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Abstract
Macrophages (MAs), which play vital roles in human immune responses and lipid metabolisms,
are implicated in the development and progression of atherosclerosis, a major contributor to
cardiovascular diseases. Specifically, the abnormal lipid metabolism of oxidized low-density lipids
(oxLDLs) in MAs is believed to be a crucial factor. However, the precise mechanism by which the
MA membrane contributes to this altered lipid metabolism remains unclear. Lipidomic studies
have revealed significant differences in membrane composition between various MA phenotypes.
This study serves to provide and characterize complex realistic computational models for naive
(MO) and Kdo2-lipid A-activated (M1) state MA. Analyses of surface area per lipid (SA/lip), area
compressibility modulus (K4), carbon-hydrogen order parameter (Scu), electron density profile
(EDP), tilt angles, two-dimension radial distribution functions (2D RDFs), mean squared
displacement (MSD), hydrogen bonds (H-bonds), lipid clustering, and lipid wobble were
conducted for both models. Results indicate that the M1 state MA membrane is more tightly
packed, with increased chain order across lipid species, and forms PSM-DOPG-CHOL and PSM-
SLPC-CHOL clusters. Importantly, the bilayer thicknesses reported for the models are in good
agreement with experimental data for the thicknesses of transmembrane regions for MA integral
proteins. These findings validate the described models as physiologically accurate for future

computational studies of MA membranes and their residing proteins.
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1. Introduction

Macrophages (MAs) are important immune cells that protect the body against pathogens "
2. Naive macrophages can polarize into two phenotypes — the proinflammatory M1 and the anti-
inflammatory M2 MAs. Surface proteins are important features that enable cell-cell and cell-
substance interactions for these cells, triggering MA polarization and serving as markers for
pathogen recognition by other immune cells *“. In addition to their contribution to immunity, MAs
play a key role in lipid metabolism °. The uptake of oxidized low-density lipoprotein (0oxLDL) by
MA along the cardiovascular vessels leads to foam cell formation and, eventually, the development
of atherosclerotic lesions. Interactions between oxLDL and CD36, a class B scavenger protein,
would trigger the signaling cascades for oxLDL uptake by MA °. In addition, it is also indicated
that CD36 is capable of transporting fatty acids through its internal tunnel 7. However, the details
of oxLDL uptake and the fatty acid uptake mechanism via CD36 are not fully understood.

Molecular dynamics (MD) simulations have been widely used to investigate the
biophysical properties of target proteins, their substrates, and lipid bilayers with atomic resolution.
Recent studies have utilized MD simulations to study the properties of immune cell plasma
membrane proteins using homogeneous or near homogeneous phosphatidylcholine (PC) or
phosphatidylethanolamine (PE) bilayers for simplicity ®!!. While these studies have provided
valuable insights into the targeted proteins, they may have undermined the contributions of
membrane lipids to protein structures '2. MAs are known to be a highly dynamic population that
adapts to various environments, and their membrane lipid compositions can vary depending on
their activation states '* 4. Using homogeneous bilayers in MD simulations for protein-bilayer
systems may have overlooked several critical factors, including polar or non-polar interactions,
lipid packing, and bilayer thicknesses, which can vary considerably depending on the membrane
lipid composition. These variations can significantly impact the thickness of the transmembrane
(TM) regions of membrane proteins and can potentially affect the adapted equilibrated protein
conformation. Therefore, it is crucial to consider the membrane lipid composition when
performing MD simulations of protein-bilayer systems to obtain a comprehensive understanding
of their interactions.

MD simulations can offer valuable insights into protein-protein and protein-ligand
interactions by employing bilayer models that mimic realistic lipid compositions. In this study, we

seek to characterize two plasma membrane models of MA — the resting MO state and the M1 state
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induced by Kdoz-lipid A (KLA) activation, based on Andreyev et al.’s lipidomic study 3. We
performed computational analyses of the models using approximately 500 ns of MD simulations
for each state. Our results demonstrate that in order to gain a comprehensive understanding of the
structure and functions of CD36 and other integral proteins on MAs through MD simulations, it is
imperative to utilize bilayer models that accurately represent real-life lipid compositions due to the
significant chemical and physical differences observed between the two proposed models, as well

as between these models and the simple homogeneous models.

