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Abstract—We study the impact of model parameter uncer-
tainty on optimally mitigating the spread of epidemics. We
capture the epidemic spreading process using a susceptible-
infected-removed (SIR) epidemic model and consider testing
for isolation as the control strategy. We use a testing strategy
to remove a portion of the infected population. Our goal is to
maintain the infected population below a certain level, while
minimizing the total number of tests. Distinct from existing
works on leveraging control strategies in epidemic spreading,
we propose a testing strategy by overestimating the seriousness
of the epidemic and study the feasibility of the system under
the impact of model parameter uncertainty. Compared to
the optimal testing strategy, we establish that the proposed
strategy under model parameter uncertainty will flatten the
curve effectively but require more tests and a longer time period.

I. INTRODUCTION

Resource allocation for epidemic mitigation is of great
importance for both resource and risk management during
a pandemic. In response to the ongoing COVID-19 pan-
demic, researchers have studied the use of optimal control
formulations [1]–[4]. In addition to optimal control strategies,
researchers leveraged model predictive control frameworks
[5]–[8], and other strategies [9], [10] to generate optimal/sub-
optimal policies for epidemic mitigation. Other works con-
sidering epidemic control and resource allocation include
[11]–[19]. The aforementioned research was established upon
the prior knowledge of the epidemic model parameters.
Nevertheless, works regarding real-time epidemic modeling
and prediction [20]–[22] have shown that it is difficult to
predict the behavior of epidemic spreading processes. Hence,
obtaining accurate epidemic spreading parameters is chal-
lenging when formulating real-time epidemic modeling and
control problems. In this work, we tackle optimal epidemic
control problems under the impact of parameter uncertainties.
We aim to modify the optimal epidemic mitigation strategy
in [23] by leveraging a range of known model parameters
generated by epidemic parameter learning processes instead
of accurate model parameters. We consider a testing-for-
isolation strategy [23], which removes the infected population
from the infected group through uniform random sampling,
i.e., the control input variable. Similar to vaccination strate-
gies that remove the susceptible population from the mixed
group [24], the testing-for-isolation strategy is another widely
adopted method for epidemic mitigation [3], [23].

*Baike She, Shreyas Sundaram, and Philip E. Paré are with the Elmore
Family School of Electrical and Computer Engineering at Purdue University.
E-mails: {bshe, sundara2, philpare}@purdue.edu. Research supported in part
by the C3.ai Digital Transformation Institute sponsored by C3.ai Inc. and
the Microsoft Corporation, and in part by the National Science Foundation,
grants NSF-CMMI #1635014 and NSF-ECCS #2032258.

Epidemic Spreading Process

Optimal Control Strategy

Parameter EstimationControl Input Epidemic States

Epidemic States

Model Parameters

Figure 1: Control Framework

Our main contribution is to propose a testing strategy for
epidemic mitigation under the impact of model uncertain-
ties introduced by real-time epidemic modeling parameter
estimating, and state estimation. Specifically, we bridge the
gap between parameter estimation for epidemic spreading
processes and theoretical analysis of optimal control strate-
gies for epidemic mitigation. Assuming the range of the
model parameters and states are obtained by any given
method, we adapt testing-for-isolation strategies [3], [23] to
study the additional control cost of the parameter and state
uncertainties on the proposed optimal testing policy [23]. We
propose a testing strategy by overestimating the seriousness
of the epidemic to adapt the optimal testing policy under the
ranges of the obtained parameters and states to guarantee the
system feasibility. Further, by comparing the testing cost of
the proposed testing strategy with the optimal testing policy,
we conclude that the proposed testing strategy under the
parameter learning and state estimation processes can flatten
the curve effectively, but will cost more tests and time.

The paper is organized as follows. In Section II, we
introduce the optimal epidemic mitigation problem and the
goal of this work. In Section III, we propose a testing
strategy to study the feasibility of the control problem under
the parameter and state uncertainties. We characterize the
control cost via comparison with the optimal testing strategy
generated under accurate models and states. In Section IV, we
illustrate the proposed control strategy through simulations.
Section V presents the conclusions and future work.

