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Abstract

The astonishing development of single-photon cameras

has created an unprecedented opportunity for scientific and

industrial imaging. However, the high data throughput gen-

erated by these 1-bit sensors creates a significant bottleneck

for low-power applications. In this paper, we explore the

possibility of generating a color image from a single binary

frame of a single-photon camera. We evidently find this

problem being particularly difficult to standard coloriza-

tion approaches due to the substantial degree of exposure

variation. The core innovation of our paper is an exposure

synthesis model framed under a neural ordinary differential

equation (Neural ODE) that allows us to generate a contin-

uum of exposures from a single observation. This innova-

tion ensures consistent exposure in binary images that col-

orizers take on, resulting in notably enhanced colorization.

We demonstrate applications of the method in single-image

and burst colorization and show superior generative per-

formance over baselines. Project website can be found at

https://vishal-s-p.github.io/projects/

2023/generative_quanta_color.html

1. Introduction

Single-photon image sensors are gaining a strong momen-

tum over the past decade due to their impeccable photon-

counting capability. This not only opens the door for ad-

vanced scientific imaging in low-light environment, but

also creates the opportunity for new imaging in high-speed,

high dynamic range, and low-bit conditions. Single-photon

imaging today are realized through single-photon avalanche

diodes (SPAD) and quanta image sensors (QIS). The latest

development of QIS has demonstrated a mega-pixel resolu-

tion [48] which is compatible with mainstream cell phone

cameras, whereas SPAD has achieved hundreds of thou-

sands of (binary) frames per second which has enabled a

plethora of industrial and 3D imaging applications [16].

Problem Statement. In the context of 1-bit single-

photon imaging, the data volume generated is huge. Tak-

ing a 1000 × 1000 SPAD array as an example, a video of

Figure 1. We introduce generative quanta color imaging. Given

a binary frame captured by a single-photon camera (quanta image

sensor (QIS) in this example), the proposed method generates a

continuum of exposures using a neural ordinary differential equa-

tion framework. Color are then generated based on these expo-

sures. Left: A qualitative comparison between our approach and

existing methods is shown. Right: Comparison between coloriza-

tion results and image captured using a RGB CMOS camera under

similar conditions.

500 binary frames requires a 500 Mb/s data transfer rate;

if the frame rate becomes 150k fps, the data transfer rate

increases to 150 Gb/s. Since data throughput scales propor-

tionally with the power consumption, it quickly becomes in-

feasible to use these sensors continuously without consider-

ing power supply, memory, and transmission issues. While

solid progress are being made across the sensor and signal

processing community [1, 11, 17, 23, 24, 45–47, 49, 50], the

data throughput remains an unsolved problem for single-

photon sensors to be considered applicable in many appli-

cations, including low-power devices, wireless devices, un-

derwater vehicles, spacecrafts, etc., where bandwidth is the

bottleneck.

In this paper, instead of compressing data or redesigning

the sensor, we ask the question

Is it possible to recover a color image from a single

1-bit image?
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Significance. There are several reasons why this prob-

lem is significant. Firstly, while there is an ocean of liter-

ature on image generation (through methods such as Gen-

erative Adversarial Networks [26] and diffusion [31]), our

problem is unique in the sense none of the existing work

addresses it. Besides being binary (and hence colorless),

in practice the input data usually also suffers from under-

or over-exposures. Therefore, before generating color, it is

even more critical to synthesize the unseen exposure. Sec-

ondly, any solution offered to our problem will provide a

path to generative imaging in the future. From the point of

view of compressed acquisition, our method demonstrates

the extreme case of compression where the incoming data

is a single bit. For future AR/VR applications where power

is severely limited, our approach shows the possibility of

extreme data compression.

Contributions. The core algorithmic contribution of this

paper is two-fold

• We propose a neural ordinary differential equation (neu-

ral ODE) based framework to synthesize a continuum of

exposures that are not available in the measurement. By

controlling the integration interval of neural ODE, we ob-

tain convolutional filters that are responsible for convert-

ing input representation to image representation of de-

sired exposure.