2. Methods
2.1 Model and System Setup

The models were constructed based on Andreyev et al.’s subcellular organelle lipidomic
study, with data presented as the average lipid compositions of the two leaflets of membrane
bilayers on RAW264.7 macrophages in the MO and M1 states '*. Asymmetric leaflet compositions
are typical for cellular membranes. However, the models were not perfectly constructed and
assumed symmetric leaflets due to the limited data availability. Despite this limitation, the models
remained reasonable and were able to capture the most significant changes in bulk, providing
valuable insights into lipid interactions within the plasma membrane of MAs.

Each modeled system consisted of 150 lipids per symmetric leaflet with compositions as
detailed in Table 1. The initial composition selection for each model was based on headgroup
abundance (Table S3). Within the chosen headgroup species, specific acyl chains were selected
based on the degree of unsaturation, and the dominant lipids for each degree of unsaturation were
selected in the models (Table S4). Comparing the compositions of the MO and M1 models, while
the headgroup selections remained unchanged, the lipid species and their respective numbers
varied, reflecting previous findings that the lipidome of MA undergoes significant changes during
different activation states, contributing to the differentiation into specialized populations '* 4,

The CHARMM-GUI Membrane Builder was used to construct the bilayer systems. For
each model, three independent bilayers with identical compositions were constructed in
rectangular boxes with the compositions in Table 1 !°. The bilayers were fully hydrated with at
least 50 water molecules per lipid and neutralized with potassium counterions. At the time of
building the MO bilayers, the 1-eicosanoyl-2-octadecanoyl-sn-glycero-3-phosphocholine (EOPC)
and plasmalogen phosphatidylethanolamine (20:4/18:0) (PLA20) topologies were not available on
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CHARMM-GUI Membrane Builder. Therefore, 2,3 distearoyl-D-glycero-1-phosphatidylcholine

(DSPC) and 1-stearoyl-2-arachidonyl-phosphatidylethanolamine (SAPE) were mutated to obtain

EOPC and PLA20, respectively, with in-house lipid mutation code using the CHARMM program.

In the MO model, a minor error occurred during the mutation of SAPE to PLA20 due to

selection errors. As a result, the first and third replicates had 12 and 16 PLA20 on the top and

bottom leaflets, respectively, while the second replicate had a symmetrical PLA20 distribution

with 14 PLA20 on each leaflet. This led to asymmetrical SAPE and PLA20 distributions in two of

the replicates. Despite this, our results indicate that this mistake had minimal impact on the bilayer

behavior.

Table 1. Number of lipids of the M0 and M1 models per symmetric leaflet by lipid type®*®

Mo M1 A Composition

CHOL 52 53 1.92%
EOPC (18:0/20:0) 5 — —
DPPC (16:0/16:0) — 5 —
SOPC (18:1/18:0) 10 12 20.00%
SLPC (18:2/18:0) 13 6 -53.58%
SOPE (18:1/18:0) 11 15 36.36%
SAPE (20:4/18:0)° 9 8 -11.11%
SOPS (18:1/18:0) 11 9 -18.18%
DSPS (18:0/18:0) 3 — —
SLPS (18:2/18:0) — 2 —
DOPG (18:1/18:1) 14 10 -28.57%
PLA20 (20:4/18:0) 14 11 -21.43%
PLA18 (18:1/18:0) — 11 —

PSM 8 8 No Change

*CHOL: cholesterol,

EOPC: 1-eicosanoyl-2-octadecanoyl-sxn-glycero-3-phosphocholine;
DPPC: 2,3 dipalmitoyl-D-glycero-1-phosphatidylcholine;
SOPC: 3-stearoyl-2-oleoyl-D-glycero-1-phosphatidylcholine;
SLPC: 1-stearoyl-2-linoleoyl-phosphatidylcholine;

