
Resolution Limit of Single-Photon LiDAR

Stanley H. Chan†1 Hashan K. Weerasooriya1 Weijian Zhang1 Pamela Abshire2

Istvan Gyongy3 Robert K. Henderson3

1 Purdue University, 2 Univ. Maryland College Park, 3 University of Edinburgh

Abstract

Single-photon Light Detection and Ranging (LiDAR)

systems are often equipped with an array of detectors for

improved spatial resolution and sensing speed. However,

given a fixed amount of flux produced by the laser trans-

mitter across the scene, the per-pixel Signal-to-Noise Ra-

tio (SNR) will decrease when more pixels are packed in a

unit space. This presents a fundamental trade-off between

the spatial resolution of the sensor array and the SNR re-

ceived at each pixel. Theoretical characterization of this

fundamental limit is explored. By deriving the photon ar-

rival statistics and introducing a series of new approxi-

mation techniques, the Mean Squared Error (MSE) of the

maximum-likelihood estimator of the time delay is derived.

The theoretical predictions align well with simulations and

real data.

1. Introduction

Single-photon LiDAR has a wide range of applications in

navigation and object identification [21, 24–26, 30, 32].

By actively illuminating the scene with a laser pulse of a

known shape, we measure the time delays of single pho-

tons upon their return, which correspond to the distance of

the object [4, 19, 36]. The advancement of photo detectors

has significantly improved the resolution of today’s LiDAR

[8, 15, 17, 33, 39–41]. Moreover, algorithms have shown

how to reconstruct both the scene reflectivity and 3D struc-

ture [2, 6, 16, 20, 22, 23, 29, 36, 38, 42, 43].

As an imaging device, a photodetector used in LiDAR

faces similar problems as any other CCD or CMOS pixels.

Packing more pixels into a unit space decreases the SNR be-

cause the amount of photon flux seen by each pixel dimin-

ishes [12]. This fundamental limit is linked to the stochas-

tic nature of the underlying Poisson arrival process of the

photons [11, 37]. Unless noise mitigation schemes are em-

ployed [2, 14, 22, 31], there is a trade-off between the num-

ber of pixels one can pack in a unit space and the SNR we

will observe at each pixel. The situation can be visualized

in Fig. 1, where we highlight the phenomenon that if we

Figure 1. As we pack more pixels in a unit space, we gain the

spatial resolution with a reduction in the SNR. The goal of this

paper is to understand the trade-off between the two factors.

use many small pixels, the spatial resolution is good but the

per pixel noise caused by the random fluctuation of photons

will be high. The bias and variance trade-off will then lead

to a performance curve that tells us how the accuracy of the

depth estimate will behave as we vary the spatial resolution.

The goal of this paper is to rigorously derive the above

phenomenon. In particular, we want to answer the follow-

ing question:

Can we theoretically derive, ideally in closed-form, the

mean squared error of the LiDAR depth estimate as a

function of the number of pixels per unit space?

The theoretical analysis presented in this paper is unique

from several perspectives:

• Beyond Single Pixel. The majority of the computer vi-

25307

2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

2575-7075/24/$31.00 ©2024 IEEE
DOI 10.1109/CVPR52733.2024.02391

20
24

 IE
EE

/C
VF

 C
on

fe
re

nc
e 

on
 C

om
pu

te
r V

isi
on

 a
nd

 P
at

te
rn

 R
ec

og
ni

tio
n 

(C
VP

R)
 |

 9
79

-8
-3

50
3-

53
00

-6
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
OI

: 1
0.

11
09

/C
VP

R5
27

33
.2

02
4.

02
39

1

Authorized licensed use limited to: Purdue University. Downloaded on November 01,2024 at 14:32:57 UTC from IEEE Xplore.  Restrictions apply. 



sion papers in single-photon LiDAR are algorithmic. Few

papers have theoretical derivations, but they all focus on

a single pixel [2, 14, 22, 31], of which the foundation can

be traced back to the original work of Bar-David (1969)

[3]. Our paper departs from these results by generalizing

the mean square estimation to an array of pixels.

• New Proof Techniques. A brute force derivation of the

mean squared error is notoriously difficult. We overcome

the hurdles by introducing a series of new theoretical ap-

proximation techniques in terms of modeling depth, ap-

proximating pixels, and utilizing convolutions.