• We theoretically and empirically show that a controlled

variation of filter atoms leads to controlled exposure

changes in the output image.

We verify our proposed method using both synthetic and

real single-photon image sensor data. A snapshot of the

results is shown in Fig. 1.

2. Related Work

Single-Photon Imaging. The context of this paper is

single-photon image sensors, of which we are mostly in-

terested in one-bit sensing because of its potential in high-

speed and high dynamic range imaging [2]. Today, 1-

bit sensing has been realized using quanta image sensors

(QIS) [19–21, 50, 67] and single-photon avalanche diodes

(SPAD) [1, 16, 17]. From an image reconstruction point

of view, since 1-bit data contains so little information, all

existing image reconstruction methods need to use multiple

frames. For QIS, these methods range from classical opti-

mization [3, 5], transform-denoise [4], neural network [12],

color demosaicking [18], frequency demodulation [18], and

student-teacher learning [11, 22]. For SPAD, quanta burst

photography [51] and its variants [30, 32, 35, 57] first align

frames and then apply image fusions [27–29, 59]. The ques-

tion we ask in this paper is to push the input requirement to

the limit: can we recover/generate a color image from a bi-

nary input?

Image-to-Image Translation. This paper focuses on us-

ing generative models. Generative Adversarial Networks

(GANs) [26] have been a significant breakthrough in the

field of image translation. Pix2Pix [33] and CycleGAN [68]

demonstrated the effectiveness of GANs in image-to-image

translation tasks, with paired and unpaired datasets, respec-

tively. Several subsequent works have focused on improv-

ing image fidelity, disentangling style and content, and gen-

erating images with varying styles, such as Pix2PixHD [61],

StarGAN [13], StyleGAN [37], and StyleGANv2 [14]. Re-

cent advancements in continuous cross-domain translation

techniques have further improved the output quality by

leveraging images from intermediate domains. These tech-

niques include interpolation of networks [40, 41], interpo-

lation of two latent vectors [14, 37], and exploiting the in-

terpolation path and translation of manifold [9, 42, 55].

Convolutional Filter Decomposition. In the proposed

method, one of the key components is the convolutional

filter decomposition. Several techniques have been pro-

posed to decompose filters of Convolutional Neural Net-

works (CNNs) in order to reduce the computation com-

plexity by exploiting the redundancy in convolutional fil-

ters [10, 39, 53, 54, 63, 69]. Filter decomposition meth-

ods achieve similar performance as compared to the original

CNNs while offering speedups in computation. As it is ex-

pensive to model the high-dimension space of convolutional

filters directly, Qiu et al. [56] observed that the convolu-

tional filters can often be approximated using a linear com-

bination small set of basis elements. By decomposing filters

into a small set of basis, Wang et al. [64, 65] were able to

sample the basis and demonstrated theoretical and empirical

results on stochastic image generation tasks. Futher, Chen

et al. [7] showed that filter decomposition can be used to

calculate network similarity and large convolutional mod-

els can be fine tuned using filter decomposition [8].

3. Proposed Approach

3.1. One­Bit Image Formation Model

We consider a simplified image formation model for 1-bit

image sensors. Letting ¹ be the underlying quanta exposure

[20], the observed signal is defined by

Y = ADC
{

Poisson(¹) + Gaussian(0, Ã2

r)
}
,

where Ãr denotes the standard deviation of read noise, and

ADC is the analog-to-digital conversion. For 1-bit sens-

ing, the ADC can be modeled as a threshold such that

ADC(x) = 1 if x g q and ADC(x) = 0 if x < q for

some threshold q. Since Y is a binary random variable, it is

fully characterized by the probability mass function, which

is [2]

pY (1) =

∞∑

k=0

e−θ¹k

k!
Φ

(
k − q

Ãr

)
,
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Figure 2. Illustration of exposure correction and colorization of binary images using neural networks. (a) depicts a range of images from

