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ABSTRACT

The estimation of a phase aberration by observing a point spread function (PSF), known as wavefront estimation,
is a critical problem in adaptive optics. Analogous to phase retrieval, wavefront estimation suffers from multiple
ambiguous solutions. Many prior works require multiple structured measurements to overcome this fundamental
challenge. In this paper, we use an asymmetric pupil to make what would otherwise be an impossible inverse
problem to be possible. We combine this with an efficient machine learning algorithm to overcome remaining
non-convexity. We empirically observe asymmetric pupils tend to outperform symmetric pupils.
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1. INTRODUCTION

The performance of an optical imaging system is upper limited by diffraction. However, the diffraction limit is
often not precisely reached due to limitations imposed by the environment or camera optics.1 Correcting for
these aberrations through adaptive optics boosts the performance of the imaging system by bringing them closer
to the diffraction limit. Estimating this aberration well is a critical problem in fields such as astronomy, as well
as a long-standing open research problem closely associated with phase retrieval.

(a) Goal of this work. (b) Using an asymmetric pupil.
Figure 1. (a) The goal of this work is to estimate a phase aberration from a single PSF. (b) A triangular pupil allows one
to eliminate origin-centric symmetries inherent to a circular boundary, creating a well-posed inverse problem.

We present a visual representation of the goal of this work in Figure 1(a): given a single measurement of a
point spread function (PSF), estimate its phase aberration. Defining a PSF to be,2
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with P (f) as the pupil function and ϕ(f) as the phase aberration, wavefront estimation can be defined as

ϕ(f) = argmin
ϕ′

∥
∥
∥|h(x)|

2
− PSF(P, ϕ′)

∥
∥
∥

2

. (3)

This paper focuses on the use of asymmetric pupils, as highlighted in Figure 1(b), to enable computational
recovery of ϕ from PSF(P, ϕ). Introducing an asymmetric pupil to break the symmetries in wavefront retrieval
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(a) 2D Error (b) Along c5 = c6.
Figure 2. (a) The optimization landscape of each corresponding Pk(f) for the sum of vertical and horizontal astigmatism.
We show the loss manifold indicated by yellow for a high value and dark blue for a low value. The line c5 = c6 is shown as
a colored dashed line with c5 = c6 = 2 indicated by a yellow star and c5 = c6 = −2 by a white ×. (b) The cross-section
of the optimization landscape with the colors selected correspondingly.

is not enough to completely solve the problem, although it makes an otherwise highly ill-posed problem possible.
To this end, we approximate PSF(P, ϕ) by a learned network3 and use multiple random initializations.

Two common approaches for directly solving (3) are the Gerchberg-Saxton (GS)4 and Hybrid Input-Output
(HIO)5 algorithms. These algorithms consist of iterative projections via Fourier transform pairs F{·} and
F−1{·} which terminate when both f(x) and F{f(x)} = F (f) satisfy basic constraints. However, there exists
solutions for which the corresponding intensity is identical6 which can be resolved with additional problem-
specific constraints7–11 such as multiple observations,12–15 often with random codes,16 or phase diversity.17 It
has also been observed asymmetry in the support tends to help phase retrieval and wavefront estimation.18–20

Another way of approaching (3) is by a model on the phase. One such approach is from Fienup using

the Zernike polynomials9 to expand ϕ(f) =
∑M

m=1 ³mZm(f), with Zm(f) as the Zernike polynomials with
Noll’s indexing.21 Defining α = [³1, ³2, . . . , ³M ]T ,9 (3) can be formulated in terms of α. Even though the
dimensionality is lower, non-convexity is still present as α is not unique in general . For example, Siddik et al.22

notes the signs of even Zernike polynomials are the cause of ambiguity in α.

2. METHODS

2.1 Toy example: vertical & horizontal astigmatisms

Consider the wavefront estimation problem for a sum of two astigmatisms, vertical and horizontal, which can be
modeled as a sum of two Zernike polynomials: ϕ(f) = a5Z5(f) + a6Z6(f). Here we set a5 = a6 = 2, with our
goal being to estimate [a5, a6]

T . In Figure 2(a) we present the optimization landscape obtained by probing the
set of solutions via [c5, c6]

T , with the error computed as:

Error = ∥PSF(Pk, ϕ)− PSF(Pk, c5Z5(f) + c6Z6(f)∥
2
. (4)

We expect the error to be minimized when c5 = c6 = 2 which we indicate with a star in Figure 2 and the
incorrect “twin” solution at c5 = c6 = −2 with a white ×. We also evaluate the loss along c5 = c6 in Figure 2(b).
We define µ to be [c5, c6]

T = µ » [a5, a6]
T . One can observe that the triangle and pentagon have unique global

minima along c5 = c6 while the square and circle have two global minima along c5 = c6.

