X∗(AG)R (not just in X∗(AG)C),

we conclude that Re⟨χe
∞, ν⟩ = Re⟨χ∞, ν⟩ as desired. This veriĄes (b). □

4.3. Some facts and notation on Weyl groups and Weyl chambers. Ð In this sub-

section we Ąx some additional notation on Weyl groups, Weyl chambers, which will

be needed in the proof of the main estimate in the next subsection.

Let P = MN ⊂ G be a parabolic subgroup such that B ⊂ P and T ⊂ M .

Write Z0
M for the identity component of the center of M and SM,p for the maximal

Qp-split subtorus in Z0
M . If M = T , we will write more simply Sp := SM,p. Thus

AT,Qp ⊂ Sp ⊂ TQp . We will write

ΩG ⊂ ΩGp ⊂ Ω
G

for the Weyl groups of AT , Sp, and T in G. Similar notation will be used for other

objects related to Weyl groups, for instance we write ΩGM,p ⊂ ΩGp for the set of Kostant

representatives for ΩGp /Ω
M
p .
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Write ΦGM = ΦGM (AM ;G) for the set of roots of AM in Lie(G). Write Φ(AM ;B),

Φ(SM,p;BQp), Φ(ZM ;B) for the sets of positive roots attached to AM , SM,p and ZM .

We write a
reg
M ⊂ aM for the subset of all regular elements, i.e., x ∈ aM such that

⟨α, x⟩ ≠ 0 for all α ∈ ΦGM . The connected components of areg
M are said to be the (open)

Weyl chambers of aM . The subset

C
+
M := {x ∈ a

reg
M | ∀α ∈ Φ(AM , B) : ⟨α, x⟩ > 0} ⊂ a

reg
M ,

is the dominant Weyl chamber. Let ΩGM ⊂ ΩG be the set of Kostant representatives

for the quotient ΩG/ΩM . The Weyl chambers C ∈ π0(a
reg
M ) are parametrized via the

bijection

ΩGM −→ π0(a
reg
M ), ω 7→ Cω := ω−1(C+

M ) ∈ π0(a
reg
M )

If C ⊂ a
reg
M is a Weyl chamber, we write C∨ ⊂ a∗M for the dual chamber, i.e., the set

of t ∈ a∗M such that t(x) > 0 for all x ∈ C.

Lemma 4.3.1. Ð The following statements are true:

(1) The inclusions AM,Qp
⊂ SM,p,Qp

⊂ Z0
M,Qp

induce (by restriction) a sequence

of maps

Φ(Z0
M ;B) −→ Φ(SM,p;B) −→ Φ(AM ;B)

which are all surjective.

(2) The following three subsets of aM are equal:

(a) the set of x ∈ aM such that for all α ∈ Φ(Z0
M ;B) we have ⟨α, x⟩ > 0;

(b) the set of x ∈ aM such that for all α ∈ Φ(SM,p;B) we have ⟨α, x⟩ > 0;

(c) the set of x ∈ aM such that for all α ∈ Φ(AM ;B) we have ⟨α, x⟩ > 0.

(3) The natural maps π0(a
reg
M ) → π0(X∗(SM,p)

reg
R ) → π0(X∗(Z

0
M )reg

R ) are injec-

tions.

Proof. Ð We have inclusions of the centralizer groups

MQp
= Cent(AM,Qp

, GQp
) ⊃ Cent(SM,p,Qp

, GQp
) ⊃ Cent(Z0

M,Qp
, GQp

) ⊃MQp
,

where the Ąrst equality is well known [Bor91, Prop. 20.6(i)]. Hence the equality holds

everywhere. So Φ(AM ;B), Φ(SM,p;B), and Φ(Z0
M ;B) consist of eigen-characters for

the adjoint actions of AM,Qp
⊂SM,p,Qp

⊂Z0
M,Qp

on the same space Lie (B)/Lie (B∩M),

respectively. Therefore, the maps in (1) are surjections. Statements (2) and (3) are

directly deduced from (1). □

4.4. Proof of Theorem 4.2.2. Ð The rest of this section is devoted to establishing

the main estimate in Theorem 4.2.2 over several pages. Lemma 4.4.1 (which is tech-

nical) could be taken for granted at a Ąrst reading. Before diving into the details we

recommend the reader to review the outline that we sketched below (1.4.2) in the

introduction.

Proof of 4.2.2.. Ð We argue by induction on the Q-semisimple rank rG of G. If rG=0,

then we have TGell,χ = TGdisc,χ, and the statement follows. Assume now that the theorem
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is established for all groups of lower Q-semisimple rank and all accompanying data

(i.e., (X, χ), p, q, ξ, ζ and ν).

We introduce a constant to control regularity at q:

(4.4.1) C = C(f∞,q, ϕp) :=
1

log q
· max
M,xp,q,∞,εp,α

|⟨α, xp,q,∞ + εp⟩|,

where M,xp,q,∞, εp, α range over the sets

Lcusp(G), suppOaM
(f∞,p,q
M ), prM suppOaωp(M)∩Mν

(ϕp,ωp(M)∩Mν
), α ∈ ΦGM

respectively. DeĄne the constants

vX := vol(XQ\X/AG,∞) and cM := (−1)dim(AM/AG) |Ω
M |

|ΩG|
, M ∈ Lcusp(G).

Write f∞,(k) := f∞,p,qf
(k)
p fq, to indicate the dependence on k at p. The running

hypothesis on fq is that it is C-regular for (4.4.1). By Proposition 2.8.1 we have

(4.4.2) TGdisc,χ(fξ,ζf
∞,(k))

= d(G)−1
∑

M∈Lcusp

cMv
−1
X

∑

γ∈ΓR-ell,X(M)

χ(IMγ )ζ(γ)ΦM (γ, ξ)OMγ (f
∞,(k)
M )

|ιM (γ)||StabMX (γ)|
.

We Ąrst compare the term corresponding to M = G ∈ Lcusp on the right hand side

of Equation (4.4.2) with TGell,χ. Only regular R-elliptic conjugacy classes contribute

to (4.4.2): For γ ∈ Γell,X(G) non-regular, we have Oγ(fq) = 0 since fq is C-regular.

Additionally, the orbital integrals O
G(R)
γ (fξ,ζ) vanish for non R-elliptic γ ∈ G(R).

In Lemma 4.1.3 we checked that for γ ∈ ΓR-ell,X(G) we have

(4.4.3) d(G)−1cGv
−1
X

χ(IGγ )ζ(γ)ΦG(γ, ξ)O
G
γ (f

∞,(k))

|ιG(γ)||StabGX(γ)|

=
vol(Iγ(Q)\Iγ(A)/X)O

G
γ (fξ,ζf

∞,(k))

ι(γ)−1|StabGX(γ)|
−1

(this uses ΦG(γ, ξ) = Tr(γ, ξ), cf. [Art89, below eq. (4.4)]). Therefore, TGell,χ(fξ,ζf
∞,(k))

appears on the right hand side of (4.4.2) as the summand for M = G (see also (2.8.2)).

Thus (4.4.2) can be rearranged as

(4.4.4) TGell,χ(fξ,ζf
∞,(k)) = TGdisc,χ(fξ,ζf

∞,(k))

− d(G)−1
∑

M∈L<
cusp

cMv
−1
X

∑

γ∈Γell,X(M)

χ(IMγ )ζ(γ)ΦM (γ, ξ)OMγ (f
∞,(k)
M )

|ιM (γ)||StabMX (γ)|
.

As f
(k)
p is a ν-ascent of ϕ

(k)
p , we have by Lemma 3.2.2

(4.4.5) f
(k)
p,M =

∑

ωp∈Ω
GQp
M,Mν

f
(k)
p,M,ωp

∈ H(M(Qp), χ
−1
p ),

where

(4.4.6) f
(k)
p,M,ωp

:= Jνωp
(ω−1
p ϕ

(k)
p,Mωp

), Mωp
= ωp(M) ∩Mν .
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At the prime q, we may arrange by Lemma 3.4.7(1) and Lemma 4.3.1 that the

constant term fq,M is supported on C-regular elements. Thus fq,M is decomposed

according to the various chambers C of areg
M :

fq,M =
∑

ωq∈ΩG
M

fq,M,ωq ∈ H(M(Qq), χ
−1
q )C-reg,

where fq,M,ωq satisĄes suppOaM
(fq,M,ωq ) ⊂ Cωq . We deĄne

f
∞,(k)
M,ωp,ωq

:= f∞,p,q
M f

(k)
p,M,ωp

fq,M,ωq
∈ H(M(A), χ−1),

so that

f
∞,(k)
M =

∑

ωp∈Ω
GQp
M,Mν

,ωq∈ΩG
M

f
∞,(k)
M,ωp,ωq

∈ H(M(A), χ−1).

Changing the order of summation (each sum is Ąnite), Equation (4.4.4) becomes

(4.4.7) TGell,χ(fξ,ζf
∞,(k)) = TGdisc,χ(fξ,ζf

∞,(k))

− d(G)−1
∑

M,ωp,ωq

cM
vX

∑

γ∈Γell,X(M)

χ(IMγ )ζ(γ)ΦM (γ, ξ)OMγ (f
∞,(k)
M,ωp,ωq

)

|ιM (γ)||StabMX (γ)|
,

where the sum is over M ∈ L<cusp, ωp ∈ Ω
GQp

M,Mν
, ωq ∈ ΩGM .

To state the next lemma, we deĄne a constant

(4.4.8) k1 = k1(f
∞,q, ϕp) := max

M,ωp,ωq,α,εp,xp,∞

∣∣∣∣
⟨α, εp + xp,∞⟩

log(p)⟨α, prM (ω−1
p ν)⟩

∣∣∣∣ ∈ R>0,

where the maximum is taken over

M ∈ L<cusp(G), ωp ∈ Ω
GQp

M,Mν
, ωq ∈ ΩGM ,

εp ∈ prM suppOaMωp
(ω−1
p ϕp,Mωp

), xp,∞ ∈ suppOaM
(f∞,p
M ),

and α ranges over those α ∈ ΦGM such that ⟨α, prM (ω−1
p ν))⟩ ≠ 0.

We have Ąxed a maximal torus T in GC (we have GC ≃ GQp
via ιp), along with

a Borel subgroup B. We write ρ = ρG for the half sum of the B-positive roots of T

in Lie(B). Note that we have ρ|AT
= ρ. We use similar deĄnitions for ρM and ρM

if M ⊂ G is a Levi subgroup. Let λ = λB , λ
∗
B ∈ X

∗(T ) denote the highest weight of ξ

and its dual representation ξ∗, respectively, relative to B.

For each M ∈ Lcusp(G) we introduce the following notation. Denote by P(M) the

set of parabolic subgroups P of G of which M is a Levi component. We remark that in

[GKM97] the set P(MR) is used, meaning parabolic subgroups P of GR such that MR

is a Levi component of P . As M ∈ Lcusp(G), we know that (AM )RAGR
= AMR

,

and therefore any parabolic subgroup of GR that contains M is deĄned over Q. In

particular, P(MR) = P(M).

For each λ0 ∈ X∗(T )+ we write ξMλ0
for the irreducible MC-representation with

highest weight λ0. We deĄne ω∞ ⋆ λ0 := ω∞(λ0 + ρ) − ρ for each ω∞ ∈ Ω
G

M and
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λ0 ∈ X
∗(T )+. Let ω∞ ∈ Ω

G

M . Write ωM0 ∈ Ω
M

for the longest Weyl group element,

and

λB(ω∞) := −ωM0 (ω∞ ⋆ λ∗B) = ωM0 ω∞ω
M
0 λB − ω

M
0 ω∞ρ− ω

M
0 ρ,

so that we have

ξMλB(ω∞) = (ξMω∞⋆λ∗

B
)∗.

Lemma 4.4.1. Ð Assume that k > k1. Consider M,ωp, ωq, γ as in (4.4.7), and assume

that

(4.4.9) OMγ (f
∞,(k)
M,ωp,ωq

) ̸= 0.

Let xR := HM
∞ (γ) ∈ aMR

and write x∞ for the image of xR under aMR
→ aM . The

following are true.

(i) The element x∞ ∈ aM is regular and lies in the chamber C0 = C0(M,ωp, ωq) ⊂

a
reg
M which has the following set of positive roots

(4.4.10) {α ∈ ΦGM | ⟨α, prM (ω−1
p ν)⟩ > 0}

∪ {α ∈ ΦGM | ⟨α, prM (ω−1
p ν)⟩ = 0 and α ∈ −C∨

ωq
}.

(ii) There exists an explicit subset Ω
G⋄

M = Ω
G⋄

M (M,ωp, ωq) ⊂ Ω
G

M (see (4.4.22)) and

an explicit sign ε⋄ = ε⋄(M,ωp, ωq) (see (4.4.23)) such that we have

ΦM (γ, ξ) = ε⋄
∑

P∈P(M)

δ
−1/2
P (γ)

∑

ω∞∈Ω
G⋄

M

ε(ω∞) Tr(γ; ξMλB(ω∞)),

where ε(w∞) ∈ {±1} denotes the sign as an element of the Weyl group Ω
G

.

Proof. Ð (i) If S is a set of places of Q, we write in this proof

xS := HM
S (γ) ∈ aM , xS := HM,S(γ) ∈ aM .

We check that ⟨α, x∞⟩ ≠ 0 for all α ∈ ΦGM (i.e., x∞ is regular). By the product

formula in Lemma 4.1.2 we have

(4.4.11) −⟨α, x∞⟩ = ⟨α, x
p,∞⟩+ ⟨α, xp⟩.

At p, Oγ(f
(k)
p,M,ωp

) ̸= 0 implies that xp ∈ suppOaM
(f

(k)
p,M,ωp

). By Lemma 3.1.7 (and

Equation (4.4.6))

suppOaM
(f

(k)
p,M,ωp

) = k ·HM
p (ω−1

p ν(p)) + prM (suppOaMωp
(ω−1
p ϕp,Mωp

)).

Therefore

(4.4.12) xp = k ·HM
p (ω−1

p ν(p)) + εp

for some εp ∈ prM suppOaMωp
(ω−1
p ϕp,Mωp

). Thus

(4.4.13)

⟨α, xp⟩ = k · ⟨α,HM
p (ω−1

p ν(p))⟩+ ⟨α, εp⟩ = −k(log p) · ⟨α, prM (ω−1
p ν))⟩+ ⟨α, εp⟩.
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We now distinguish cases. First consider α ∈ ΦGM such that ⟨α, prM (ω−1
p ν)⟩ ≠ 0.

By (4.4.11) and (4.4.12),

(4.4.14) −⟨α, x∞⟩ = ⟨α, x
p,∞⟩+ ⟨α, εp⟩ − k(log p) · ⟨α, prM (ω−1

p ν)⟩.

As k > k1 (see (4.4.8)) we have

k(log p) · |⟨α, prM (ω−1
p ν)⟩| > |⟨α, εp + xp,∞⟩|.

Thus from (4.4.14) we get ⟨α, x∞⟩ ≠ 0.

Consider α ∈ ΦGM such that ⟨α, prM (ω−1
p ν)⟩ = 0. Again by (4.4.11) and (4.4.12),

(4.4.15) −⟨α, x∞⟩ = ⟨α, x
p,∞⟩+ ⟨α, εp⟩.

As fq is C-regular, we have from (3.4.2), (4.4.1), and Lemma 4.3.1 that

(4.4.16) |⟨α, xq⟩| > C log q ⩾ |⟨α, xp,q,∞ + εp⟩|.

for all α ∈ ΦGM . In particular

⟨α, xq⟩+ ⟨α, x
p,q,∞ + εp⟩ ≠ 0.

Therefore, each side of (4.4.15) does not vanish. Hence ⟨α, x∞⟩ ≠ 0 for all α ∈ ΦGM .

We now determine for which α ∈ ΦGM we have ⟨α, x∞⟩ > 0. If ⟨α, prM (ω−1
p ν)⟩ ≠ 0,

then

sign(⟨α, x∞⟩) = sign(⟨α, prM (ω−1
p ν)⟩)

by the arguments following (4.4.13). If ⟨α, prM (ω−1
p ν)⟩ = 0, then

sign(⟨α, x∞⟩) = −sign(⟨α, xq⟩)

by C-regularity (see (4.4.16)). We have xq ∈ suppaM
(fq,M,ωq

). Statement (i) follows.

