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Abstract 17 

Macrophages (MAs), which play vital roles in human immune responses and lipid metabolisms, 18 

are implicated in the development and progression of atherosclerosis, a major contributor to 19 

cardiovascular diseases. Specifically, the abnormal lipid metabolism of oxidized low-density lipids 20 

(oxLDLs) in MAs is believed to be a crucial factor. However, the precise mechanism by which the 21 

MA membrane contributes to this altered lipid metabolism remains unclear. Lipidomic studies 22 

have revealed significant differences in membrane composition between various MA phenotypes. 23 

This study serves to provide and characterize complex realistic computational models for naïve 24 

(M0) and Kdo2-lipid A-activated (M1) state MA. Analyses of surface area per lipid (SA/lip), area 25 

compressibility modulus (KA), carbon-hydrogen order parameter (SCH), electron density profile 26 

(EDP), tilt angles, two-dimension radial distribution functions (2D RDFs), mean squared 27 

displacement (MSD), hydrogen bonds (H-bonds), lipid clustering, and lipid wobble were 28 

conducted for both models. Results indicate that the M1 state MA membrane is more tightly 29 

packed, with increased chain order across lipid species, and forms PSM-DOPG-CHOL and PSM-30 

SLPC-CHOL clusters. Importantly, the bilayer thicknesses reported for the models are in good 31 

agreement with experimental data for the thicknesses of transmembrane regions for MA integral 32 

proteins. These findings validate the described models as physiologically accurate for future 33 

computational studies of MA membranes and their residing proteins.  34 

  35 
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1. Introduction 36 

Macrophages (MAs) are important immune cells that protect the body against pathogens 1, 37 
2. Naïve macrophages can polarize into two phenotypes — the proinflammatory M1 and the anti-38 

inflammatory M2 MAs. Surface proteins are important features that enable cell-cell and cell-39 

substance interactions for these cells, triggering MA polarization and serving as markers for 40 

pathogen recognition by other immune cells 3, 4. In addition to their contribution to immunity, MAs 41 

play a key role in lipid metabolism 5. The uptake of oxidized low-density lipoprotein (oxLDL) by 42 

MA along the cardiovascular vessels leads to foam cell formation and, eventually, the development 43 

of atherosclerotic lesions. Interactions between oxLDL and CD36, a class B scavenger protein, 44 

would trigger the signaling cascades for oxLDL uptake by MA 6. In addition, it is also indicated 45 

that CD36 is capable of transporting fatty acids through its internal tunnel 7. However, the details 46 

of oxLDL uptake and the fatty acid uptake mechanism via CD36 are not fully understood.  47 

Molecular dynamics (MD) simulations have been widely used to investigate the 48 

biophysical properties of target proteins, their substrates, and lipid bilayers with atomic resolution. 49 

Recent studies have utilized MD simulations to study the properties of immune cell plasma 50 

membrane proteins using homogeneous or near homogeneous phosphatidylcholine (PC) or 51 

phosphatidylethanolamine (PE) bilayers for simplicity 8-11. While these studies have provided 52 

valuable insights into the targeted proteins, they may have undermined the contributions of 53 

membrane lipids to protein structures 12. MAs are known to be a highly dynamic population that 54 

adapts to various environments, and their membrane lipid compositions can vary depending on 55 

their activation states 13, 14. Using homogeneous bilayers in MD simulations for protein-bilayer 56 

systems may have overlooked several critical factors, including polar or non-polar interactions, 57 

lipid packing, and bilayer thicknesses, which can vary considerably depending on the membrane 58 

lipid composition. These variations can significantly impact the thickness of the transmembrane 59 

(TM) regions of membrane proteins and can potentially affect the adapted equilibrated protein 60 

conformation. Therefore, it is crucial to consider the membrane lipid composition when 61 

performing MD simulations of protein-bilayer systems to obtain a comprehensive understanding 62 

of their interactions.  63 

MD simulations can offer valuable insights into protein-protein and protein-ligand 64 

interactions by employing bilayer models that mimic realistic lipid compositions. In this study, we 65 

seek to characterize two plasma membrane models of MA — the resting M0 state and the M1 state 66 
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induced by Kdo2-lipid A (KLA) activation, based on Andreyev et al.’s lipidomic study 13. We 67 

performed computational analyses of the models using approximately 500 ns of MD simulations 68 

for each state. Our results demonstrate that in order to gain a comprehensive understanding of the 69 

structure and functions of CD36 and other integral proteins on MAs through MD simulations, it is 70 

imperative to utilize bilayer models that accurately represent real-life lipid compositions due to the 71 

significant chemical and physical differences observed between the two proposed models, as well 72 

as between these models and the simple homogeneous models. 73 

 74 

2. Methods 75 

2.1 Model and System Setup 76 

The models were constructed based on Andreyev et al.’s subcellular organelle lipidomic 77 

study, with data presented as the average lipid compositions of the two leaflets of membrane 78 

bilayers on RAW264.7 macrophages in the M0 and M1 states 13. Asymmetric leaflet compositions 79 

are typical for cellular membranes. However, the models were not perfectly constructed and 80 

assumed symmetric leaflets due to the limited data availability. Despite this limitation, the models 81 

remained reasonable and were able to capture the most significant changes in bulk, providing 82 

valuable insights into lipid interactions within the plasma membrane of MAs.  83 

Each modeled system consisted of 150 lipids per symmetric leaflet with compositions as 84 

detailed in Table 1. The initial composition selection for each model was based on headgroup 85 

abundance (Table S3). Within the chosen headgroup species, specific acyl chains were selected 86 

based on the degree of unsaturation, and the dominant lipids for each degree of unsaturation were 87 

selected in the models (Table S4). Comparing the compositions of the M0 and M1 models, while 88 

the headgroup selections remained unchanged, the lipid species and their respective numbers 89 

varied, reflecting previous findings that the lipidome of MA undergoes significant changes during 90 

different activation states, contributing to the differentiation into specialized populations 13, 14.  91 

The CHARMM-GUI Membrane Builder was used to construct the bilayer systems. For 92 

each model, three independent bilayers with identical compositions were constructed in 93 

rectangular boxes with the compositions in Table 1 15. The bilayers were fully hydrated with at 94 

least 50 water molecules per lipid and neutralized with potassium counterions. At the time of 95 

building the M0 bilayers, the 1-eicosanoyl-2-octadecanoyl-sn-glycero-3-phosphocholine (EOPC) 96 

and plasmalogen phosphatidylethanolamine (20:4/18:0) (PLA20) topologies were not available on 97 
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CHARMM-GUI Membrane Builder. Therefore, 2,3 distearoyl-D-glycero-1-phosphatidylcholine 98 

(DSPC) and 1-stearoyl-2-arachidonyl-phosphatidylethanolamine (SAPE) were mutated to obtain 99 

EOPC and PLA20, respectively, with in-house lipid mutation code using the CHARMM program.  100 

In the M0 model, a minor error occurred during the mutation of SAPE to PLA20 due to 101 

selection errors. As a result, the first and third replicates had 12 and 16 PLA20 on the top and 102 

bottom leaflets, respectively, while the second replicate had a symmetrical PLA20 distribution 103 

with 14 PLA20 on each leaflet. This led to asymmetrical SAPE and PLA20 distributions in two of 104 

the replicates. Despite this, our results indicate that this mistake had minimal impact on the bilayer 105 

behavior.  106 

 107 

Table 1. Number of lipids of the M0 and M1 models per symmetric leaflet by lipid typeα,b 
 M0 M1 Δ Composition 

