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Abstract— Working from a Poisson–Gaussian noise
model, a multisample extension of the photon counting
histogram expectation–maximization (PCH-EM) algorithm
is derived as a general-purpose alternative to the photon
transfer (PT) method. This algorithm is derived from the
same model, requires the same experimental data, and
estimates the same sensor performance parameters as the
time-tested PT method, all while obtaining lower uncer-
tainty estimates. It is shown that as read noise becomes
large, multiple data samples are necessary to capture
enough information about the parameters of a device
under test, justifying the need for a multisample extension.
An estimation procedure is devised consisting of initial PT
characterization followed by repeated iteration of PCH-EM
to demonstrate the improvement in estimating uncertainty
achievable with PCH-EM, particularly in the regime of deep
subelectron read noise (DSERN). A statistical argument
based on the information theoretic concept of sufficiency
is formulated to explain how PT data reduction procedures
discard information contained in raw sensor data, thus
explaining why the proposed algorithm is able to obtain
lower uncertainty estimates of key sensor performance
parameters, such as read noise and conversion gain. Exper-
imental data captured from a CMOS quanta image sensor
with DSERN are then used to demonstrate the algorithm’s
usage and validate the underlying theory and statistical
model. In support of the reproducible research effort, the
code associated with this work can be obtained on the
MathWorks file exchange (FEX) (Hendrickson et al., 2024).
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noise (DSERN), expectation–maximization (EM) algorithm,
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I. INTRODUCTION

E
VER since the apparent identification of photon shot

noise in early vidicon tubes employed in NASA’s space

missions, researchers have sought enhanced and more precise

techniques for characterizing the continually advancing land-

scape of imaging technologies [1], [2], [3]. In 1969, Smith

and Boyle’s CCD image sensor emerged as a groundbreaking

invention; a technology later made practical by Tompsett

et al.’s frame transfer implementation in 1971 [4], [5], [6].

These devices exhibited notably diminished read noise com-

pared with vidicon tubes, facilitating the distinct observation

of shot noise [2]. During this period, Janesick and Elliott

popularized the photon transfer (PT) methodology for the

characterization of CCDs, a technique later applied to CMOS

image sensor technology and integrated into standards, such

as the EMVA 1288 [7].

At the core of the PT methodology lies the fundamental

principle that raw sensor data captured over many exposure

levels should be distilled into means (signal measurements)

and variances (noise-squared measurements), wherein the rela-

tionships between these sample moments carry information

about important sensor performance parameters, such as read

noise and conversion gain. From a historical viewpoint, the

development of PT coincided with an era where read noise

was on the order of multiple electrons. At this level of

read noise, the histograms produced by a pixel provided

with constant illumination are effectively normally distributed.

Given that the sample mean and variance serve as the complete

minimal sufficient statistic of the normal model, this PT data

reduction strategy can be viewed, from a post hoc perspective,

as the optimal approach at high noise, reducing the raw

data to a set of summary statistics, all while preserving the

information about the unknown sensor parameters contained

in it.

In 2004, Fossum conceived the quanta image sensor as

a paradigm shift in digital imaging [8], [9]. In 2015, the

first CMOS QIS was realized, demonstrating the ability to

perform accurate photon number resolving by attaining deep

subelectron read noise (DSERN) [10]. This DSERN was

accomplished through a combination of reducing the capac-

itance of the floating diffusion sense node, thereby increasing

V/e− gain, and reducing source follower noise [10], [11], [12],

[13], [14]. Consequently, CMOS QISs married accurate photon

number resolving, facilitated by DSERN, with the high-speed

readout and radiation hardness of CMOS technology. Since
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Fig. 1. Pixel signal distribution for small and large read noise.

the advent of CMOS QIS, DSERN has been achieved by

various means in commercial products from BAE Systems,

Hamamatsu photontics, and Gigajot Technology Inc., while

also being experimentally realized in CCD and CMOS archi-

tectures via nondestructive “skipper” readout modes [15], [16],

[17], [18].