SOPE: 1-stearoyl-2-oleoyl-phosphatidylethanolamine;
SAPE: 1-stearoyl-2-arachidonyl-phosphatidylethanolamine;
SOPS: 1-Stearoyl-2-Oleoyl-Phosphatidylserine;

DSPS: 2,3-distearoyl-D-glycero-1-Phosphatidylserine;

SLPS: 1-Stearoyl-2-Linoleoyl-Phosphatidylserine;

DOPG: 2,3-dioleoyl-D-glycero-1-phosphatidylglycerol;
PLA20: plasmalogen phosphatidylethanolamine (20:4/18:0);
PLA18: plasmalogen phosphatidylethanolamine (18:1/18:0);
PSM: palmitoylsphingomyelin.

® Final SAPE composition in each leaflet in the M0 model was not symmetrical (see methods).
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Figure 1. Key lipid structures and Bilayer Snapshots. A) The structure, reference atoms for tilt

calculations (blue), and corresponding vectors (red) for CHOL, as well as the chemical structures
of DSPC, EOPC, SAPE, and PLA20. The VMD snapshots of B) M0 macrophage model and C)
M1 state macrophage model at the end of their corresponding simulation. Blue: CHOL; Red:
DOPG; Grey: DSPS; Orange: EOPC; Yellow: PSM; Tan: SAPE; Silver: SLPC; Green: SOPE;
White: SOPS; Pink: DPPC; Cyan: PLA18; Purple: PLA20; Lime: SLPS; Mauve: SOPC.
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2.2 Simulation

The Nanoscale Molecular Dynamics (NAMD) program was used in combination with the
CHARMM36 force field and TIP3 water model to carry out a standard CHARMM-GUI Membrane
Builder six-step equilibration and the final production run '®2!, Production runs for the M0 and
M1 model systems were continued for 504 ns and 500 ns, respectively, with timesteps of 2 fs. The
constant-pressure-constant-temperature (NPT) ensemble was used for all simulations. The
physiological temperature of 310 K was maintained using Langevin dynamics while the constant
pressure of 1 bar was maintained using Nosé-Hoover-Langevin piston 2> 23, The Lennard-Jones
potential was used to model the van der Waals interactions with a force-based switching function
with interactions being switched off with a distance between 8 and 12 A %, Long-range electrostatic
interactions were calculated using the Particle Mesh Ewald (PME) fast Fourier transform with an

interpolation order of 6 and a direct space tolerance of 107°.

2.3 Analysis

The properties of the MO and M1 bilayer membranes were analyzed based on the last 250
ns of equilibrated simulation data as determined by equilibration analysis (Figure S1). The
analyses conducted include the overall surface area per lipid (SA/lip), component SA/lip for each
lipid type, area compressibility modulus (K4), carbon-hydrogen order parameter (Scu), electron
density profile (EDP), tilt angles, two-dimension radial distribution functions (2D-RDFs), mean
squared displacement (MSD), hydrogen bonds (H-bonds), lipid clustering, and lipid wobble.
Statistical significance was determined by one-way ANOVA with at least p < 0.05 or by non-
overlapping 95% confidence intervals.

To obtain the overall SA/lip, the area of the simulation box was divided by the number of
lipids per leaflet. The component SA/lip was calculated using Quickhull 2%, Specifically, the X and
Y coordinates of the representative atoms for each lipid were first obtained, with O3 for cholesterol,
C2 for glycerol lipids, and C2S for sphingolipids. Using Quickhull, a Voronoi diagram was
generated for each system, with each polygon representing a representative atom. Component
SA/lip was obtained using the averaged sum of the areas of each representative atom for each lipid

type. With overall SA/lip calculated, the K4 was calculated using the following formula:

_ kpT<A>
NoZ<a>

Ky (1)
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where ks, T, <A>, N, and 6<4> are the Boltzmann’s constant, the absolute temperature, the average
overall SA/lip, the number of lipids per leaflet, and the variance of the average SA/lip, respectively.