• Closed-form Results. Under appropriate assumptions

about the scene and sensors, our result has a simple in-

terpretable closed-form expression that provides an excel-

lent match with the practical scenarios in both real-world

and simulated experiments.

2. Background: Photon Arrival Statistics

In this section, we discuss the mathematical preliminaries.

Our result is based on Bar-David [3] which precedes many

of the more recently published work [13, 31, 37]. For no-

tation simplicity, our models are derived in 1D. Moreover,

to make the main text concise, proofs of theorems are pre-

sented in the supplementary material.

2.1. Pulse Model

Let c = 3× 108 [m/s] be the speed of light, and let d(x) be

the distance [m] of the object at coordinate x ∈ R. Hence,

the total time [s] for the pulse to travel forward and then

back is τ(x) = 2d(x)
c . We assume that τ(x) is a continuous-

space function with a continuous amplitude.

The laser pulse is defined as a symmetric time-invarying

function s(t). Given a delay τ , the shifted pulse is s(t− τ).

Example 1. If the pulse is Gaussian, then

s(t− τ) =
1√
2πσ2

t

exp

{
− (t− τ)2

2σ2
t

}

︸ ︷︷ ︸
=N (t | τ,σ2

t
)

, (1)

where σt denotes the standard deviation.

For simplicity, we ignore the boundary conditions by as-

suming that the observation interval (−T, T ) is significantly

larger than the width of the pulse, i.e., σt j T . Moreover,

We assume that the delay τ lies well inside the observation

interval, and the pulse is normalized so that
∫ T

−T

s(t− τ) dt = 1. (2)

As the pulse reaches an object and is reflected back to

the receiver, the received pulse takes the form of

λ(t) = α · s(t− τ) + λb, (3)

In this equation, α denotes the reflectivity of the object. For

simplicity, we assume that α is a constant. The constant

λb ∈ R denotes the background flux due to ambient light.

The energy Q carried by λ(t) is measured by

Q
def
=

∫ T

−T

λ(t) dt = α+ 2Tλb, (4)

Which can be obtained by inserting Eq. (3) into the inte-

grand shown in Eq. (4), and then using Eq. (2) to evaluate

the integral.

2.2. Time of Arrival

Given λ(t), we assume that M number of time stamps are

generated over [−T, T ]. Denote these time stamps as tM =
{tj}Mj=1, where −T f t1 < t2 < . . . < tM f T . The joint

distribution of tM and M is as follows.

Theorem 1 ([3] Joint distribution of M time stamps).

Let tM = {tj}Mj=1 such that −T f t1 < t2 < . . . <
tM f T . For M g 1,

p(tM ,M) = e−Q
M∏

j=1

λ(tj). (5)

The number M is a random variable. The probability

mass function of M can be computed by marginalizing the

joint distribution.

Corollary 1 (Probability of M occurrence). For any

M g 1, the probability that there are M occurrences

is

p(M) =
e−QQM

M !
. (6)

If M = 0, then there is no occurrence in [−T, T ]. In this

case, the probability is defined as

p(t0, 0) = e−Q. (7)

Example 2. Suppose s(t) is a Gaussian pulse and as-

sume that λb = 0 and α = 1. Then,

p(tM ,M) =
e−Q

(
√
2πσ2

t )
M

exp



−

M∑

j=1

(tj − τ)2

2σ2
t



 .

The conditional probability of seeing tM given M can

be obtained by taking the ratio of the joint distribution

p(tM ,M) and p(M), yielding the following result.

p(tM |M) =
p(tM ,M)

p(M)
= Q−MM !

M∏

j=1

λ(tj). (8)
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The other conditional probability of seeing M given tM is

1. Putting these together, we can show that

p(tM ,M) = p(M | tM )p(tM ) = p(tM ). (9)

We can show that the integration of p(tM ,M) over the en-

tire sample space is 1:

Corollary 2 (Probability over the sample space).

∞∑

M=0

∫

ΩM

p(tM ,M) dtM = 1, (10)

where ΩM = {tM | − T f t1 < t2 < . . . tM f T}.

2.3. Sampling from p(tM)

When the pulse is Gaussian, Monte Carlo simulations of the

time stamps can be performed in a two-step process:

• Step 1: Determine the number of samples M . This can

be done by recognizing that the total energy of the pulse

is Q = α + 2Tλb. The total number of samples M is

a Poisson random variable such that M ∼ Poisson(Q).
However, since the two summands of Q are independent,

Raikov theorem states that M can be decomposed into a

sum of two independent Poisson random variables. Thus,

the number of samples is determined based on

Ms ∼ Poisson(α), Mb ∼ Poisson(2Tλb). (11)

We let M = Ms +Mb.