CHOL 52 53 1.92% 
EOPC (18:0/20:0) 5 — — 
DPPC (16:0/16:0) — 5 — 
SOPC (18:1/18:0) 10 12 20.00% 
SLPC (18:2/18:0) 13 6 -53.58% 
SOPE (18:1/18:0) 11 15 36.36% 
SAPE (20:4/18:0)b 9 8 -11.11% 
SOPS (18:1/18:0) 11 9 -18.18% 
DSPS (18:0/18:0) 3 — — 
SLPS (18:2/18:0) — 2 — 
DOPG (18:1/18:1) 14 10 -28.57% 
PLA20 (20:4/18:0) 14 11 -21.43% 
PLA18 (18:1/18:0) — 11 — 

PSM  8 8 No Change 
α CHOL: cholesterol;  
EOPC: 1-eicosanoyl-2-octadecanoyl-sn-glycero-3-phosphocholine; 
DPPC: 2,3 dipalmitoyl-D-glycero-1-phosphatidylcholine;  
SOPC: 3-stearoyl-2-oleoyl-D-glycero-1-phosphatidylcholine;  
SLPC: 1-stearoyl-2-linoleoyl-phosphatidylcholine;  
SOPE: 1-stearoyl-2-oleoyl-phosphatidylethanolamine;  
SAPE: 1-stearoyl-2-arachidonyl-phosphatidylethanolamine;  
SOPS: 1-Stearoyl-2-Oleoyl-Phosphatidylserine; 
DSPS: 2,3-distearoyl-D-glycero-1-Phosphatidylserine;  
SLPS: 1-Stearoyl-2-Linoleoyl-Phosphatidylserine; 
DOPG: 2,3-dioleoyl-D-glycero-1-phosphatidylglycerol;  
PLA20: plasmalogen phosphatidylethanolamine (20:4/18:0);  
PLA18: plasmalogen phosphatidylethanolamine (18:1/18:0);  
PSM: palmitoylsphingomyelin.  
b Final SAPE composition in each leaflet in the M0 model was not symmetrical (see methods). 
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 108 
Figure 1. Key lipid structures and Bilayer Snapshots. A) The structure, reference atoms for tilt 109 

calculations (blue), and corresponding vectors (red) for CHOL, as well as the chemical structures 110 

of DSPC, EOPC, SAPE, and PLA20. The VMD snapshots of B) M0 macrophage model and C) 111 

M1 state macrophage model at the end of their corresponding simulation. Blue: CHOL; Red: 112 

DOPG; Grey: DSPS; Orange: EOPC; Yellow: PSM; Tan: SAPE; Silver: SLPC; Green: SOPE; 113 

White: SOPS; Pink: DPPC; Cyan: PLA18; Purple: PLA20; Lime: SLPS; Mauve: SOPC.  114 

 115 

 116 
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2.2 Simulation 117 

The Nanoscale Molecular Dynamics (NAMD) program was used in combination with the 118 

CHARMM36 force field and TIP3 water model to carry out a standard CHARMM-GUI Membrane 119 

Builder six-step equilibration and the final production run 16-21. Production runs for the M0 and 120 

M1 model systems were continued for 504 ns and 500 ns, respectively, with timesteps of 2 fs. The 121 

constant-pressure-constant-temperature (NPT) ensemble was used for all simulations. The 122 

physiological temperature of 310 K was maintained using Langevin dynamics while the constant 123 

pressure of 1 bar was maintained using Nosé-Hoover-Langevin piston 22, 23. The Lennard-Jones 124 

potential was used to model the van der Waals interactions with a force-based switching function 125 

with interactions being switched off with a distance between 8 and 12 Å 20. Long-range electrostatic 126 

interactions were calculated using the Particle Mesh Ewald (PME) fast Fourier transform with an 127 

interpolation order of 6 and a direct space tolerance of 10−6.  128 

 129 

2.3 Analysis 130 

The properties of the M0 and M1 bilayer membranes were analyzed based on the last 250 131 

ns of equilibrated simulation data as determined by equilibration analysis (Figure S1). The 132 

analyses conducted include the overall surface area per lipid (SA/lip), component SA/lip for each 133 

lipid type, area compressibility modulus (KA), carbon-hydrogen order parameter (SCH), electron 134 

density profile (EDP), tilt angles, two-dimension radial distribution functions (2D-RDFs), mean 135 

squared displacement (MSD), hydrogen bonds (H-bonds), lipid clustering, and lipid wobble. 136 

Statistical significance was determined by one-way ANOVA with at least p < 0.05 or by non-137 

overlapping 95% confidence intervals.  138 

To obtain the overall SA/lip, the area of the simulation box was divided by the number of 139 

lipids per leaflet. The component SA/lip was calculated using Quickhull 24. Specifically, the X and 140 

Y coordinates of the representative atoms for each lipid were first obtained, with O3 for cholesterol, 141 

C2 for glycerol lipids, and C2S for sphingolipids. Using Quickhull, a Voronoi diagram was 142 

generated for each system, with each polygon representing a representative atom. Component 143 

SA/lip was obtained using the averaged sum of the areas of each representative atom for each lipid 144 

type. With overall SA/lip calculated, the KA was calculated using the following formula:  145 

𝐾𝐾𝐴𝐴 = 𝑘𝑘𝐵𝐵𝑇𝑇<𝐴𝐴>
𝑁𝑁𝜎𝜎2<𝐴𝐴>

                                                              (1) 146 
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where kB, T, <A>, N, and σ<A> are the Boltzmann’s constant, the absolute temperature, the average 147 

overall SA/lip, the number of lipids per leaflet, and the variance of the average SA/lip, respectively.  148 

The carbon-hydrogen order parameters SCH was calculated using the equation below: 149 

𝑆𝑆𝐶𝐶𝐶𝐶 = �< 3
2
𝑐𝑐𝑐𝑐𝑠𝑠2𝜃𝜃 − 1

2
>�                                                      (2) 150 

where θ is the angle between the C-H bond vector and the bilayer normal. Tilt angle distributions 151 

were determined for cholesterol (CHOL). The tilt angle is defined as the angle formed between 152 

the bilayer normal and the vector connecting two representative atoms. The representative atom 153 

pairs used to calculate the tile angle for CHOL were C3-C17 (Figure 1A).  154 

To obtain the EDPs, the bilayers were first repositioned to Z = 0 to obtain a symmetric top-155 

bottom distribution. Electronic densities were then calculated for each atom and combined to get 156 

densities for each lipid and its corresponding functional groups. The EDPs were used to calculate 157 

the overall bilayer thickness (DB), the headgroup-to-headgroup distance (DHH), and the 158 

hydrophobic distance (2DC). DB, DHH, and 2DC were defined as the midpoint distance between the 159 

water EDPs, the distance between the peaks of the total EDPs, and the midpoint distance between 160 

the acryl chain EDPs, respectively.  161 

The 2D-RDFs were calculated using the coordinates of the representative atoms of each 162 

lipid class: O3 for cholesterols, P for glycerol lipids, and NF for sphingolipids. MSD was 163 

calculated based on the average headgroup positions. Displacement was measured based on an 164 

individual lipid’s position across time relative to its starting position. The number of H bonds 165 

formed, both inter- and intra-lipid, were calculated using CHARMM. A donor-acceptor pair was 166 

defined as having a distance less than 2.4 Å and a tilt angle greater than 150°.  167 

Lipid clustering was examined using a Python scikit-learn package with the density-based 168 

spatial clustering of applications with noise (DBSCAN) algorithm 25, 26. The cutoff distance used 169 

was 5.5 Å between headgroups for all lipids, and a cluster was defined as groups with at least three 170 

density-connected lipids.  171 

The wobble or axial motions of the lipid were modeled using the correlation time of cross-172 

chain vectors between C22 and C32 for glycerol phospholipids and C4S and C2F for sphingolipids. 173 