The carbon-hydrogen order parameters Scu was calculated using the equation below:

Scy = <%c0529—%> (2)
where @is the angle between the C-H bond vector and the bilayer normal. Tilt angle distributions
were determined for cholesterol (CHOL). The tilt angle is defined as the angle formed between
the bilayer normal and the vector connecting two representative atoms. The representative atom
pairs used to calculate the tile angle for CHOL were C3-C17 (Figure 1A).

To obtain the EDPs, the bilayers were first repositioned to Z = 0 to obtain a symmetric top-
bottom distribution. Electronic densities were then calculated for each atom and combined to get
densities for each lipid and its corresponding functional groups. The EDPs were used to calculate
the overall bilayer thickness (Ds), the headgroup-to-headgroup distance (Dun), and the
hydrophobic distance (2Dc). Ds, Dun, and 2Dc¢ were defined as the midpoint distance between the
water EDPs, the distance between the peaks of the total EDPs, and the midpoint distance between
the acryl chain EDPs, respectively.

The 2D-RDFs were calculated using the coordinates of the representative atoms of each
lipid class: O3 for cholesterols, P for glycerol lipids, and NF for sphingolipids. MSD was
calculated based on the average headgroup positions. Displacement was measured based on an
individual lipid’s position across time relative to its starting position. The number of H bonds
formed, both inter- and intra-lipid, were calculated using CHARMM. A donor-acceptor pair was
defined as having a distance less than 2.4 A and a tilt angle greater than 150°.

Lipid clustering was examined using a Python scikit-learn package with the density-based
spatial clustering of applications with noise (DBSCAN) algorithm 2> 26, The cutoff distance used
was 5.5 A between headgroups for all lipids, and a cluster was defined as groups with at least three
density-connected lipids.

The wobble or axial motions of the lipid were modeled using the correlation time of cross-
chain vectors between C22 and C32 for glycerol phospholipids and C4S and C2F for sphingolipids.
The second-rank reorientational correlational function is calculated for the cross-chain vectors

using the following formula,

C,(t) = (P,[A(0) - a(D)]) (4)

Niu and Klauda, 8



177
178
179
180

181

182
183
184
185
186
187
188

189

190
191
192
193
194

where C,(t), P,, and I stands for correlational function, the second Legendre polynomial, and the
cross-chain vector 2. A two-exponential fit (n = 2) was then performed on C,(t) obtained from
the mean of the three independent replicas, excluding the last 1/3 of output data truncated for time

constants. The following custom fit equation was used in MATLAB to obtain the parameters,

n _t
C,(t) =ay+ z ae Ti (4)
i=1

3. Results
3.1 Surface Area Per Lipid & Compressibility Modulus

The organization of lipid bilayer systems can be accessed using the overall SA/lip. By
plotting the overall SA/lip against time, the state of equilibrium of the bilayers can be tracked.
Both M0 and M1 models have reached equilibrium after 250 ns (Figure S1). The average overall
SA/lipid and K4 were calculated and shown in Table 3.

Table 2. Key characteristics of the M0 and M1 models.

Model Mo M1
Net charge -28 -21
Anionic : Zwitterionic 1:3.5 1:4.62
% charged phospholipids 18.67 14.00
% saturated chains 41.84 47.42

Table 3. Average SA/lip and K, for MO and M1 MA model* and homogeneous POPC and
POPE models

SA/lip + SE K4+ SE
Model ( gz) (/)
MO 47.06 + 0.06 0.52 +0.03
Ml 46.35+0.07" 0.53 +0.04
POPC 66.00 + 0.10 0.24+0.01
POPE 58.70 +0.10 0.28 + 0.02

“Errors are reported in standard errors (SE) obtained from the triplicates for each model.
*
p <0.05.