• Step 2: Draw Ms samples from N (t | τ, σ2) and Mb sam-

ples from a uniform distribution of a PDF:

tj |Ms ∼ N (t | τ, σ2), j = 1, . . . ,Ms,

ti |Mb ∼ Uniform(−T, T ), i = 1, . . . ,Mb.

The overall set of samples is tM = {tj}Ms

j=1 ∪ {ti}Mb

i=1.

As we can see, the distribution of the samples is nothing

but the shape of the pulse. This is consistent with the lit-

erature where we draw a random number representing the

height of each histogram bin. In our sampling procedure,

we draw the time stamps without quantizing them into bins.

For pulses of an arbitrary shape, we can perform an inverse

CDF technique outlined in the supplementary material.

2.4. Assumptions For Theoretical Analysis

The goal of this paper is to derive closed-form results. As

such, a series of assumptions are required to minimize the

notational burden. Our assumptions are summarized below:

• We do not assume any dark current. In the supplemen-

tary material, we have a discussion about the dark current

effects.

• We assume that α is a constant. To relax this assumption,

we can replace α with α(x) in the proof. However, the

final equation will involve an integration over α(x).

• Dead-time and Pile-up [7, 13, 14, 27, 28]. We assume

there is no dead-time and hence no pile-up. The empirical

analysis in the supplementary material, however, includes

a case study that involves pile-up effect.

• Self-excitation process. Prior work such as [31] and [13]

use self-excitation process (a variant of the Markov chain)

to model the photon arrivals [37]. While this is accurate,

deriving closed-form expressions is infeasible. Since we

do not assume any dead-time, we follow Bar-David’s in-

homogeneous Poisson process [3] instead.

• Single-bounce and no multiple path. This is a standard

assumption in LiDAR theory.

3. MSE Analysis

3.1. Single­Pixel MSE

To quantify the performance of a LiDAR pixel, we recall

that the decision process involves estimating the delay τ
given the measurements tM . Therefore, we need to specify

the estimation procedure. Based on the estimates, we can

then discuss the performance by evaluating the variance of

the estimate.

Maximum-Likelihood Estimation (MLE). When no

knowledge about τ is known a priori, we use MLE [18, 36].

MLE has been thoroughly exploited in single-depth esti-

mation problems [2]. Given the measured time stamps

tM = [t1, . . . , tM ], we consider the log-likelihood

τ̂ = argmax
τ

L(τ) def
=

M∑

j=1

log [αs(tj − τ) + λb] ,

Since the variable τ in the ML estimation is the time shift,

the optimization can be solved by running a matched filter.

Given the shape s(t), we shift the pulse left and right until

we see the best match with the data. Fig. 2 shows a pictorial

illustration.

0 2 4 6 8 10

time, t

0

0.2

0.4

0.6

0.8

1 Samples

Candidates

Max Likelihood Fit

Figure 2. Matched filter: Given a known pulse shape, we shift the

pulse until it matches with the measured samples.

25309

Authorized licensed use limited to: Purdue University. Downloaded on November 01,2024 at 14:32:57 UTC from IEEE Xplore.  Restrictions apply. 



If τ̂ is the ML estimate, it is necessary that

dL
dτ

∣∣∣∣
τ=τ̂

=

M∑

j=1

αṡ(tj − τ)

αs(tj − τ) + λb

∣∣∣∣∣∣
τ=τ̂

= 0. (12)

This result is used in the implementation. Details can be

found in the supplementary material.

MSE calculation.When τ0 denotes the true time of arrival,

the Taylor expansion of L̇(τ) = dL/dτ will give us

L̇(τ) = L̇(τ0) + (τ − τ0)L̈(τ0) + . . .

Substituting τ = τ̂ , and using the fact that L̇(τ̂) = 0 be-

cause τ̂ is the maximizer, we can show that

0 = L̇(τ̂) = L̇(τ0) + (τ̂ − τ0)L̈(τ0) + . . .

Therefore, the error is τ̂−τ0 ≈ − L̇(τ0)

L̈(τ0)
. By using this result,

the variance of the estimate τ̂ can be shown as follows.