The second-rank reorientational correlational function is calculated for the cross-chain vectors 174 

using the following formula,  175 

𝐶𝐶2(𝑡𝑡) = 〈𝑃𝑃2[𝜇̂𝜇(0) ∙ 𝜇̂𝜇(𝑡𝑡)]〉                                                            (4) 176 
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where 𝐶𝐶2(𝑡𝑡), 𝑃𝑃2, and 𝜇̂𝜇 stands for correlational function, the second Legendre polynomial, and the 177 

cross-chain vector 27. A two-exponential fit (n = 2) was then performed on 𝐶𝐶2(𝑡𝑡) obtained from 178 

the mean of the three independent replicas, excluding the last 1/3 of output data truncated for time 179 

constants. The following custom fit equation was used in MATLAB to obtain the parameters,  180 

𝐶𝐶2(𝑡𝑡) = 𝑎𝑎0 + � 𝑎𝑎𝑖𝑖𝑒𝑒
− 𝑡𝑡𝜏𝜏𝑖𝑖

𝑛𝑛

𝑖𝑖=1
                                                        (4) 181 

 182 

3. Results  183 

3.1 Surface Area Per Lipid & Compressibility Modulus  184 

The organization of lipid bilayer systems can be accessed using the overall SA/lip. By 185 

plotting the overall SA/lip against time, the state of equilibrium of the bilayers can be tracked. 186 

Both M0 and M1 models have reached equilibrium after 250 ns (Figure S1). The average overall 187 

SA/lipid and KA were calculated and shown in Table 3.  188 

 189 

 190 

The KA values for both models were statistically identical, but the overall SA/lip of the M1 191 

model was significantly lower than that of the M0 model, indicating that the M1 model was more 192 

tightly packed. However, this difference was expected not to impact the KA values significantly. It 193 

is well established that the amount of CHOL within bilayer systems would greatly impact these 194 

Table 2. Key characteristics of the M0 and M1 models. 
Model M0 M1 

Net charge -28 -21 
Anionic : Zwitterionic 1 : 3.5 1 : 4.62 

% charged phospholipids 18.67 14.00 
% saturated chains 41.84 47.42 

Table 3. Average SA/lip and KA for M0 and M1 MA modelα and homogeneous POPC and 
POPE models 28 

Model SA/lip ± SE 
(Å2) 

KA ± SE 
(N/m) 

M0 47.06 ± 0.06 0.52 ± 0.03 
M1 46.35 ± 0.07* 0.53 ± 0.04 

POPC 66.00 ± 0.10 0.24 ± 0.01 
POPE 58.70 ± 0.10 0.28 ± 0.02 

αErrors are reported in standard errors (SE) obtained from the triplicates for each model.  
*p < 0.05. 
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two parameters. However, the CHOL content in each model was nearly identical, with CHOL 195 

accounting for 34.7% of the membrane composition for the M0 model and 35.3% for the M1 model, 196 

indicating that the change in SA/lip was likely not due to changes in CHOL behavior (Table 1). 197 

From the lipid composition per leaflet presented in Table 1, we observed an increase in net charge, 198 

a decrease in the percentage of charged phospholipids, and a decrease in the ratio of the number 199 

of the anionic to zwitterionic lipids in the M1 model when compared with the M0 model (Table 200 

2). Further, we also found that the percentage of saturated chains increased from 41.84% in the 201 

M0 model to 47.42% in the M1 model (Table 2). These differences could contribute to the increase 202 

in lipid packing in the M1 model, revealing potential differences in lipid behaviors between the 203 

two models, as discussed later.  204 

When the M0 and M1 models were compared with homogeneous POPC and POPE systems, 205 

the SA/lip was significantly lower in our built models with the corresponding higher KA. This 206 

inverse relationship between SA/lip and KA is expected since tighter-packed bilayers would require 207 

more force for compression. In contrast to the M0 and M1 models, the homogenous models lack 208 

the chemical diversity for energetically favored interactions based on headgroup polarity and 209 

hydrogen bonding capability, causing them to be more loosely packed. 210 

 211 

Table 4. Component SA/lip for all lipidsα 

Lipid M0 
Area (Å2) ± SE 

M1 
Area (Å2) ± SE  

CHOL* 28.77 ± 0.11 28.20 ± 0.03 
PSM** 56.34 ± 0.46 51.31 ± 0.31 
SOPC 57.80 ± 0.43 56.58 ± 0.17 
SLPC 56.52 ± 0.25 56.29 ± 0.44 
SOPE 56.22 ± 0.33 56.03 ± 0.26 
SOPS* 57.25 ± 0.33 55.64 ± 0.04 

DOPG** 58.56 ± 0.19 56.70 ± 0.21 
PLA20 56.84 ± 1.02b 58.21 ± 0.20 

SAPE** 53.38 ± 0.30b 57.06 ± 0.24 
EOPC 57.21 ± 0.48 — 
DSPS 56.07 ± 0.10 — 
DPPC — 55.63 ± 0.14 
SLPS — 55.69 ± 0.33 

PLA18 — 57.51 ± 0.33 
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αErrors are reported in standard errors (SE) obtained from the triplicates for each model.  
bThis comes from replicas that have unequal distribution of SAPE (see methods). 
P-values for the statistical test on area averages of M0 compared to M1 were listed for 
each lipid type and denoted with *p < 0.05 and **p < 0.005. 

 212 

Since each lipid type has unique properties, component SA/lip was investigated to probe 213 

the difference in packing behavior in heterogeneous bilayers (Table 4). Even though the 214 

distributions of SAPE and PLA20 were asymmetric for the M0 model, the calculation for 215 

component SA/lip and any subsequent analyses were done by obtaining the averages of the top 216 

and bottom leaflets, minimizing the effect caused by the asymmetric distribution. The standard 217 

errors of SA/lip for all lipids, except PLA20, in the M0 model were comparable to those in the M1 218 

model, demonstrating that the mutation error had resulted in little impact on the packing behavior 219 

in the M0 model, ensuring the accuracy and validity of the analyses below.  220 

The vast majority of the common lipids across the two models have experienced a decrease 221 

in their corresponding SA/lip, which was in agreement with the observed decrease in the overall 222 

SA/lip above. One-way ANOVA test showed statistically significant decreases in the SA/lip for 223 

CHOL, PSM, SOPS, DOPG, and SAPE in the M1 model, indicating that these lipids have become 224 

more tightly packed and likely have experienced changes in their behaviors within the bilayer. The 225 

SA/lip of SAPE decreased significantly in the M1 model compared to that in the M0 model, while 226 

the SA/lip of CHOL, PSM, SOPS, and DOPG increased. Although the number of CHOL in the 227 

M1 model has increased slightly by 1.9%, its SA/lip has decreased significantly by 1.99%. PSM’s 228 

composition remained constant across the two models, but its SA/lip of PSM decreased by 8.94% 229 

in the M1 model.  230 

SOPC, SLPC, and SOPE have all experienced significant changes in composition in the 231 

two models, but their SA/lip remained statistically indifferent. In contrast, the compositions of 232 