(ii) Let us start by recalling a result of Goresky, Kottwitz and MacPherson in

[GKM97]. We write pr∗MR
: X∗(T )R → X∗(AMR

)R for the restriction map. Let P =

MN ∈ P(M) Write ρNR
(resp. ρNR

) for the half sum of the positive roots of AMR

(resp. T ) that occur in the Lie algebra of the unipotent radical NR of PR. Write ωξ
for the central character of ξ. Write α1, . . . , αn ∈ a∗MR

for the simple roots of AMR
in

Lie (NR), which form a basis of (aMR
/aGR

)∗. This determines the dual basis consisting

of t1, . . . , tn ∈ aMR
/aGR

. Put I := {1, 2, . . . , n}. DeĄne the following subsets of I

(cf. [GKM97, p. 534])

(4.4.17)
I(γ) := {i ∈ I | ⟨αi, xR⟩ < 0},

I(ω∞) := {i ∈ I | ⟨pr∗MR
(−ω∞ ⋆ λ∗B)− ρNR

− ωξ, ti⟩ > 0}.

Since M ∈ Lcusp the map

(4.4.18) aMR
/aGR

−→ aM/aG

is an isomorphism. In particular, α1, . . . , αn is also a basis for (aM/aG)
∗, and we can

replace xR by x∞ in the deĄnition of I(γ), without changing the set.
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By the discussion above Th. 7.14.B in [GKM97] we have

(4.4.19) φP (−xR, pr∗MR
(ω∞ ⋆ λ∗B) + ρNR

+ ωξ)

=

{
(−1)dim(AGR

)(−1)dim(AMR
/AGR

)−|I(γ)|, if I(ω∞) = I(γ),

0, otherwise.

By (i), x∞ ∈ aM is regular, and as M ∈ Lcusp(G) we have aMR
/aGR

= aM/aG, so the

element xR ∈ aMR
is also regular.

We deĄne LM (γ) ∈ C following [GKM97, p. 511],(7) when xR is regular(8):

(4.4.20) LM (γ) := (−1)dim(AGR
)

∑

P∈P(M)

δ
−1/2
P (γ)

·
∑

ω∞∈Ω
G
M

ε(ω∞) Tr(γ−1; ξMω∞⋆λ∗

B
)φP (−x∞, pr∗MR

(ω∞ ⋆ λ∗B) + ρN + ωξ).

Theorems 5.1 and 5.2 of [GKM97] imply the following identity(9)

(4.4.21) ΦM (γ, ξ) = LM (γ).

Thus the right hand side of (4.4.20) is an expression for ΦM (γ, ξ).

By assumption (4.4.9), x∞ = HM
∞ (γ) lies in the chamber C0(M,ωp, ωq) by part (i)

of this lemma. So the set I(γ) does not depend on x∞. Write I0 = I0(M,ωp, ωq) for

I(γ), and

(4.4.22) Ω
G⋄

M = Ω
G⋄

M (M,ωp, ωq) := {ω∞ ∈ Ω
G

M | I(ω∞) = I0},

in terms of (4.4.17). Then (4.4.20) simpliĄes thanks to (4.4.19):

LM (γ) = (−1)dim(AMR
/AGR

)−|I0|
∑

P∈P(M)

δ
−1/2
P (γ)

∑

ω∞∈Ω
G⋄

M

ε(ω∞) Tr(γ−1; ξMω∞⋆λ∗

B
).

We obtain (ii) by using Tr(γ−1; ξMω∞⋆λ∗

B
) = Tr(γ, ξMλB(ω∞)) and taking

□(4.4.23) ε⋄ := (−1)dim(AMR
/AGR

)−|I0|.

We keep on assuming k > k1 and write c′M := ε⋄ε(ω∞)cMd(G)
−1 from now.

We apply Lemma 4.4.1 (ii) to Equation (4.4.7) and change the order of summation

(7)We write LM (γ) where the authors of [GKM97] write Lν
M (γ). This is because we only need to

use the Şmiddle weight proĄle", so there is no need to distinguish between different proĄles ν in our

notation. Since we use the middle weight proĄle, we have ν = −ρN − ωξ.
(8)On p. 504 the authors give a deĄnition of LM (γ) without the requirement that x∞ is regular

(but we donŠt need it here). Under this more general deĄnition, Equation (4.4.21) also holds for

non-regular x∞.
(9)In [GKM97], they write ΦM (γ,Θξ∗ ) for ΦM (γ, ξ∗). Their E corresponds to our ξ∗.
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to obtain

(4.4.24) TGell,χ(fξ,ζf
∞,(k)) = TGdisc,χ(fξ,ζf

∞,(k))

−
∑

M,P,ωp,ωq,ω∞

c′Mv
−1
X

∑

γ∈Γell,X(M)

χ(IMγ ) Tr(γ; ξMλB(ω∞) ⊗ ζδ
−1/2
P )OMγ (f

∞,(k)
M,ωp,ωq

)

|ιM (γ)||StabMX (γ)|
,

where M,ωp, ωq run over the same sets as before and P, ω∞ range over P(M),Ω
G⋄

M ,

respectively. We apply Lemma 4.1.3 to equalize

(4.4.25) v−1
X

∑

γ∈Γell,X(M)

χ(IMγ ) Tr(γ; ξMλB(ω∞) ⊗ ζδ
−1/2
P )OMγ (f

∞,(k)
M,ωp,ωq

)

|ιM (γ)||StabMX (γ)|

= d(M)
∑

γ∈Γell,X(M)

vol(IMγ (Q)AIMγ ,∞\I
M
γ (A)/X)OMγ (f

λB(ω∞),ζδ
−1/2
P

f
∞,(k)
M,ωp,ωq

)

|ιM (γ)||StabMX (γ)|
,

using that every γ with OMγ (f
∞,(k)
M,ωp,ωq

) ̸= 0 in (4.4.25) is regular since fq,M,ωq is

supported on regular elements. DeĄne

XM := X ·AM,∞, vM := vol(XQ\X/AG,∞)−1vol(XM,Q\XM/AM,∞).

The restriction of the central character of ξMλB(ω∞) ⊗ ζδ
−1/2
P to AM,∞ is denoted by

zMω∞
: AM,∞ −→ C×.

Since the central character of ξMλB(ω∞) restricts to the central character of ξ on ZG,

we have

zMω∞
|AG,∞

= χ−1
0 .

On the other hand, ZG(R) ∩AM,∞ = AG,∞ ⊂ ZM (R). Therefore

X ∩AM,∞ = AG,∞.

Consequently, there exists a unique character

χMω∞
: XM −→ C×

such that

χMω∞
|AM,∞

= (zMω∞
)−1 and χMω∞

|X = χ.

The pair (XM , χ
M
ω∞

) is a central character datum for M as in Section 2.8. Moreover,

f
λB(ω∞),ζδ

−1/2
P

f
∞,(k)
M,ωp,ωq

∈ H(M(A), χM,−1
ω∞

).

The expression in (4.4.25) can be rewritten as

(4.4.26) d(M)
∑

γ∈Γell,XM
(M)

vM · vol(IMγ (Q)AIMγ ,∞\I
M
γ (A)/XM )OMγ (f

λB(ω∞),ζδ
−1/2
P

f
∞,(k)
M,ωp,ωq

)

|ιM (γ)||StabMXM
(γ)|

= d(M)vM · T
M
ell,χM

ω∞

(fλB(ω∞), ζδ
−1/2
P f

∞,(k)
M,ωp,ωq

).
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Put c′′M := c′MvMd(M). Combining (4.4.24) and (4.4.26), we obtain

(4.4.27) TGell,χ(fξ,ζf
∞,(k)) = TGdisc,χ(fξ,ζf

∞,(k))

−
∑

M,P,ωp,ωq,ω∞

c′′M · T
M
ell,χM

ω∞

(f
λB(ω∞),ζδ

−1/2
P

f
∞,(k)
M,ωp,ωq

).

Let ωp be as in the sum. Since ωp ∈ Ω
GQp

M,Mν
, we have

ωp(M ∩B) ⊂ B and ω−1
p (Mν ∩B) ⊂ B.

In particular, for each root α in Lie(M∩N0), the root ωpα also appears in Lie(M∩N0).

So

⟨α,w−1
p ν⟩ = ⟨wpα, ν⟩ ⩾ 0.

Hence w−1
p ν is dominant for M ∩ B. (See the paragraph above Proposition 4.2.1 for

dominance of ν relative to B.) By Proposition 4.2.1 and the induction hypothesis for

M ∈ L<cusp, we have

TMell,χM
ω∞

(f
λB(ω∞),ζδ

−1/2
P

f
∞,(k)
M,ωp,ωq

) = O
(
pk(⟨ρM ,ω−1

p ν⟩−⟨(χM
ω∞

)∞,prM (ω−1
p ν)⟩)

)
.(4.4.28)

(To apply the induction hypothesis, we need to ensure that the setup of Theorem 4.2.2

applies to the left hand side. The point is that the conditions at p and q are satisĄed.

At p, this is a consequence of (4.4.6) and Lemma 3.2.1; thus each f
(k)
p,M,ωp

is an ascent

from an acceptable function. At q, this follows from Lemma 3.4.7 (1).) In the special

case M = G we obtain

TGdisc,χ(f
(k)
p f∞,pfξ,ζ) = O

(
pk(⟨ρ,ν⟩−⟨χ∞,prGν⟩)

)
.(4.4.29)

Now assume that the datum (M,P, ωp, ωq, ω∞) contributes to (4.4.27), in particular

M ∈ L<cusp, and also assume that

OMγ (f
λB(ω∞),ζδ

−1/2
P

f
∞,(k)
M,ωp,ωq

) ̸= 0

for some γ ∈ Γell,XM
(M). Then we claim that

(4.4.30) Re(⟨ρ, ν⟩ − ⟨χ∞, prGν⟩) > Re(⟨ρM , ω
−1
p ν⟩ − ⟨(χMω∞

)∞, prM (ω−1
p ν)⟩).

This claim, together with (4.4.28) and (4.4.29), tells us that the main term for G

dominates the proper Levi terms in (4.4.27), thereby implies the theorem.

It remains to verify the claim (4.4.30). Clearly it is sufficient to show that

(a) ⟨ρ, ν⟩ > ⟨ρM , ω
−1
p ν⟩,

(b) Re⟨χ∞, prGν⟩ ⩽ Re⟨(χMω∞
)∞, prM (ω−1

p ν)⟩.

Moreover, it is enough to prove (a) and (b) for sufficiently large k (note that

the set ΩG⋄
M and thus ω∞ depends on k). To prove (a), we start from the equality

⟨ρM , ω
−1
p ν⟩ = ⟨ρωpM , ν⟩. Since ωp is a Kostant representative (cf. (4.4.5)),

⟨ρωpM , ν⟩ ⩽ ⟨ρ, ν⟩.

To check that

⟨ρωpM , ν⟩ ≠ ⟨ρ, ν⟩,
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we argue as in the paragraph below Equation (4.2.2): As ν is not central, the argument

for Lemma 4.5(ii) of [KST20] shows that Lie(Mν) + Lie(M) ̸= Lie(G). Hence we can

Ąnd a root α in Lie(G) which in either Lie(M) or Lie(Mν), i.e., ⟨α, ν⟩ ≠ 0. The proof

of (a) is Ąnished.

Now we prove (b). Recall that xR = HG
∞(γ), and that x∞ is the image of xR in aG.

Write shorthand

X = pr∗M (−ω∞ ⋆ λ∗B)− ρN − ωξ and Y = prM (w−1
p ν).

The equality I(γ) = I(ω∞) from (4.4.22) implies ⟨αi, x∞⟩ < 0 ⇔ ⟨X, ti⟩ > 0

(cf. (4.4.17), and the isomorphism in (4.4.18)), and thus also

⟨αi, x∞⟩ ⩾ 0 ⇐⇒ ⟨X, ti⟩ ⩽ 0.

By Equation (4.4.10) we have

⟨αi, x∞⟩ > 0 ⇐⇒ ⟨αi, Y ⟩ > 0 or [⟨αi, Y ⟩ = 0 and αi ∈ −C
∨
ωq
].

Since x∞ is regular, we have ⟨αi, x∞⟩ ≠ 0, thus ⟨αi, x∞⟩ > 0⇔ ⟨αi, x∞⟩ ⩾ 0, and so

by combining the above

(4.4.31) ⟨X, ti⟩ ⩽ 0 ⇐⇒ ⟨αi, Y ⟩ > 0 or [⟨αi, Y ⟩ = 0 and αi ∈ −C
∨
ωw

].

Write X =
∑
i ciαi and Y =

∑
i diti. Then (4.4.31) implies

⟨X,Y ⟩ =
∑

i

cidi ⩽ 0.

We now conclude:

Re⟨(χMω∞
)∞, Y ⟩ = −Re⟨zMω∞

, Y ⟩

= −Re⟨pr∗M (λB(ω∞)), Y ⟩ − Re⟨ζδ
−1/2
P , Y ⟩

= −Re⟨pr∗M (−w0(ω∞ ⋆ λ∗B)), Y ⟩ − Re⟨ζ − ρN , Y ⟩

= −Re⟨X,Y ⟩︸ ︷︷ ︸
⩾0

+ Re⟨−ωξ − ζ, Y ⟩︸ ︷︷ ︸
=⟨χ∞,Y ⟩

We are now done by observing that ⟨χ∞, Y ⟩ = ⟨χ∞, prGν⟩. □

5. Shimura varieties of Hodge type

The goal of this section is to set up the scene for the mod p geometry of Shimura

varieties and central leaves, paving the way for introducing Igusa varieties in the next

section. We pay special attention to the connected components and H0.

5.1. Connected components in characteristic zero. Ð From this point onward, let

(G,X) be a Shimura datum as in [Del79] satisfying axioms (2.1.1.1), (2.1.1.2), and

(2.1.1.3) therein. Write E = E(G,X) for the reĆex Ąeld [Del79, 2.2.1], which is a

Ąnite extension of Q in C. We have the algebraic closure E ⊂ C. Let K be a neat

open compact subgroup of G(A∞). (See [Lan13, p. 82] for the deĄnition of neatness

in an adelic group following Pink.) We write ShK = ShK(G,X) for the canonical

model over E, which forms a projective system of quasi-projective varieties with Ąnite
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étale transition maps as K varies. We have the E-scheme Sh := lim
←−K

ShK . Put

d := dim ShK (which does not depend on K). Write G(Q)+ for the preimage of

G(R)+ (deĄned in Section 2.4) in G(Q). The closure of G(Q)+ in G(A∞) is denoted

by G(Q)−+.

Recall some facts about connected components from [Del79, 2.1]. We have a bijec-

tion

(5.1.1) π0(ShK,E)
∼
−→ G(Q)\G(A)/G(R)+K,

which yields a G(A∞)-equivariant bijection π0(ShE)
∼
−→ G(A)/G(Q)ϱ(Gsc(A))G(R)+

upon taking limit over all K. Note that G(A)/G(Q)ϱ(Gsc(A))G(R)+ is an abelian

group quotient of G(A), and G(Q)\G(A)/G(R)+K is a Ąnite abelian group quotient.

Fix a prime ℓ and a Ąeld isomorphism ι : Qℓ ≃ C. When V is a Qℓ-vector space,

write ιV := V ⊗Qℓ,ι
C. By convention, all instances of cohomology in this paper

are étale cohomology. The description of π0(ShE) translates into a G(A∞)-module

isomorphism

(5.1.2) ιH0(ShE ,Qℓ) ≃
⊕
π
π∞,

where the sum runs over one-dimensional automorphic representations π such that π∞
is trivial when restricted to G(R)+. Indeed, at each prime p, we have dimπp = 1

since πp factors through G(Qp) → G(Qp)
♭ = G(Qp)/ϱ(Gsc(Qp)), cf. Corollary 2.3.3.

Since one-dimensional automorphic representations have automorphic multiplicity

one, there is no multiplicity factor in (5.1.2).

Now Ąx a prime p ̸= ℓ and an open compact subgroup Kp ⊂ G(Qp). By taking

limit of (5.1.1) over neat open compact subgroups Kp ⊂ G(A∞,p), writing ShKp :=

lim
←−Kp

ShKpKp ,

(5.1.3) π0(ShKp,E
)

∼
−→ G(Q)−+\G(A

∞)/Kp.