Theorem 2. [1, 3] Let λ(t) = αs(t− τ0) + λb. Then

E[(τ̂ − τ0)
2] =

[∫ T

−T

(αṡ(t))2

αs(t) + λb
dt

]−1

, (13)

where ṡ(t) is the derivative of s with respect to t.

Example 3. In the special case where s(t) =
N (t | τ0, σ2

t ), and assume that λb = 0, we have

E[(τ̂ − τ0)
2] =

[∫ T

−T

(αṡ(t))2

αs(t) + λb
dt

]−1

=




∫
T

−T

(
− t

σ2

t

· α√
2πσ2

t

e
− t

2

2σ2
t

)2

α√
2πσ2

t

e
− t2

2σ2
t

dt




−1

=

[∫ T

−T

t2

σ4
t

α√
2πσ2

t

e
− t

2

2σ2
t dt

]−1

≈
(

α

σ2
t

)−1

=
σ2
t

α
.

The last integration is the second moment of a zero-

mean Gaussian, which will give us σ2
t .

We remark that the per-pixel error calculated in Theo-

rem 2 reaches the equality of the Cramer-Rao lower bound

previously reported in [10, 34, 35]. Thus, no other unbiased

estimator is better than what is reported here.

3.2. Space­Time Model

Continuous λ(x, t). Our resolution-noise trade-off analy-

sis requires a model of an array of pixels. To this end, we

need to generalize from a single time delay τ to a function

of time of arrivals τ(x) where x is the spatial coordinate.

Thus, at every location x, and given the pulse shape s(t),
the ideal return pulse is

λ(x, t) = α · s(t− τ(x)) + λb. (14)

Fig. 3 shows a typical λ(x, t) where the time delay τ(x) is

translated to a space-time signal with a Gaussian pulse at

every x. The discretization of λ(x, t) will play a key role in

our analysis.

Figure 3. The space-time signal λ(x, t) in the unit length 0 ≤ x ≤

1 and time span [0, T ], and its corresponding “effective” returned

pulse λ(x, t) where each individual returned pulse is λn(t).

Observing λ(x, t) through N pixels. Suppose that we al-

locate N pixels in the unit space to measure the returned

time of arrivals. These times of arrivals are generated ac-

cording to the joint distribution specified in Eq. (3). How-

ever, since at the nth pixel the function λ(x, t) occupies the

interval n
N f x f n+1

N , we can define the effective return

pulse λn(t) by absorbing the coordinate x through integra-

tion. Specifically, we define λn(t) as

λn(t) =

∫ n+1
N

n
N

λ(x, t)dx. n = 0, . . . , N − 1 (15)

The resulting space-time approximation of λ(x, t) is thus

a piecewise function

λ(x, t) = N
N−1∑

n=0

λn(t)ϕ(Nx− n), (16)

where ϕ(x) is a boxcar function defined as

ϕ(x) =

{
1, 0 f x f 1,

0, otherwise.
(17)

The definition here is consistent with how the spatial-

oversampled quanta image sensor was defined [9, 44].

Remark 1: Can we approximate τ (x) instead? By look-

ing at Eq. (15), it is tempted to think that we can approxi-

mate τ(x) via a piecewise constant function

τ(x) ≈ τ(x) =

N−1∑

n=0

τnϕ(Nx− n), (18)
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where

τn = N

∫ n+1
N

n
N

τ(x)dx. (19)

This will give us a plausible candidate for λn(t):

λn(t) = αs(t− τn) + λb, n = 0, . . . , N − 1. (20)

However, the problem with this approximation is that phys-

ically it is invalid. As light propagates, the energy carried

by the wave follows the “scattering” process via the super-

position of the electromagnetic field [5]. When energy is

distributed from the source, we need to integrate λ(x, t) and

not τ(x).

3.3. New Approximation Techniques

While Eq. (15) is a physically valid way to perform spatial

discretization, it does not have a simple analytic expression.

For example, when α = 1 and λb = 0, if we plug a Gaus-

sian pulse s(t) = N (t | 0, σ2
t ) into Eq. (15), we will need to

evaluate the integral

λn(t) =

∫ n+1
N

n
N

1√
2πσ2

t

exp

{
− (t− τ(x))2

2σ2
t

}
dx.

Since τ(x) is a function of x, it is impossible to arrive at a

closed-form expression.

Our plan of deriving the theoretical bound involves sev-

eral steps. At the core of our proof technique is the approx-

imation of the boxcar function using a Gaussian kernel, as

illustrated in Fig. 4. If we assume that the pulse is also a

Gaussian, then a convolution of two Gaussians will remain

a Gaussian. This will substantially improve the tractability

of our equations.