As a result of DSERN, the histograms generated by QIS

pixels exhibit markedly nonnormal distributions, featuring

structures previously hidden by the relatively large read noise

present in traditional CCD and CMOS devices. For example,

Fig. 1 shows the signal distribution for the same pixel at two

different levels of read noise (Ãread). At large (multielectron)

noise, the distribution is effectively normal, whereas at small

(deep subelectron) noise, periodic structures appear in the

distribution. The presence of these periodic structures corre-

sponds to higher information content contained in the sensor

data, which cannot be fully captured by sample means and

variances. Subsequently, following 2015, new characterization

methods were discovered that could leverage this additional

information to construct lower uncertainty estimators of the

relevant sensor parameters compared with what is possible

with the PT methodology [16], [19], [20], [21], [22], [23].

Among these nascent techniques for characterization,

Hendrickson and Haefner’s photon counting histogram

expectation–maximization (PCH-EM) algorithm displayed

potential, enabling the computation of maximum likelihood

estimates (MLEs) of the sensor parameters from a single

data sample when the sensor being tested operates within the

DSERN regime [22], [24]. Drawing inspiration from the PT

method, PCH-EM can be generalized to integrate data from

multiple samples taken at distinct exposure levels, enhancing

the precision of the parameter estimates and extending the

algorithm outside the DSERN regime. Remarkably, this mul-

tisample extension of PCH-EM utilizes the same experiment

and estimates the same parameters as PT, all while delivering

estimates with reduced uncertainty and superior statistical

properties. Therefore, a multisample extension of PCH-EM

can be perceived as a general purpose, reduced uncertainty,

alternative to the PT method.

In this correspondence, a multisample generalization of the

PCH-EM algorithm is derived and implemented.1 To achieve

this, an overview of the photon counting distribution (PCD)

model, a statistical framework capable of describing data

1For a full demonstration of the implemented algorithm, see the MathWorks

file exchange (FEX) submission [25] and the discussion in Section VII.

emanating from CCD, CMOS, and CMOS QIS architectures

is first provided (see Section II). Subsequently, the PT method

(see Section III) and the multisample PCH-EM algorithm (see

Section IV) are deduced from this model, and an argument

for the need of a multisample method is expounded upon (see

Section V). Given that PCH-EM requires initial starting points,

a statistical procedure is formulated based on initial PT estima-

tion, subsequently refining these preliminary estimates through

repeated iteration of the PCH-EM algorithm. Synthetic data

from a sensor with DSERN are then subjected to parameter

estimation using both the PT and PCH-EM algorithms, thereby

demonstrating the enhancements achievable through PCH-

EM (see Section VI). Leveraging the concept of sufficient

statistics, a theoretical justification is presented to explain

why PCH-EM outperforms PT, particularly within the DSERN

domain, which is tied to the lossy compression PT performs

when reducing raw sensor data to means and variances.

Finally, experimental data captured from an early CMOS

QIS sensor are used to demonstrate the algorithm’s usage

and validate theoretical insights (see Section VII). This work

culminates with a discussion on future avenues of research

and potential enhancements for the algorithm’s refinement.

II. PCD MODEL

The PCD model describes random excursions in a pixel’s

gray value X [in units of digital numbers (DNs)] according to

the Poisson–Gaussian mixture model

X = (K + R)/g + µ (1)

which is used throughout the literature in applications tied to

astronomy and microscopy [26], [27], [28], [29], [30]. Here,

the following hold.
1) K ∼ Poisson(H) with quanta exposure H (e−).

2) R ∼ N (0, Ã 2) with read noise Ã (e−).

3) g (e−/DN) is the conversion gain.

4) µ (DN) is the dc offset.
The electron number (K ) represents the total number of free

electrons generated per integration time from contributions of

dark current and impinging photons, while the read noise (R)

consists of noise introduced by the pixel’s source follower

and subsequent circuitry. To account for quantization, the read

noise is decomposed into contributions from input-referred

analog read noise (Ãread) and quantization noise (Ãquan) as

Ã = (Ã 2
read + Ãquan)

1/2. In what follows, both Ãread and Ã will

be referred to as “read noise” with the distinction being that

only Ã can be estimated from raw gray values observed from

the pixel. Given that g is assumed to be a constant, the PCD

represents a linear model that does not account for conversion

gain nonlinearity.