We have a G(A∞,p)-module(10)

Hi(ShKp,E
,Qℓ) = lim

−→
Kp

Hi(ShKpKp,E ,Qℓ), i ⩾ 0,

where Kp runs over sufficiently small open compact subgroups of G(A∞,p).

Lemma 5.1.1. Ð There is a G(A∞,p)-module isomorphism

ιH0(ShKp,E
,Qℓ) ≃

⊕
π
π∞,p,

where the sum runs over discrete automorphic representations π of G(A) such that

(i) dimπ = 1, (ii) πp is trivial on Kp, and (iii) π∞ is trivial on G(R)+.

Proof. Ð This is clear from (5.1.2) by taking Kp-invariants. □

(10)See [Sta21, Tag 03Q4] for the canonical isomorphism, which is G(A∞,p)-equivariant by a

routine check. Alternatively, it is harmless to think of the identity as a deĄnition for the left hand

side.
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5.2. Integral canonical models. Ð Let (G,X) be a Shimura datum of Hodge type.

This means that there exists an embedding into the Siegel Shimura datum

iV,ψ : (G,X) ↪−→ (GSp(V, ψ), S±
V,ψ),

where (V, ψ) is a symplectic space over Q, and S±
V,ψ denotes the associated Siegel half

spaces. For simplicity we write GSp = GSp(V, ψ) and S± = S±
V,ψ.

Definition 5.2.1. Ð An unramiĄed Shimura datum is a quadruple (G,X, p,G), where

(G,X) is a Shimura datum, p is a prime, and G is a reductive model for G over Z(p).

(In particular,G is unramiĄed over Qp.) Write SDur
Hodge for the collection of unramiĄed

Shimura data whose underlying Shimura data are of Hodge type.

For the rest of this paper, we Ąx (G,X, p,G) ∈ SD
ur
Hodge and iV,ψ, thus also a

hyperspecial subgroup Kp := G(Zp) of G(Qp). Since G is unramiĄed over Qp, the

prime p is unramiĄed in the reĆex Ąeld E. We Ąx an isomorphism ιp : C ≃ Qp, which

induces an embedding E ↪→ Qp as well as a p-adic place p of E. Thereby we identify

Ep ≃ Qp. The integer ring OE localized at p is denoted by OE,(p), and its residue Ąeld

by k(p). Identify the residue Ąeld of Qp with Fp, thus Ąxing an embedding k(p) ↪→ Fp.

We follow [Kis17, (1.3.3)] to review integral canonical models for Sh = Sh(G,X)

over OE,(p), leaving the details to loc. cit. We may assume that iV,ψ is induced by

an embedding G ↪→ GL(VZ(p)
) for a Z(p)-lattice VZ(p)

⊂ V and that ψ induces a per-

fect pairing on VZ(p)
. There exists a Ąnite set of tensors (sα) ⊂ V ⊗

Z(p)
such that G is

the scheme-theoretic stabilizer of (sα) in GL(VZ(p)
). We may assume that one of the

tensors is given by ψ ⊗ ψ∨ ∈ (V ∨
Z(p)

)⊗2 ⊗ V ⊗2
Z(p)

, whose stabilizer is GSp(VZ(p)
, ψ).(11)

We Ąx the set (sα). There is a hyperspecial subgroup K ′
p ⊂ GSp(V, ψ)(Qp) extend-

ing Kp (i.e., K ′
p ∩ G(Qp) = Kp) such that iV,ψ induces an E-embedding of Shimura

varieties

(5.2.1) ShKp(G,X) ↪−→ ShK′
p
(GSp, S±)⊗Q E.

Kisin [Kis10, Th. 2.3.8] (for p > 2) and KimŰMadapusi Pera [KMP16, Th. 4.11]

(for p = 2) constructed integral canonical models, as a projective system of smooth

quasi-projective schemes SKpKp over OE,(p) for all sufficiently small open compact

subgroups Kp ⊂ G(A∞,p) with Ąnite étale transition maps SKpKp,′ → SKpKp for

Kp,′ ⊂ Kp. The projective system is equipped with an action of G(A∞,p), given by

the isomorphism

SKpKp
∼
−→ SKpg−1Kpg, g ∈ G(A∞,p), Kp ⊂ G(A∞,p),

extending the isomorphism ShKpKp
∼
−→ ShKpg−1Kpg giving the action of g on the

generic Ąber. The inverse limit SKp
:= lim←−K

pSKpKp is a scheme over OE,(p) with

(11)This way the weak polarization in the sense of [Kis17] is remembered by (sα). So we need not

keep track of polarizations on abelian varieties separately.
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a G(A∞,p)-action, uniquely characterized by an extension property [Kis10, Th. 2.3.8].

The construction yields a map of OE,(p)-schemes

(5.2.2) SKp
−→ SK′

p
(GSp, S±)⊗Z(p)

OE,(p),

whose base change to E is identiĄed with (5.2.1), where SK′
p
(GSp, S±) is the integral

model over Z(p) for Sh(GSp(V, ψ), S±
V,ψ) parametrizing polarized abelian schemes up

to prime-to-p isogenies with prime-to-p level structure, as in [Kis10, (2.3.3)]. By pulling

back the universal polarized abelian scheme over the Siegel Shimura varieties, we ob-

tain polarized abelian schemes h : AKpKp → SKpKp compatible with the transition

maps in the projective system.

Let SKpKp,k(p) := SKpKp ⊗OE,(p)
k(p) denote the special Ąber. Write ShKp

(resp. SKp,k(p)) for the inverse limit of ShKpKp (resp. SKpKp,k(p)) over Kp. By base

change to Ep, OEp
, and k(p), respectively, we obtain ShKp,Ep

, SKp,OEp
, and S

Kp,k(p)

from ShKp
, SKp

, and SKp,k(p). There are canonical G(A∞,p)-equivariant embeddings

of generic and special Ąbers

ShKp,Ep
↪−→ SKp,OEp

←−↩ S
Kp,k(p)

.

These embeddings induce G(A∞,p)-equivariant bijections by means of arithmetic com-

pactiĄcation as implied by [MP19, Cor. 4.1.11]:

π0(ShKp,Ep
)

∼
−→ π0(SKp,OEp

)
∼
←− π0(SKp,k(p)

).

Lemma 5.2.2. Ð The G(A∞,p)-action is transitive on π0(ShKp,Ep
) and π0(SKp,k(p)

).

Remark 5.2.3. Ð Oki [Oki23] showed that the analogous transitivity is false if GQp

is ramiĄed.

Proof. Ð By the bijections above the lemma, it is enough to check the transitivity

on π0(ShKp,Ep
), which is [Kis10, Lem. 2.2.5] (applicable since Kp is hyperspecial).

Alternatively, this also follows from weak approximation, which tells us that the diago-

nal embeddingG(Q) ↪→ G(Qp)×G(R) has dense image. For this, apply [PR94, Th. 7.7]

and notice that the set S0 of the theorem can be taken away from p and ∞ from the

discussion in ğ7.3 of loc. cit. since G is unramiĄed at p. (In the argument on p. 421

of [PR94] the torus T can be chosen to be unramiĄed by examining the proof of

Prop. 2.10 in loc. cit. Thus it suffices to check that the conclusion of Prop. 7.10 therein

holds for K = Q and S = {p,∞} when the diagonalizable group F in that proposition

is unramiĄed at p. This follows immediately from Cor. 2 on p. 418.) □

Let T be a k(p)-scheme. At each point x ∈ SKpKp(T ) we have an abelian variety Ax

over T (up to a prime-to-p isogeny) pulled back from AKpKp . As in [Kis17, (1.3.6)]

and [KSZ, ğ5.1.5, Rem. 5.1.6], we have (sα,ℓ) ⊂ (R1hét∗Qℓ)
⊗ for each prime ℓ ̸= p and

also adelically away from p,∞. By pullback, we equip the prime-to-p rational Tate

module V p(Ax) of Ax with (sα,ℓ,x)ℓ ̸=p.

When T = Spec k with k/k(p) an extension in k(p), write D(Ax[p
∞]) for the (inte-

gral) Dieudonné module of Ax[p
∞], and Φx for the Frobenius operator acting on it.
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Following [Kis17, (1.3.10)] we have crystalline Tate tensors (sα,0,x) ⊂ D(Ax[p
∞])⊗

coming from (sα). Lovering [Lov17], and also Hamacher [Ham19, ğ2.2], have glob-

alized (sα,0,x). Namely there exist crystalline Tate tensors (sα,0) on the Dieudonné

crystal D(AKpKp [p∞]) associated with AKpKp [p∞] over S
KpKp,k(p)

such that (sα,0)

specializes to (sα,0,x) at every x ∈ SKpKp(k(p)).

5.3. Central leaves. Ð Continuing from Section 5.2, we review central leaves in

the special Ąber of a Shimura variety of Hodge type. Let B(GQp
) denote the set of

(G(Q̆p), σ)-conjugacy classes in G(Q̆p). Fix a Borel subgroup B ⊂ GZp and a maximal

torus T ⊂ B over Zp. We have the set of dominant coweights X∗(TQp
)+ and X∗(TQp

)+Q .

Via the Ąxed isomorphism ιp : Qp ≃ C, we obtain TC ⊂ BC ⊂ GC as well as X∗(TC)
+

and X∗(TC)
+
Q . Since the conjugacy class {µX} is deĄned over E and since GQp

is

quasi-split, we have a cocharacter

µp ∈ X∗(TQp
)+ deĄned over Ep.

in the conjugacy class {ιpµX}. When there is no danger of confusion, we omit the

subscripts Qp and C. Write ρ ∈ X∗(T )Q for the half sum of all positive roots, and ⟨·, ·⟩

for the canonical pairing X∗(T )Q ×X∗(T )Q → Q or its extension to C-coefficients.

Each b ∈ G(Q̆p) gives rise to a Newton cocharacter νb : D → G
Q̆p

(so it is a

ŞfractionalŤ cocharacter of G
Q̆p

) and a connected reductive group Jb over Qp given by

(5.3.1) Jb(R) := {g ∈ G(R⊗Qp Q̆p) : g
−1bσ(g) = b}, R : Qp-algebra.

Recall that AJb denotes the maximal Qp-split torus in the center of Jb.

Lemma 5.3.1. Ð The Newton cocharacter νb factors through the center of Jb. The

induced cocharacter D→ AJb is Qp-rational.

Proof. Ð The centrality follows from [Kot85, (4.4.2)]. The cocharacter D → AJb is

σ-invariant by the deĄnition of Jb, thus Qp-rational. □

We deĄne an open compact subgroup of Jb(Qp) (where ŞintŤ stands for integral):

J int
b := Jb(Qp) ∩ G(Z̆p) = {g ∈ G(Z̆p) : g

−1bσ(g) = b}.

Given b ∈ G(Q̆p), we denote its (G(Q̆p), σ)-conjugacy class by [b] and (G(Z̆p), σ)-

conjugacy class by [[b]]. Recall that b ∈ G(Q̆p), or [b] ∈ B(GQp), is basic if νb :

D → G
Q̆p

has image in Z(G
Q̆p

), or equivalently if Jb is an inner form of G [RR96,

Prop. 1.12]. The following condition will appear in our irreducibility results later. The

deĄnition makes a difference only when Gad is not Q-simple. See Lemma 5.3.7 below

for a relation to Section 2.5.

Definition 5.3.2. Ð Let Gad =
∏
i∈I G

ad
i be a decomposition into Q-simple factors.

An element b ∈ G(Q̆p), or [b] ∈ B(GQp
), is said to be Q-non-basic if its image in

B(Gi,Qp
) via the natural composite map G→ Gad → Gi is non-basic for every i ∈ I.
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Remark 5.3.3. Ð The deĄnition is not purely local in that it depends on not only

GQp but also G. Compare G = GL2 × GL2 with G = ResF/QGL2, where F is a real

quadratic Ąeld in which p splits.

Let x ∈ SKpKp,k(p) be a closed point. Then there exists a sufficiently divisible

r ∈ Z⩾1 such that Fpr ⊃ k(p) and there exists a Zpr -linear isomorphism (cf. [Kis17,

(1.4.1)])

(5.3.2) V ∗
Z(p)
⊗Z(p)

Zpr ≃ D(Ax[p
∞])⊗W (k(p)) Zpr

carrying (sα) to (sα,0,x). The Frobenius operator Φx on the right hand side is trans-

ported to an σ-semilinear operator on the left hand side of the form bx(1 ⊗ σ) for a

unique bx ∈ G(Qpr ). Then [[bx]] (thus also [bx]) is independent of the choice of r and

the isomorphism. Now let x : SpecFp → SKpKp,k(p) be a geometric point supported

at x ∈ SKpKp,k(p). Then we can deĄne bx, [bx], and [[bx]] similarly.

Write |SKpKp,k(p)| for the set of closed points on SKpKp,k(p). As a subset of

|SKpKp,k(p)|, the central leaf associated with b is deĄned as

Cb,Kp := {x ∈ |SKpKp,k(p)| : [[bx]] = [[b]]},

Clearly the deĄnition depends only on [[b]]. By [HK19, Cor. 4.12], Cb,Kp is a locally

closed subset of |SKpKp,k(p)|. (The result is stated for Fp-points there, but the same

proof applies to the underlying set of closed points.) We promote Cb,Kp to a locally

closed k(p)-subscheme of SKpKp,k(p) equipped with reduced subscheme structure.

We still write Cb,Kp for the scheme and call it the central leaf associated with b. As Kp

varies, the transition maps for SKpKp,k(p), which are Ąnite étale ([Kis10, Th. 2.3.8]),

induce Ąnite étale transition maps between Cb,Kp . Put Cb := lim
←−Kp

Cb,Kp . We say

either Cb,Kp or Cb is Q-non-basic if b is Q-non-basic.

Proposition 5.3.4. Ð The k(p)-scheme Cb,Kp is smooth. If nonempty, its dimension

is ⟨2ρ, νb⟩.

Proof. Ð These properties can be checked after extending base to k(p). Since Cb,Kp

is reduced, it is still reduced over k(p). Thus the proposition follows from [Ham19,

Prop. 2.6]. □

A Ąnite subset B(GQp , µ
−1
p ) ⊂ B(GQp) is deĄned in [Kot97, ğ6] by a group-

theoretic generalization of MazurŠs inequality. The set B(GQp , µ
−1
p ) contains exactly

one basic element, but may contain several elements that are not Q-non-basic. Set

Zur
p := ∪r⩾1Zpr as a subring of Q̆p.

Proposition 5.3.5. Ð The central leaf Cb,Kp is nonempty if and only if the (G(Z̆p), σ)-

conjugacy class [[b]] intersects G(Zur
p )σµ−1

p (p)G(Zur
p ) nontrivially.

Proof. Ð By [KMPS22, Prop. 1.3.9], the Newton stratum for b is nonempty if and

only if [b] ∈ B(GQp , µ
−1
p ). On the other hand, if b ∈ G(Zur

p )σµ−1
p (p)G(Zur

p ) then [b] ∈

B(GQp
, µ−1
p ) by [RZ96, ğ4].

J.É.P. Ð M., 2023, tome 10



H0 of Igusa varieties 1363

To prove the Şonly ifŤ part of the proposition, we assume Cb,Kp ̸=∅. Then [b] ∈

B(GQp , µ
−1
p ) by the preceding paragraph. Since Cb,Kp is of Ąnite type over k(p),

a closed point x ∈ Cb,Kp has Ąnite residue Ąeld, and there exists an isomor-

phism (5.3.2) for some r. Then [[bx]] = [[b]], and bx ∈ G(Zpr )σµ
−1
p (p)G(Zpr ) by

[Kis17, 1.4.1].

In the ŞifŤ direction, the condition on b implies that [b]∈B(GQp
, µ−1
p ), so Nb,Kp ̸=∅

for neat subgroups Kp. Pick a closed point x ∈ Nb,Kp . Then bx lies in the double coset

G(Zpr )σµ
−1
p (p)G(Zpr ) by [Kis17, 1.4.1], and [bx] = [b]. Writing b = g−1bxσ(g) for some

g ∈ G(Q̆p), we see that g lies in the affine DeligneŰLusztig variety for (bx, σµ
−1
p ).