Figure 4. Our core proof involves an approximation of the boxcar

kernel by a Gaussian. Doing so will allow us to replace the inte-

gration with a convolution.

Approximation 1: Linearize τ (x). We approximate the

time of arrival function τ(x) by a piecewise linear function.

Suppose that there are N pixels in [0, 1]. We define the mid

point xn of each interval [ nN , n+1
N ] as

xn
def
=

n
N + n+1

N

2
=

2n+ 1

2N
.

Expanding τ(x) around xn will give us

τ(x) ≈ τ(xn)︸ ︷︷ ︸
def
=τn

+ τ ′(xn)︸ ︷︷ ︸
def
=cn

(x− xn),
n
N f x f n+1

N .

(21)

Thus, for the entire 0 f x f 1, τ(x) is approximated by

τ(x) ≈
N−1∑

n=0

[τn + cn(x− xn)]ϕ(Nx− n), (22)

where ϕ is the boxcar function defined in Eq. (17).

Approximation 2: Replace boxcar by Gaussian. The sec-

ond approximation is to give up the boxcar function ϕ(x)
because it does not allow us to derive a closed-form expres-

sion of λn(t). We replace it with a Gaussian φ(x):

φ(x) =
1√
2πσ2

x

exp

{
− x2

2σ2
x

}
= N (x | 0, σ2

x). (23)

However, if we want to approximate a boxcar function

(with width W ) by a Gaussian (with a standard deviation

σx), what should be the relationship between W and σx

so that the approximation is optimized? The answer is

σx = W/
√
12.

Lemma 1. Let ϕ(x) be a boxcar function over the in-

terval [−W
2 , W

2 ] and φ(x) = N (x | 0, σ2
x) be a Gaus-

sian function. The optimal σx that offers the best match

between ϕ(x) and φ(x) is

σx =
W√
12

. (24)

If there are N pixels in [0, 1], then the width of each pixel

is 1/N . This means that ϕ(Nx − n) has a width of 1/N .

Therefore, the standard deviation of the shifted Gaussian

φ(Nx− n) is σx = 1/(
√
12N).

Approximation 3: Replace projection by convolution.

One of the difficulties in Eq. (15) is the integration over the

spatial interval. With the introduction of the Gaussian ker-

nel, we replace the projection step by a spatially invariant

convolution:

λ̃(x, t) = φ(x)» λ(x, t) [previously it was ϕ(x)]

= N (x | 0, σ2
x)» [αN (t | τ(x), σ2

t ) + λb]

= α
(
N (x | 0, σ2

x)»N (t | τ(x), σ2
t )
)
+ λb.

The resulting λn(t) can then be determined as the value of

λ̃(x, t) at the mid point xn of each pixel interval, i.e.,

λn(t) = λ̃(xn, t). (25)

The following theorem summarizes the result of this series

of approximations:
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Theorem 3. Under Approximations 1-3, the effective

return pulse received by the nth pixel is

λn(t) = α · 1√
2πσ2

n

exp

{
− (t− τn)

2

2σ2
n

}
+ λb, (26)

where τn = τ(xn), and σ2
n = c2nσ

2
x + σ2

t .

The biggest difference between Eq. (26) and Eq. (20)

is the standard deviation of the Gaussian. In Eq. (20), the

pulse width is always σt. Thus, the shape of the Gaussian

is never changed no matter which pixel we consider. This

problem is fixed in Eq. (26) where the standard deviation

now depends on three things: (i) the temporal pulse width

σt, (ii) the width of the pixel σx, (iii) the first derivative cn
of the time of arrival function τ(x).

3.4. Derivation of the MSE

Bias-Variance Decomposition. We are now in the position

to derive the overall MSE. The MSE is measured between

the true function τ(x) and the reconstructed function τ̂(x):

MSE(τ̂ , τ)
def
= E

[∫ 1

0

(τ̂(x)− τ(x))2 dx

]
. (27)

In this equation, the reconstructed function τ̂(x) is a piece-

wise constant function defined by

τ̂(x)
def
=

N−1∑

n=0

τ̂nϕ(Nx− n),

where τ̂n is the ML estimate of the time of arrival at the nth

pixel, and ϕ(x) is the boxcar function.