II. PROBLEM FORMULATION

In this section, we introduce the epidemic spreading model
and formulate the optimal epidemic resource allocation for
mitigation problem. Our goal is to propose a potential way
for policy-makers to implement a feedback testing strategy
to mitigate an epidemic. As illustrated by the arrows from
the top and middle blocks to the bottom block in Fig. 1,
we leverage the model parameters and epidemic states with
uncertainties to study the control policy.
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A. Testing for Mitigation
In this subsection, we present the model for the epidemic

control problem. We consider the following closed-loop
Susceptible-Infected-Recovered/Removed (SIR) model:

dS(t)

dt
= −βS(t)I(t), (1a)

dI(t)

dt
= βS(t)I(t)− (γ + u(t))I(t), (1b)

dR(t)

dt
= (γ + u(t))I(t). (1c)

The parameters β and γ represent the transmission rate
and removal rate, respectively, and the control input u(t)
captures testing strategies that isolate/remove u(t) × 100%
of the detected infected population from the infected group,
represented by u(t)I(t). In this work, we assume the removal
rate captures any processes that separate the detected infected
group from the whole population, which include the recovery
process, hospitalization, deaths, etc. We define mitigation
as maintaining the infection level under a certain threshold
through control strategies. Note that when u(t) = 0, the
system in (1) becomes the classic SIR model [25].
B. Optimal Testing Problem

In this subsection, we introduce the optimal control frame-
work. Consider the system formulated in (1). The goal for
the epidemic mitigation problem is to optimally allocate
the testing resources during the pandemic such that the
daily infected population is maintained at/below the desired
infection threshold. In this work, we consider mitigating the
epidemic by minimizing the total number of tests during the
epidemic through the following cost function

J(u(t)) =

ˆ +∞

0

u(t)dt. (2)

In order to obtain the testing-for-isolation strategy that min-
imizes the total number of tests needed during the epidemic
spreading process while ensuring that the fraction of infected
individuals remains below a desired threshold, we formulate
the following optimization problem,

min
u(t),0≤t≤+∞

J(u(t)) (3a)

s.t. ẋ(t) = f(x(t), u(t)), (3b)
0 ≤ I(t) ≤ Ī , u ≤ u(t) ≤ ū, ∀t ∈ [0,+∞), (3c)

where ẋ(t) = f(x(t), u(t)) denotes the closed-loop dynam-
ics in (1). The state constraint Ī describes the infection thresh-
old for the fraction of the infected undetected population. In
addition, the control input constraints u and ū define the
lower and upper bounds on the testing rates, respectively.
C. Goals

In this work, we assume the ranges of the model parame-
ters and states in (1) are given via potential existing real-time
modeling and estimation techniques at any given time t ≥ 0.
We use S(t), I(t), R(t) ∀t ≥ 0 to denote the true susceptible,
infected, and removal states, respectively, while Ŝ(t), Î(t),
R̂(t) ∀t ≥ 0 represent the corresponding estimated states.
Distinct from the true model parameters β and γ, we use
β̂(t) and γ̂(t) ∀t ≥ 0 to represent the estimated parameters
at any given time t ≥ 0. In addition, we assume β̂(t), β ∈

[β̂min(t), β̂max(t)]; γ̂(t), γ ∈ [γ̂min(t), γ̂max(t)]; Ŝ(t), S(t) ∈
[Ŝmin(t), Ŝmax(t)]; and Î(t), I(t) ∈ [Îmin(t), Îmax(t)] ∀t ≥
0. Moreover, we use S∗(t), I∗(t), R∗(t) to represent the true
states under the optimal control strategy u∗(t) ∀t ≥ 0 for the
problem defined in (3).

We focus on the theoretical analysis of the optimal control
for the epidemic mitigation problem defined in (3), under
the impact of the parameter and state uncertainties. We study
optimal control strategies of (3) in order to propose a testing
strategy by leveraging the estimated model parameters and
states. We explore the additional control cost by comparing
the total number of tests generated from the proposed control
strategy with the tests under the optimal testing strategy. We
aim to show the effectiveness of the proposed testing strategy
through overestimating the seriousness of the epidemic under
the existence of parameter and state uncertainties.