Using x as a base point, we can apply the p-power isogeny corresponding to g to Ąnd

a closed point y ∈ Nb,Kp , thanks to [Kis17, Prop. 1.4.4]. By construction [[by]] = [[b]],

so Cb,Kp is nonempty as desired. □

For r ∈ Z⩾1 deĄne a subset G(Qur
p )r-good ⊂ G(Q

ur
p ) consisting of b such that

(br1) b ∈ G(Zpr )σµ
−1
p (p)G(Zpr ),

(br2) r is divisible by [Ep : Qp] (equivalently Fpr ⊃ k(p)),

(br3) rνb : Gm → G
Q̆p

is a cocharacter (not just a fractional cocharacter).

Clearly G(Zur
p )σµ−1

p (p)G(Zur
p ) is the union of G(Qur

p )r-good over all r, and G(Qur
p )r-good

is contained in G(Qur
p )r′-good if r divides r′. Proposition 5.3.5 tells us that Cb,Kp is

nonempty if and only if b belongs to G(Qur
p )r-good up to (G(Z̆p), σ)-conjugacy for a

sufficiently divisible r, where r can be chosen independently of Kp. For the purpose

of studying central leaves, we may and will always assume from now that

b ∈ G(Qur
p )r-good for a sufficiently divisible r.

Conditions (br1)Ű(br3) imply the following.

(br1)Š [b] ∈ B(GQp
, µ−1
p ) and νb is deĄned over Qpr , by (br1).

(br2)Š µp is deĄned over Qpr , by (br2).

Since µp is deĄned over Ep, which is unramiĄed over Qp, (br2)Š is easy to see. In (br1)Š,

[b] ∈ B(GQp
, µ−1
p ) comes from [RR96, Th. 4.2]. we already explained above that νb is

deĄned over Qpr if b ∈ G(Qpr ). Since bx ∈ G(Qpr ), [Kot85, (4.4.1)] tells us that νbx
is deĄned over Qpr .

Since the G(Qpr )-conjugacy class of rνb is deĄned over Qp [Kot85, (4.4.3)], but rνb
itself need not be deĄned over Qp. To apply harmonic analysis results of Sections 3

and 4 let us introduce a σ-conjugate element b◦ such that rνb◦ is a cocharacter over Qp.

Since GQp
is quasi-split, there exists h ∈ G(Qpr ) such that h−1(rνb)h is deĄned

over Qp. Multiplying h on the right by an element of G(Qp), we can ensure that

h−1(rνb)h factors through Gm → T and is B-dominant, namely h−1(rνb)h ∈ X∗(T )
+.

Fix such a h and put b◦ := h−1bσ(h) so that νb◦ = h−1(νb)h from [Kot85, (4.4.2)].

We also have a Qp-isomorphism

Jb
∼
−→ Jb◦ , g 7−→ h−1gh

determined by h, which carries rνb to rνb◦ .
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Starting from νb◦ ∈ X∗(T )
+
Q deĄned over Qp as above, we put Pb◦ := Pνb◦ in the

notation of Section 3.1, and similarly deĄne P op
b◦ , Nb◦ , Nop

b◦ , and Mb◦ . In particular,

P op
b◦ (resp. Mb◦) is a standard Qp-rational parabolic (resp. Levi) subgroup of GQp ,

and Mb◦ is the centralizer of νb◦ in GQp
. There is an inner twist [RZ96, Cor. 1.14]

(5.3.3) Jb◦ ⊗Qp
Qpr ≃Mb◦ ⊗Qp

Qpr

given by the cocycle Gal(Qpn/Qp) → Mb◦(Qpr ), σ 7→ b◦. Thus Mb◦ is also an inner

twist of Jb over Qp (which is independent of the choice of b◦ up to isomorphism of

inner twists by routine check). Under the canonical Qp-isomorphisms Z(Mb◦) ≃ Z(Jb)

and AMb◦
= AJb , it is readily checked that νb◦ is carried to νb.

Example 5.3.6. Ð We have the following for the ordinary strata of modular curves,

when GQp
= GL2. Take B and T to the subgroup of upper triangular (resp. diagonal)

matrices. Then µ is the cocharacter z 7→ diag(z, 1) up to conjugacy. We can take b = b◦

such that νb(z) = diag(1, z−1), which is visibly B-dominant. Then P op
b = B = P−νb ,

Mb = T , and δPb
(νb(p)) = |p

−1| = p.

Lemma 5.3.7. Ð The element b ∈ G(Q̆p) as above is Q-non-basic if and only if

(Q-nb(Pb)) of Section 2.5 holds.

Proof. Ð Write Gad =
∏
i∈I G

ad
i as in DeĄnition 5.3.2 and bi ∈ Gad

i (Q̆p) for the

image of b. By functoriality of Newton cocharacters, the composition of νb with the

natural map G → Gad
i is νbi , which is Qp-rational since νb is. This implies that the

image of Pb in Gad
i is Pbi , where Pbi ⊂ G

ad
i is deĄned analogously as Pb in G over Qp.

Each bi ∈ G
ad
i (Q̆p) is basic if and only if νbi is central in Gad

i (i.e. trivial) if and only

if Pbi = Gad
i . Therefore, (Q-nb(Pb)) holds if and only if bi is non-basic for every i ∈ I,

and the latter is the deĄnition for b to be Q-non-basic. □

Let 1→ Z1 → G1 → G→ 1 be a z-extension over Qp that is unramiĄed over Qp.

Let µp,1 : Gm → G1,Qpr
be a cocharacter lifting µp : Gm → GQpr

. (Such a µp,1 always

exists since Z1 is connected, but we will make a choice of µp,1 coming from a lift of

Shimura data, cf. Section 7.2 below.)

Lemma 5.3.8. Ð Assume that b ∈ G(Qur
p )r-good. Then there exists an element b1 ∈

G1(Qpr ) lifting b, as well as an element b◦1 ∈ G1(Qpr ) in the σ-conjugacy class of b1,

such that

Ű the analogues of (br1), (br1)Š, and (br2)Š hold true with G,µp, b replaced by

G1, µp,1, b1,

Ű νb◦ is deĄned over Qp and lifts ν◦b .

Moreover, we can make r more divisible (without changing µp, b, µp,1, b1, b◦1) such

that rνb1 is a cocharacter of G1.(12) (So b1 ∈ G1(Q
ur
p )r-good for the new r.)

(12)A priori we only know that rνb1 is a fractional cocharacter, even though rνb is an (integral)

cocharacter of G.
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Proof. Ð Since G1(Zpr )→ G(Zpr ) is onto (by the surjectivity on Fpr -points and the

smoothness of G1 → G), the map G1(Qpr )→ G(Qpr ) induces a surjection

G1(Zpr )σµ
−1
p,1(p)G1(Zpr ) −→−→ G(Zpr )σµ

−1
p (p)G(Zpr ).

Take b1 ∈ G1(Qpr ) to be any preimage of b under this map. This takes care of the

Ąrst bullet point. As for the second point, since G1 is quasi-split over Qp, there exists

b◦1 ∈ G1(Qpr ) σ-conjugate to b1 such that νb◦1 is deĄned over Qp, and also such that νb◦1
factors through T1 ⊂ G1, where T1 is the preimage of T . Then the composite of νb◦1
with G1 →→ G is conjugate to νb◦ in G, so differs from νb◦ by an element of the

Qp-rational Weyl group of G [Kot84a, Lem. 1.1.3 (a)]. Identifying the latter with the

Qp-rational Weyl group of G1, we can use the same element to modify νb◦1 so that νb◦1
maps to νb◦ under G1 →→ G. Finally, the last point on r in the lemma is obvious. □

In the setting of the lemma, we introduce Qp-algebraic groups Jb1 , Jb◦1 , Pb◦1 , Mb◦1
,

etc. for G1 by mimicking the deĄnition for G. Let T1, B1 denote the preimages of

T,B in G1. Since νb◦1 maps to νb◦ , it is clear that ν◦b1 ∈ X∗(T1)
+, where + means

B1-dominance, and that Pb◦1 , Mb◦1
map to Pb◦ , Mb◦ . As before, we can identify

Z(Mb◦1
) = Z(Jb◦1 ), which carries νb◦1 to νb1 . The point of the discussion about b◦

and b◦1 is that it is usually harmless to work with b◦ and b◦1 in place of b and b1
regarding harmonic analysis questions. With this understanding, we will abuse nota-

tion to write Mb, Pb,Mb1 , Pb1 etc. for Mb◦ , Pb◦ ,Mb◦1
, Pb◦1 etc. to simplify notation, and

write νb, νb1 for νb◦ , νb◦1 if there is little danger of confusion.

6. Igusa varieties

Here we state the main theorem on H0 of Igusa varieties and carry out the initial

reduction to the completely slope divisible case, where we have a tower of Ąnite-type

Igusa varieties over a Ąxed Ąnite Ąeld. This prepares us to apply a Ąxed-point formula

in the next section.

6.1. Infinite-level Igusa varieties. Ð We continue in the setting of Section 5.3,

with b an element of G(Qur
p )r-good. Let b′ ∈ GSp(Q̆p) denote the image of b.

By Dieudonné theory, we have a polarized p-divisible group Σb′ over Fpr such that

D(Σb′) = V ∗
Z(p)
⊗Z(p)

Zpr with Frobenius operator b′(1 ⊗ σ). By Σb we mean the

p-divisible group Σb′ equipped with crystalline Tate tensors (tα) on D(Σb′) corre-

sponding to (sα) on VZ(p)
. When there is no danger of confusion, we still write Σb

and Σb′ for their base changes to Fp.

Applying the construction of Section 5.3 to SK′
pK

′,p(GSp, S±) and b′, we obtain a

central leaf Cb′,K′,p ⊂ SK′
pK

′,p(GSp, S±). Let R be an Fp-algebra. Following [CS17,

ğ4.3] we have the Igusa variety Igb′,K′,p → Cb′,K′,p,Fp
whose R-points parametrize

isomorphisms

(6.1.1) Σb′ ×Fp
R ≃ AR[p

∞]
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compatible with polarizations up to Z×
p -multiples, where AR denotes the pullback

of the universal abelian scheme via SpecR → Cb′,K′,pFp
. Then Igb′,K′,p is a per-

fect scheme, which is an Aut(Σb′)-torsor over Cb′,K′,pFp
by [CS19, Cor. 2.3.2], where

Aut(Σb′) denotes the group scheme of automorphisms of Σb′ (preserving the polar-

ization up to Z×
p -multiples).

The map SKpKp,Fp
→ SK′

pK
′,p,Fp

clearly induces a map Cb,Kp,Fp
→ Cb′,K′,p,Fp

.

We deĄne the subscheme

(6.1.2) Igb,Kp ⊂ (Igb′,K′,p ×Cb′,K′,p,Fp
Cb,Kp,Fp

)perf = Igb′,K′,p ×Cperf

b′,K′,p ,Fp
Cperf

b,Kp,Fp

to be the locus where (6.1.1) carries (sα) to (sα,0) on the Dieudonné modules. Com-

posing with the projection maps, we have Fp-morphisms Igb,Kp → Igb′,K′,p and

Igb,Kp → Cperf

b,Kp,Fp
. The latter gives rise to the composite map

Igb,Kp −→ Cperf

b,Kp,Fp
−→ Cb,Kp,Fp

−→ SKpKp,Fp
.

As Kp varies, the Hecke action of G(A∞,p) on SKpKp,Fp
restricts to an action on

Cb,Kp,Fp
and extends to an action on Igb,Kp by [HK19, Lem. 6.4]. (The point is that

the central leaves and Igusa varieties are deĄned in terms of p-adic invariants, which

are preserved under the prime-to-p Hecke action.)

Lemma 6.1.1. Ð The following are true.

(1) The Fp-scheme Igb,Kp is perfect and a pro-étale J int
b -torsor over Cperf

b,Kp,Fp
.(13)

(2) The map Igb,Kp → Igb′,K′,p is a closed embedding, under which the Jb′(Qp)-

action on Igb′,K′,p restricts to an action of Jb(Qp) on Igb,Kp (via the embedding

Jb(Qp) ↪→ Jb′(Qp)).

Proof. Ð This follows from [Ham19, Prop. 4.1, 4.10], noting that our Igb,Kp is his

J
(p−∞)
∞ (the perfection of his J∞) and that our J int

b is his Γb. Two points require

some further explanation. Firstly, we see that J int
b = Γb as follows. Observe that J int

b ⊂

Jb(Qp) ⊂ Jb′(Qp) and J int
b ⊂ G(Z̆p) ⊂ GSp(Z̆p). Thus J int

b consists of automorphisms

of Σb′ which are exactly the stabilizers of (tα) via Dieudonné theory. Secondly, [Ham19,

Prop. 4.1] tells us that J∞ → Cb,Kp,Fp
is a pro-étale J int

b -torsor. Since every perfection

map (as a limit of absolute Frobenius) is a universal homeomorphism, which preserves

the pro-étale topology [BS15, Lem. 5.4.2], it follows that the perfection J
(p−∞)
∞ →

Cperf

b,Kp,Fp
is also a pro-étale J int

b -torsor. □

Lemma 6.1.2. Ð Let R be a perfect Fp-algebra. Then Igb,Kp(R) is identiĄed with the

set of equivalence classes of (x, j), where

Ű x ∈ SKpKp(R) is an abelian scheme over SpecR and

Ű j : Σb ×Fp
R→ Ax[p

∞] is a quasi-isogeny carrying (sα) to (sα,0,x),

(13)It can be shown that Igb,Kp → Cb,Kp is an Aut(Σb)-torsor by [CS19, Cor. 2.3.2] and adapting

the argument there, but we do not need it.
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and Ax denotes the pullback of the universal abelian scheme along x. Here (x, j)

and (x′, j′) are considered equivalent if, in the notation of Section 5.2, there exists

a p-power isogeny i : Ax → Ax′ carrying (sα,ℓ,x)ℓ ̸=p to (sα,ℓ,x′)ℓ ̸=p and (sα,0,x) to

(sα,0,x′) such that i ◦ j = j′. Each ρ ∈ Jb(Qp) acts on the R-points of Igb,Kp by

sending j to j ◦ ρ.(14)

Proof. Ð This is the Hodge-type analogue of [CS17, Lem. 4.3.4] proved in the PEL

case. By loc. cit. Igb′,K′,p(R) is the set of p-power isogeny classes of (A, j) with A ∈

SK′
pK

′,p(R) and j : Σb ×Fp
R→ A[p∞] a quasi-isogeny compatible with polarizations

up to Q×
p . Now we have a commutative diagram from the construction of central

leaves and Igusa varieties:

Igb,Kp
//

� _

closed
��

Cb,Kp,Fp

� � loc. closed
//

��

SKpKp,Fp

��

Igb′,K′,p
// Cb′,K′,p,Fp

� � loc. closed // SK′
pK

′,p,Fp

Now we prove the Ąrst assertion by constructing the maps in both directions, which

are easily seen to be inverses of each other. Given y ∈ Igb,Kp(R), its image gives

x ∈ SKpKp(R). The j comes from the image of y in Igb′,K′,p(R). The compatibility

of j with crystalline Tate tensors follows from the very deĄnition of Igb,Kp . Conversely,

let (x, j) be as in the lemma. Modifying by a quasi-isogeny, we may assume that j

is an isomorphism. Then (x, j) comes from a point y′ ∈ Igb′,K′,p(R) as observed

above. Since SpecR and Cb,Kp are reduced, x ∈ SKpKp(R) comes from a point in

x ∈ Cb,Kp(R). Then y′ and x have the same image in Cb′,K′,p,Fp
(R), so determine a

point

y ∈
(
Igb′,K′,p ×Cb′,K′,p,Fp

Cb,Kp,Fp

)perf
(R) =

(
Igb′,K′,p ×Cb′,K′,p,Fp

Cb,Kp,Fp

)
(R).

The compatibility of j with crystalline Tate tensors exactly tells us that y ∈

Igb,Kp(R).

It remains to show the last assertion. In light of Lemma 6.1.1 (2), the assertion on

the Jb(Qp)-action follows from the analogue description for Jb′(Qp)-action on Igb′,K′,p

as in [CS17, Lem. 4.3.4, Cor. 4.3.5]. □

Now we compare Igusa varieties arising from two central leaves Cb and Cb0 in the

same Newton stratum. Thus we assume that b, b0 ∈ G(Q
ur
p )r-good for some r and that b

is σ-conjugate to b0 in G(Q̆p). We have an isomorphism Jb(Qp) ≃ Jb0(Qp) (induced

by a conjugation in the ambient group G(Q̆p)), canonical up to Jb(Qp)-conjugacy.