Since the conditional density of X given K is normal,

i.e., X |K ∼ N (µ + K/g, (Ã/g)2), it follows that the joint

distribution of the complete data (X, K ) is given by

fX K (x, k|¹) =
e−H H k

k!
Æ
(
x; µ + k/g, (Ã/g)2

)
(2)

where ¹ = (H, g, µ, Ã ) denotes the PCD parameters and

Æ(x; ³, ´2) = (1/(2Ã)1/2´) exp(−(x − ³)2/(2´2)) denotes

the Gaussian probability density with mean ³ and variance
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´2. The PCD is then derived by integrating the complete-data

distribution across all possible states of the unobservable

electron number K yielding

fX (x |¹) =

∞∑

k=0

e−H H k

k!
Æ
(
x; µ + k/g, (Ã/g)2

)
. (3)

III. PHOTON TRANSFER

PT has been a well-established characterization methodol-

ogy since the 1970s, utilized for estimating parameters of the

PCD model from raw sensor data. The method involves cap-

turing experimental data at multiple exposures, i.e., multiple

H values, via one of two typical approaches: 1) maintaining

a constant source flux while varying integration time or 2)

keeping integration time constant while adjusting source flux.

While there are many versions of the PT method, all of these

versions share in common a data reduction strategy involving

the reduction of raw data to sample means and variances

followed by regression procedures to estimate the parameters.

For the sake of brevity, only a constant flux version of the

technique will be derived here.

Suppose 8 (e−/s) is the electron flux and Ä (s) is the

integration time. For this derivation, the flux will be assumed

to be independent of Ä . In this manner, 8 represents the rate at

which electrons are freed, so that the quanta exposure observed

by the pixel is H = 8Ä . Note that if no light source is used in

the experiment, then 8 can be directly interpreted as the pixel’s

dark current. Following (1), the mean and variance of the pixel

output can be parameterized in terms of integration time as

(EX)(Ä ) = 8Ä/g + µ and (VarX)(Ä ) = 8Ä/g2 + (Ã/g)2,

respectively.

To perform the constant flux PT experiment, consider a set

of J integration times τ = (Ä1, . . . , ÄJ ), each with a corre-

sponding random variable X j ∼ PCD(8Ä j , g, µ, Ã ). From

X j , N j i.i.d. observations of the pixel are drawn, resulting in

the random sample x j = (x j,1, . . . , x j,N j
). Random samples

captured at all J integration times combined represent the

multisample dataset x = (x1, . . . , xJ ). Since the integration

times are known, this effectively renders the multisample

dataset with four unknown parameters to be estimated: ¹ =

(8, g, µ, Ã ).

Once data are captured, the estimation procedure begins by

reducing the multisample data to means and variances resulting

in x̄ = (x̄1, x̄2, . . . , x̄ J ) and x̂ = (x̂1, x̂2, . . . , x̂ J ), where x̄ j =

(1/N j )
∑N j

n=1 x jn and x̂ j = (1/N j )
∑N j

n=1(x jn − x̄ j )
2 are the

sample mean and variance of x j , respectively. It is noted that

throughout this work, bar notation (·̄) is used to denote means,

while hat notation (·̂) denotes variances and covariances.

Following data reduction, least squares regression proce-

dures are used to extract the linear relationship in the data

(τ , x̄), yielding x̄(Ä ) = m1Ä + b1 ≈ (8/g)Ä + µ. Similarly,

least squares regression is again used to extract the linear

relationship in the data (τ , x̂), resulting in x̂(Ä ) = m2Ä +b2 ≈

(8/g2)Ä + (Ã/g)2. With the slopes and intercepts of these

linear fits, the PCD parameters for the pixel are estimated via

8̃ = g̃m1, g̃ = m1/m2

µ̃ = b1, Ã̃ = g̃
√

b2. (4)

IV. MULTISAMPLE PCH-EM

In the PT method, raw multisample data were reduced to

means and variances, and the linear relationships between the

means and variances were exploited to characterize the pixel

under test. In contrast to this approach, the PCH-EM algorithm

performs MLE on the same multisample data by reducing it

to a log-likelihood function

ℓ(¹ |x) =

J∑

j=1

N j∑

n=1

log

∞∑

k=0

e−H j H k
j

k!
Æ
(
x jn; µ + k/g, (Ã/g)2

)

(5)

and then determining the parameters that maximize ℓ.

As is common with many MLE problems, an explicit

expression for the MLEs ¹̃ = arg max¹ ℓ(¹ |x) is intractable.

Numerical methods, such as the Newton–Raphson iteration,

may be used to numerically maximize the log likelihood;

however, poor initial guesses can lead to numerical instability

when inverting the Hessian matrix, so this approach can be

undesirable [31].