III. TESTING FOR EPIDEMIC MITIGATION

We explore the feasibility and additional cost of the
optimal control framework proposed in Fig. 1 in this section.

A. Feasibility and the Optimal Testing Strategy
We first study the optimal control framework in (3) under

accurate model parameters and states. Let t = 0 denote the
very beginning of an epidemic, and tp denote the time when
the infection state reaches the peak value during the epidemic
spreading process, i.e., I(tp) ≥ I(t) ∀t ≥ 0. The following
lemma characterizes the peak value I(tp) in (1).

Lemma 1. Starting from x(ta) = [S(ta) I(ta) R(ta)]
⊤

and u(ta) = u at time ta < tp, if the system in (1) under the
fixed control input u(t) = u reaches a peak infection value
I(tp), we have I(tp) = ρ(ln ρ−1−lnS(ta))+S(ta)+I(ta),
where ρ = γ+u

β .

The proof of Lemma 1 is included in [26]. Lemma 1
calculates the peak infection value I(tp) from any initial
condition x(ta) and u(ta) before tp, under the fixed control
input u(t) = u ∀t ≥ 0. Note that if u = ū = 0, Lemma 1
characterizes the peak infection for the classic SIR model.

Corollary 1. Assume the closed-loop system in (1) starts
from x(ta) = [S(ta) I(ta) R(ta)]

⊤ and u(ta) = u at
time ta. If ∃ tp s.t. I(tp) ≥ I(t) ∀t ≥ ta, the peak infection
value I(tp) will increase as β increases; decrease as γ
increases; and decrease as u increases.

The proof of Corollary 1 is included in [26]. Corollary
1 implies that, under the same initial conditions, the peak
infection value I(tp) will decrease with higher β and/or lower
γ. Further, Corollary 1 states that increasing the lower bound
on the testing rate u will lower the peak infection value.
Hence, if u in (3) is sufficiently high, such that I(tp) ≤ Ī
when u(t) = u ∀t ≥ 0, the optimal control strategy will be
u(t) = u ∀t ≥ 0.

Corollary 2 (Optimal Testing Strategy 1). The optimal
testing strategy for the problem in (3) is u∗(t) = u ∀t ≥ 0,
if I∗(tp) = ρ(ln ρ− 1− lnS∗(0)) + S∗(0) + I∗(0) ≤ Ī .

Corollary 2 is a direct result from Lemma 1 and Corol-
lary 1, thus the proof is omitted. For the optimal control
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problem in (3), if there is no risk for the infection state to
exceed the infection threshold Ī , maintaining the testing at u
is the best way to reduce the cost. For the control framework
in (3), we consider the case when I(tp) > Ī under u(t) = u,
∀t ≥ 0, and develop the following theorem to study the
feasibility of the framework in (3).

Theorem 1. Starting from t = ta ≥ 0, if ∃tb ≥ ta s.t.
I(tb) = Ī for the first time, then the control framework in
(3) is feasible if and only if ∃u(tb) ∈ (u, ū] s.t. u(tb) =
βS(tb)− γ.

The proof of Theorem 1 is included in [26]. In this work,
we study the case that satisfies Theorem 1: the upper bound
on the testing rate ū is sufficiently large such that we can
always find a u(tb) ∈ (u, ū], to satisfy u(tb) = βS(tb) − γ.
Under such condition, the optimal testing strategy is given
by the following proposition, where a∗, a ∈ {S, I,R, tb, th}
represents the state or the time step of the system in (1)
under the optimal control strategy u∗(t). Note that t∗b is the
time step when I∗(t) t ≥ 0 reaches Ī under the optimal
testing strategy u∗(t) for the first time. In addition, t∗h is time
step when the epidemic reaches herd immunity under the
optimal testing strategy u∗(t) for the first time, i.e., dI(t∗h)

dt =

(βS(t∗h)−(γ+u))I(t∗h) = 0. Furthermore, we have dI(t∗h)
dt ≤

0, ∀u(t) ∈ [u, ū], ∀t ≥ t∗h.