(14)We make a right action of Jb(Qp) on Igb,Kp so that it becomes a left action on the cohomology.

In [CS17, ğ4.3], their arrow j is reverse to ours, from A[p∞] to Σb ×
Fp

R. The two conventions are

identiĄed via taking the inverse of j (with the understanding that the authors of loc. cit. are also

using the right action of Jb(Qp), though this does not appear there explicitly).
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Corollary 6.1.3. Ð There exists a G(A∞,p)-equivariant isomorphism

Igb
∼
−→ Igb0 ,

which is also equivariant for the actions of Jb(Qp) and Jb0(Qp) through a suitable

isomorphism Jb(Qp) ≃ Jb0(Qp) in its canonical Jb(Qp)-conjugacy class.

Proof. Ð Since [bx] = [bx0
], there exists a quasi-isogeny f : Σb0 → Σb compatible

with G-structures. Using the description of Lemma 6.1.2, we can give an isomor-

phism Igb
∼
−→ Igb0 on R-points by (A, j) 7→ (A, j ◦ f). The equivariance property is

straightforward. □

The Jb(Qp)-action on Igb,Kp commutes with the Hecke action of G(A∞,p) (as Kp

varies) as it is clear on the moduli description. Now we would like to understand the

G(A∞,p)× Jb(Qp)-representation

Hi(Igb,Qℓ) := lim
−→
Kp

Hi(Igb,Kp ,Qℓ), i ⩾ 0,

where the limit is over sufficiently small open compact subgroups of G(A∞,p).

From Section 2.3 we obtain the following commutative diagram. Indeed, all maps

and the commutativity are obvious except possibly the map Jb(Qp)
ab →→ Mb(Qp)

ab,

which comes from the proof of Corollary 2.3.3. (The latter also tells us that

Mb(Qp)
ab =Mb(Qp)

♭ and G(Qp)
ab = G(Qp)

♭.)

(6.1.3) Jb(Qp)

����

Mb(Qp)

����

// G(Qp)

����

Jb(Qp)
ab // // Mb(Qp)

ab // G(Qp)
ab.

The diagram yields the composite maps

(6.1.4) ζb : Jb(Qp) −→ G(Qp)
ab and ζ∗b :Mb(Qp) −→ G(Qp)

ab.

Thus every one-dimensional smooth representation πp of G(Qp) (necessarily factoring

through G(Qp)
ab) can be pulled back to one-dimensional representations of Jb(Qp)

and Mb(Qp), to be denoted πp ◦ ζb and πp ◦ ζ
∗
b .

As a reminder from Section 5.3, every nonempty Q-non-basic central leaf can be

written as Cb, where b is a Q-non-basic element contained in G(Qur
p )r-good for a suffi-

ciently divisible r ∈ Z⩾1. (Conversely such a b gives rise to a nonempty leaf.) We are

ready to state the main theorem of this paper.

Theorem 6.1.4 (Main Theorem). Ð Let (G,X, p,G) be a Shimura datum of Hodge

type. For every (nonempty) Q-non-basic central leaf Cb, there exists a G(A∞,p) ×

Jb(Qp)-module isomorphism

ιH0(Igb,Qℓ) ≃
⊕

π∈A1(G)

π∞,p ⊗ (πp ◦ ζb),

where A1(G) stands for the set of one-dimensional automorphic representations π of

G(A) such that π∞ is trivial on G(R)+.

J.É.P. Ð M., 2023, tome 10



H0 of Igusa varieties 1369

Proof. Ð After reduction to the completely slope divisible case by Lemma 6.2.2, the

theorem will be established in Section 7 below. □

Remark 6.1.5. Ð Since dimπp = 1, we have (πp ◦ ζb) ⊗ δPb
= JP op

b
(πp) ⊗ δ

1/2
Pb

as

Jb(Qp)-representations. (The point is that the unipotent radical Nop
b acts trivially

on πp.) This is closely related to Lemma 3.1.2. It is also worth comparing with [HT01,

Th. V.5.4] and [Shi12, Th. 6.7], where a similar expression appears in the description

of cohomology of Igusa varieties.

6.2. Finite-level Igusa varieties in the completely slope divisible case

We recall the deĄnition of Ąnite-level Igusa varieties following [Man05, CS17,

Ham19]. From Section 5.3 we have r ∈ Z⩾1 such that b ∈ G(Qur
p )r-good. In this

subsection, we further assume that b is completely slope divisible in the sense of

[Kim19, Def. 2.4.1]. In particular, the decency equation holds:

(6.2.1) bσ(b) · · ·σr−1(b) = rνb(p).

A priori, (6.2.1) holds for some r ∈ Z⩾1 but then it is still true for all multiples of r.

So we may and will assume that (6.2.1) holds for the same r as in Section 5.3 by

making r more divisible.

We start from the Siegel case. Write Igb′,m,K′,p → Cb′,K′,p for Igusa varieties of

level m ∈ Z⩾1 as in [Man05, ğ4] or [Ham19, ğ3.1] (the deĄnition works over Fpr

not just over Fp), deĄned to parametrize liftable isomorphisms on the pm-torsion

subgroup of each slope component. As shown in loc. cit. Igb′,m,K′,p → Cb′,K′,p is a

Ąnite étale morphism, forming a projective system over varying m via the obvious

projection maps. Write Igb′,K′,p for the projective limit of Igb′,m,K′,p over m. There

are maps Igb′,K′,p → Igb′,m,K′,p,Fp
for m ⩾ 1 compatible with each other, since the

isomorphism (6.1.1) induces isomorphisms on isoclinic components. This induces an

isomorphism Igb′,K′,p → Igperf

b′,K′,p,Fp
. See [CS17, Prop. 4.3.8] and the preceding para-

graph for details.

Following [Ham19, ğ4.1] (but working over Fpr rather than Fp), deĄne the Fpr -

subscheme

Ĩgb,Kp ⊂
(
Igb′,K′,p ×Cb′,K′,p Cb,Kp

)perf

to be the locus given by the same condition as in (6.1.2). DeĄne Igb,m,Kp as the image

of the composite map

Ĩgb,Kp −→ Igb′,K′,p ×Cb′,K′,p Cb,Kp −→ Igb′,m,K′,p ×Cb′,K′,p Cb,Kp .

The projection onto the second component gives an Fpr -morphism Igb,m,Kp → Cb,Kp ,

which is Ąnite étale by [Ham19, Prop. 4.1]. Via the canonical projection Igb,m+1,Kp →

Igb,m,Kp commuting with the maps to Cb,Kp , we take the projective limit and denote

it by Igb,Kp .

Besides the Hecke action of G(A∞,p) on the tower of Igb,Kp , we also have an action

on Igb,Kp,Fp
by a submonoid Sb ⊂ Jb(Qp) deĄned in [Man05, p. 586]. (The latter action

is deĄned only over Fp in general since self quasi-isogenies of Σb are not always deĄned
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over Ąnite Ąelds.) The precise deĄnition is unimportant, but it suffices to know two

facts. Firstly, Sb generates Jb(Qp) as a group. Secondly, Sb contains p−1 (the inverse

of the multiplication by p map on Σb) and(15)

fr−r := rνb(p) ∈ Jb(Qp).

By Lemma 5.3.1, fr−r ∈ AJb(Qp). Let Fr denote the absolute Frobenius morphism on

an Fp-scheme.

Lemma 6.2.1. Ð The following hold true.

(1) fr−r ∈ A−−
P op

b
⊂ AMb

(Qp) = AJb(Qp). As an element of Mb(Qp), we have fr−r ∈

A−−
P op

b
. (Recall that A−−

P op

b
was deĄned in Section 2.1. For AMb

(Qp) = AJb(Qp), see

Section 5.3.)

(2) The action of Frr × 1 on Igb,Kp ×Fpr
Fp induces the same action on Igb,Kp as

the action of fr−r ∈ Jb(Qp).

(3) There is a canonical isomorphism Igb,Kp ≃ Igperf

b,Kp,Fp
over Cb,Kp,Fp

, compatible

with the G(A∞,p)× Sb-actions as Kp varies.

Proof. Ð (1) We already know fr−r ∈ AJb(Qp) = AMb
(Qp). Since rνb is B-dominant

(Section 5.3), we have rνb(p) ∈ A
−
P op

b
. Moreover rνb(p) ∈ A

−−
P op

b
as the centralizer of

rνb(p) in G is exactly Mb.

(2) Write FrΣ for the absolute Frobenius action on Σb/Fpr . In view of (6.2.1),

fr−r = rνb(p) acts on Σb/Fpr as (FrΣ)
r. Thus fr−r sends (x, j) to (x, j ◦ FrrΣ) in the

description of R-points in Lemma 6.1.2. On the other hand, Frr × 1 on Igb,Kp sends

(x, j) to (x(r), j(r)), where x(r) corresponds to the pr-th power Frobenius twist of x (so

that Ax(r) = (Ax)
(r)), and j(r) is the pr-th power twist of j. Finally we observe that

(x(r), j(r)) is equivalent to (x, j ◦FrrΣ) via the pr-power relative Frobenius Ax → Ax(r) .

(3) We have the map Igb,Kp → Igb,Kp,Fp
over Cb,Kp,Fp

from the deĄnition, which

factors through Igb,Kp → Igperf

b,Kp,Fp
since Igb,Kp is perfect. This is shown to be an

isomorphism exactly as in the proof of [CS17, Prop. 4.3.8], the point being a canonical

splitting of the slope decomposition over the perfect scheme Igperf

b,Kp,Fp
. □

Lemma 6.2.2. Ð In the setting of Theorem 6.1.4, if the theorem is true for every b

which satisĄes (6.2.1) for some r, then the theorem is true in general.

Proof. Ð Let b0 be arbitrary in the setting of Theorem 6.1.4. By [Kim19, Prop. 2.4.5]

(alternatively by the argument of [Zha15, Lem. 4.2.8]), there exists b ∈ G(Q̆p) which

is σ-conjugate to b0 such that

Ű b ∈ G(Z̆p)σµp(p)
−1G(Z̆p),

Ű b is completely slope divisible and satisĄes (6.2.1) for some r ∈ Z⩾1.

(15)Here is a note on the sign. On the slope 0 ⩽ λ ⩽ 1 component, the action of frr is pλr, but

νb records slope −λ since we use the covariant Dieudonné theory.
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It follows that we have (br1) for b, namely b ∈ G(Zpr )σµp(p)
−1G(Zpr ) for some r.

By making r more divisible (note that (6.2.1) still holds for the new r), we can

ensure (br2) and (br3) for b. Thus b ∈ G(Qur
p )r-good and Cb ̸= ∅. By hypothesis,

Theorem 6.1.4 is true for this b. On the other hand, we see from Corollary 6.1.3 that,

Ąxing an isomorphism Jb(Qp) ≃ Jb0(Qp) as in there,

H0(Igb,Qℓ) ≃ H
0(Igb0 ,Qℓ) as G(A∞,p)× Jb(Qp)-modules.

Therefore, Theorem 6.1.4 for b implies that the same theorem holds for b0. (Note that

the transfer of one-dimensional representations via Jb(Qp) ≃ Jb0(Qp) is canonical.)

□

7. Cohomology of Igusa varieties

The main purpose of this section is to prove Theorem 6.1.4. Throughout we are in

the setting of Section 6.2, namely we are assuming (6.2.1) on b and r in addition to

(br1)Ű(br3) of Section 5.3, since this is sufficient in light of Lemma 6.2.2. We will switch

to compactly supported cohomology via Poincaré duality and apply Mack-CraneŠs

LanglandsŰKottwitz style formula to bring in techniques from the trace formula and

harmonic analysis. All ingredients will be combined together in Section 7.6 to identify

the leading term in the LangŰWeil estimate.

7.1. Compactly supported cohomology in top degree. Ð In Section 6.2 we con-

structed Igb,Kp over Fpr such that Igb,Kp is isomorphic to the perfection of Igb,Kp,Fp

(compatibly with the transition maps as Kp varies). Recall that dim Igb = ⟨2ρ, νb⟩.

DeĄne for i ∈ Z⩾0,

Hi
c(Igb,m,Fp

,Qℓ) := lim
−→
Kp

Hi
c(Igb,m,Kp,Fp

,Qℓ), Hi
c(Igb,Fp

,Qℓ) := lim
−→
m⩾0

Hi
c(Igb,m,Fp

,Qℓ).

As for Hi
c(Igb,Fp

,Qℓ), we have a G(A∞,p)×Jb(Qp)-module structure on Hi
c(Igb,Fp

,Qℓ).

This is an admissible G(A∞,p) × Jb(Qp)-module as the cohomology is Ąnite-

dimensional at each Ąnite level. It is convenient to prove the following dual version

of Theorem 6.1.4.

Theorem 7.1.1. Ð Assume that b is Q-non-basic, and that Σb is completely slope

divisible. Then there is a G(A∞,p)× Jb(Qp)-module isomorphism

ιH⟨4ρ,νb⟩
c (Igb,Fp

,Qℓ) ≃
⊕

π∈A1(G)

π∞,p ⊗ ((πp ◦ ζb)⊗ δPb
).

Proof. Ð The proof will be carried out in Section 7.6 after recalling a stabilized trace

formula (Theorem 7.5.1), by employing the estimates in Section 4. □

Theorem 7.1.1 implies Theorem 6.1.4.. Ð We may put ourselves in the completely

slope divisible case by Lemma 6.2.2. Write d := ⟨2ρ, νb⟩. Applying Poincaré duality to

Ąnite-level Igusa varieties Igb,m,Kp and taking direct limit over m and Kp, we obtain

a pairing

H0(Igb,Fp
,Qℓ)×H

2d
c (Igb,Fp

,Qℓ(d)) −→ Qℓ,
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where Qℓ(d) denotes the d-th power Tate twist. The construction of duality

(Exp. XVIII, ğ3 in [SGA4-3]) goes through a family of canonical isomorphisms

Rf !m,KpQℓ ≃ Qℓ(d)[−2d] (concentrated in degree 2d) over m and Kp, where

fm,Kp : Igb,m,Kp → SpecFpr denotes the structure map. Thus the action of

G(A∞,p) × Jb(Qp) on Igb = {Igb,m,Kp} induces an action on Qℓ(d)[−2d], through a

character ς : G(A∞,p) × Jb(Qp) → Q
×

ℓ . (As in Section 6.2.1, the action of Jb(Qp)

is deĄned a priori on a submonoid Sb and then extended to Jb(Qp). Alterna-

tively, this action can be deĄned directly after perfectifying Igb.) Together with

the G(A∞,p) × Jb(Qp)-action on Igb, this yields an action of G(A∞,p) × Jb(Qp) on

H2d
c (Igb,Fp

,Qℓ(d)) and H0(Igb,Fp
,Qℓ), respectively. It follows from the functoriality

of Poincaré duality that the above pairing is G(A∞,p) × Jb(Qp)-equivariant. Thus

H0(Igb,Fp
,Qℓ) is isomorphic to the (smooth) contragredient of H2d

c (Igb,Fp
,Qℓ(d)),

which is isomorphic to H2d
c (Igb,Fp

,Qℓ)⊗ ς. Therefore, Theorem 7.1.1 implies that

(7.1.1) ιH0(Igb,Fp
,Qℓ) ≃

⊕
π∈A1(G)

((π∞,p)⊗ ((πp ◦ ζb)⊗ δPb
))

∨
⊗ ς−1.

On the other hand, H0(Igb,Fp
,Qℓ) is the space of smooth Qℓ-valued functions on

π0(Igb,Fp
), on which G(A∞,p)× Jb(Qp) acts through right translation. (Here smooth-

ness means invariance under an open compact subgroup of G(A∞,p)×Jb(Qp).) In par-

ticular, the trivial representation appears in H0(Igb,Fp
,Qℓ) as the subspace of constant

functions on π0(Igb,Fp
). Hence ς−1 = (π∞,p

0 )⊗ ((π0,p ◦ ζb)⊗ δPb
) for some π0 ∈ A1(G).

Plugging this formula into (7.1.1) and using the fact that A1(G) is invariant under

taking dual and twisting by π0, we can rewrite (7.1.1) as

ιH0(Igb,Fp
,Qℓ) ≃

⊕
π∈A1(G)

π∞,p ⊗ (πp ◦ ζb).