The K4 values for both models were statistically identical, but the overall SA/lip of the M1
model was significantly lower than that of the MO model, indicating that the M1 model was more
tightly packed. However, this difference was expected not to impact the K4 values significantly. It

is well established that the amount of CHOL within bilayer systems would greatly impact these
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two parameters. However, the CHOL content in each model was nearly identical, with CHOL
accounting for 34.7% of the membrane composition for the MO model and 35.3% for the M1 model,
indicating that the change in SA/lip was likely not due to changes in CHOL behavior (Table 1).
From the lipid composition per leaflet presented in Table 1, we observed an increase in net charge,
a decrease in the percentage of charged phospholipids, and a decrease in the ratio of the number
of the anionic to zwitterionic lipids in the M1 model when compared with the MO model (Table
2). Further, we also found that the percentage of saturated chains increased from 41.84% in the
MO model to 47.42% in the M1 model (Table 2). These differences could contribute to the increase
in lipid packing in the M1 model, revealing potential differences in lipid behaviors between the
two models, as discussed later.

When the M0 and M1 models were compared with homogeneous POPC and POPE system:s,
the SA/lip was significantly lower in our built models with the corresponding higher Ka. This
inverse relationship between SA/lip and Ka is expected since tighter-packed bilayers would require
more force for compression. In contrast to the MO and M1 models, the homogenous models lack
the chemical diversity for energetically favored interactions based on headgroup polarity and

hydrogen bonding capability, causing them to be more loosely packed.

Table 4. Component SA/lip for all lipids*

Lipid MO Ml
Area (A?) + SE Area (A?) + SE

CHOL* 28.77£0.11 28.20+0.03
PSM** 56.34 £ 0.46 51.31 +£0.31
SOPC 57.80+0.43 56.58 £0.17
SLPC 56.52 +£0.25 56.29 + 0.44
SOPE 56.22 +£0.33 56.03 £0.26
SOPS* 57.25+0.33 55.64 £ 0.04
DOPG** 58.56+0.19 56.70 £ 0.21
PLA20 56.84 +1.02° 58.21 +£0.20
SAPE** 53.38 +0.30° 57.06 £0.24

EOPC 57.21+£0.48 —

DSPS 56.07 £0.10 —
DPPC — 55.63+0.14
SLPS — 55.69 £ 0.33
PLA18 — 57.51+0.33
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“Errors are reported in standard errors (SE) obtained from the triplicates for each model.
This comes from replicas that have unequal distribution of SAPE (see methods).
P-values for the statistical test on area averages of MO compared to M1 were listed for
each lipid type and denoted with "p < 0.05 and ~p < 0.005.

Since each lipid type has unique properties, component SA/lip was investigated to probe
the difference in packing behavior in heterogencous bilayers (Table 4). Even though the
distributions of SAPE and PLA20 were asymmetric for the MO model, the calculation for
component SA/lip and any subsequent analyses were done by obtaining the averages of the top
and bottom leaflets, minimizing the effect caused by the asymmetric distribution. The standard
errors of SA/lip for all lipids, except PLA20, in the MO model were comparable to those in the M1
model, demonstrating that the mutation error had resulted in little impact on the packing behavior
in the M0 model, ensuring the accuracy and validity of the analyses below.

The vast majority of the common lipids across the two models have experienced a decrease
in their corresponding SA/lip, which was in agreement with the observed decrease in the overall
SA/lip above. One-way ANOVA test showed statistically significant decreases in the SA/lip for
CHOL, PSM, SOPS, DOPG, and SAPE in the M1 model, indicating that these lipids have become
more tightly packed and likely have experienced changes in their behaviors within the bilayer. The
SA/lip of SAPE decreased significantly in the M1 model compared to that in the MO model, while
the SA/lip of CHOL, PSM, SOPS, and DOPG increased. Although the number of CHOL in the
M1 model has increased slightly by 1.9%, its SA/lip has decreased significantly by 1.99%. PSM’s
composition remained constant across the two models, but its SA/lip of PSM decreased by 8.94%
in the M1 model.