Proposition 1 (Optimal Testing Strategy 2). [3, Theorem
1] The optimal testing strategy for the problem in (3) can be
cast into three stages:

1) At the early stage of the epidemic, when I∗(t) < Ī ,
∀t ∈ [0, t∗b), u

∗(t) = u;
2) During the outbreak, starting from I∗(t∗b) = Ī , ∀t ∈

[t∗b , t
∗
h), u

∗(t) = βS∗(t)− γ;
3) When the epidemic reaches herd immunity at t∗h, i.e.,

βS∗(t∗h) = γ + u, ∀t ≥ t∗h, u(t) = u.

The proof of Proposition 1 is the same as the proof of [3,
Theorem 1], although the lower bound on the testing rate is
u = 0 in [3, Theorem 1]. Proposition 1 separates the testing
strategy into three stages via considering the first time when
the infection state reaches Ī , i.e., t∗b , and the herd immunity
time step t∗h as the switching time steps. In the following
subsection, we aim to explore testing strategies under the
guidance of the optimal testing strategy in Proposition 1, with
parameter and state uncertainties.

B. Testing Strategy under Uncertainties

In this subsection, we propose a testing strategy for
the problem in (3) with parameter and state uncertainties
captured by the ranges given in Section II. Recall that we
define X̂(t), X ∈ {S, I,R}, ∀t ≥ 0 as the estimated states.
We use t̂b to denote the time step when the overestimated
state Îmax(t) reaches the infection threshold Ī for the first
time. In addition, we use t̂h to represent the time step when
β̂max(t̂h)Ŝmax(t̂h) = γ̂min(t̂h) + u for the first time, i.e.,
the computed herd immunity time step by overestimating
the epidemic states and spreading parameters. We use û(t)
∀t ≥ 0 to represent the generated testing strategy by lever-

aging the overestimated epidemic spreading process and the
corresponding computed time steps t̂h and t̂b.

Definition 1 (Testing Strategy under Uncertainties). The
testing strategy for the problem in (3) follows the rules:

1) At the early stage of the epidemic, when the overes-
timated infection state is smaller than the infection
threshold Ī , the testing strategy is given by û(t) = u,
∀t ∈ [0, t̂b);

2) From the time step t̂b to the computed herd immunity
time step t̂h, the testing strategy is given by û(t) =
β̂max(t)Ŝmax(t)− γ̂min(t), ∀t ∈ [t̂b, t̂h);

3) Starting from the computed herd immunity time step t̂h,
the testing strategy is given by û(t) = u, ∀t ≥ t̂h.

Definition 1 modifies the optimal testing strategy in Propo-
sition 1 by proposing a testing policy under the given ranges
of estimated parameters and states. Definition 1 implies that
without accurate model parameters and states, if we know the
range of the parameters and states, the testing strategy will
always assume the worst case scenario at any given time
step to generate the testing policy, i.e., to overestimate the
seriousness of the epidemic.

We discuss the feasibility of the system in (1) under the
proposed testing strategy in Definition 1 by first studying the
situation where β̂max(t) = β̂max ≥ β, γ̂min(t) = γ̂min ≤ γ,
∀t ≥ 0, and Ŝ(t) ∈ [S(t), Ŝmax(t)], Î(t) ∈ [Î(t), Îmax(t)]
∀t ≥ 0. This case assumes the estimated ranges of the
parameters are time-invariant. Recall that S∗(t), I∗(t), R∗(t)
denote the system’s trajectories under the optimal testing
strategy u∗(t), ∀t ≥ 0. Similar to the definitions of t∗b and
t∗h, we define t̂b and t̂h as the time steps when Î(t̂b) = Ī
for the first time and u = β̂maxŜ(t̂h) − γ̂min for the first
time, respectively. We plot both trajectories of the system
under the optimal testing strategy u∗(t) and the strategy û(t)
from Definition 1 in Fig. 2, in order to better explain t∗b ,
t∗h, t̂b, and t̂h. Fig. 2 compares the behavior of the epidemic
under the testing strategy in Definition 1 when overestimating
the spreading parameters, with the behavior of the epidemic
under the optimal testing strategy in Proposition 1 when the
true spreading parameters are known. Consider an epidemic
spreading process with β = 0.016 and γ = 0.033. The
infection threshold is set as Ī = 0.01. The lower bound on
the testing rate is ū = 0.03. We use S∗(t), I∗(t), and R∗(t)
t ≥ 0 to represent the states generated by u∗(t) following the
Optimal Testing Strategy 1 in Proposition 1. We use S(t),
I(t), and R(t) t ≥ 0 to denote the true states generated
by û(t), when implementing the testing strategy given in
Definition 1 and leveraging the overestimated spreading
parameters β̂(t) = 1.05β and γ̂(t) = 0.95γ ∀t ≥ 0, and
noisy states Ŝ(t) and Î(t) ∀t ≥ 0. From Definition 1, we
will leverage Fig. 2 to illustrate the following result.