SOPS and DOPG have changed drastically, with a significant decrease of 18.2% and 28.6%, 233 

respectively. In addition, SAPE has experienced a decrease in packing. While PLA20 also 234 

experienced the same pattern, its SA/lip values between the two models were found to be 235 

statistically insignificant due to the large SE found in the M0 model, likely caused by the 236 

asymmetric distribution.  237 

 238 

3.2 C-H Order Parameters 239 
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The degree of order in lipid hydrophobic chains is determined using SCH. A higher SCH 240 

indicates a more ordered system with more ordered chains. Our findings supported the trend of 241 

decreasing SCH with the presence of double bonds in a carbohydrate chain. Except for PSM, SAPE, 242 

and sn-1 chains of SOPC and SOPS, whose SCH were statistically indifferent between the two 243 

models, all other chains were more ordered in the M1 model than the M0 model (Figure S2).  244 

DOPG, SLPC, SOPE, and PLA20 have significantly increased chain orders in both sn-2 245 

and sn-1 chains at C10-C14 and C4-C14, C4-C9 and C4-C16, C5-C14 and C11-C17, C15-C19 246 

and C4-C12, respectively, for each lipid (Figure 2 & S3). The sn-2 chain of SOPC at C16-C17 and 247 

the sn-2 chain of SOPS at C12-C15 also show an increase in chain order (Figure 2 & S3). This 248 

global increase in chain order was likely due to the M1 model being more tightly packed.  249 

Figure 2. SCH’s from DOPG, SLPC, and SOPS. *p < 0.05.  250 

 251 

3.3 Electron Density Profiles & Bilayer Thickness 252 

 The EDP is a measure of the electron probability distribution at being present at specific 253 

locations in the bilayer model. It provides information on the relative positions of the lipid 254 

headgroups with respect to the center of the membrane. Our results matched the expectation that 255 

if the number of a certain lipid species decreases, its corresponding electron density will decrease 256 

with no significant changes in peak patterns (Figure S5 & S6). Considering the average total EDP 257 

of both models, no significant differences were seen for the peak-to-peak distances, indicating that 258 

membrane thickness remained relatively constant across the two models (Figure S4A). This was 259 

confirmed by bilayer thickness calculations, which showed no significant differences in DB, DHH, 260 

and 2DC between the two models (Table 5). While only CHOL and PSM showed slight increases 261 
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in their electron densities, no significant changes were observed for their peak distances, indicating 262 

no significant vertical movements (Figure S4).  263 

 264 

Furthermore, we found that the hydrophobic thicknesses of major MA transmembrane 265 

proteins from the Orientations of Proteins in Membranes (OPM) database largely agree with the 266 

2DC calculated for both M0 and M1 models, except for 2LNL, which has a lower than normal tilt 267 

angle of 19° (Table 6).  268 

 269 

 270 

3.4 Cholesterol Tilt Analysis 271 

The tilt modulus analysis examines the angle between the vector defined for the lipid and 272 

the lipid bilayer normal. The angles can provide insight into the spatial orientations of the lipid 273 

headgroups and acyl chains. A larger angle indicates that the vector is in a less upright position. 274 

CHOL is well known to form lipid rafts, which serve as the structural bases of many 275 

transmembrane proteins by forming a local environment that is highly ordered 30. We found that 276 

the tilt angle of cholesterol is statistically indifferent between the two models, with both exhibiting 277 

the highest probability at a tilt angle of 11° (Figure S7). 278 

 279 

3.5 Radial Distribution Function 280 

2D-RDFs are used to determine the local arrangement of lipids within the bilayer system. 281 

It describes how the densities of a lipid vary as a function of distance from the lipid headgroup of 282 

interest. To investigate how lipid headgroups could influence lipid distributions within the bilayer, 283 

2D-RDFs were generated between all lipid headgroup pairings in our systems (Figure S8 & S9). 284 

Table 5. Calculated membrane thickness of the M0 and M1 macrophage models.  

Model DHH (Å) DB (Å) 2DC (Å) 
M0 46.73 ± 0.27 43.94 ± 0.04 35.55 ± 0.03 
M1 46.47 ± 0.13 44.04 ± 0.10 35.69 ± 0.05 

Table 6. PDB IDs and their reported hydrophobic thickness for transmembrane proteins 
commonly found on macrophages from the OPM database 29.  

PDB ID 5T1A  6DO1 3V2Y 5O9H 3VW7 4IB4 2LNL 

2DC (Å) 32.6  34.2 32.2 35.0 33.4 34.0 30.2 
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Upon analysis, significant differences in the 2D-RDFs were observed for PSM, CHOL, DOPG, 285 

SLPC, SOPC, and SOPC.  286 

In the M1 model, the first two peaks for DOPG-PSM 2D-RDF were stronger than those in 287 

the M0 model, and a leftward shift is observed for the third peak in the M1 model (Figure 4A). 288 

The DOPG-CHOL pair also shows significantly elevated peaks in the M1 model (Figure 4B). 289 

Similar to the DOPG-PSM 2D-RDF, both SLPC-PSM and SLPC-CHOL 2D-RDFs displayed 290 

increased peaks in the M1 model (Figure 4D & 4E). The self 2D-RDFs for both DOPG and SLPC 291 

showed a dramatic decrease, indicating that these lipids were likely shielded by other lipids in the 292 

M1 model (Figure 4C & 4F). The changes for SLPC were unexpected, as even when its 293 

composition in the M1 model was half that of the M0 model, significant increases in the 2D-RDFs 294 

were observed. In addition, compared to those in the M0 model, SLPC-DOPG 2D-RDF showed 295 

similar primary and secondary peaks but a decrease at the radius of ~15 Å before the elevation in 296 

the tertiary peak (Figure 4G).  297 

It was expected that PSM and CHOL would be in closer proximity since they were laterally 298 

closer to DOPG and SLPC in the M1 model. As predicted, we observed a leftward shift in the third 299 

peak of the PSM self 2D-RDF at the radius of ~15 Å (Figure 4H). The CHOL self 2D-RDF also 300 

demonstrated a significant decrease in its primary peak in the M1 model (Figure 4I). Meanwhile, 301 

PSM-CHOL 2D-RDF exhibited reduced secondary and tertiary peaks (Figure S9). These changes 302 

in 2D-RDFs indicate that clusters involving PSM, DOPG, SLPC, and CHOL may have formed in 303 

the M1 model. The changes in the SLPC-DOPG 2D-RDF and the PSM self 2D-RDF suggest that 304 

either PSM is responsible for separating SLPC and DOPG within the cluster of all four lipids, or 305 

that SLPC and DOPG are clustered independently with CHOL and PSM.  306 

Significant changes in 2D-RDF patterns were also observed for SOPC and SOPS between 307 

the two models, indicating an increased association between the two lipids. We observed a slightly 308 

elevated secondary peak and a leftward shift of the tertiary peak for SOPC-SOPS pairs (Figure 4J). 309 

Interestingly, the self 2D-RDFs for SOPS and SOPC exhibit similar changes but in opposite 310 

directions. SOPS self 2D-RDF showed an increase, while SOPC self 2D-RDF showed a decrease 311 

across the peaks (Figure 4K & 4L).  312 

2D-RDFs were also sampled for the PE-CHOL pair and the DOPG-CHOL pair in blocks 313 

of 50 ns to ensure the representativeness of our observations in the M0 and M1 models (Figure 314 

S10). For both pairs in both models, the 2D-RDFs remained reasonably stable and demonstrated 315 
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little-to-no changes in local structure throughout the equilibrium time frame, indicating that our 316 

systems have converged and bilayers were fully relaxed.  317 

 318 

 319 
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Figure 4. Selected 2D-RDFs for the M0 and M1 models. A) DOPG-PSM. B) DOPG-CHOL. 320 