overexposed to underexposed, illustrating the degradation of image details due to exposure variation. (b) contrasts the standard colorization

workflow and our proposed approach. (i) In standard colorization approaches, a neural network learns to map a binary image Y to the

corresponding color image Xc via a neural network, F aug, where superscript ‘aug’ indicates the colorizer is trained using dataset with

augmented exposure images. (ii) In contrast, our approach does not require training colorizer with augmented exposure images. (c)

compares the colorization results: the first row is the output of a colorizer trained without augmentation, the second row is the output of

colorizer trained with augmented data, the third row corresponds to the results of our method and the last provides the ground truth images

for reference.

where Φ(z) =
∫ z

−∞
1√
2π

exp{−t2/2}dt is the cumulative

distribution of a standard Gaussian. It then follows that the

mean (or the bit density) is µ = E[Y ] = pY (1).

Method Generator Size Dataset Size Training Time FID

Standard colorization ResNet-9 3x 1x 62.34

+ Increased training time ResNet-9 3x 1.5x 54.25

+ Increased model size ResNet-10 3x 1x 74.58

Proposed method ResNet-9 1x 1x 49.88

Table 1. Performance comparison of the standard colorization

approach under various training conditions versus the proposed

method.

3.2. Why Exposure Synthesis is Required for Col­
orization?

Given a binary image Y ∈ R
N , our goal is to recover a

color image Xc ∈ R
N×3. However, since the measure-

ment does not contain any color information, our problem

fits the classical work of image colorization [38, 58, 60, 66].

However, it is non-trivial to deploy such an extension in real

world scenarios, because very likely there is a discrepancy

in the exposure levels of the input images compared to those

used during training.

An example of binary images of different exposures are

shown in Figure 2(a) illustrating the effect of exposure

change on the details in the captured binary binary image.

Consider a typical colorization network for example, an

Image-to-Image translation model like Pix2Pix [34] trained

on well exposed image but tested on overexposed images,

the colorization results are notably poorer (shown in Figure

2(c) row 1). This is a realistic concern because the underly-

ing exposure θ can fluctuate dramatically in real life.

Possible solutions include (i) Exposure Augmentation :

training dataset is enriched with images of varying expo-

sures, at a cost of additional training time. We find, how-

ever, this approach partially addresses the issue, as demon-

strated in our results shown in Figure 2(b) row 2. In par-

ticular, this approach falls short at over- or under-exposure.

One can alleviate this issue by applying multiple coloriz-

ers, each handling a narrow range of exposures, but this is

not ideal as it demands substantially more computational

resources. (ii) Increased Model size : Another solution is

to increase the size of generator used in Pix2Pix [34] and

train for longer period of time. In Table 1, we present the

colorization performance represented by the FID metric un-

der various training scenarios. Under increased generator

size or increased training time the standard colorization ap-
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proach performs poorly compared to proposed method de-

tailed in subsequent sections.

Proposed Solution. We address the challenge by a ded-

icated exposure correction based on neural ordinary differ-

ential equations (neural ODEs) to standardize the exposure

of binary images. This specialization allows the colorizer

to focus on consistent-exposure images, resulting in notably

enhanced colorization, as evidenced Figure 2(c) row 3. Ad-

ditionally, our exposure synthesis can generate multiple ex-

posures from a single binary image, enabling more effective

multi-exposure colorization. Some of the added advantages

of our approach include: (a) Modularity. The colorizer

in our design is interchangeable, allowing for upgrades to

more advanced architectures without requiring retraining on

a large, augmented dataset. (b) Parameter Efficiency. Our

method achieves its objectives without resorting to multiple

networks with large parameter sets, ensuring a more stream-

lined and resource-efficient process.