Lemma 2. When β̂(t) = β̂max ≥ β, γ̂(t) = γ̂min ≤ γ,
Ŝ(t) ∈ [S(t), Ŝmax(t)], Î(t) ∈ [Î(t), Îmax(t)], ∀t ≥ 0, the
system in (1) under the control strategy û(t) generated by
leveraging β̂max, γ̂min, Ŝ(t), Î(t) ∀t ≥ 0, from Definition 1 is
feasible. The control strategy satisfies û(t) ≥ u∗(t), ∀t ≥ 0,
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Figure 2: Comparison of Lemma 2 with the Optimal Testing
Strategy. Larger version of the figure is included in [26].

Proof. We compare u∗(t) and û(t) by considering t ∈
[0, t̂b) ∪ [t̂b, t

∗
b ] ∪ [t∗b , t

∗
h] ∪ (t∗h, t̂h] ∪ (t̂h,+∞), where the

chronological order will be demonstrated within the context.
First, we show the system in (1) under the testing policy
û(t) ∀t ≥ 0 is feasible. We analyze the testing strategy by
considering three main testing stages. Recall that the control
framework first switches its testing policy when Î(t̂b) = Ī
(t̂b is the first time when Î(t) reaches Ī , as shown in the
top plot of Fig. 2). Since Î(t) ≥ I(t), ∀t ≥ 0, we have
I∗(t̂b) = I(t̂b) ≤ Î(t̂b) = Ī . Hence, compared to using
the optimal testing policy u∗(t) ∀t ∈ [0, t∗b ], the system, by
leveraging larger estimated infection states, will start to raise
the testing rate away from the lower bound earlier, i.e., at t̂b.
Hence, we have t̂b ≤ t∗b , as illustrated in Fig. 2. In addition, at
the early stage of the epidemic, when Î(t) < Ī , ∀t ∈ [0, t̂b),
we have û(t) = u∗(t) = u, ∀t ∈ [0, t̂b). Then we consider
the time step when Î(t̂b) = Ī . From Definition 1, we have
(βS(t)− (γ+ û(t)) ≤ (β̂maxŜ(t)− (γ̂min + û(t)) = 0. Thus
dI(t)
dt ≤ 0, ∀t ∈ [t̂b, t̂h], where t̂h is the computed herd immu-

nity time step under the condition that Ŝ(t̂h)β̂max−γ̂min = u
(shown in Fig. 2). Hence, the infection state I(t) is non-
increasing under û(t), and I(t) ≤ Ī , ∀t ∈ [t̂b, t̂h]. Lastly,
after reaching the computed herd immunity time step t̂h, from
Definition 1, we have û(t) = u and (βS(t) − (γ + u)) ≤
(β̂maxŜ(t) − (γ̂min + u)) ≤ 0, ∀t ≥ t̂h. Therefore, I(t)
∀t ≥ t̂h will monotonically decrease, and thus cannot reach
Ī again. The trajectories of the optimal states under u∗(t)
and the true states under the testing strategy û(t) ∀t ≥ 0
are shown in Fig. 2. In summary, starting from t = 0, I(t)
cannot exceed Ī under the given control policy û(t) ∀t ≥ 0,
which completes the proof of feasibility.