C) DOPG-DOPG. D) SLPC-PSM. E) SLPC-CHOL. F) SLPC-SLPC. G) SLPC-DOPG. H) PSM-321 

PSM. I) CHOL-CHOL. J) SOPC-SOPS. K) SOPS-SOPS. L) SOPC-SOPC.  322 

 323 

3.6 Mean Squared Displacement  324 

To further demonstrate that our bilayer systems were fully relaxed, an essential criterion 325 

for the lipid clustering analysis, MSD analysis was used to assess the lateral diffusion of the lipids 326 

in our bilayers. Albeit the caveats of the lateral diffusion coefficient (Ds) calculated in small 327 

systems due to the influence of periodic boundary conditions and the lack of long-range effects 328 

that allow for direct comparisons with experimental values, it remains appropriate to evaluate the 329 

membrane properties of our models. For all non-CHOL lipids, no statistically significant 330 

difference was found between Ds in the M0 and M1 models (Table 7). Ds calculated by lipid 331 

headgroup showed similar results (Table S5). However, this has further supported our observations 332 

that our bilayers were fully relaxed and reached equilibrium, ensuring that our systems were 333 

suitable for the subsequent lipid clustering analysis.  334 

 335 

3.7 Lipid Clustering 336 

Studying lipid clusters could provide insight into the packing of lipids and can reveal 337 

details about headgroup interactions. In both models, we found that most clusters were formed 338 

with CHOL and PSM, while the fractions of other lipid types in clusters were lower than their 339 

overall composition. From the lipid clustering analysis, we found that the Rc-Rn values were 340 

statistically indifferent for most shared lipids between the two models. However, we observed 341 

significant increases in the Rc-Rn values of DOPG and SLPC, and significant decreases were 342 

observed for those of CHOL and PSM in the M1 model when compared to those for the M0 model, 343 

which matched the observations made for 2D-RDFs (Table 8).  344 

 345 

 346 

 347 

Table 7. Lateral diffusion coefficient (Ds) of all non-CHOL lipids in M0 and M1 models. 
Model M0 M1 

Ds (cm2/s) 4.76 x 10-8 ± 5.56 x 10-9 4.70 x 10-8 ± 3.89 x 10-8 
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Table 8. Differences between the fraction of the lipid in clusters (Rc) and the fraction 
of the lipid in the overall bilayer composition (Rn) for M0 and M1 models (Rc-Rn).  

Lipids M0 ± SE M1± SE 

CHOL** 0.046 ± 0.0016 0.031 ± 0.0014 
DOPG*** -0.020 ± 0.0005 -0.012 ± 0.0006 

PSM* 0.004 ± 0.0002 0.003 ± 0.0002 
SLPC* -0.007 ± 0.0013 -0.002 ± 0.0006 
SOPC -0.004 ± 0.0018 -0.004 ± 0.0014 
SOPS -0.002 ± 0.0007 0 ± 0.0013 
SOPE -0.003 ± 0.0012 -0.004 ± 0.0006 
SAPE -0.004 ± 0.0007 -0.003 ± 0.0004 
PLA20 -0.005 ± 0.0015 -0.003 ± 0.0005 

αErrors are reported in standard errors (SE) obtained from the triplicates for each model. 
Statistical comparisons between M0 and M1 were made, and significant differences were 
denoted with *p < 0.05 **p < 0.005 ***p < 0.0005. 

 348 

The changes in Rc-Rn values for DOPG, CHOL, SLPC, and PSM support the speculation 349 

that the clusters involving these lipids were present in the M1 model (Figure 5A & 5B). The 350 

formation of clusters with CHOL and PSM caused an increase in Rc-Rn for DOPG and SLPC as 351 

they were pulled in and had closer contact with CHOL and PSM. However, this also caused DOPG 352 

and SLPC to be less associated with themselves, resulting in a decrease in their self 2D-RDFs. To 353 

investigate whether the DOPG and SLPC were in the same clusters, we have visualized the clusters 354 

(Figure 5). Upon examination, we found that DOPG and SLPC were in distinct clusters containing 355 

PSM and CHOL. This observation led to our conclusion that while both lipids were clustered with 356 

PSM and CHOL, DOPG and SLPC independently formed clusters with PSM and CHOL, with 357 

little to no co-occurrence within CHOL and PSM-rich regions (Figure 5B). The formation of these 358 

clusters has led to a more tightly packed bilayer, explaining the decrease in SA/lip, thus causing a 359 

subsequent global increase in SCH.  360 

Interestingly, although the 2D-RDF results suggest an increased association between SOPS 361 

and SOPC, no significant changes were observed in the clustering analysis. Upon further 362 

investigation, it was found that most of the SOPC and SOPS were singled out and pushed out of 363 

the clusters formed by other lipids, leading to their increased proximity and interactions with each 364 

other (Figure 5C & 5D). 365 
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  366 
Figure 5. Visual representation of lipid clustering. Clusters involving PSM, DOPG, CHOL, and 367 

SLPC in the M0 (A) and M1 (B) bilayers. Clusters involving SOPC and SOPS in the M0 (C) and 368 

M1 (D) bilayers. Filled: in cluster; Unfilled: not in cluster; Red: CHOL; Green: DOPG; Blue: 369 

PSM; Black: SLPC; Purple: SOPS; Brown: SOPC; Grey: all other lipids.  370 

 371 

3.8 Hydrogen Bonds 372 

Hydrogen bonding plays a crucial role in determining the overall structural organization of 373 

bilayer systems. While intra-lipid H-bonding remained primarily unchanged between the two 374 

models (Figure S11), significant differences were observed in inter-lipid H-bonding, particularly 375 

for SOPC, PLA20, SAPE, SOPE, and SOPS. In the M1 model, a decrease in H-bonding per lipid 376 

with SLPC and DOPG as acceptors was observed for all five lipid types as donors when compared 377 
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to the M0 model. This decrease was likely due to the lower composition of SLPC and DOPG in 378 

the M1 model (Table 9).  379 

The 2D-RDF and lipid clustering revealed the formation of clusters involving PSM, CHOL, 380 

DOPG, and SLPC in the M1 model. The H-bond results also suggest that PDM and CHOL shielded 381 

DOPG and SLPC. Despite the decrease in their compositions in the M1 model, no significant 382 

differences are observed for the number of H-bond per lipid formed with DOPG-DOPG, DOPG-383 

PSM, SLPC-PSM, and SLPC-DOPG donor-acceptor pairs, indicating that SLPC and DOPG 384 

remained energetically favorable for forming such clusters with PSM and CHOL through H bonds.  385 

Interestingly, a decrease in CHOL-DOPG donor-acceptor pairs was also observed, contrary 386 

to the expected increase with the increased proximity between the two. The decrease suggested 387 

that the role of CHOL in interaction with DOPG shifted away from being an H-bond donor. 388 

Additionally, a slight increase in H-bonding events was observed for DOPG-SOPE donor-acceptor 389 

pairs. This increase would contribute to the decrease observed for the SA/lip of DOPG. However, 390 

given that no other results suggested an increased association between the two, this increase in H-391 

bonding could be due to coincidental placements of the two lipids in close proximity to each other 392 

during the membrane-building process using CHARMM.   393 

The H-bond analysis provided insight into factors that contributed to the lowering of free 394 

energy and promoted the formation of energetically favorable clusters. In addition to the 395 

hydrophobic interactions between lipid chains and CHOL, the stabilizing factor for these clusters 396 

was found to be H-bonding events between DOPG, PSM, SLPC, and CHOL. The significant 397 

decreases in H-bonds per CHOL for DOPG and SLPC indicated that the primary role of CHOL in 398 

the M1 state bilayers was to provide structural integrity in the clusters. H-bonds form per lipid for 399 