A popular, more stable, alternative for maximizing

log-likelihood functions is the expectation–maximization (EM)

algorithm, which instead of maximizing the log likelihood

directly, iteratively maximizes a related, often simpler, func-

tion to compute MLEs [32]. To see how, note that through

an application of Bayes’ theorem, one may decompose the

log likelihood (5) into ℓ(¹ |x) = Q(¹ |¹ (t)) + H(¹ |¹ (t)), where

Q(¹ |¹ (t)) = E¹ (t)(log fX K (x, k|¹)) is the expected complete-

data log likelihood. Here, the expectation is taken with

respect to the conditional distribution pK |X (k|x, ¹ (t)), and

¹ (t) is a guess of the PCD parameters. Defining ¹ (t+1) =

arg max¹ Q(¹ |¹ (t)), one can guarantee

ℓ
(
¹ (t+1)

∣∣x
)
− ℓ

(
¹ (t)
∣∣x
)

g Q
(
¹ (t+1)

∣∣¹ (t)
)
− Q

(
¹ (t)
∣∣¹ (t)

)
(6)

showing that the updated parameter ¹ (t+1) has a log likelihood

greater than or equal to the initial guess (in practice, the

increase can be substantial). By repeating the process of

maximizing Q, each time redefining it in terms of the current

parameter estimate, one can monotonically increase sample

likelihood with each iteration. The benefit of doing this in

the specific use case of PCH-EM is that the complete-data

distribution (2) forms an exponential family; thus, Q can

be maximized in closed form, resulting in a set of update

equations that monotonically “climb” the log-likelihood func-

tion without having to evaluate derivatives or perform matrix

inversions.

A. Multisample PCH-EM Update Equations

Similar to PT, multisample PCH-EM data capture can be

performed in either a constant flux or constant exposure mode.

Combinations of these approaches can also be accommodated

by specifying the form of each H j in the Q function. Note that

the ability to modify Q to reflect the specifics of the experi-

ment performed shows that multisample PCH-EM should be

considered a family of algorithms and not one single set of

update equations. Mimicking the previous section, a strictly

constant flux version of the algorithm will be derived here.
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It is noted that a similar procedure can be followed to derive

the constant exposure method.

Begin with the same multisample data captured in PT, and

let (p j , b j ) = ((p j,1, b j,1), . . . , (p j,# j
, b j,# j

)) denote the his-

togram of the j th sample x j . Here, b j is the vector of unique

gray values in x j and p j that are sample probabilities (counts

in each bin b jn normalized by N j ). Using this convention, # j

represents the number of unique gray values in the j th sample.

Using these histograms and the definition of Q, one is able to

derive

Q
(
¹
∣∣¹ (t)

)
=

J∑

j=1

N j

# j∑

n=1

p jn

×

∞∑

k=0

µ
(t)
jnk

(
−8Ä j + k log 8Ä j − log(Ã/g)

−

(
b jn − µ − k/g

)2

2(Ã/g)2
+ C

)
(7)

where C is a constant independent of ¹ and

µ
(t)
jnk =

e
−8Ä j (8Ä j)

k

k!
Æ
(
b jn; µ + k/g, (Ã/g)2

)

∑∞
ℓ=0

e
−8Ä j (8Ä j)

ℓ

ℓ!
Æ
(
b jn; µ + ℓ/g, (Ã/g)2

)

∣∣∣∣∣∣
¹=¹ (t)

. (8)

Here, the membership probabilities µ
(t)
jnk represent the proba-

bility that the electron number K equals k given the observed

gray value x jn and the current parameter estimate ¹ (t). Q is

then maximized by solving for the critical point ∇¹ Q = 0,

yielding the update equations (see [33] for derivation)

8(t+1) = k̄(t)
/
Ǟ (9a)

g(t+1) = k̂(t)
/

x̂k
(t)

(9b)

µ(t+1) = x̄ − k̄(t)
/

g(t+1) (9c)

Ã (t+1) =
(

x̂
(
g(t+1)

)2
− k̂(t)