2.2 Approximating the wavefront estimation problem

Although asymmetry has some impact to the problem’s behavior, it still remains largely non-convex. One
possibility is to use multiple random initialiations,23 though solving (3) in such a way will produce a significant
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(a) Algorithm (3) overview (b) MSE trajectory
Figure 3. (a) Overview of algorithm (3). A PSF is decomposed and given as input to the algorithm which solves for
multiple estimates in parallel given different initializations. (b) Illustration of the MSE refinement. Given different
starting points, estimates may converge to different estimates with trajectories shown in semi-transparent black with the
lowest MSE error at the final iteration highlighted in blue.

computational burden, requiring thousands of Fourier transforms iterativey. This motivates us to approximate
the wavefront estimation problem (3) using the Phase-to-Space (P2S) transform from Mao et al.3 Following Mao
et al., we expand ϕ and the PSF via basis functions:

Pk(f)» ϕ(f) ≈

M∑

m=1

³k,m·k,m(f) (5)

PSF (Pk, ϕ) ≈
N∑

n=1

´k,nφk,n(x). (6)

To obtain orthogonal ·k,m over polygons, we use a finite element solver24 to solve for the eigenfunctions of the
Poisson equation over k-sided polygon and refer to the eigenfunctions as ·k,m. The basis functions φk,n are
obtained by principal component analysis (PCA) on a dataset of PSFs.

Defining α = [³1, ³2, . . . , ³M ]T and β = [´1, ´2, . . . , ´M ]T , the P2S is a learned mapping to approximate

P2S(Pk,αk)
︸ ︷︷ ︸

neural network

≈ βk. (7)

We use the P2S operator to replace the PSF operator, leading to:

αk ≈ argmin
α′

k

∥βk − P2S(Pk,α
′

k)∥
2
. (8)

We solve (8) through gradient descent. Although (8) is computationally efficient, there still exists non-convexity.
We propose to use this efficiency to solve (8) through gradient descent with L random initializations {nℓ

k}
L
ℓ=1,

where nℓ
k is a zero-mean Gaussian vector. This produces a population of estimates which we then select the solu-

tion which minimizes the MSE of (8) which we refer to MSE refinement. The algorithm is shown in Figure 3(a).
In Figure 3(b) we present an illustration of the MSE for the population of estimates at each iteration.

3. EXPERIMENTS

3.1 Data generation and P2S training

We generate Gaussian random fields with squared exponential covariance for ϕt(f) using fast Fourier transform
(FFT) based sampling methods.25 We then window them by Pk(f) and generate corresponding PSFs. Each
Pk(f) is generated in such a way that their areas are consistent. We additionally remove the DC shift term and
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(a) CDF of algorithm vs. oracle (b) Impact of multiple estimates
Figure 4. (a) The CDF of the MSE refinement compared to the CDF of the oracle estimator. Solid lines correspond to
the MSE refinement and dashed lines correspond to the oracle. (b) The CDF of the MSE error for different amounts of
parallel estimates and pupil shapes.

“tilt” term from each generated Pk(f)» ϕt(f). Our dataset then comes from the corresponding decompositions
(5) and (6). We train a P2S transform per pupil Pk(f) to approximate the loss (7) in a MSE sense using 50,000
training samples. Our testing data comes from the same distribution as training data.

3.2 Performance of proposed algorithm

Suppose the final refined estimate of the algorithm is αk. Introducing φ, P k, and ζk,m as the discretized form
of their respective continuous functions, we can define the error as a random variable

X =

∥
∥
∥φ−

∑M

m=1 ³k,mζk,m

∥
∥
∥

2

∥P k∥
. (9)

We analyze the cumulative distribution function (CDF), i.e., FX(x) = P[X f x] for the different polygon pupils
using (8). We also measure the performance of the following “oracle” according to (9). Given a set of estimates
{αℓ

k}
L
ℓ=1, we define the oracle to be

ℓ∗ = argmin
ℓ

∥
∥
∥
∥
∥
φ−

M∑

m=1

³ℓ
k,mζk,m

∥
∥
∥
∥
∥

2

. (10)

In Figure 4(a) we compare the oracle to MSE refinement with 300 estimates. While asymmetric polygons
perform closely to their oracle counterpart, symmetric polygons tend to leave a wide gap in performance. Fig-
ure 4(b) shows the impact that using parallel estimates. We can see that the circle, square, and even the
pentagon perform poorly for a single estimate. However, upon using multiple estimates, the pentagon improves
dramatically whereas the circle and square improve marginally. Note that this should not be confused with the
concept of multiple measurements; there is only one available measurement which we are solving by multiple
initializations.

4. CONCLUSION

In this paper, we described using a learned transform and multiple random initializations to overcome non-
convexity for recovering the phase aberration from a single PSF. Empirically we observe that asymmetric pupils
tend to outperform symmetric pupils in the noiseless case. Furthermore, we observe that using multiple random
initializations helps to overcome the remaining non-convexity. Future work will be aimed at understanding
optimal pupil geometry and studying performance in noise.
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