PSM-CHOL donor-acceptor pairs also decreased slightly but with no statistical significance. A 400 

representative snapshot of the H-bonding formed within the PSM-DOPG-CHOL cluster was 401 

captured using VMD (Figure 6A). In this cluster, H-bonds were observed between O13 of PSM109 402 

and HO3 of DOPG79, OF of PSM109 and HO2 of DOPG79, and OF of PSM109 and H3’ of 403 

CHOL102 (Figure 6D). A representative image was also captured for PSM-SLPC-CHOL clusters 404 

(Figure 6B). In this cluster, H-bonds were formed between O22 of SLPC60 and HNF of PSM48 405 

(Figure 6E). Within these clusters, CHOL mainly served to provide structural integrity of the 406 

microdomains instead of being an H-bond donor.  407 
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The H-bond analysis revealed an increase in the overall H-bonds formed with SOPS in the 408 

M1 model despite a decrease in H-bond formations with DOPG and SLPC. This decrease was 409 

counterbalanced by increased H-bonding between the SOPC-SOPS donor-accepter pairs. Notably, 410 

the role of SOPS as an H-bond acceptor decreased as H-bonds formed between SOPE-SOPS and 411 

PLA20-SOPS donor-acceptor pairs decreased. Based on these observations, it could be inferred 412 

that clustering events would be observed for SOPC and SOPS. However, no significant differences 413 

were observed for their Rc-Rn values (Table 8). It was possible that during the formation of CHOL-414 

DOPG-PSM clusters, SOPC and SOPS were displaced from the CHOL-rich clusters and into 415 

regions of the bilayer that were less ordered, leading to increased interactions between the two. A 416 

representative VMD snapshot of the SOPC and SOPS pair was obtained, and H-bonds identified 417 

between this pair were between HN3 of SOPS241 and O14 of SOPC201, as well as between HN1 418 

of SOPS241 and O32 of SOPC201 (Figure 6C & 6F). 419 

  420 
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Table 9. Number of hydrogen bonds per lipid for lipids shared across the M0 and M1 modelα.  

  Acceptors 
   SOPE SAPEb PLA20b SOPS DOPG PSM SOPC SLPC 

D
on

or
s 

SOPE 
M0 

0.135 0.040 0.087* 0.147* 0.147** 0.016 0.048 0.063* 
± 0.017 ±0.003 ±0.005 ± 0.017 ± 0.003 ± 0.002 ± 0.002 ± 0.007 

M1 
0.135 0.037 0.055* 0.093* 0.079** 0.014 0.057 0.029* 

±0.005 ±0.009 ±0.006 ± 0.007 ± 0.009 ± 0.003 ± 0.005 ± 0.004 
          

SAPE 
M0 

0.135 0.118 0.078 0.135 0.142** 0.018 0.040 0.066* 
± 0.010 ±0.004 ±0.006 ± 0.004 ± 0.011 ± 0.003 ± 0.006 ± 0.006 

M1 
0.135 0.111 0.066 0.142 0.050** 0.017 0.057 0.026* 

± 0.016 ±0.009 ± 0.005 ± 0.018 ± 0.004 ± 0.005 ± 0.012 ± 0.004 
          

PLA20 
M0 

0.135 0.049 0.156 0.136* 0.142** 0.015 0.050 0.066** 
± 0.002 ±0.001 ± 0.010 ± 0.004 ± 0.005 ± 0.000 ± 0.004 ± 0.003 

M1 
0.135 0.048 0.142 0.104* 0.063** 0.011 0.066 0.023** 

± 0.009 ±0.012 ± 0.006 ± 0.014 ± 0.007 ± 0.002 ± 0.004 ± 0.009 
          

SOPS 
M0 

0.079 0.056 0.078 0.196 0.103* 0.007 0.032* 0.048* 
± 0.010 ±0.002 ± 0.010 ± 0.009 ± 0.008 0.002 ± 0.002 ± 0.005 

M1 
0.078 0.061 0.054 0.192 0.046* 0.006 0.048* 0.020* 

± 0.030 ±0.011 ± 0.016 ± 0.054 ± 0.006 ± 0.000 ± 0.005 ± 0.009 
          

DOPG 
M0 0.030* 0.021 0.031 0.027 0.514 0.023 0.029 0.035 

± 0.002 ± 0.001 ± 0.003 ± 0.003 ± 0.003 ± 0.000 ± 0.002 ± 0.007 

M1 0.047* 0.018 0.022 0.026 0.492 0.022 0.030 0.018 
± 0.003 ±0.002 ± 0.004 ± 0.002 ± 0.010 ± 0.003 ± 0.004 ± 0.005 

          

PSM 
M0 

0.014 ± 0.014 0.007 0.037 0.054 0.563 0.026 0.043 
± 0.007 ± 0.000 ± 0.005 ± 0.012 ± 0.009 ± 0.005 ± 0.003 ± 0.013 

M1 
0.019 0.014 0.018 0.021 0.044 0.570 0.017 0.034 

± 0.003 ± 0.005 ± 0.003 ± 0.010 ± 0.011 ± 0.002 ± 0.006 ± 0.004 
          

CHL1 
M0 0.027** 0.021 0.029* 0.025 0.037** 0.023 0.025 0.032** 

± 0.002 ± 0.001 ± 0.002 ± 0.001 ± 0.000 ± 0.002 ± 0.001 ± 0.002 

M1 0.041** 0.018 0.022* 0.021 0.031** 0.019 0.031 0.018** 
± 0.003 ± 0.004 ± 0.005 ± 0.012 ± 0.003 ± 0.002 ± 0.007 ± 0.003 

 
αErrors are reported in standard errors (SE) obtained from the triplicates for each model. 
bThis comes from replicas that have unequal distribution of SAPE (see methods) 
Statistical differences for M0 vs. M1 are denoted with *p < 0.05 **p < 0.005  
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 421 
 422 

Figure 6. Representative VMD snapshots of the CHOL-DOPG-PSM cluster, the PSM-SLPC-423 

CHOL clusters, and SOPC-SOPS pairs. A) Cluster of CHOL, PSM, and DOPG. B) Cluster of 424 

CHOL, PSM, and SLPC. C) SOPC and SOPS pair. Hydrogen bonds between D) PSM, DOPG, 425 

and CHOL in the cluster, E) PSM, SLPC, and CHOL in the cluster, and F) SOPC and SOPS pairs. 426 

Atoms with hydrogen bonding potential were shown in red for oxygen and white for hydrogen. 427 

Red: CHOL; Blue: PSM; Green: DOPG; Black: SLPC; Brown: SOPC; Purple: SOPS; Light blue 428 

dashes: hydrogen bonds.  429 

 430 

3.9 Lipid Wobble Analysis 431 

The lipid wobble analysis enables the investigation of lipid mobility by calculating the 432 

relaxation times for the cross-chain vectors. Using MATLAB, the correlation functions for all 433 
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glycerol lipids and individual lipids, including PSM, DOPG, and SOPE, were fitted to a second-434 

order exponential function (Figure S12 & S13). The relaxation times obtained from the fits were 435 

reported (Table 10). Given the timescale of the study, although the fast relaxation times (τ1) 436 

captured some trend, the intermediate relaxation times (τ2) are of greater interest for analysis.  437 

 438 

Table 10. Average values and 95% confidence levels (CL) of the second-order exponential fit to correlation 
functions of the cross-chain vector of the upper carbons for all glycerol lipids, PSM, DOPG, and SOPEα.  