Now we compare û(t) and u∗(t). Recall at the early stage
of the epidemic, when Î(t) < Ī , ∀t ∈ [0, t̂b), û(t) = u∗(t) =
u. Starting from t̂b, we have û(t) = Ŝ(t)β̂max− γ̂min ≥ u =
u∗(t) ∀t ∈ [t̂b, t

∗
b ]. Note that û(t) is not the optimal control

strategy (but a strategy that ensures the system is feasible) for
the problem defined in (3). Moreover, [3, Lemma 5] states
that, among all the feasible frameworks, the system in (1)
reaches the herd immunity time step t∗h the fastest, under the
optimal testing strategy u∗(t). Hence, we have t̂h ≥ th ≥ t∗h.
Recall that Ŝ(t) and S(t) ∀t ≥ 0 are the estimated susceptible
state and the corresponding true state under the control policy
from Lemma 2, respectively. In addition, th and t̂h are the

time steps when S(th)β−γ = u and Ŝ(t̂h)βmax−γmin = u
under the control policy û(t), respectively. The inequality
t̂h ≥ th implies that when S(th)β − γ = u, the estimated
parameters and states still satisfy Ŝ(th)β̂max − γ̂min ≥ u.
Thus, it will take longer for the system to reach the estimated
herd immunity time step t̂h. Further, the system in (1)
under the optimal control policy u∗(t) will reach the herd
immunity time step t∗h faster (or equal to) the system in (1)
under û(t) (i.e., the estimated herd immunity time t̂h). From
Proposition 1 and Definition 1, u∗(t) = u, ∀t ≥ t∗h, and
û(t) = Ŝ(t)β̂max − γ̂min ≥ u, ∀t ∈ [t∗h, t̂h]. In addition, we
have û(t) = u, ∀t ≥ t̂h, which leads to u = u∗(t) ≤ û(t)
∀t ≥ t∗h, eventually. Lastly, we analyze both testing policies
when t ∈ [t∗b , t

∗
h]. Following the discussion from the fea-

sibility and the fact that the optimal control strategy u∗(t)
maintains I∗(t) = Ī ∀t ∈ [t∗b , t

∗
h], we have I(t) ≤ Ī = I∗(t),

∀t ∈ [t∗b , t
∗
h]. Hence, from the integration of (1a) (dividing

S(t) on both sides): log(S(t)) = log(S(t∗b))−
´ t
t∗b
(βI(τ))dτ ,

if I(t) ≤ Ī = I∗(t), ∀t ∈ [t∗b , t
∗
h], then Ŝ(t) ≥ S(t) ≥ S∗(t),

∀t ∈ [t∗b , t
∗
h] (note that S(t∗b) ≥ S∗(t∗b)). From the fact that

Ŝ(t) ≥ S∗(t), ∀t ∈ [t∗b , t
∗
h], and β̂max ≥ β, γ̂min ≤ γ, we

have û(t) ≥ u∗(t), ∀t ∈ [t∗b , t
∗
h].

Lemma 2 explores the case where the estimated upper
and lower bounds on the parameters β and γ are time-
invariant, and the states are overestimated. Lemma 2 implies
that û(t) = u∗(t) = u, ∀t ∈ [0, t̂b) ∪ [t̂h,+∞). In addition,
compared to u∗(t), the proposed testing policy û(t) from
Lemma 2 starts to raise the testing rate from u earlier,
and switches back to u later. Thus, to compare the cost
between û(t) and the optimal control policy u∗(t), we have
the following lemma.

Lemma 3. The overall cost by leveraging β̂(t) = β̂max ≥
β, γ̂(t) = γ̂min ≤ γ, Ŝ(t) ∈ [S(t), Ŝmax(t)], Î(t) ∈
[Î(t), Îmax(t)] ∀t ≥ 0, is higher than the optimal cost by´ t̂h
t̂b

(β(S(t)− S∗(t)))dt− log(I(t̂h)) + log(I∗(t̂h)).