3.3. Continuous Exposure Synthesis using Filter De­
composed Neural ODEs

The image formation model defined in Section 3.1 indicates

that we can formulate the continuum burst of binary images

as Y(¹̃), where the binary image Y is a function of a con-

tinuous exposure value ¹̃ ∈ (0, 1]. A small ¹̃ value indicates

a higher exposed image Y. One of the core contributions

of this work is a deep neural network architecture that syn-

thesizes a binary image Yt at a target exposure ¹̃target given

an input binary image Yi measured at the exposure value

¹̃input.

As the exposure values are continuous, we may need an

exhaustive training set that densely samples every possible

pair of input exposure value ¹̃input and target exposure value

¹̃target for every scene to train our network. To tackle this

problem, we designed a convolutional architecture that en-

forces the parameter of the network to smoothly change ac-

cording to the exposures.

We use the convolution filter decomposition technique

[56, 61, 64] to represent the convolutional filters F with

a low number of parameters, and we leverage neural

ODEs [6] to associate parameters with image exposures.

With these techniques, we enable the adaptive control of

filter parameters F and thereby the learning of the exposure

synthesis operation G efficiently.

Efficient Modelling of Filter Subspace. Specifically,

we formulate the filter parameters F using the atom-

coefficient [56] decomposition, which permits the small-

est computational bottleneck in modeling filter subspaces

among the candidates. Given a convolutional filter F ∈
R

c
′×c×k×k where c, c′ and k are the output, input chan-

nels, and spatial size, respectively. The atom-coefficient de-

composition over a set of m filter atoms decomposes F into

coefficients, denoted by ϕ ∈ R
c
′×c×m, and atoms, denoted

by Λ ∈ R
m×k×k

F = ϕΛ.

When m j c, the dimension of the parameters is sig-

nificantly reduced. Extending the decomposition to a L-

layer convolutional network gives a set of L filter atoms

Λ = {Λl}L
l=1

and L coefficients ϕ = {ϕl}L
l=1

.

Enforcing Filter Atom Continuity. We enforce the fil-

ter atoms Λ to smoothly change according to the input and

target exposure levels ¹̃input and ¹̃target. To do so, we in-

corporate the continuous-time networks like neural ODEs

to describe the relationship of Λ(¹̃input, ¹̃target), as the neu-

ral ODEs provide advantages in the number of parameters

required, memory consumption, and computational adap-

tivity [6]. The derivative of the filter atoms dΛ/d¹̃ w.r.t. the

exposure value ¹̃ as a neural network g(·)

dΛ/d¹̃ = g(¹̃input, ¹̃target,Λinit;W),

where Λinit is the initial state of filter atoms, and W is the

learnable parameters of g(·). The initial condition Λinit is a

learnable parameter and is optimized jointly with W . Given

the input and target exposure values ¹̃input and ¹̃target, the

corresponding filter atoms can be calculated as

Λ(¹̃target, ¹̃input) = Λinit +

∫ θ̃target

θ̃input

g(Λinit,W) d¹̃.

According to Picard-Lindelöf existence theorem [15], for

a given initial condition, the solution to the IVP is unique.

Theoretically, we prove continuity in filter atoms induces

controlled changes in image exposure.

Theorem 3.1 If Λ1 and Λ2 are filter atoms generated with

neural ODE using integration intervals (¹̃0, ¹̃1) and (¹̃0, ¹̃2),

respectively such that ∥Λ1 −Λ2∥ f ϵ|¹̃1 − ¹̃2|, for ϵ > 0.

If ¹1 and ¹2 are the exposures at ¹̃1 and ¹̃2, and activation

function Ã is non-expansive, then change in exposure ∆¹ is

continuous in filter atoms.

Details of Theorem 3.1 and its proof can be found in

the Appendix section A1. An illustration of our parameter

efficient approach is shown in Figure 3.

3.4. Exposure Adaptive Colorization

Our proposed exposure adaptive colorization consists of an

exposure correction realized by the stated synthesis and ex-

posure level specific colorizer.