Relaxation 
Time (ns) Model 

Glycerol Lipids 
  Lipid 
 PSM  DOPG  SOPE 

Average  Average  Average  Average 
95% CI  95% CI  95% CI  95% CI 

τ1 
M0 0.8275  2.791*  0.8256*  0.1876* 

(0.8018, 0.8532)  (2.615, 2.967)  (0.7932, 0.8581)  (0.1806, 0.1927) 

M1 0.8599  1.402*  0.6548*  0.94* 
(0.8307, 0.8890)   (1.291, 1.513)   (0.6227, 0.6869)   (0.8851, 0.9949) 

τ2 
M0 

14.05  29.67*  14.14*  15.03 
(13.92, 14.19)  (29.10, 30.24)  (13.97, 14.31)  (14.59, 15.47) 

M1 
14.1  25.28*  13.52*  15.2 

(13.94, 14.25)  (24.86, 25.70)  (13.36, 13.69)  (14.89, 15.51) 
αErrors are reported in standard errors (SE) obtained from the triplicates for each model. 
* Non-overlapping 95% CL for M0 vs. M1 

 439 

The relaxation times for all glycerol lipids and sphingolipids were assessed separately due 440 

to differences in atom naming in CHARMM topology. As glycerol lipids were dominant in both 441 

M0 and M1 models, the relaxation times of the glycerol lipids in these models may serve as an 442 

approximate value for overall bilayer relaxation times. Statistical analysis revealed no significant 443 

difference between the bilayer relaxation times of the two models.  444 

However, statistical differences were found for individual lipids. Although no significant 445 

differences are observed in SOPE, a control lipid, between the M0 and M1 models, the τ2 of PSM 446 

and DOPG were significantly decreased in the M1 model. In the M1 model, PSM and CHOL were 447 

found to form clusters with DOPG. As PSM and DOPG were present in clusters where lipid 448 

mobility was limited and acyl chain movements were restrained, their relaxation times became 449 

shorter. 450 

 451 

 452 
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4. Discussion  453 

In this study, we have observed significant differences in the chemical and physical 454 

properties of MA plasma membranes between M0 and M1 states, indicating that changes in plasma 455 

membrane composition play an important role in modulating MA functions under various 456 

conditions.  457 

4.1 The need for realistic models 458 

The orientation of transmembrane regions of integral proteins can be influenced by the tilt 459 

angles of CHOL, which is not considered in homogeneous lipid bilayer models. It has been shown 460 

that for DPPC systems, the inclusion of sterols, such as CHOL and ergosterol, can significantly 461 

affect the tilt angle of sterols in a concentration-dependent manner and subsequently impact the 462 

chain tilt and chain order of neighboring DPPC lipids 31. Therefore, simple homogeneous or 463 

heterogeneous glycerol phospholipid models may not fully capture the structural and functional 464 

detailed interactions between the membrane and the transmembrane regions of proteins. Moreover, 465 

in the context of MAs, many crucial proteins, such as those involved in cytokine recognition, 466 

inflammatory activation, and substance transportation, are localized in CHOL-rich lipid rafts 32-34. 467 

Thus, CHOL should be included in the lipid systems used for protein docking studies to better 468 

understand macrophage integral proteins using computational methods. As computational power 469 

advances and bilayer models grow in complexity, representing the composition of realistic 470 

membranes, the bilayers used for in silico studies would closely mimic membrane behaviors under 471 

in vitro, in vivo, or ex vivo conditions.  472 

In addition, realistic membrane models would benefit in silico studies on lipid-protein 473 

interactions and have a broader implication for studies investigating the biological appropriateness 474 

of bioengineered exogenous agents. Luo et al. used MD simulations to probe the potential 475 

interactions between two-dimensional (2D) nanomaterials and MA plasma membranes with 476 

homogeneous POPC bilayers 35. Later, improved from the homogeneous PC model, Gu et al. 477 

employed a more realistic human monocyte bilayer that lacks chain diversity to investigate the 478 

molecular mechanism of PEGylated molybdenum disulfide-induced macrophage immune 479 

response 36. The trend of applying realistic membrane models in in silico studies has stressed the 480 

need for realistic cell type- and state-specific bilayer models to better probe the mechanistic details 481 

of the interactions of interest. This has further demonstrated the importance of this work in 482 



 Niu and Klauda, 25 

providing a starting point for those who aim to study and compare interactions across MA 483 

phenotypes. 484 

 485 

4.2 Validity of our models 486 

As Silva Filho et al. and Chakraborty et al. had examined, MAs possess negative surface 487 

charges regardless of their phenotype 37, 38. At the same time, the activated MAs should have a 488 

more negative surface charge than the naïve MAs. Similarly, in our models constructed based on 489 

the lipidomic analysis for M0 and M1 MAs by Andreyev et al., both our M0 and M1 models have 490 

net negative charges (Table 2). However, the charge for the M0 model was more negative than the 491 

M1 model. At first glance, this might conflict with the published literature. A clear distinction of 492 

what contributes to the negative surface charge is needed in this case. Upon further examination, 493 

the net negative surface charges of MAs and the changes in surface charges observed for activated 494 

MAs are contributed mainly by the changes in the number of sialic acid residues on the plasma 495 

membrane and by the changes in the electrostatic distribution on the extracellular regions of MA 496 

surface proteins 37, 38. Montenegro Burke et al. and Morgan et al. both profiled the lipids of MAs 497 

under different states. However, both studies employed a bulk approach and did not isolate and 498 

analyze the lipid profile of each cell organelle 39, 40. Andreyev et al.’s lipidomic study that this 499 

work is based on remains to be the only study available that has conducted a thorough and detailed 500 

profiling of lipids present in different organelles of M0 and M1 state RAW 256.9 cells, a common 501 

MA cell line of mouse origin 13. Therefore, whether the lipid composition on plasma membranes 502 

of MAs contributes to the changes in the net surface charge remains unclear due to the lack of 503 

available literature investigating the lipid compositions of various cell compartments of MAs. 504 

Nevertheless, Andreyev et al. have presented one possibility that the lipids did not play a 505 

significant role in contributing to the negative surface charges but contributed by assisting the 506 

assembly of proteins with negative surface charges and presenting negatively charged residues on 507 

MA surfaces. 508 

One well-known feature of plasma membranes is the lipid composition asymmetry between 509 

the intra- and extracellular leaflets. Verkleij et al. were one of the first to put forward this concept, 510 

where they found that more SM and PC lipids were found on the extracellular leaflet, more PE 511 

lipids were located on the intracellular leaflet, and PS lipids were almost exclusively present in the 512 

intracellular leaflet 41. Our proposed M0 and M1 MA plasma membrane models were constructed 513 
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based on the assumption that bilayers have symmetric lipid composition. With this assumption, 514 

one might question whether the observations made from the clustering analysis have any biological 515 

significance. PG lipids, while being a major lipid on bacterial membranes, only comprise 1-2% of 516 

phospholipids found in mammalian cells 42. Because PG is a minority anionic lipid, little is known 517 

about its distributions on the two leaflets. While negatively charged lipids tend to reside on the 518 

intracellular leaflet, SM and CHOL are present in both leaflets. Therefore, our observation of 519 

clusters involving DOPG, PSM, and CHOL represents a possibility that PG might play some role 520 

in facilitating the functions of the M1 state MAs.  521 

A comparative study done by van Duyl et al. has demonstrated that CHOL has a greater 522 

tendency to interact with sphingolipids than with phospholipids, revealing the role of CHOL-PSM 523 

interactions in the context of lipid rafts 43. The study is supported by Lönnfors et al., which 524 

demonstrated that sterols, specifically CHOL, have a higher affinity for sphingolipids than 525 

phospholipids when bilayers contain only CHOL and SM or CHOL and PC, while no significant 526 

differences were reported for bilayer acyl-chain orders in these systems 44. These findings are 527 