As will be shown in the supplementary material, the

MSE defined Eq. (27) can be decomposed into bias and

variance:

MSE(τ̂ , τ) = ∥τ − τ∥2L2︸ ︷︷ ︸
bias

+ E
[
∥τ̂ − τ∥2L2

]
︸ ︷︷ ︸

variance

.

The bias measures how much resolution will drop when

we use piecewise constant function τ to approximate the

continuous τ . The variance measures the noise fluctuation

caused by the random ML estimate τ̂ .

Main Theoretical Result. The main result is stated in the

theorem below.

Theorem 4 (Overall MSE). The MSE is

MSE(τ̂ , τ) =
c2

12N2︸ ︷︷ ︸
bias

+
N

α0

(
c2σ2

x + σ2
t

)

︸ ︷︷ ︸
variance

. (28)

where c2 = (1/N)
∑N

j=1 c
2
n, and α0 is the total flux of

the scene.

When deriving this main result, we assume that the pulse

is Gaussian and the floor noise λb is zero. We will relax

these assumptions in the supplementary material to consider

more realistic situations.

Significance of Theorem 4. The main result is the first

closed-form expression about the noise-resolution trade-off

that we are aware of. As we will demonstrate in the ex-

periment section, this simple formula matches well with the

Monte Carlo simulation, albeit with minor numerical preci-

sion errors.

The closed-form expression in Theorem 4 offers many

important insights about the behavior of the problem.

• α0: Since α0 is the total flux of the scene, a large α0 will

generate more time stamps which will in turn improve the

variance. α0 has no impact on the bias.

• σt: The pulse width determines the uncertainty of the

time of arrivals, which affects the variance. σt does not

affect the bias because the bias is independent of t.
• c: The slope of τ(x) specifies “how difficult” the scene is.

In the easiest case where the scene is flat so that cn = 0,

the bias term drops to zero. If the slope is large, both bias

and variance will suffer.

• σx: The parameter σx is a modeling constant. σx can be

considered as a proxy to any diffraction limit caused by

the optical system. A large point spread function of the

optics will result in a large σx.

4. Experiments

4.1. Simulated 1D Experiment

We consider multiple 1D ground truth time of arrival func-

tions τ(x) outlined in the supplementary material Sec. 9.

The configurations can be found in Tab 1, also in the sup-

plementary material.

Simulation. During simulation, we construct a space-time

function λ(x, t) with a very fine-grained spatial grid. At

each x in the grid, there is a pulse function s(t − τ(x)).
We integrate λ(x, t) for n

N f x f n+1
N for each inter-

val n to obtain the effective pulse λn(t). M random time

stamps are drawn from the inverse CDF of λn(t), where

M is a Poisson random variable with a rate α0/N . The

M time stamps (per each n) will give us an estimate τ̂n,

which is then used to construct the reconstructed delay pro-

file τ̂(x) =
∑N−1

n=0 τ̂nϕ(Nx−n). We numerically compute

the MSE for this τ̂(x).

Theory. The theoretical prediction follows the equation

MSE(τ̂ , τ) described in Theorem 4. This is a one-line for-

mula.

Result. The result of our experiment is reported in

Fig. 5. As evident from the figure, the theoretical prediction

matches very well with the simulation. The optimal number

of pixels for this particular problem is around N = 64.
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Figure 5. 1D simulation. Comparing simulation and the theoreti-

cally predicted MSE. Note the excellent match between the theory

and the simulation.

4.2. Analysis of Variance

Our second experiment concerns about the validity of the

approximations. Suppose we take a “lazy” route by using

the “cheap” approximation outlined in Eq. (20). Then, un-

der the condition that s(t) is Gaussian and λb = 0, Theo-

rem 2 will give us (via Example 3)

MSE(τ, τ̂) =
c2

12N2︸ ︷︷ ︸
bias

+
N

α0
σ2
t

︸ ︷︷ ︸
variance

. (29)

Compared with Theorem 4, the term c2σ2
x is omitted. For

the particular example shown in Fig. 5, we show in Fig. 6

a side-by-side comparison when the term c2σ2
x is included

and not included. It is clear from the figure that only the one

0 50 100 150 200 250 300

N, number of pixels
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V
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e

numerical

theory, with c
2

x

2

theory, without c
2

x

2

Figure 6. We compare two theoretical bounds: One with c2σ2

x

included (which is our full model), and one with c2σ2

x
missing

(which is the simplified model). Note the excellent match between

the theoretical prediction and the simulation result.
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Figure 7. 2D simulation. Comparing simulation and the theoreti-

cally predicted MSE. Note the excellent match between the theory

and the simulation.

with c2σ2
x included can match with the simulation.