)1/2

(9d)

where Ǟ =
∑J

j=1 w jÄ j with w j = (N j/(
∑J

m=1 Nm)) and

x̄ =

J∑

j=1

w j

# j∑

n=1

p jnb jn (10a)

x̂ =

J∑

j=1

w j

# j∑

n=1

p jn

(
b jn − x̄

)2
(10b)

k̄(t) =

J∑

j=1

w j

# j∑

n=1

p jn

∞∑

k=0

µ
(t)
jnkk (10c)

k̂(t) =

J∑

j=1

w j

# j∑

n=1

p jn

∞∑

k=0

µ
(t)
jnk

(
k − k̄(t)

)2
(10d)

x̂k
(t)

=

J∑

j=1

w j

# j∑

n=1

p jn

(
b jn − x̄

) ∞∑

k=0

µ
(t)
jnk

(
k − k̄(t)

)
. (10e)

Supplied with an initial guess/estimate of the parame-

ters ¹ (0) = (8(0), g(0), µ(0), Ã (0)), the multisample PCH-EM

algorithm iteratively updates (improves) the initial guess by the

following: 1) calculating the statistics in (10) (E-step) and 2)

updating the estimates with the update equations (9) (M-step).

These two steps are repeated until convergence to a fixed point

is achieved, which is usually determined when the change in

log likelihood is negligible, i.e., ℓ(¹ (t+1)|x)− ℓ(¹ (t)|x) f ϵ for

some appropriate choice of ϵ.

For large read noise (Ãread k 1 e−), the individual Gaussian

components of the PCD exhibit significant overlap leading to

slower convergence of the algorithm [34]. Because of this, it is

generally advisable for practical implementations of PCH-EM

to also include a maximum allowable number of iterations that

overrides the log-likelihood criteria when it cannot be achieved

within a reasonable amount of time.

V. WHY ADOPT A MULTISAMPLE APPROACH?

When a pixel exhibits DSERN, the raw data it produces

contain sufficient information to permit estimating the PCD

parameters from a single sample. This assertion is supported

by the fact that reasonable parameter estimates can be obtained

simply by visually examining the histogram generated by

a DSERN pixel. However, as the read noise increases, the

information content of the data decreases, and its distribution

tends toward that of the normal distribution. In this high noise

regime, the minimal sufficient statistic of the data consists

of a sample mean and variance for each sample captured.

For a single-sample approach, this implies that the data are

completely summarized by a 2-D statistic; however, the con-

stant flux model has four parameters [¹ = (8, g, µ, Ã )]; thus,

a single sample does not provide enough information about the

parameters for reliable estimation in high noise conditions.

This limitation applies not only to single-sample PCH-EM

but also to other single-sample methods, such as the photon

counting histogram (PCH) method, valley peak modulation

(VPM) method, peak separation and width (PSW) method,

and FFT method [19], [20], [23].

By adding an additional sample captured at a different

integration time, the minimal sufficient statistic in high noise

conditions becomes 4-D, matching the dimension of the

unknown parameter vector implying enough information has

been captured to ensure reliable estimation even at high read

noise. Additional samples further serve to ensure enough

information is captured. This is particularly crucial as modern

CMOS QISs exhibit a distribution of read noise across all

pixels in the sensor array. While most pixels exhibit DSERN,

there is typically a subset of pixels with read noise outside

the DSERN regime for which single-sample methods produce

worse estimates compared with PT [19]. By adopting a multi-

sample approach, the algorithm becomes robust to higher read

noise and can accurately characterize all pixels.

Combining multiple samples into a single estimation pro-

cedure not only enhances the algorithm’s resilience against

high read noise but also facilitates obtaining more accurate

parameter estimates. To see why, note that if the sample sizes

are large and the read noise is small, the determinant of the

PCH-EM estimate’s covariance matrix (generalized variance)

can be approximated by det 6 ∼ Ã 6/(2N 4 Ǟ (Ǟ + 8Ä̂)), with

N =
∑J

j=1 N j denoting the total sample size and Ä̂ =∑J
j=1 w j (Ä j − Ǟ )2 the variance of the integration times [33].
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TABLE I

SIMULATION PARAMETERS

Now, consider a two-sample procedure where the total

sample size N is fixed, so that N1 = (1 − p)N and N2 = pN

for some p ∈ [0, 1] and suppose 8 = 10 e−/s, Ã = 0.15 e−,

Ä1 = 0.1 s, and Ä2 = 5 s. At p = 0, the generalized variance

corresponds to that of a single-sample method with integration

time Ä1. Likewise, at p = 1, it corresponds to that of a

single-sample method with integration time Ä2. Calculating

the approximation for det 6 for several p values reveals

that it is minimized when p ≈ 0.7, demonstrating that a

two-sample approach can produce lower variance compared

with a one-sample approach, even with the same total number

of observations. This phenomenon can be attributed to “infor-

mation diversification.” Because the amount of information

about each parameter present in the raw sensor data varies

dynamically with quanta exposure H = 8Ä , by combining

multiple samples with varying H , the collective information in

the multisample data is diversified across all parameters, gen-

erally leading to improved overall uncertainty in the parameter

estimates.