Finally, the same holds with Igb in place of Igb,Fp
thanks to Lemma 6.2.1(3). □

Remark 7.1.2. Ð It may be possible to compute the character ς in the proof, but we

have got around it. As we know the Frobenius action on Qℓ(d)[−2d], Lemma 6.2.1(2)

tells us that fr−r ∈ Jb(Qp) acts by prd. We guess that ς is trivial on G(A∞,p) and

equal to δ−1
Pb

on Jb(Qp).

7.2. Preparations in harmonic analysis. Ð Let ϕ∞,p = ⊗′
v ̸=∞,pϕv ∈ H(G(A∞,p))

and ϕp ∈ H(Jb(Qp)). With a view towards Theorem 7.1.1, we want to compute

Tr
(
ϕ∞,pϕ(j)p

∣∣∣ιHc(Igb,Fp
,Qℓ)

)
:=

∑

i⩾0

(−1)i Tr
(
ϕ∞,pϕ(j)p

∣∣∣ιHi
c(Igb,Fp

,Qℓ)
)
.

We keep T , B, b ∈ G(Q̆p), and r ∈ Z⩾1 as before, so that rνb ∈ X∗(T )+. Recall

that rνb(p) ∈ AJb . Given ϕp ∈ H(Jb(Qp)), deĄne

ϕ(j)p ∈ H(Jb(Qp)) by ϕ(j)p (δ) := ϕp(jνb(p)
−1δ), j ∈ rZ⩾1.

This coincides with the analogous deĄnition of ϕ
(k)
p in Section 3.1, namely ϕ

(j)
p = ϕ

(k)
p

via k = j/r and ν = rνb. (The difference is that ν is a cocharacter but νb is only a

fractional cocharacter.)
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An element δ ∈ Jb(Qp) is acceptable if its image in Mb(Qp) is acceptable (DeĄ-

nition 3.1.1) under the isomorphism Jb(Qp) ≃ Mb(Qp) induced by some (thus any)

inner twist at the end of Section 5.3. As in Section 3.1, let Hacc(Jb(Qp)) ⊂ H(Jb(Qp))

denote the subspace of functions supported on acceptable elements. Choose j0 ∈ Z⩾0

such that

ϕ(j)p ∈ Hacc(Jb(Qp)), j ∈ rZ, j ⩾ j0.

Such a j0 exists by the argument of Lemma 3.1.7. By Lemma 6.2.1 and the deĄnition

of ϕ
(j)
p ,

(7.2.1) Tr
(
ϕ∞,pϕ(j)p

∣∣∣ ιHc(Igb,Fp
,Qℓ)

)
= Tr

(
ϕ∞,pϕp × (Frj × 1)

∣∣∣ ιHc(Igb,Fp
,Qℓ)

)
,

where Frj is the j/r-th power of the relative Frobenius of Igb over Fpr . Since the

action of Frj is the same as the action of a central element of Jb(Qp), it commutes

with the action of ϕ∞,pϕp. Thus (7.2.1) and the LangŰWeil bound tell us that the top

degree compactly supported cohomology in Theorem 7.1.1 is captured by the leading

term as j → ∞. This will be the basic idea underlying the proof of the theorem in

Section 7.6 below.

We Ąx the global central character datum (X, χ0) = (AG,∞,1) for G, which can also

be viewed as a central character datum for G∗ via Z(G) = Z(G∗). (Since we compute

the cohomology with constant coefficients, we do not need to consider nontrivial χ0.)

We also Ąx a z-extension 1→ Z1 → G1 → G→ 1 over Q once and for all, which is

unramiĄed over Qp. As explained in [KSZ, ğ7.3.3], we can promote G1 to a Shimura

datum (G1, X1) lifting (G,X) together with the conjugacy class {µX1} of cocharacters

of G1,C lifting {µX}. Therefore, in ιp{µX1}, we can Ąnd a cocharacter

µp,1 : Gm −→ G1

which lifts µp and is deĄned over an unramiĄed extension of Qp (since the reĆex

Ąeld of (G1, X1) is unramiĄed at p). Making r more divisible, we arrange that µp,1
is deĄned over Qpr . We apply Lemma 5.3.8 to Ąnd a lift b1 ∈ G1(Qpr ) of b; we also

ensure that rνb1 is a cocharacter as in the last assertion of that lemma. We mention

that µp,1 and b1 are going to enter the construction of test functions at ∞ and p,

respectively.

For each e ∈ Eell(G), Ąx a Q-rational minimal parabolic subgroup of Ge and its Levi

component as at the start of Section 4.2 (with Ge in place of G there). Call them P ∗
0

and M∗
0 in the case e = e∗. On the other hand, we have GQp ⊃ BQp ⊃ TQp from

Section 5.3. Since GQp
is quasi-split, there is a canonical Gad(Qp)-conjugacy class of

isomorphisms GQp
≃ G∗

Qp
. We Ąx one such isomorphism such that BQp

(resp. TQp
)

is carried into P ∗
0,Qp

(resp. M∗
0,Qp

). The images of BQp
and TQp

in G∗
Qp

will play the

roles of B and T in Section 4.2.

For each e ∈ E<ell(G), we have a central extension 1→ Z1 → Ge
1 → Ge → 1 over Q,

determining an endoscopic datum e1 for G1 and a central character datum (Xe
1, χ

e
1)

for Ge
1 as in Section 2.7.
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7.3. The test functions away from p. Ð For each e ∈ Eell(G), Let us introduce the

test functions to enter the statement of Theorem 7.5.1 below. Here we consider the

places away from p. The place p will be treated in the next subsection.

The Ąrst case is away from p and∞. When e = e∗, we have (f Ig,∗)∞,p = ⊗′
v ̸=∞,pf

∗
v ,

where f∗v ∈ H(G∗(Qv)) is a transfer of ϕv as in Section 2.5. In case e ∈ E<ell(G), at

each v ̸= ∞, p, the function ϕv admits a transfer f e1,v ∈ H(Ge
1(Qv), (χ

e
1,v)

−1). Then

we take

(f Ig,e)∞,p
1 = ⊗′

v ̸=∞,pf
e
1,v ∈ H(Ge

1(A
∞,p), (χe,∞,p

1 )−1).

The next case is the real place. We construct the test function f Ig,e
1,∞ ∈ H(Ge

1(R),

(χe
1,∞)−1) by adapting [Kot90, ğ7] to the case with central characters. In the eas-

ier case of e = e∗ = (G∗, LG∗, 1, id), we take f Ig,∗
∞ := e(G∞)f1 in the notation of

Section 2.4. Now let e ∈ E<ell(G). In the notation of Section 2.4, both ξ and ζ are

trivial in the current setup (since we are focusing on the constant coefficient case).

Write ξ1 and ζ1 for the pullbacks of ξ and ζ from G to G1; they are again triv-

ial. We obtain a discrete L-packet Π(ξ1, ζ1) for G1(R) along with an L-parameter

ϕξ1,ζ1 : WR →
LG1 as in Section 2.4. Let Φ2(G

e
1,R, ϕξ1,ζ1) denote the set of discrete

L-parameters ϕ′ ∈ Φ(Ge
1(R)) such that ηe1ϕ

′ ≃ ϕξ1,ζ1 . Then deĄne (cf. [Kot90, p. 186])

f Ig,e
1,∞ := (−1)q(G1)⟨µ1, s

e
1⟩

∑

ϕ′

det(ω∗(ϕ
′))fϕ′ ,

where fϕ′ is the averaged Lefschetz function for the L-packet of ϕ′ deĄned in Sec-

tion 2.4, and the sum runs over ϕ′ ∈ Φ(Ge
1,R, ϕξ1,ζ1). As in [KSZ, ğ8.2.5] we check that

f Ig,e
1,∞ is (χe

1,∞)−1-equivariant and compactly supported modulo Xe
1,∞.

7.4. The test functions at p. Ð We apply the contents of Section 3 to the cochar-

acter ν := rνb over F = Qp with uniformizer ϖ = p. In particular, we have Pb := Pν
whose Levi factor is Mb =Mν .

Consider the case e = e∗. Each function ϕp ∈ H(Jb(Qp)) admits a transfer ϕ∗p ∈

H(Mb(Qp)) as explained in Section 2.3. When ϕp ∈ Hacc(Jb(Qp)), we can arrange

that ϕ∗p ∈ Hacc(Mb(Qp)) after multiplying by the indicator function on the set of

acceptable elements in Mb(Qp). (This is possible as the subset of acceptable elements

is nonempty, open, and stable under Jb(Qp)-conjugacy.) The image of ϕ∗p in S(Mb)

depends only on ϕp (as an element of S(Jb)). In the notation of Section 3.1, deĄne

f Ig,∗,(j)
p := Jν

(
δ
1/2
Pν
· ϕ∗,(j)p

)
∈ S(G), j ∈ Z⩾0,

As before, we still write f
Ig,∗,(j)
p for a representative in H(G(Qp)). Lemma 3.1.2 implies

that

Tr
(
f Ig,∗,(j)
p |πp

)
= Tr

(
ϕ∗,(j)p |JP op

ν
(πp)⊗ δ

1/2
Pν

)
, ∀πp ∈ Irr(G(Qp)).

Remark 7.4.1. Ð In the deĄnition of f
Ig,∗,(j)
p , we have not multiplied the constant cMH

appearing in [Shi10, ğ6] (with H,MH there corresponding to G∗,Mb here). In the sign

convention of Remark 6.4 therein, the transfer factor between Jb and Mb equals e(Jb),
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resulting in cMH
= e(Jb). In contrast, we have taken the transfer factor between inner

forms to be 1 (cf. Remark 2.3.6), so cMH
= 1 in our convention.

Now let e∈E<ell(G). Recall from (7.2) that b1∈G1(Qpr ) was chosen. Take ν1 :=rνb1 .

By pulling back the z-extension 1→ Z1 → G1 → G→ 1 via Mb ↪→ G, and using the

deĄnition of Jb and Jb1 , we obtain z-extensions over Qp as follows:

1 −→ Z1 −→Mb1 −→Mb −→ 1, 1 −→ Z1 −→ Jb1 −→ Jb −→ 1.

(For Jb, the point is that the σ-stabilizer subgroup of Res
Q̆p/Qp

Gm is simply Gm.)

We pull back ϕ
(j)
p ∈ H(Jb(Qp)) to obtain ϕ

(j)
1,p ∈ H(Jb1(Qp), χ1,p). (Recall that χ1 =∏

v χ1,v is the trivial character on X1 = Z1(A).) Write ϕ∗p ∈ H(Mb(Qp)) for a transfer

of ϕp, and ϕ∗1,p ∈ H(Mb1(Qp), χ1,p) for the pullback of ϕ∗p. Then ϕ
∗,(j)
p (deĄned in

Section 3.1) is a transfer of ϕ
(j)
p (namely ϕ∗,(j) = (ϕ

(j)
p )∗ in S(Jb)), and ϕ

∗,(j)
1,p is a

transfer of ϕ
(j)
1,p, for all j ∈ Z.

The desired test function f Ig,e
1,p is described by the process in [Shi10, ğ6] (which

is applicable since G1 has simply connected derived subgroup), with Jb1 , G
e
1, G1 in

place of Jb, H,G therein, followed by averaging over X1 = Xe
1. We summarize the

construction as follows:

f
Ig,e,(j)
1,p :=

∑

ω∈Ωe1,ν1

f
Ig,e,(j)
1,p,ω , where(7.4.1)

f
Ig,e,(j)
1,p,ω := cω ·Jν1,ω

(
LSe1,ω(δ

1/2
Pν1
· ϕ

∗,(j)
1,p )

)
∈ H(Ge

1(Qp), χ
e,−1
1,p ),

Here cω ∈ C are constants (possibly zero) independent of ϕp. Note that Jν1,ω and

LSe1,ω denote the maps in the setup with Ąxed central character as in Section 3.5.

We observe the following about the right hand side of (7.4.1).

(7.4.2) δ
1/2
Pν1
· ϕ

∗,(j)
1,p = δ

1/2
Pν1

(ν1(p))
(
δ
1/2
Pν1
· ϕ∗1,p

)(j)
= p⟨ρ,ν⟩

(
δ
1/2
Pν1
· ϕ∗1,p

)(j)
.

7.5. The stable trace formula for Igusa varieties. Ð Continuing from the preced-

ing subsections, we freely use the notation from Section 2.9 . The following stabilized

formula for Igusa varieties is of key importance to us.

Theorem 7.5.1. Ð Given ϕ∞,p ∈ H(G(A∞,p)) and ϕp ∈ H(Jb(Qp)), there exists

j0 = j0(ϕ
∞,p, ϕp) ∈ Z⩾1 such that ϕ

(j)
p ∈ Hacc(Jb(Qp)) and

(7.5.1) Tr
(
ϕ∞,pϕ(j)p

∣∣ ιHc(Igb,Qℓ)
)

= STG
∗

ell,χ0
(f Ig,∗,(j)) +

∑

e∈E<
ell(G)

ι(G,Ge)ST
Ge

1

ell,χe
1

(
f

Ig,e,(j)
1

)
.

for every integer j ⩾ j0 divisible by r.

Proof. Ð The point is to stabilize the main result of [MC22]. This is carried out in

[BMS22]; see Theorems 3.3.9 and 4.4.2 therein. □
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Remark 7.5.2. Ð The coefficients cω in (7.4.1) for e ̸= e∗ can be made precise with a

normalization of transfer factors as in [BMS22], but we do not need the information

in this paper.

7.6. Completion of the proof of Theorem 7.1.1. Ð The main term in the right

hand side of Theorem 7.5.1 will turn out to be the following. Recall A1(G) from

Theorem 6.1.4.

Proposition 7.6.1. Ð Fix ϕ∞,pϕp ∈ H(G(A∞,p) × Jb(Qp)), from which f∗,(j) ∈

H(G∗(A)) is given as in Section 7.4 for every j ∈ Z⩾1 such that j ⩾ j0 = j0(ϕ
∞,pϕp).

As j ⩾ j0 varies over positive integers divisible by r, we have the estimate

TG
∗

disc,χ0

(
f Ig,∗,(j)

)
=

∑

π∈A1(G)

Tr (ϕ∞,p|π∞,p) · Tr
(
ϕ(j)p

∣∣ (πp ◦ ζb)⊗ δPb

)
+ o

(
pj⟨2ρ,νb⟩

)
.

Proof. Ð We have

(7.6.1) TG
∗

disc,χ0

(
f Ig,∗,(j)

)
=

∑

π∗

m(π∗) Tr
(
f Ig,∗,p

∣∣ π∗,p
)
Tr

(
f Ig,∗,(j)
p |π∗

p

)
.

Let JH(JP op

b
(π∗
p)) denote the multi-set of irreducible subquotients of JP op

b
(π∗
p) (up

to isomorphism). The central character of τ ∈ JH(JP op

b
(π∗
p)) is denoted ωτ . We see

from Lemma 3.1.2 (ii) that

(7.6.2)

Tr
(
f Ig,∗,(j)
p

∣∣ π∗
p

)
= Tr

(
δ
1/2
Pb
ϕ∗,(j)p

∣∣ JP op

b
(π∗
p)
)
= Tr

(
ϕ∗,(j)p

∣∣ JP op

b
(π∗
p)⊗ δ

1/2
Pb

)

=
∑

τ∈JH(JPop
b

(π∗
p))

ωτ (jνb(p))δ
1/2
Pb

(jνb(p)) Tr(ϕ
∗
p|τ).

We have jνb(p) ∈ A
−−
P op

b
, cf. Section 3.1. Since our running assumption that b is Q-non-

basic implies (Q-nb(P op
b )) by Lemma 5.3.7, it follows from Corollary 2.5.2 that the

largest growth of ωτ (jνb(p)) as a function in j is achieved exactly when dimπ∗ = 1.

In that case, we have m(π∗) = 1 and π∗
p is a unitary character. Via Lemma 2.5.3,

π∗ corresponds to a unique one-dimensional automorphic representation π of G(A).

We have π∗
p ≃ πp via G∗(Qp) ≃ G(Qp). Thus

(7.6.3)

Tr(ϕ∗,(j)p |JP op

b
(π∗
p)⊗ δ

1/2
Pb

)
Rem. 6.1.5
==== Tr(ϕ∗,(j)p |(π∗

p ◦ ζ
∗
b )⊗ δPb

)

= Tr(ϕ(j)p |(πp ◦ ζb)⊗ δPb
) = δPb

(jνb(p)) Tr(ϕp|(πp ◦ ζb)⊗ δPb
)

= pj⟨2ρ,νb⟩ Tr(ϕp|(πp ◦ ζb)⊗ δPb
).