Exposure correction. Given a colorization method spe-

cific to exposure ¹̃target and a input sample (Yi, ¹̃input), the

proposed exposure correction generates image Ŷt at the tar-

get exposure in two steps. With the operation G carried out
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Figure 3. An illustration of our proposed method for exposure adaptive colorization: A binary image, Y, which can be overexposed or

underexposed, is input into the proposed exposure synthesis module. The colorization of binary image can be achieved using Single Image

Colorization (SIC) or Burst Image Colorization (BIC). (i) SIC: Based on the input and target exposure levels, θ̃input and θ̃target, this module

adjusts the weights of a exposure synthesis network G, which then generates an exposure-corrected image. Note that corrected image is not

necessarily a binary image. Since the colorization module F is trained to colorize only image of specific exposure, the exposure synthesis

module ensures corrected binary image has similar exposure to the one on which F is trained. (ii) BIC: For BIC we generate images

with varying exposures as input to the burst image colorization network, Fburst. The trained network is able to exploit the complementary

information across multiple exposures with the help of Cross Non-Local Fusion blocks [44] to synthesize colors in regions of the image

that is otherwise not possible by SIC approach.

by some generative network, first, the filter atoms of the net-

work’s convolutional filters are computed using the neural

ODEs based on the (¹̃input, ¹̃target) pair; next, the convolu-

tional filter weights of the network are updated using the

filter atoms and their corresponding coefficients, and the

network generate the exposure corrected image Ŷt based

on Yi. In the case of burst colorization, multiple images

are generated corresponding to a set of target exposures.

Colorization. Both single-image-based colorization and

burst-based colorization are considered in our work. The

first approach involves a colorization network F : Ŷt →
Xc which takes a exposure corrected binary image as input

and outputs corresponding RGB image Xc. The network

is trained exclusively at a fixed exposure level, and varia-

tions in the exposure of the input image is pre-adjusted by

the exposure correction step. The second approach uses a

colorization network Fburst : {Ŷt}
K
t=1

→ Xc that takes in

a burst of K binary images {Ŷt}
K
t=1

corresponding to pre-

defined varying exposure values {¹̃t}
K
t=1

and outputs one

RGB image Xc.

4. Experiments

4.1. Experimental Setup

We evaluate the performance of both the exposure synthe-

sis module standalone and the entire proposed approach.

We conduct exposure burst recovery experiment to evalu-

ate the exposure synthesis and Single Image Colorization

(SIC) and Burst Image Colorization (BIC) experiments to

evaluate the final colorization results.

Implementation of Exposure Adaptive Colorization.

We implement the neural ODEs using a 6-layer multilayer

perceptron. The generative networks we use for exposure

synthesis are variants of Pix2Pix [34] and CycleGAN [68],

with which the models are named AtomODE-Pix2Pix and

AtomODE-CycleGAN. For colorization, we train a Pix2Pix

colorizer dedicated to SIC task and another to BIC. For BIC,

the colorizer is additionally equipped with a Cross Non-

Local Fusion (CNLF) [44] to constructively fuse the repre-

sentations obtained from the burst. Note that the colorizers

are trained directly on pairs of binary and color image data

at fixed ¹̃, independent of exposure synthesis. In our col-

orization experiment, the same trained colorizer is applied

on all exposure correction methods for comparison. Details

can be found in the Appendix section A2.

Datasets and Synthetic Data Generation. We train and

evaluate the proposed method as well as the baselines on

synthetic data generated using images from two datasets:

AFHQ [14] and CelebA-HQ [36]. AFHQ dataset contains

images of three classes, cats, dogs, and wild animals, and

CelebA-HQ contains images of male and female human

faces.