VI. MONTE CARLO DEMONSTRATION

Monte Carlo experiments were performed to demonstrate

the decrease of estimate uncertainty achievable with PCH-EM.

For the experiment, a two-sample (J = 2) data capture was

adopted, and a pixel with the parameters outlined in Table I

was specified. A total of 64 linearly space values of the read

noise on the interval [0.05, 1] were chosen to help observe the

effect read noise has on estimate uncertainty and the ability

of PCH-EM to improve PT estimates.

An important consideration in the experimental design is

the sample sizes. As read noise increases, the uncertainty in

the estimates of both methods will also increase [35], [36].

To keep the uncertainty of the estimates from growing too

large, the sample sizes were determined via [37]

N1 =

⌈
2· (1 + · )

¶2(1 − · )2
+ 1

⌉
and N2 =

⌈
2(1 + · )

¶2(1 − · )2
+ 5

⌉

(11)

where ¶ = 0.02 and · = (8Ä1 + Ã 2
read)/(8Ä2 + Ã 2

read).

These sample sizes will increase with increasing read noise

and subsequently force the relative uncertainty of the PT

conversion gain estimate in (4) to be approximately equal to

¶ (2% error), independent of the parameter values.

The experiment was performed by generating synthetic data,

estimating the PCD parameters with PT, and then refining the

PT estimates with PCH-EM. This experiment was repeated a

total of M = 1000 times at each of the 64 parameter values.

To measure each method’s estimation error, a relative root-

mean-squared error (RRMSE) metric

RRMSE
(
¹̃ i

)
=

(
1

M

M∑

n=1

(
¹̃ in − ¹i

¹i

)2
)1/2

≈

√
MSE

(
¹̃ i

)

|¹i |

(12)

was used. Here, ¹i is replaced with one of 8, g, µ, or Ã ;

¹̃ in is the nth estimate of ¹i from either PT or PCH-EM; and

MSE(¹̃ i ) = E(¹̃ i − ¹i )
2 is the exact value of the estimator

mean-squared error (MSE).

For the sample sizes used, the PCH-EM estimates should

be nearly unbiased, so that one can further approximate

RRMSE(¹̃ i ) ≈ (Var(¹̃ i ))
1/2/|¹i |. Calculating the Fisher infor-

mation of the multisample data IX(¹) = −E(∇¹∇
T
¹ ℓ(¹ |X)),

the Cramér–Rao lower bound (CRLB) for the RRMSE can

be calculated via ((I −1
X (¹))i i )

1/2/|¹i | f (Var(¹̃ i ))
1/2/|¹i |, and

this bound can be compared with the RRMSE of both PT and

PCH-EM.

Fig. 2 shows the RRMSE and CRLB curves obtained from

the experiment as a function of read noise. As can be observed,

the relative uncertainty of the PCH-EM estimates is less than

those of PT at all read noise values, particularly in the DSERN

regime. For example, at Ãread = 0.214 e−, the RRMSE of

the PT estimate for 8 was reduced via PCH-EM by 73%,

while the RRMSE of the PT estimates for g, µ, and Ã

was reduced by 93%, 74%, and 96%, respectively. The fact

that the PCH-EM curves are nearly identical to the CRLB

curves indicates that for the specified parameters, PCH-EM

is producing the best possible estimates. In addition, for all

four parameters, the PCH-EM RRMSE curves approached

those of PT, from below, asymptotically, as the read noise

increases. The reason for this phenomenon is tied to the fact

that reducing the multisample data to a likelihood function is

a minimal sufficient encoding, incurring no information loss,

whereas the means and variances of the PT method are not

sufficient, resulting in information loss and higher estimate

uncertainty (for a detailed discussion, see [33, Sec. VII]).