We used Lemma 2.3.7 for the second equality above. Indeed, (π∗
p ◦ ζ

∗
b ) ⊗ δPb

as a

character of Mb(Qp) and (πp ◦ ζb)⊗ δPb
as a character of Jb(Qp) correspond to each

other via the diagram (6.1.3).

Let f1 denote the averaged Lefschetz function on G(R) as in Section 2.4 with

ξ = 1 and ζ = 1. Write e(G∞,p) :=
∏
v ̸=∞,p e(Gv) for the product of Kottwitz signs.
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We rewrite (7.6.1) as

TG
∗

disc,χ0

(
f Ig,∗,(j)

)

=
∑

π∗

dimπ∗=1

Tr
(
f Ig,∗
∞ |π∗

∞

)
Tr

(
f Ig,∗,∞,p|π∗,∞,p

)
Tr

(
f Ig,∗,(j)
p |π∗

p

)
+ o

(
pj⟨2ρ,νb⟩

)

=
∑

π
dimπ=1

Tr(f1|π∞) Tr(ϕ∞,p|π∞,p) Tr
(
ϕ(j)p |(πp ◦ ζb)⊗ δPb

)
+ o

(
pj⟨2ρ,νb⟩

)
,

where the last equality was obtained from (7.6.2) at p, Lemma 2.4.2 at ∞, and

Lemma 2.3.7 at the places away from p. To conclude, we invoke Lemma 2.4.3 to

see that Tr(f1|π∞) = 1 if π∞|G(R)+ = 1 and Tr(f1|π∞) = 0 otherwise. □

Finally we complete the proof of Theorem 7.1.1 employing the main estimates of

Section 4.

Corollary 7.6.2. Ð Theorem 7.1.1 is true.

Proof. Ð Let q ̸= p be an auxiliary prime such that GQq is split. Fix ϕ∞,p,qϕp ∈

H(G(A∞,p,q) × Jb(Qp)). Let e ∈ E<ell(G). There exists a constant Ce > 0, depending

on ϕ∞,p,q, ϕp, such that for each ϕq ∈ H(G(Qq))Ce-reg, we have the following bound

on endoscopic terms in the stabilization of Theorem 7.5.1 by applying the last bound

in Corollary 4.2.3 to k = j/r, ν = rν1,ω, ϕ
(k)
p = cω(δ

1/2
Pν1

ϕ∗1,p)
(k), and χ = χ0 for

each ω ∈ Ωe1,ν1 . Notice that f
Ig,e,(j)
1,p,ω is p⟨ρ

e,ν1,ω⟩ times f
(k)
p of that corollary, in light

of (7.4.1) and (7.4.2). We have

ST
Ge

1

ell,χe
1

(
(f Ig,e,p

1 )f
Ig,e,(j)
1,p,ω

)
= O

(
pk(⟨2ρ

e,rν1,ω⟩−⟨χe
1,rν1,ω⟩)

)

= O
(
pj(⟨2ρ

e,ν1,ω⟩−⟨χe
1,ν1,ω⟩)

)
.

To turn this into a more manageable bound, we use (a) and (b) from the proof of

Corollary 4.2.3 and the fact that ⟨χ0,∞, ν⟩ = 0 since χ0 (which plays the role of χ

there) is trivial. Thereby we see that the right hand side is o
(
pj⟨2ρ,νb⟩

)
. Taking the

sum over ω ∈ Ωe1,ν1 , we obtain

(7.6.4) ST
Ge

1

ell,χe
1

(
f

Ig,e,(j)
1

)
= o

(
pj⟨2ρ,νb⟩

)
, e ∈ E<ell(G).

By Lemma 2.9.2, there are only Ąnitely many e contributing to the sum in Theo-

rem 7.5.1 for a Ąxed choice of ϕ∞,p,qϕp. Thus the coefficients ι(G,Ge) are bounded

by a uniform constant (depending on ϕ∞,p,qϕp). We deduce the following by apply-

ing Theorem 7.5.1, (7.6.4), Corollary 4.2.3 (the Ąrst estimate therein), and Propo-

sition 7.6.1 in the order: there exists a constant C = C(ϕ∞,p,q, ϕp) > 0 (e.g., the

maximum of Ce over the set of Ąnitely many e which contribute) such that for every

ϕq ∈ H(G(Qq))C-reg, we have

Tr
(
ϕ∞,pϕ(j)p

∣∣ ιHc(Igb,Qℓ)
)

= STG
∗

ell,χ

(
f Ig,∗,(j)

)
+ o

(
pj⟨2ρ,νb⟩

)
= TG

∗

disc,χ

(
f Ig,∗,(j)

)
+ o

(
pj⟨2ρ,νb⟩

)

=
∑

π∈A1(G)

Tr (ϕ∞,p|π∞,p) · Tr
(
ϕ∗,(j)p

∣∣ (πp ◦ ζb)⊗ δPb

)
+ o

(
pj⟨2ρ,νb⟩

)
.
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We have seen in (7.6.3) that Tr
(
ϕ
(j)
p

∣∣ (πp◦ζb)⊗δPb

)
is either 0 or a nonzero multiple of

pj⟨2ρ,νb⟩ as j varies over multiples of r. Since dim Igb = ⟨2ρ, νb⟩, it is implied by (7.2.1)

and the LangŰWeil bound that the leading term should be of order pj⟨2ρ,νb⟩.(16) There-

fore

Tr
(
ϕ∞,pϕ(j)p

∣∣ ιH⟨4ρ,νb⟩
c (Igb,Qℓ)

)
=

∑

π∈A1(G)

Tr (ϕ∞,p|π∞,p) Tr
(
ϕ(j)p |(πp ◦ ζb)⊗ δPb

)
.

Let Bq be a Borel subgroup of GQq over Qq with a Levi component Tq. According to

Lemma 3.4.9, we have an isomorphism of G(A∞,p,q)×Jb(Qp)×Tq(Qq)-representations

JBq

(
H⟨4ρ,νb⟩
c (Igb,Qℓ)

)
≃

∑

π∈A1(G)

π∞,p,q ⊗ ((πp ◦ ζb)⊗ δPb
)⊗ JBq

(πq).

(A priori the isomorphism exists up to semi-simpliĄcation, but distinct one-dimen-

sional representations have no extensions with each other.) Repeating the same argu-

ment for any other prime q′ /∈ {p, q} such that G(Qq′) is split, the above isomorphism

exists with q′ in place of q. Comparing the two consequences, we deduce that as

G(A∞,p)× Jb(Qp)-modules,

ιH⟨4ρ,νb⟩
c (Igb,Qℓ) ≃

⊕
π∈A1(G)

π∞,p ⊗ ((πp ◦ ζb)⊗ δPb
)

by multiplicity one for A1(G) and weak approximation for G. □

8. Applications to geometry

This section is devoted to working out geometric consequences of Theorem 6.1.4,

continuing in the setting of Hodge-type Shimura varieties with hyperspecial level at p.

8.1. Irreducibility of Igusa varieties. Ð In Section 1.2, we reviewed earlier results

on irreducibility of Igusa towers over the µ-ordinary Newton strata of certain PEL-

type Shimura varieties. Now we explain that our main theorem implies a generalization

thereof to Hodge-type Shimura varieties and to non-µ-ordinary strata.

Let (G,X, p,G) ∈ SD
ur
Hodge and b ∈ G(Q̆p) be as in Section 6.1. Assume that b is

Q-non-basic. DeĄne J(Qp)
′ := ker(ζb : Jb(Qp) → G(Qp)

ab), cf. (6.1.4). Recall that

pr : Igb → Cperf

b,Fp
is a pro-étale J int

b -torsor. From Theorem 6.1.4, we deduce that Igusa

varieties are Şas irreducible as possibleŤ.

Theorem 8.1.1 (Irreducibility of Igusa varieties). Ð In the setting of Section 6.1, the

stabilizer of each connected component of Igb under the Jb(Qp)-action is equal to

Jb(Qp)
′.

Proof. Ð Fix a component I ⊂ Igb and write Stab(I) for the stabilizer of I in Jb(Qp).

Since the Jb(Qp)-action on every πp in Theorem 6.1.4 factors through Jb(Qp)/Jb(Qp)
′,

we see that Stab(I) ⊃ Jb(Qp)
′. To prove the reverse inclusion, we show that every

δ ∈ Jb(Qp)\Jb(Qp)
′ acts nontrivially on H0(Igb,Qℓ). Write δab := ζb(δ) ∈ G(Qp)

ab.

(16)In fact, the LangŰWeil bound proves that dim Igb = ⟨2ρ, νb⟩ even if we did not know it a

priori. This gives an alternative proof of the dimension formula in Proposition 5.3.4.
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Then δab ̸= 1 by assumption. It suffices to show that some π in the summation of

Theorem 6.1.4 has the property that πp(δ
ab) ̸= 1. This follows from Lemma 2.5.4. □

Corollary 8.1.2. Ð Let S be a connected component of Cperf

b,Fp
. Then the set

π0(pr−1(S)) ⊂ π0(Igb) is a torsor under the group J int
b /(J int

b ∩ Jb(Qp)
′). Every

component of pr−1(S) is a pro-étale torsor under J int
b ∩ Jb(Qp)

′, and conversely,

if I ⊂ Igb is an open subscheme such that I → S is a pro-étale J int
b ∩ Jb(Qp)

′-torsor

via pr, then I is irreducible.

Proof. Ð As pr is a J int
b -torsor, J int

b acts transitively on π0(pr−1(S)). Theorem 8.1.1

tells us that the action factors through a simply transitive action of J int
b /J int

b ∩Jb(Qp)
′,

implying the Ąrst assertion. The second assertion also follows from the same theorem

and the fact that pr is a J int
b -torsor. □

For the remainder of this subsection, we compare with similar irreducibility results

in the µ-ordinary case. Thus we specialize to the case when [b] ∈ B(G,µ−1
p ) is µ-or-

dinary, meaning either of the following equivalent conditions [Wor13, Rem. 5.7(2)]:

Ű [b] = [µ−1
p (p)] in B(G) (which implies [b] ∈ B(G,µ−1

p )).

Ű [b] is the unique minimal element in B(G,µ−1
p ) for the partial order ⪯ therein.

In this case, we may and will take b = b◦ = µ−1
p (p). Indeed, we can change b within its

σ-conjugacy class thanks to Corollary 6.1.3. Put r := [k(p) : Fp]. By the convention

of Section 5.3, µp is deĄned over Qpr . Then we have νb =
1
r

∑r−1
i=0 σ

iµ−1
p (this follows

from (4.3.1)Ű(4.3.3) of [Kot85] with n = r and c = 1), which is deĄned over Qp, and

conditions (br2) and (br3) are satisĄed.

We deĄne the µ-ordinary Newton stratum Nb,Kp as in [Wor13], that is, by changing

the deĄnition of Cb,Kp (Section 5.3) to require the existence of an isomorphism only

after inverting p. Then Cb,Kp ⊂ Nb,Kp is closed by [Ham17, ğ2.3, Prop. 2]. It is worth

verifying that Cb,Kp = Nb,Kp , so that Igb is a pro-étale torsor over Nperf
b,Kp (not just

Cperf
b,Kp).

Lemma 8.1.3. Ð In the µ-ordinary setup above, Cb,Kp = Nb,Kp .

Proof. Ð This is a consequence of two facts: that the µ-ordinary Newton stratum is

an Ekedahl-Oort stratum [Wor13, Th. 6.10], and that every Newton stratum contains

an Ekedahl-Oort stratum that is a central leaf [SZ22, Th. D]. (We thank Pol van

Hoften for communicating this proof to us.) □

We explain that Corollary 8.1.2 gives another proof for the irreducibility of Igusa

towers in the µ-ordinary case, for unitary similitude PEL-type Shimura varieties as

in [CEF+16, EM21], cf. [Hid11, ğğ2, 3]. Analogous arguments can be made in the

elliptic/Hilbert/Siegel modular cases.

Write
(
Igµ-ord
m,Kp

)
m⩾1

for the Igusa tower (Igµ)m,1, m ⩾ 1, over the µ-ordinary stra-

tum Nb,Kp in [EM21, ğ3.2] (relative to the same Kp) with Ąnite étale transition

maps. The scheme Igµ-ord
Kp = lim

←−m
Igµ-ord
m,Kp is a pro-étale J int

b -torsor over Nb,Kp . Then
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Igb,Kp ≃ (Igµ-ord
Kp )perf compatibly with the actions of G(A∞,p) × Sb (see Prop. 4.3.8

and the paragraph above Cor. 4.3.9 in [CS17]; see also [CS19, Rem. 2.3.7]), and we

have a Jb(Qp)-equivariant bijection

π0(Igb,Kp) ≃ π0((Ig
µ-ord
Kp )perf) ≃ π0(Ig

µ-ord
Kp ).

Therefore, each connected component of Igµ-ord
Kp has stabilizer Jb(Qp)

′ in Jb(Qp).

The Zp-group Jµ in [EM21, Rem. 2.9.3] has the property that J int
b = Jµ(Zp). Let

I ⊂ Igµ-ord
Kp denote the open subscheme IgSUµ over a Ąxed component S of Nb,Kp as

deĄned in [EM21, ğ3.3] (more precisely, we mean the special Ąber of IgSUµ over Fp).

Then I is a pro-étale J int
b ∩ J(Qp)

′-torsor over S by construction. (The determinant

map of [EM21, ğ3.3] goes from a J int
b -torsor to a torsor under Gab(Zp), so the Ąber

is a torsor under ker(J int
b → Gab(Zp)).)

(17) Hence I is irreducible by the preceding

paragraph, cf. the proof of Corollary 8.1.2.

If [b] is moreover ordinary, namely if [b] is µ-ordinary and νb is conjugate to µ−1
p ,

then µp is deĄned over Qp (since the conjugacy class of νb is always deĄned over Qp).

Also r = [Ep : Qp] = 1. By our choice b = µp(p)
−1, we have νb = µ−1

p (not just

conjugate) in this case. The following lemma is handy when comparing with results

in the ordinary case such as [Hid09, Hid11]. Note that trivially ϱ(Gsc(Qp)) = Gder(Qp)

when Gder = Gsc.

Lemma 8.1.4. Ð If [b] is ordinary, then Jb = Mb, J
int
b = Mb(Zp), and Jb(Qp)

′ =

Mb(Qp) ∩ ϱ(Gsc(Qp)).

Proof. Ð By deĄnition, Mb is the centralizer of νb = µ−1
p in G. From the def-

inition (5.3.1) with b = µ−1
p (p), we see that Mb is a closed Qp-subgroup of Jb.

On the other hand, Mb is an inner form of Jb, so we conclude Mb = Jb. Then

J int
b = Jb(Qp) ∩ G(Z̆p) = Mb(Qp) ∩ G(Z̆p) = Mb(Zp). The description of Jb(Qp)

′

is obvious from Jb =Mb. □

8.2. The discrete Hecke orbit conjecture. Ð We state the Hecke orbit conjecture

for Shimura varieties of Hodge type with hyperspecial level at p. We prove the discrete

part of the Hecke orbit conjecture, and Ąnd purely local criteria for the irreducibility

of central leaves.

Fix (G,X, p,G) ∈ SD
ur
Hodge. Let x ∈ SKpKp,k(p)(Fp). Denote by x̃ ⊂ |SKp,k(p)| the

preimage of x in the topological space |SKp,k(p)| via the projection map SKp,k(p) →

SKpKp,k(p). DeĄne the prime-to-p Hecke orbit as a set:

H(x) := x̃ ·G(A∞,p) ⊂ |SKp,k(p)|.

Write HKp(x) for the image of H(x) in |SKpKp,k(p)|. By CKp(x) we mean the central

leaf through x, namely Cbx,Kp . Since the action of G(A∞,p) does not change the

(G(Z̆p), σ)-conjugacy class [[bx]], we see that

HKp(x) ⊂ |CKp(x)|.

(17)In fact we have not understood the deĄnition of the determinant map in [EM21, ğ3.3] unless

B is a Ąeld, so we should restrict our comparison with loc. cit. to this setup.
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Following Chai and Oort, cf. [Cha05, Cha06], we formulate the Hecke Orbit Problem

as follows.