To synthesize binary images, we use the image formation

model described in Section 3.1 and apply exposure bracket-
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Exposure Synthesis Method

AFHQ (512 x 512) CelebA-HQ (256 x 256)

Cat

MSE (³) / RL (↑) / FID (³)

Dog

MSE (³) / RL (↑) / FID (³)

Wild

MSE (³) / RL (↑) / FID (³)

Male

MSE (³) / RL (↑) / FID (³)

Female

MSE (³) / RL (↑) / FID (³)

Pix2Pix-DNI 3.75 / 0.9816 / 61.89 5.91 / 0.9844 / 95.43 8.13 / 0.9780 / 39.29 3.74 / 0.9563 / 56.13 4.78 / 0.9681 / 39.81

CycleGAN-DNI 9.61 / 0.9816 / 207.82 16.79 / 0.9824 / 220.90 9.62 / 0.9820 / 336.38 9.31 / 0.9824 / 94.78 14.26 / 0.9810 / 250.61

SAVI2I 41.15 / 46.27 / 178.29 46.27 / 0.9804 / 217.98 38.87 / 0.9019 / 139.47 67.26 / 0.9563 / 111.05 69.21 / 0.9698 / 261.45

DLOW 2.44 / 0.9654 / 92.30 2.32 / 0.9489 / 173.65 2.75 / 0.9632 / 179.23 1.87 / 0.9655 / 62.57 1.37 / 0.9798 / 63.31

AtomODE-Pix2Pix (ours) 2.29 / 0.9997 / 57.88 3.17 / 0.9994 / 140.23 2.15 / 0.9998 / 79.76 2.15 / 0.9995 / 53.44 3.20 / 0.9995 / 40.08

AtomODE-CycleGAN (ours) 1.15 / 0.9948 / 60.54 1.18 / 0.9971 / 87.43 1.23 / 0.9979 / 35.75 1.58 / 0.9986 / 77.82 1.87 / 0.9994 / 62.59

Table 2. Colorization results on AFHQ and CelebA-HQ datasets. The input image for all these experiments is an overexposed image at

index τ = 0 of exposure burst. All the colorizers are trained using an image corresponding to τ = 10 in the exposure burst. At test time

we correct the overexposed input to correspond to the one used during training. In the first column of the table, we note the combination

of the exposure correction method used and colorizer is same across all the methods.

Figure 4. Qualitative results for exposure burst recovery experi-

ments for AFHQ dataset. We compare our methods, AtomODE-

Pix2Pix and AtomODE-CycleGAN, with DLOW, SAVI2I and

DNI.

ing to generate various exposure. Details of data synthesis

can be found in the Appendix section A2. Our compiled

test datasets consist of 15-frame bursts of exposure varying

from overexposed to underexposed. We index the exposure

of these images in a burst by Ä , a discretized label of ¹̃.

Baselines. In the exposure burst recovery experiment,

we compare our approach against DLOW [25] and SAVI2I

[52]. We further consider DNI [62] for its capability of in-

terpolating network parameters to generate continuous vari-

ations of outputs. We prepare baselines Pix2Pix-DNI and

CycleGAN-DNI by coupling DNI with Pix2Pix and Cycle-

GAN exposure generators. In colorization experiments, we

apply the independently trained Pix2Pix colorizers to the

exposure correction results generated by all methods. For

more details on baseline training and hyperparameters, we

refer readers to the Appendix section A2.

Metrics. In the burst recovery experiment, we choose to

use Mean Squared Error (MSE) and Relative Linearity (RL)

[43] to distinguish a smoothly varying exposure burst with

consistent appearance changes. A high RL score indicates

a better transition in exposure among consecutive samples.

In the colorization experiments, we assess the quality of ex-

posure correction by computing the Fréchet Inception Dis-

tance (FID) between the colorized image and ground truth.

4.2. Exposure Burst Recovery Results

Figure 4 presents the qualitative comparison of all meth-

ods on AFHQ dataset. We find our methods, AtomODE

Pix2Pix and AtomODE CycleGAN are able to generate

consistent set of smoothly varying exposure images than

baseline methods and match ground truth images generated

from exposure bracketing. We also observe some baselines

struggle with generation of overexposed frames. All meth-

ods for comparison are further assessed on both datasets

using MSE and RL, with the quantitative results shown in

Table 2. Results suggest that the proposed AtomODE pro-

vides consistently better performance in all testing condi-

tions across multiple datasets. Additional qualitative results

can be found in Appendix section A4.