However, as read noise increases, that raw data increasing

becomes normally distributed where the means and variances

are sufficient statistics causing the information loss incurred

in PT to vanish, resulting in both methods achieving similar

uncertainties [33]. This characteristic of PCH-EM can, thus,

be viewed as an overall improvement over the PT method,

since it achieves less uncertainty than PT everywhere and is

asymptotically equivalent to PT at large read noise, bridging

the gap between single-sample methods that improve PT only

in the DSERN regime while also being able to characterize at

a continuum of read noise levels, such as PT.

From a historical perspective, the fact that PCH-EM only

begins to gain significant advantage over PT in the DSERN

regime gives context to why such a method is not already in

widespread use for sensor characterization. Had PCH-EM been

developed to characterize early CCDs in the 1970s, it would

have exhibited little to no improvement over the much simpler

and computationally friendly PT method, rendering PT the

preferred technique. With the advent of DSERN technology,



4786 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 71, NO. 8, AUGUST 2024

Fig. 2. RRMSE versus read noise for parameter estimates computed
using constant flux implementation of PT and PCH-EM. RRMSE curves
for PT µ̃ and σ̃ grow large near σread = 0 and were clipped from the plot
window.

PCH-EM can now deliver superior estimates over PT, thus

establishing its utility.

VII. EXPERIMENTAL DEMONSTRATION

Experimental constant flux data were captured with the

Gigajot Technology Inc. (GJ00111) “Cleveland” QIS camera.

The constant source of electron flux came from a combination

of the sensor’s internal dark current and impinging photons

from an incandescent light source coupled with an integrating

sphere to provide the focal plane with a stable, flat field. For

the experiment, a three-sample approach was adopted with

integration times and sample sizes given in Table II. As is

the case in Table II, the sample sizes should be on the order

of thousands to tens of thousands and increasing with quanta

exposure. More sophisticated allocation of sample sizes can be

accomplished by choosing the sample sizes that maximize the

determinant of the multisample Fisher information det IX(¹).

Experimental data were processed in MATLAB using the

code uploaded to the MathWorks FEX [25]. It is noted that

the code available on the FEX provides a full demonstration of

TABLE II

EXPERIMENTAL PARAMETERS

TABLE III

SMALL NOISE PIXEL CHARACTERIZATION (SEE FIG. 3)

constant flux PCH-EM by generating synthetic data. Here, the

code was modified by removing the synthetic data generation,

instead accepting raw experimental data from the Cleveland

camera experiment. Minimal effort was put into optimizing

the efficiency of the code with the intent to make it more

readable and track with the equations laid out in this work.

The code follows a step-by-step procedure in the main

file demo.m to processes the raw multisample data by first

organizing it into the data structure Struct (fluxData.m)

and then passing this structure to various steps in data process-

ing pipeline. In fluxData.m, the data for each sample are

reduced to a histogram, and these histograms, along with the

raw samples, are used throughout the processing pipeline. The

data processing pipeline following fluxData.m consists of

the following: 1) performing initial starting point estimation

(fluxStart.m); 2) performing PCH-EM estimation seeded

with the starting points (fluxPCHEM.m); and 3) comput-

ing the covariance matrix for the final PCH-EM estimates

(fluxCovariance.m).

The function fluxStart.m uses a hybrid approach to

starting point estimation by estimating the starting points with

the FFT method (fluxFFT.m), described in [22] and [23],

if only a single sample is captured or the constant flux PT

method (fluxPT.m) if two or more samples are captured.

By using this hybrid approach, the code works for any num-

bers of samples. Likewise, fluxCovariance.m estimates

the PCH-EM covariance matrix by computing the observed

information matrix J (¹̃) = −∇¹∇
T
¹ ℓ(¹ |x)|¹=¹̃ , where ¹̃ is the

PCH-EM estimate of the parameters. In this way, J−1 becomes

an estimate for the PCH-EM estimate covariance matrix,

and the diagonal elements of J−1 represent standard error

estimates for each PCH-EM parameter estimate. Additional

functions are also supplied in the FEX submission to display

the final estimates and provide plots pertaining to algorithm

convergence and data visualization.