Question 8.2.1 (Hecke Orbit Problem). Ð Let x ∈ SKpKp,k(p)(Fp) such that [bx] is

Q-non-basic. Does the subset HKp(x) have the following properties?

(HO) HKp(x) is Zariski dense in the central leaf CKp(x).

(HOcont) The Zariski closure of HKp(x) in CKp(x) is a union of irreducible com-

ponents of CKp(x).

(HOdisc) HKp(x) meets every irreducible component of CKp(x).

(HO+
disc) For every x ∈ SKpKp(k(p)) such that [bx] is Q-non-basic, the immersion

CKp(x) ↪→ SKpKp,k(p) induces a bijection π0(CKp(x))
∼
−→ π0(SKpKp,k(p)

).

Remark 8.2.2. Ð The hypothesis on [bx] cannot be weakened to only requiring that

[bx] be non-basic. For example, for Shimura varieties arising from (G× · · · ×G,X ×

· · · × X), with (G,X) a Shimura datum, we see the necessity to assume [bx] to be

basic in every copy of G (which is a Q-factor).

Note that (HO) is the analogue of the Hecke orbit conjecture for Hodge-type

Shimura varieties, which is divided into discrete and continuous parts in the sense

that (HOdisc) and (HOcont) combined is obviously equivalent to (HO). We usually

refer to (HO+
disc) as Şirreducibility of central leavesŤ, as it states that the central

leaf through x is irreducible in each connected component of the ambient Shimura

variety. Regarding (HOdisc) and (HO+
disc), we have the following relationship and

representation-theoretic interpretations.

Lemma 8.2.3. Ð Let b be Q-non-basic such that Cb is nonempty. Between the following

statements, there are logical implications (1) ⇔ (2) ⇒ (3) ⇔ (4).

(1) (HO
+
disc) holds true for all neat Kp ⊂ G(A∞,p) and all x ∈ Cb,Kp(Fp).

(2) H0(Cb,Qℓ) ≃ H0(ShKp
,Qℓ) as G(A∞,p)-modules. (This asserts the existence

of an isomorphism, which need not be induced by the natural map Cb → ShKp
.)

(3) (HOdisc) holds true for all neat Kp ⊂ G(A∞,p) and all x ∈ Cb,Kp(Fp).

(4) dimG(A∞,p) Hom(1, H0(Cb,Qℓ)) = 1.

Remark 8.2.4. Ð The non-emptiness condition in the lemma is essentially equiva-

lent to the condition that b ∈ G(Zur
p )σµp(p)

−1G(Zur
p ). Indeed, by Proposition 5.3.5,

the latter implies that Cb (as well as Cb,Kp for all neat Kp) is nonempty; con-

versely, if Cb is nonempty then we can re-choose b without changing Cb such that

b ∈ G(Zur
p )σµp(p)

−1G(Zur
p ).

Proof. Ð As Kp varies, the immersion Cb,Kp ↪→ SKpKp,k(p) induces a G(A∞,p)-equi-

variant map

(8.2.1) π0(Cb) −→ π0(SKp,k(p)
),

which is surjective since G(A∞,p) acts transitively on π0(SKp,k(p)
) by Lemma 5.2.2.

Condition (1) is equivalent to the condition that the above map is an isomorphism,
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and (3) is equivalent to the condition that G(A∞,p) acts transitively on π0(Cb). From

this, it is clear that (1) ⇒ (2) and that (1) ⇒ (3) ⇔ (4).

Now suppose that (2) holds. Then the G(A∞,p)-equivariant injection H0(ShKp ,Qℓ)

↪→ H0(Cb,Qℓ) induced by (8.2.1) must be an isomorphism by (2), since ιH0(ShKp ,Qℓ)

is a semisimple module in which each π∞,p appears with Ąnite multiplicity (in fact

multiplicity one) by Lemma 5.1.1. Hence (8.2.1) is a bijection, and (1) follows. □

Now we allow b ∈ G(Q̆p) which need not be Q-non-basic for the moment. The map

ζb : Jb(Qp) → G(Qp)
ab from (6.1.4) is an open map as it is the composite of open

maps.

Write Gab for the abelianization of G as an algebraic group over Zp. Then Gab is a

torus over Zp, and Gab(Zp) is a unique maximal subgroup of Gab(Qp). On the level of

points, denote by G(Zp)
ab the image of G(Zp) under the projection G(Qp)→ G(Qp)

ab.

When Gder = Gsc, then G(Zp)
ab = Gab(Zp) as subgroups of G(Qp)

ab = Gab(Qp).

Given a cocharacter υ : Gm → G over Q̆p, deĄne the affine DeligneŰLusztig set

Xυ(b) := {g ∈ G(Q̆p)/G(Z̆p) : g
−1bσ(g) ∈ G(Z̆p)υ(p)G(Z̆p)},

equipped with the left multiplication action by Jb(Qp). In fact Xυ(b) is the set of

closed points of a perfect variety over Fp [Zhu17, BS17].

Lemma 8.2.5. Ð The subgroup ζb(J
int
b ) ⊂ G(Qp)

ab is open, compact, and contained in

G(Zp)
ab. Furthermore, there exists b0 ∈ G(Zur

p )σµp(p)
−1G(Zur

p ) which is σ-conjugate

to b in G(Q̆p) such that ζb0(J
int
b0

) = G(Zp)
ab.

Proof. Ð Since ζb is an open map, it carries the open subgroup J int
b of Jb(Qp) onto

an open subgroup of G(Qp)
ab. Since ζb(J

int
b ) is contained in both G(Qp)

ab and the

image of G(Z̆p) under the abelianization map, it is contained in G(Zp)
ab. This proves

the Ąrst assertion.

As for the second assertion, we start by claiming that there exists an element b0
in the double coset G(Zur

p )σµp(p)
−1G(Zur

p ) which is σ-conjugate to b such that J int
b0

contains an Iwahori subgroup of Jb0(Qp). This follows from the proof of [ZZ20,

Prop. 3.1.4], which is based on results of He [He14]. (The claim amounts to the exis-

tence of a point on Xσµ−1
p
(b) whose stabilizer in Jb(Qp) contains an Iwahori subgroup.

It is enough to check this on the level of Iwahori affine DeligneŰLusztig varieties. More-

over, the assertion is invariant under Jb(Qp)-equivariant bijections between Iwahori

affine DeligneŰLusztig varieties. With this in mind, take w and x as in the Ąrst two

paragraphs of the proof of [ZZ20, Prop. 3.1.4]. Then the claim follows from the fact

that Jẋ(Qp) ∩ P(Z̆p) is a parahoric subgroup of Jẋ(Qp), cf. p. 168, line 14 in loc. cit.

where P is a parahoric subgroup of G
Q̆p

deĄned therein.)

By the last claim, it suffices to show that

ζb0(Iw) = G(Zp)
ab

for just one Iwahori subgroup Iw of Jb0(Qp) since all Iwahori subgroups are Jb0(Qp)-

conjugate. As the statement is now only about b0, we drop the subscript 0 to simplify

notation.
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By using an unramiĄed z-extension 1→ Z1 → G1 → G→ 1 over Qp (which gives

rise to a smooth map of reductive models G1 → G with connected kernel over Zp;

the induced map G1(Zp)→ G(Zp) is thus surjective) and choosing b1 ∈ G1(Q̆p) as in

Lemma 5.3.8, we reduce to the case when Gder = Gsc. So Mb and Jb also have simply

connected derived subgroups. In particular, G(Qp)
ab = Gab(Qp) and likewise for Mb

and Jb.

Since Mb splits over Qur
p , we see from (5.3.3) that Jb also splits over Qur

p . By [DeB06,

ğ2.4], Jb contains an unramiĄed elliptic maximal torus Tb over Qp. Write Tb for the

torus over Zp extending Tb. Then Tb is contained in some Iwahori subgroup of Jb(Qp)

(associated with the chamber whose closure contains the facet F in [DeB06, ğ2.4]).

In view of (6.1.3), we can think of ζb as the map on the set of Qp-points arising from

the composite Qp-morphism

Jb −→ Jab
b ≃M

ab
b −→ Gab.

Composing with Tb ↪→ Jb, we obtain a Qp-morphism Tb → Gab of unramiĄed tori.

This uniquely extends to a Zp-morphism Tb → Gab, inducing the map

Tb(Zp) −→ Gab(Zp).

We will be done if this map is surjective. By smoothness and LangŠs theorem over

Ąnite Ąelds, it is enough to check that ker(Tb → Gab) is connected. To see this,

observe that T ′
b := ker(Tb → Gab) is connected, since it becomes a maximal torus

of Gder after base change from Qp to Qp. Thus we have a short exact sequence

1→ T ′
b → Tb → Gab → 1 of unramiĄed tori over Qp. It follows that ker(Tb → Gab) is

the torus over Zp extending T ′
b, hence connected. □

Remark 8.2.6. Ð In an earlier version of this paper, we incorrectly asserted that

ζb(J
int
b ) equals ζb0(J

int
b0

). This led us to mistakenly claim that (HO
+
disc) was true for

non-Q-basic b. As illustrated by Example 8.2.12 below, (HO
+
disc) is false in general.

Write Up(b) for the preimage of ζb(J
int
b ) under the projection G(Qp) → Gab(Qp).

Then Up(b) is an open subgroup of G(Qp) by Lemma 8.2.5. Now we can describe H0

of every non-Q-basic central leaf and deduce the discrete part of the Hecke orbit

conjecture.

Theorem 8.2.7. Ð Let b be as in Lemma 8.2.3. As a G(A∞,p)-module,

ιH0(Cb,Qℓ) ≃
⊕

π∈A1(G)

dimπUp(b)
p · π∞,p.

Moreover, (HOdisc) holds true for all neat Kp ⊂ G(A∞,p) and all x ∈ Cb,Kp(Fp).

Proof. Ð According to Remark 8.2.4 we may assume that b ∈ G(Zur
p )σµp(p)

−1G(Zur
p ),

hence that (br1), (br2), and (br3) are satisĄed by a sufficiently divisible r ∈ Z⩾1. The

Ąrst assertion is a consequence of Theorem 6.1.4 and Lemma 6.1.1(1), noting that

perfection does not change cohomology. For the second assertion, let π ∈ A1(G) with

π∞,p = 1. In light of Lemma 8.2.3 it suffices to check that if πp|Up(b) = 1, then π is

trivial. We have π∞|G(R)+ = 1 from π ∈ A1(G). Thus π as a continuous character
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G(Q)\G(A) → C× is trivial on G(A∞,p)Up(b)G(R)+. Since G(Q) ↪→ G(Qp) × G(R)

has dense image (cf. proof of Lemma 5.2.2), π is trivial. □

Remark 8.2.8. Ð The only fact about Up(b) used in the above proof is that Up(b) ⊂

G(Qp) is an open subgroup. Thus the same argument shows the obvious analogue of

(HOdisc) for Ąnite-level Igusa varieties Igb,m,Kp since Igb,Kp is a pro-étale J-torsor

over Igb,m,Kp after perfection for an open subgroup J of J int
b . Indeed, we only need to

replace Cb with the projective limit of Igb,m,Kp over Kp, and Up(b) with the preimage

of ζb(J) in G(Qp). (This remark was suggested by the referee, whom we thank.)

In light of (1) ⇔ (2) in Lemma 8.2.3, the following theorem gives criteria for

(HO
+
disc). Observe that (c2) and (c3) are purely local conditions at p, depending only

on the data pertaining to GQp .

Theorem 8.2.9. Ð Let b ∈ G(Zur
p )σµp(p)

−1G(Zur
p ). Assume that b is Q-non-basic. The

following are equivalent.

(c0) (HO
+
disc) holds true for all neat Kp ⊂ G(A∞,p) and all x ∈ Cb,Kp(Fp).

(c1) H0(Cb,Qℓ) ≃ H
0(ShKp ,Qℓ) as G(A∞,p)-modules.

(c2) ζb(J
int
b ) = Gab(Zp).

(c3) The stabilizer in Jb(Qp) of 1 ∈ Xσµ−1
p
(b) maps onto Gab(Zp) under ζb.

Proof. Ð (c0) ⇔ (c1). Already shown in Lemma 8.2.3.

(c2) ⇒ (c1). For each π ∈ A1(G), it is enough to check the claim that π
Up(b)
p ̸= 0

if and only if π
G(Zp)
p ̸= 0. As a character πp factors through G(Qp) → Gab(Qp),

condition (c2) ensures that the images of Up(b) and G(Zp) in Gab(Qp) are both equal

to Gab(Zp). The claim follows.

(c1) ⇒ (c2). Assuming ζb(J
int
b ) ⊊ Gab(Zp), it is enough to Ąnd π ∈ A(G)1 such

that πp|ζb(J int
b ) = 1 but πp|Gab(Zp) ̸= 1, where πp is viewed as a character of Gab(Qp).

This is proved in the same way as Lemma 2.5.4. (When reducing to the torus case,

use a z-extension which is unramiĄed at p.)

(c2) ⇔ (c3). Clear since the stabilizer of in Jb(Qp) of 1 ∈ Xσµ−1
p
(b) is nothing but

J int
b . □

Corollary 8.2.10. Ð (HO
+
disc) is true on the µ-ordinary Newton stratum.

Proof. Ð Let b = bx ∈ G(Q̆p) for x in the µ-ordinary stratum. Choose b0 as in

Lemma 8.2.5 so that ζb0(J
int
b0

) = G(Zp)
ab. Then (HO+

disc) holds true for Cb0,Kp for

every Kp, through criterion (c2) of Theorem 8.2.9. Since Cb0,Kp is the entire µ-

ordinary Newton stratum by Lemma 8.1.3, the proof is Ąnished. □

We also have a partial analogue of Theorem 8.2.9 that is isogeny-invariant, i.e.,

depending on b only through [b].

Corollary 8.2.11. Ð Let b ∈ G(Q̆p). Assume that [b] ∈ B(GQp
, µ−1
p ) and that b is

Q-non-basic. The following are equivalent.
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(C0) (HO
+
disc) is true on the Newton stratum Nb,Kp , for all neat open compact

Kp ⊂ G(A∞,p).

(C3) The stabilizer in Jb(Qp) of each closed point of Xσµ−1
p
(b) maps onto Gab(Zp)

under ζb.

Proof. Ð (C3)⇒ (C0). Let x ∈ Nb,Kp(Fp). Then bx = g−1bσ(g) for some g ∈ G(Q̆p).

The map x 7→ xg induces an isomorphism Xσµ−1
p
(bx) ≃ Xσµ−1

p
(b) equivariantly with

respect to the actions by the Qp-groups Jbx(Qp) ≃ Jb(Qp). The latter isomorphism

comes from the conjugation by g on G(Q̆p), and it commutes with the maps ζbx and ζb
to G(Qp)

ab. Hence (c3) of Theorem 8.2.9 for bx is implied by (C3) of this corollary.

We deduce (C0) from the same theorem.

(C0)⇒ (C3). Fix a neat subgroupKp⊂G(A∞,p). Let x∈Nb,Kp(Fp). Since [bx]=[b],

we may assume b = bx. Now, for each b′ ∈ Xσµ−1
p
(b), there exists y ∈ Nb,Kp(Fp) such

that b′ = by by [Kis10, Prop. 1.4.4]. As in the proof of (c3) ⇒ (c1), the stabilizer

of b′ in Jb(Qp) maps onto Gab(Zp) under ζb if and only if (c3) of Theorem 8.2.9 holds

for by (in place of b). The latter condition holds as we are assuming (C0), again via

the same theorem. Hence (C3) holds. □

Example 8.2.12. Ð Condition (C3) of the last corollary makes it convenient to gen-

erate a counterexample to (HO+
disc) by utilizing facts about affine DeligneŰLusztig

varieties. We learned such an example from Rong Zhou in an email correspondence

together with Pol van Hoften, via a Shimura datum (G,X) of PEL type A such that

Gad is Q-simple but (C3) is violated by some non-basic element b ∈ B(GQp
, µ−1
p ).

It comes down to an explicit affine DeligneŰLusztig variety associated with GL2 which

is a union of irreducible components isomorphic to projective lines. In this case, it can

be shown that some component contains a closed point whose stabilizer is too small

to satisfy (C3). See [vHX21, ğ6.3] for details.
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