4.3. Single and Burst Image Colorization Results

The SIC colorization results of all methods on AFHQ

dataset are shown in Figure 5, where the exposure of the test

samples is different from the that of the colorizer’s training

samples. Corrupted colorized images are generated by most

of the baselines, while the proposed method produces visu-

ally appealing outputs. Figure 7 shows the SIC coloriza-

tion results on CelebA-HQ dataset. Additionally, we also

present the qualitative results for BIC in Figure 6 where K
denotes the number of binary frames input to the colorizer.

The quantitative results are shown in Table 2, assessed with

the FID metric.
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Figure 5. Colorized results for AFHQ dataset using various combinations of exposure correction methods and colorizer. The first column

shows the overexposed binary input image for exposure correction. The results of our methods AtomODE Pix2Pix and AtomODE

CycleGAN are shown in columns six and seven.

4.4. Real Data Experiments

As our approach is trained on synthetic data, it is essential

to evaluate its performance on real-world data. To this end,

we conduct experiments using both a CMOS camera and a

prototype QIS camera. We refer the readers to Appendix

for further details about the experiment setup. We print 100

images from the training set and 25 from the test set, and

we capture pictures of them using both cameras, collecting

125 pairs of grayscale and RGB images. We fine-tune the

colorization model with the 100 real data samples, and we

evaluate our proposed approach on the set of 25 test data, in-

cluding both binarized CMOS data and QIS data. In Figure

8, we present qualitative results from the evaluation on the

real data obtained by the CMOS camera. Despite that the

proposed method was not trained with vast real sensor data,

it is able to produce visually pleasing colorized images. We

observe that fine-tuning the model using a small training

dataset significantly improves the colorization quality. We

further present results from the evaluation on images cap-

tured by the QIS camera in Figure 9. These results demon-

strate the potential of the proposed method for real-world

single-photon imaging applications.
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Figure 6. An illustration of burst image colorization for AFHQ

dataset using multiple binary images of varying exposures as in-

put. The colorizer is trained using images of exposure τ =

{0, 4, 8, 10, 14} . An overexposed input image is used to syn-

thesize multiple images of varying exposures and passed to the

colorizer.

Figure 7. Colorized results for CelebA-HQ dataset using various

combinations of exposure correction methods and colorizers. The

results of our method are shown in columns four and five.

4.5. Benefits for Practical Applications

Our methodology is specifically designed with modular-

ity and parameter efficiency in mind, features crucial for

real-world industry applications. The Pix2PixDNI method,

the second-best performing approach, necessitates training

multiple networks and either interpolating model weights

on-the-fly during inference or precomputing and storing

them to generate images with varied exposures. Conversely,

our method circumvents the additional storage requirements

and the need to train multiple model parameters by incorpo-

rating the exposure correction into the neural ODE frame-

work.

Figure 8. Results on real-world images captured from a CMOS

camera (images shown along the row with a red line are colorized

images, and along the green line are the ground-truth images cap-

tured using an RGB CMOS camera).

Figure 9. Colorized output using input from prototype QIS cam-

era.

5. Conclusion

In this work, we proposed a generative exposure correction

approach that can synthesis a spectrum of exposure given a

single 1-bit image. We modeled the binary signal variation

with respect to exposure change as a continuous function

by adapting a small set of parameters of a network, known

as filter atoms, to desired exposure using neural ODE. The-

oretically and empirically, we demonstrated successful re-

covery of bursts of 1-bit images from a single input image,

and we verified its application on single-image-based and

burst-image-based 1-bit image colorization. Experiments

on real CMOS and QIS data further indicated the poten-

tials of the proposed approach on real-world single-photon

imaging applications.
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