4.3. Simulated 2D Experiment

Simulation. For 2D experiments, we use a ground truth

depth map to generate the true time of arrival signal τ(x).
Then, following a similar procedure outlined for the 1D

case, we generate time stamps according to the required

spatial resolution. For simplicity, we assume that the pulses

are Gaussian, and that there is no noise floor. A piecewise

constant 2D signal is reconstructed and the MSE is calcu-

lated.

Theory. The derivation of the theoretical MSE is outlined

in the supplementary material Sec 14. Summarizing it here,

the MSE is (with N being the number of pixels in one di-

rection)

MSE(τ, τ̂) =
∥c∥2
12N2

+
N2

α0

(
∥c∥2σ2

x + σ2
t

)
, (30)

where ∥c∥2 =
∫
[0,1]2

∥∇τ(x)∥2dx is the average gradient

of the 2D time of arrival function.

Result. The result is outlined in Fig. 7. As we can see, the

theoretical MSE again provides an excellent match with the

simulated MSE.

4.4. Real 2D Experiment

In this experiment we analyze the real SPAD data collected

by a sensor reported in [17]. The indoor scene consists of a

static fan with a flat background, which is flood-illuminated

using a picosecond pulsed laser source (Picoquant LDH se-

ries 670 nm laser diode with 1nJ pulse energy, operated

with 25 MHz repetition rate). An f/4 objective was used in

front of the SPAD, and binary time stamp frames (with a

maximum of a single time stamp per pixel) were captured
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Figure 8. Real 2D experiment using a 192 × 128 SPAD reported in [17]. [Left-Top] ML estimate of the time of arrivals at different

resolutions. As we reduce the spatial resolution of the SPAD, the noise per pixel reduces whereas the resolution becomes worse. [Left-

Bottom] The distribution of ML estimate at the orange location. As we use a larger pixel, the variance of the estimated time of arrival

reduces. [Right] The MSE curve compares the estimate and the pseudo ground truth, and the corresponding theoretical predictions.

Figure 9. Experimental setup to capture the real SPAD data. The

sensor we used here is 192× 128 SPAD developed by Henderson

et al. [17].

with an exposure time of 1 ms per frame. A total of 10,000

time stamps with a timing resolution of 35ps were thereby

collected for each pixel. Pre-processing is performed to re-

move outliers. More descriptions of how this is done can

be found in the supplementary material. The outcomes of

the real 2D experiment are depicted in Fig. 8, whereas the

schematic diagram of the experimental setup is shown in

Fig. 9.

The top row of Fig. 8 shows the estimated depth map at

four different resolutions. The estimation is done using the

ML estimation. The bottom row of Fig. 8 shows the dis-

tribution of the ML estimates. This distribution is obtained

through a bootstrap procedure where we sample with re-

placement M = 3 time stamps to estimate the time, and we

bootstrap for 5, 000 times. The shrinking variance confirms

that as we use fewer pixels, the estimation quality improves.

The right hand side of Fig. 8 shows the theoretically pre-

dicted MSE and the measured MSE. The measured MSE is

obtained by first constructing a pseudo ground truth from all

the 10,000 frames (with pre-processing). We draw M = 3
samples from each pixel, sampled with replacement repeat-

edly 100 times, to compute the MSE.

The result in Fig. 8 does not show a valley. This is be-

cause the optimal N , by taking derivative of Eq. (30), is

N =
(√

α0∥c∥√
12σt

)1/2

. Therefore, if the pulse width is short

so σt is small, it is possible that the optimal N is larger than

the physical resolution of the SPAD. In this case, maximiz-

ing the resolution is the best option.

5. Conclusion

A closed-form expression of the resolution limit for a SPAD

sensor array is presented. It is found that the MSE decreases

when the total amount of flux is high, the scene is smooth,

and the pulse width is small. The MSE demonstrates a U-

shape as a function of the number of pixels N in a unit

space. When the optimal N is beyond the physical reso-

lution of the sensor, no binning would be required. Exten-

sion of the theory to pile-up effects and non-Gaussian pulse

is achievable with numerical integration. Advanced post-

processing can possibly outperform the predicted bound

which is based on ML estimation.
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