The proof of Lemma 3 is included in [26]. The difference
between û(t) and u∗(t) is captured by the difference between
the susceptible states S(t) and S∗(t), and the infection states
when the systems reach the computed herd immunity time
step t̂h. Lemma 2 and 3 study one approach to guarantee
the system’s feasibility when knowing the ranges of the
parameters and states. The next result analyzes the testing
strategy given in Definition 1 with possibly time-varying
estimates by leveraging the analysis from Lemma 2 and 3.

Theorem 2. The testing strategy û(t) from Definition 1 by
leveraging β̂max(t), γ̂min(t), Ŝmax(t) and Îmax(t), ∀t ≥ 0
satisfies û(t) ≥ u∗(t) ∀t ≥ 0. Further, the optimality
gap is bounded by

´ t̂h
t̂b

(β(S(t) − S∗(t)))dt − log(I(t̂h)) +

log(I∗(t̂h)), where S(t) and I(t) ∀t ≥ 0 are the true states
generated by using û(t).

The proof of Theorem 2 is included in [26]. Theorem 2
studies the testing strategy proposed in Definition 1. Under
the condition that the ranges of the learned parameters and
estimated states are known, i.e., β̂(t), β ∈ [β̂min(t), β̂max(t)];
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γ̂(t), γ ∈ [γ̂min(t), γ̂max(t)]; Ŝ(t), S(t) ∈ [Ŝmin(t), Ŝmax(t)];
Î(t), I(t) ∈ [Îmin(t), Îmax(t)] ∀t ≥ 0, Definition 1 casts the
testing by overestimating the seriousness of the epidemic at
any given time step. Theorem 2 ensures the system in (1) is
feasible via leveraging Definition 1. Further, Theorem 2 pro-
vides a bound on the testing cost under uncertainties captured
by the ranges of the learned parameters and estimated states.
In addition, Theorem 2 shows that, by leveraging Definition
1, the susceptible state dominates the trajectory of the optimal
susceptible state ∀t ∈ [0, t∗h].

Corollary 3. For any time t up to the herd immunity time
step t∗h, t ∈ [0, t∗h], the cumulative number of people infected
for the optimal testing strategy, I∗(t)+R∗(t), will be greater
than or equal to the cumulative number of people infected
from the proposed testing strategy in Definition 1, I(t)+R(t).

From Lemma 2, 3, Theorem 2, and Corollary 3, we reach
the following conclusions on the testing strategy given below.

Remark 1. When learning and estimation strategies offer
β̂(t) ∈ [β̂min(t), β̂max(t)], γ̂(t) ∈ [γ̂min(t), γ̂max(t)], Ŝ(t) ∈
[Ŝmin(t), Ŝmax(t)], Î(t) ∈ [Îmin(t), Îmax(t)] ∀t ≥ 0, com-
pared to the optimal control strategy given in Proposition 1,
the testing strategy from Definition 1 under uncertainties
captured by the parameter learning and state estimation
process will:

1) Overestimate the seriousness of the epidemic at any
given time step;

2) React earlier to the outbreak and switch back to the
lower bound on the testing rate later;

3) Cost more or the same in terms of testing at each time
t ∀t ≥ 0;

4) Generate fewer or equal total uninfected individuals in
the population at any given time step up to t∗h.

IV. SIMULATION

We now illustrate the proposed testing strategy from Def-
inition 1 via simulations. Consider an epidemic spreading
process in (1) with β = 0.16 and γ = 0.033. The goal is
to minimize the total number of tests during the epidemic
given by (3) while maintaining the infection level under (or
equal to) 1% of the population, i.e. Ī = 0.01. We update
the parameters, states, and testing policies daily, under the
condition that the daily upper and lower bounds on the testing
rates are ū = 15% and u = 3%, respectively. The initial
conditions are I(0) = 0.00001, R(0) = 0, S(0) = 1− I(0).
The observed data sets are corrupted with noise, and the
signal-to-noise ratio is 55dB. From Fig. 1, the observed
data will impact both model parameter estimation and the
computation of the control input. We compare the results via
testing policies given by Proposition 1 and Definition 1.