SOPC, SLPC, and SOPE have all experienced significant changes in composition in the
two models, but their SA/lip remained statistically indifferent. In contrast, the compositions of
SOPS and DOPG have changed drastically, with a significant decrease of 18.2% and 28.6%,
respectively. In addition, SAPE has experienced a decrease in packing. While PLA20 also
experienced the same pattern, its SA/lip values between the two models were found to be
statistically insignificant due to the large SE found in the MO model, likely caused by the

asymmetric distribution.

3.2 C-H Order Parameters
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The degree of order in lipid hydrophobic chains is determined using Scu. A higher Scu
indicates a more ordered system with more ordered chains. Our findings supported the trend of
decreasing Scu with the presence of double bonds in a carbohydrate chain. Except for PSM, SAPE,
and sn-1 chains of SOPC and SOPS, whose Scu were statistically indifferent between the two
models, all other chains were more ordered in the M1 model than the MO model (Figure S2).

DOPG, SLPC, SOPE, and PLA20 have significantly increased chain orders in both sn-2
and sn-1 chains at C10-C14 and C4-C14, C4-C9 and C4-C16, C5-C14 and C11-C17, C15-C19
and C4-C12, respectively, for each lipid (Figure 2 & S3). The sn-2 chain of SOPC at C16-C17 and
the sn-2 chain of SOPS at C12-C15 also show an increase in chain order (Figure 2 & S3). This

global increase in chain order was likely due to the M1 model being more tightly packed.

DOPG SLPC SOPS

0.40 0.40 0.40

Misn-2 A % ok ok ok ok ok ok Kk ok ok k ok Xk
0.35 | MOsn-2 @ 035 | 0.35

Mlsn-1 A
0.30 + MOsn-1 @ 0.30 0.30 * %k *k k
0.25 0.25 | 0.25
0.20 0.20 0.20
0.15 0.15 | 0.15
0.10 0.10 0.10

* ok K ok ok kK ok ok k ok
0.05 * % % % % 0.05 | 0.05 |
0.00 S S S S 0.00 L R S S S 0.00 T S S
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

Carbon Number

Figure 2. Scu’s from DOPG, SLPC, and SOPS. "p < 0.05.

3.3 Electron Density Profiles & Bilayer Thickness

The EDP is a measure of the electron probability distribution at being present at specific
locations in the bilayer model. It provides information on the relative positions of the lipid
headgroups with respect to the center of the membrane. Our results matched the expectation that
if the number of a certain lipid species decreases, its corresponding electron density will decrease
with no significant changes in peak patterns (Figure S5 & S6). Considering the average total EDP
of both models, no significant differences were seen for the peak-to-peak distances, indicating that
membrane thickness remained relatively constant across the two models (Figure S4A). This was
confirmed by bilayer thickness calculations, which showed no significant differences in Ds, Dun,

and 2Dc between the two models (Table 5). While only CHOL and PSM showed slight increases
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in their electron densities, no significant changes were observed for their peak distances, indicating

no significant vertical movements (Figure S4).

Table 5. Calculated membrane thickness of the MO and M1 macrophage models.

Model Dun (A) Dz (A) 2Dc (A)
Mo 46.73 £0.27 43.94 +0.04 35.55+£0.03
M1 46.47 +0.13 44.04 +0.10 35.69 £0.05

Furthermore, we found that the hydrophobic thicknesses of major MA transmembrane
proteins from the Orientations of Proteins in Membranes (OPM) database largely agree with the
2Dc calculated for both MO and M1 models, except for 2LNL, which has a lower than normal tilt
angle of 19° (Table 6).

Table 6. PDB IDs and their reported hydrophobic thickness for transmembrane proteins
commonly found on macrophages from the OPM database »°.

PDB ID STIA 6DO1 3V2Y SO9H 3VW7 41B4 2LNL
2Dc (A) 32.6 34.2 322 35.0 33.4 34.0 30.2

3.4 Cholesterol Tilt Analysis

The tilt modulus analysis examines the angle between the vector defined for the lipid and
the lipid bilayer normal. The angles can provide insight into the spatial orientations of the lipid
headgroups and acyl chains. A larger angle indicates that the vector is in a less upright position.
CHOL 1is well known to form lipid rafts, which serve as the structural bases of many
transmembrane proteins by forming a local environment that is highly ordered 3°. We found that
the tilt angle of cholesterol is statistically indifferent between the two models, with both exhibiting

the highest probability at a tilt angle of 11° (Figure S7).