Tables III and IV present the characterization results for

two of the QIS pixels tested: one with small read noise and

another with larger read noise. It is important to note that

the camera software has built-in offset subtraction, which

is why µ̃ in Table III can have a negative value in the

absence of data truncation. Comparing the standard errors in
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TABLE IV

LARGER NOISE PIXEL CHARACTERIZATION (SEE FIG. 4)

both tables not only reveals the impact read noise has on

estimate uncertainty but also the level of precision obtainable

at low read noise. For example, the PCH-EM standard error

estimate for g̃ in Table III indicates approximately ten decimal

places of precision. This error estimate was independently

calculated through Monte Carlo experiments, verifying that

the observed information matrix gave accurate uncertainty

estimates. Corresponding to these tables are Figs. 3 and 4

showing the log likelihood obtained at each iteration of PCH-

EM (top) and quality of fit obtained with PT and PCH-EM

(bottom). To visualize the quality of fit, the multisample data

for each pixel were turned into a “stacked” histogram with

gray shade indicating the frequency in each bin obtained from

each sample. This stacked histogram was then overlaid with

the estimated multisample PCD: f (x |¹̃ ) =
∑J

j=1 w j fX (x |¹̃ j ),

where fX is the PCD in (3), and ¹̃ j = (8̃Ä j , g̃, µ̃, Ã̃ ) are the

PT or PCH-EM parameter estimates.

In reference to the data in Fig. 3, one can observe that the

algorithm monotonically increased log likelihood (improved

the PT estimates) with each iteration, and the fit obtained with

PT (red curve) was substantially improved with PCH-EM (blue

curve). Likewise, now referencing the data in Fig. 4, one can

observe that the noise is large enough to yield approximately

normally distributed data, and that the PCH-EM fit is nearly

identical to the PT fit as is to be expected as larger read

noise. As was pointed out in Section IV-A, at larger noise, the

peaks in the PCD exhibit more overlap causing the algorithm

convergence to decrease, and this phenomenon is reflected by

the larger number of iterations PCH-EM needed to converge

in the large noise pixel data. Despite this slower convergence,

the algorithm was still able to monotonically increase log like-

lihood at each iteration. The ability of multisample PCH-EM

to handle both small and large noise pixels validates its usage

as a general characterization algorithm not limited to pixels

with DSERN.

VIII. CONCLUSION

Camera companies and camera consumers alike rely on

characterization techniques to troubleshoot, optimize, and cali-

brate image sensors. As sensor technology continues to evolve,

new characterization methods are developed to measure key

performance parameters and inform decision-making. In this

correspondence, the next step in this evolution was taken

by developing and implementing a multisample PCH-EM

algorithm, which shows dramatic improvement in estimate

uncertainty over the PT method, particularly in the regime

of DSERN. It was shown that the source of this uncertainty

advantage is tied to the lossy compression PT performs on the

raw sensor data by reducing it to sample means and variances.

Fig. 3. Log likelihood versus PCH-EM iteration number (top) and
experimental multisample data with PT/PCH-EM fits (bottom) for the
small noise pixel in Table III.

Fig. 4. Log likelihood versus PCH-EM iteration number (top) and
experimental multisample data with PT/PCH-EM fits (bottom) for the
larger noise pixel in Table IV.

As read noise exceeds the DSERN threshold, the information

loss incurred by PT vanishes, and both methods show nearly

identical estimate uncertainty; thus, PCH-EM can be viewed

as a general improvement over the PT method.

This maximum likelihood approach to sensor characteriza-

tion, implemented via EM, is in actuality a general approach

not limited to a single algorithm or single sensor technology.

By constructing various Q functions reflecting an assumed

sensor model and experimental parameters, a large number

of PCH-EM algorithms can be derived. Here, the process of

Q-function construction and update equation derivation was
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demonstrated for a single pixel, constant flux, approach to

PCH-EM using multiples samples. However, by combining

data from multiple pixels, other parameters, such as pho-

toresponse nonuniformity (PRNU), can be incorporated into

the Q function, expanding the measurement capabilities of

the method. Other opportunities for improving the reliability

of the algorithm also exist. It is understood that PCH-EM

is a local optimization strategy prone to converging to a

nonoptimal local maxima of the likelihood function if provided

with poor starting points. As such, future investigations will

look into not only expanding the measurement capabilities

of the PCH-EM approach but also relaxing the algorithm’s

dependence on starting point location, thus providing a more

comprehensive methodology to sensor characterization.
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