Besides the optimal testing strategy that leverages the
true parameters and states, we consider two types of testing
strategies. The first testing strategy (Strategy 1) is to leverage
Proposition 1 by considering the noisy data and estimated
parameters as the states and model parameters for policy-
making, respectively. The second testing strategy (Strategy 2)
is to leverage Definition 1, where the ranges of the parameters

and states are given daily. Fig. 3 shows the comparison
between the epidemic dynamics under three testing strategies,
while the parameter estimation process via generalized linear
regression [27] is shown in Fig. 4. From Fig. 4, we find that
the transmission rate β̂(t) is highly underestimated during
the spreading process, which may lead to the underestimation
of the seriousness of the epidemic. Hence, we can compare
the robustness of Strategy 1 and Strategy 2 against model
uncertainties. Note that we use I∗(t), S∗(t) to represent
the system trajectories under the optimal daily testing rate
u∗(t) and the cumulative cost u∗

total(t). Similarly, we use
I1(t) and S1(t) and I2(t), S2(t) to denote the true system
trajectories under Strategy 1: û1(t) and Strategy 2: û2(t),
respectively. Note that the corresponding noisy states (Î1(t),
Ŝ1(t), Î2(t), and Ŝ2(t)) which we leverage for parameter
estimation and control policy generation are not shown in
these plots. We compare the trajectories in Fig. 3. The

Figure 3: Comparison Between Testing Strategies

simulation illustrates that the control system is nearly fea-
sible by leveraging Strategy 2, as demonstrated by I2(t) in
Fig. 3. However, when leveraging the learned parameters
directly (Strategy 1), the system becomes infeasible. As
shown in Fig. 3, the infection state I1(t) is still increasing
after reaching Ī . The cause of this phenomenon is that
when the system starts to change the testing policy from
û1(t) = u to û1(t) = Ŝ1(t)β̂(t) − γ̂(t) at the time step
when Î1(t) ≥ Ī , the highly underestimated transmission
rate β̂(t), shown in Fig. 4, leads to the underestimation of
the seriousness of the epidemic, and the testing rate û1(t).
Further, as illustrated in Fig. 3, û1(t) ≤ u∗(t) during the
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Figure 4: Parameter Estimation

epidemic outbreak, which will generate insufficient testing
resources to maintain the infection level under the infection
threshold Ī . Recall from Lemma 3, the optimal control policy
is the pointwise smallest testing strategy we can leverage to
ensure the system is feasible. Hence, û1(t) ≤ u∗(t) during
the outbreak will lead to the system becoming infeasible.
Regarding the second statement of Remark 1, the simulation
shows that it takes longer for the system under Strategy 2 to
reach the herd immunity, compared to the system under the
optimal testing strategy. The daily testing generated through
Strategy 2 is higher than the optimal daily testing, captured
by û1(t) ≥ u∗(t) ∀t ≥ 0. By comparing the simulated
susceptible states, we see Strategy 2 generates fewer or
equal total uninfected population at any given time step, i.e.,
S1(t) ≥ S∗(t) ∀t ≥ 0, which implies that Strategy 2 will
cause fewer people to be infected over the course of the
outbreak, that is, I∗(t)+R∗(t) ≥ I1(t)+R(t) for all t ≥ 0.

V. CONCLUSION

In this work, we study the impact of uncertainties intro-
duced by parameter learning and state estimation in real-
time optimal epidemic mitigation. We show the effectiveness
of the proposed testing strategy when overestimating the
seriousness of the epidemic under the condition that the
ranges of the parameters and states are known. Compared
to the optimal testing strategy, the proposed strategy can
flatten the curve effectively with more cost in terms of
testing and time. However, we have shown analytically that
the proposed strategy generates fewer or equal cumulative
infected individuals at any given time step up to the optimal
herd immunity point and it appears, via simulations, to be
true for all time. Future work will propose strategies to learn
the parameters and embed the parameter learning techniques
into the proposed testing and isolation framework.
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