further supported by Bera et al.’s in silico study, which demonstrated that the introduction of POPC 528 

or POPE into systems containing PSM and CHOL resulted in decreased lipid axial relaxation time 529 

and increased formation of PSM-CHOL clusters 45. It suggested that the decreased relaxation time 530 

was due to the preferential interaction between CHOL and PSM. In our models with diverse lipid 531 

profiles, we observed that the relaxation times for PSM in both models have further decreased to 532 

around 30 ns, whereas systems containing only PSM or PSM and CHOL would have relaxation 533 

times that are approximately 3-5 times higher depending on their relative concentrations and 534 

system temperature. 535 

In sum, the observations made for our models are in agreement with findings from relevant 536 

in vitro and in silico studies. With the evidence drawn from the similarity found between the 537 

hydrophobic thicknesses of our models and the common MA integral proteins, it is reasonable to 538 

conclude that our proposed models are biologically representative and suitable for future in silico 539 

studies. 540 

 541 

4.3 Applicability of our models 542 

MAs are known to be highly diverse, consisting of many subsets. Previous studies have 543 

shown that the sensitivity of these subsets towards the inflammatory environment can be 544 



 Niu and Klauda, 27 

influenced by the internalization of exogenous lipids and incorporation of these lipids into 545 

macrophage plasma membranes 40, 46-48. It can be inferred that such modification would further 546 

promote macrophage subset differentiation and change the sensitivity of the cells to a local 547 

environment through alterations in lipid compositions on the plasma membrane. Such alterations 548 

would most likely impact the composition of the lipid rafts, where important proteins of 549 

macrophages are reported to be located 32-34. In our study, we probed the presence of lipid rafts 550 

through the lipid clustering analysis on a nanometer scale. After KLA activation of M0 MAs, we 551 

observed an increase in clusters involving DOPG or SLPC with PSM and CHOL when they 552 

entered the M1 state for proinflammatory actions. Because of the increased DOPG involvement, 553 

the clusters formed were more negative in the M1 state than those in the M0 state. Together, our 554 

observations suggested that these lipids might play a role in regulating the M1 subsets by 555 

constructing local environments that are energetically favorable for certain transmembrane 556 

proteins. 557 

Previous research by Rubio et al. has demonstrated that ethanolamine plasmalogens are 558 

important for facilitating MA phagocytosis 49. The findings showed that MAs with plasmalogen 559 

deficiency exhibited reduced phagocytic activity, but when supplemented with exogenous 560 

plasmalogen, their phagocytic activity was significantly improved, along with increased lipid raft 561 

formation. The lipidomic study conducted by Andreyev et al. showed that the KLA-activated M1 562 

state macrophage has increased ether-linked phospholipids, particularly the ether-linked 563 

phosphatidyl ethanolamine subclass 13. However, the clustering analysis for our models did not 564 

observe increased clustering for PLA20, partly due to the asymmetric distribution of PLA20 in the 565 

M0 model. The three phenotypes of MA demonstrate various levels of phagocytic activities, with 566 

M2 MAs having the highest phagocytic activity, M1 MAs possessing a modest phagocytic activity, 567 

and M0 MAs being the least active in phagocytosis 50-52. Therefore, it may be challenging to 568 

observe the contribution of plasmalogens to lipid clustering when comparing M0 and M1 state 569 

MAs. Nonetheless, West et al. have validated the plasmalogen force field parameters in 570 

CHARMM36 all-atom force field for PLA18 and have demonstrated that the incorporation of 571 

plasmalogens into POPC bilayers increases bilayer thickness and tail orders, indicating the ability 572 

of plasmalogens to contribute to lipid clustering 19. 573 

Furthermore, Petkevicius et al. have previously reported a linkage between PC metabolism 574 

and pro-inflammation activation of MAs 53. In particular, MAs deficient in the rate-limiting 575 
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enzyme in the de novo PC biosynthesis pathway, phosphocholine cytidylyltransferase A (CCTα), 576 

have shown decreased membrane PC turnover and significantly reduced proinflammatory activity 577 

in response to palmitate, highlighting the critical role of PC in the proinflammatory actions of MAs. 578 

Our findings showed an increase in clusters involving PSM, SLPC, and CHOL, even when the 579 

number of SLPC in the M1 model was reduced to half of that in the M0 model. This observation 580 

underscores the importance of such microdomains and indirectly supports the role of PC 581 

metabolism in guiding the proinflammatory actions of macrophages. 582 

Gaus et al. conducted a study investigating the lipid profiles of the raft and non-raft regions 583 

on the MA plasma membrane of THP-1 cells, a human-origin monocyte cell line 54. They have 584 

observed more SM lipids present in raft regions and non-raft regions. Further, authors have found 585 

that SM contents are still higher in raft regions for cells treated with sphingomyelinase, partially 586 

depleting the SM content on membranes. In summary, our observations of clusters involving PSM 587 

match the observations made in vivo, further supporting the applicability of our models. 588 

 589 

4.4 Future directions 590 

One important aspect of our model that is in need of improvement is the consideration of 591 

the asymmetry of our bilayers. The differential lipid composition between the intra- and 592 

extracellular leaflets could serve important functions and provide important indicators of cell 593 

conditions. Our proposed models were constructed based on the assumption that the bilayers have 594 

symmetric leaflets due to the limited data available on the lipid profiles of the MA plasma 595 

membrane by leaflet. Further, the limited data availability has grounded our work to compare only 596 

between M0 and M1 state MAs, excluding the anti-inflammatory M2 state MA. This calls for 597 

future lipidomic studies on plasma membranes of the different states of mouse-derived MA cell 598 

lines, human-origin MA cell lines, or primary human monocytes. These studies profiling the 599 

plasma membrane of MAs in various states and detailing the asymmetry of their membranes could 600 

significantly improve our understanding of this subject and facilitate the development of accurate 601 

plasma membrane models of future in silico research involving MAs.  602 

In this work, the term “realistic” is narrowly defined where the composition of the bilayer 603 

models mirrors that of living cells, and these bilayers should possess similar properties to the 604 

plasma membranes of living cells. Homogeneous PC or PE bilayers are the most commonly used 605 

for protein structural-functional in silico studies. As demonstrated in this work, this approach has 606 
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overlooked the physical and chemical diversities of membrane lipids. It is reasonable to conclude 607 

that potential lipid-protein interactions that might be important for protein anchoring or 608 

functioning remain understudied. Future work should aim to broaden the definition of “realistic” 609 

so that these dynamic cellular events can be produced and studied in such in silico models. Beyond 610 

constructing realistic bilayer models based on lipidomes available, we shall seek applications of 611 

such models with the incorporation of membrane proteins to mimic the actual membrane 612 

environments. The continuous improvements of force fields and developments in computational 613 

algorithms would further facilitate the efforts to mirror what happens in living cells in a 614 

computational space, with the potential to reveal key interactions and help identify novel targets 615 

for therapeutics.  616 

 617 

5. Conclusion  618 

The M0 and M1 models in this study represent a step toward developing accurate MA 619 

membrane models. More complex models are needed to accurately reflect the bilayer properties, 620 

including but not limited to membrane asymmetry, lipid flip-flop, and incorporation of membrane 621 

proteins. Additionally, given the dynamic nature of MAs, distinct MA subsets may exhibit unique 622 

bilayer features that are currently beyond our ability to model. Nonetheless, considering the 623 

support from previous in vitro and in silico studies, our models are reasonably physiologically 624 

accurate and can serve as a basis for future computational studies investigating the characteristics 625 

of the MA plasma membrane and its integral proteins. 626 
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