3.5 Radial Distribution Function

2D-RDFs are used to determine the local arrangement of lipids within the bilayer system.
It describes how the densities of a lipid vary as a function of distance from the lipid headgroup of
interest. To investigate how lipid headgroups could influence lipid distributions within the bilayer,

2D-RDFs were generated between all lipid headgroup pairings in our systems (Figure S8 & S9).

Niu and Klauda, 13



285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315

Upon analysis, significant differences in the 2D-RDFs were observed for PSM, CHOL, DOPG,
SLPC, SOPC, and SOPC.

In the M1 model, the first two peaks for DOPG-PSM 2D-RDF were stronger than those in
the MO model, and a leftward shift is observed for the third peak in the M1 model (Figure 4A).
The DOPG-CHOL pair also shows significantly elevated peaks in the M1 model (Figure 4B).
Similar to the DOPG-PSM 2D-RDF, both SLPC-PSM and SLPC-CHOL 2D-RDFs displayed
increased peaks in the M1 model (Figure 4D & 4E). The self 2D-RDFs for both DOPG and SLPC
showed a dramatic decrease, indicating that these lipids were likely shielded by other lipids in the
M1 model (Figure 4C & 4F). The changes for SLPC were unexpected, as even when its
composition in the M1 model was half that of the MO model, significant increases in the 2D-RDFs
were observed. In addition, compared to those in the MO model, SLPC-DOPG 2D-RDF showed
similar primary and secondary peaks but a decrease at the radius of ~15 A before the elevation in
the tertiary peak (Figure 4G).

It was expected that PSM and CHOL would be in closer proximity since they were laterally
closer to DOPG and SLPC in the M1 model. As predicted, we observed a leftward shift in the third
peak of the PSM self 2D-RDF at the radius of ~15 A (Figure 4H). The CHOL self 2D-RDF also
demonstrated a significant decrease in its primary peak in the M1 model (Figure 41). Meanwhile,
PSM-CHOL 2D-RDF exhibited reduced secondary and tertiary peaks (Figure S9). These changes
in 2D-RDFs indicate that clusters involving PSM, DOPG, SLPC, and CHOL may have formed in
the M1 model. The changes in the SLPC-DOPG 2D-RDF and the PSM self 2D-RDF suggest that
either PSM is responsible for separating SLPC and DOPG within the cluster of all four lipids, or
that SLPC and DOPG are clustered independently with CHOL and PSM.

Significant changes in 2D-RDF patterns were also observed for SOPC and SOPS between
the two models, indicating an increased association between the two lipids. We observed a slightly
elevated secondary peak and a leftward shift of the tertiary peak for SOPC-SOPS pairs (Figure 4J).
Interestingly, the self 2D-RDFs for SOPS and SOPC exhibit similar changes but in opposite
directions. SOPS self 2D-RDF showed an increase, while SOPC self 2D-RDF showed a decrease
across the peaks (Figure 4K & 4L).

2D-RDFs were also sampled for the PE-CHOL pair and the DOPG-CHOL pair in blocks
of 50 ns to ensure the representativeness of our observations in the MO and M1 models (Figure

S10). For both pairs in both models, the 2D-RDFs remained reasonably stable and demonstrated
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316 little-to-no changes in local structure throughout the equilibrium time frame, indicating that our

317  systems have converged and bilayers were fully relaxed.
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Figure 4. Selected 2D-RDFs for the M0 and M1 models. A) DOPG-PSM. B) DOPG-CHOL.
C) DOPG-DOPG. D) SLPC-PSM. E) SLPC-CHOL. F) SLPC-SLPC. G) SLPC-DOPG. H) PSM-
PSM. I) CHOL-CHOL. J) SOPC-SOPS. K) SOPS-SOPS. L) SOPC-SOPC.

3.6 Mean Squared Displacement

To further demonstrate that our bilayer systems were fully relaxed, an essential criterion
for the lipid clustering analysis, MSD analysis was used to assess the lateral diffusion of the lipids
in our bilayers. Albeit the caveats of the lateral diffusion coefficient (Ds) calculated in small
systems due to the influence of periodic boundary conditions and the lack of long-range effects
that allow for direct comparisons with experimental values, it remains appropriate to evaluate the
membrane properties of our models. For all non-CHOL lipids, no statistically significant
difference was found between Ds in the MO and M1 models (Table 7). Ds calculated by lipid
headgroup showed similar results (Table S5). However, this has further supported our observations
that our bilayers were fully relaxed and reached equilibrium, ensuring that our systems were

suitable for the subsequent lipid clustering analysis.

Table 7. Lateral diffusion coefficient (Ds) of all non-CHOL lipids in M0 and M1 models.

Model MO M1
D; (cm?/s) 476 x 10®* +£5.56 x 107 470x10%+3.89x 108

3.7 Lipid Clustering

Studying lipid clusters could provide insight into the packing of lipids and can reveal
details about headgroup interactions. In both models, we found that most clusters were formed
with CHOL and PSM, while the fractions of other lipid types in clusters were lower than their
overall composition. From the lipid clustering analysis, we found that the Rc-Rn values were
statistically indifferent for most shared lipids between the two models. However, we observed
significant increases in the Rc-Rn values of DOPG and SLPC, and significant decreases were
observed for those of CHOL and PSM in the M1 model when compared to those for the MO model,
which matched the observations made for 2D-RDFs (Table 8).
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Table 8. Differences between the fraction of the lipid in clusters (R.) and the fraction
of the lipid in the overall bilayer composition (R,) for M0 and M1 models (Rc-Ry).

Lipids MO £+ SE M1z SE
CHOL** 0.046 +£0.0016 0.031 £0.0014
DOPG*** -0.020 + 0.0005 -0.012 + 0.0006
PSM* 0.004 £ 0.0002 0.003 £ 0.0002
SLPC* -0.007 £ 0.0013 -0.002 + 0.0006
SOPC -0.004 + 0.0018 -0.004 £ 0.0014
SOPS -0.002 + 0.0007 0+0.0013
SOPE -0.003 £ 0.0012 -0.004 + 0.0006
SAPE -0.004 + 0.0007 -0.003 + 0.0004
PLA20 -0.005 + 0.0015 -0.003 + 0.0005

“Errors are reported in standard errors (SE) obtained from the triplicates for each model.
Statistical comparisons between M0 and M1 were made, and significant differences were
denoted with p < 0.05 "p < 0.005 “p < 0.0005.

The changes in Re-Ra values for DOPG, CHOL, SLPC, and PSM support the speculation
that the clusters involving these lipids were present in the M1 model (Figure SA & 5B). The
formation of clusters with CHOL and PSM caused an increase in Rc-Ra for DOPG and SLPC as
they were pulled in and had closer contact with CHOL and PSM. However, this also caused DOPG
and SLPC to be less associated with themselves, resulting in a decrease in their self 2D-RDFs. To
investigate whether the DOPG and SLPC were in the same clusters, we have visualized the clusters
(Figure 5). Upon examination, we found that DOPG and SLPC were in distinct clusters containing
PSM and CHOL. This observation led to our conclusion that while both lipids were clustered with
PSM and CHOL, DOPG and SLPC independently formed clusters with PSM and CHOL, with
little to no co-occurrence within CHOL and PSM-rich regions (Figure 5B). The formation of these
clusters has led to a more tightly packed bilayer, explaining the decrease in SA/lip, thus causing a
subsequent global increase in Sch.

Interestingly, although the 2D-RDF results suggest an increased association between SOPS
and SOPC, no significant changes were observed in the clustering analysis. Upon further
investigation, it was found that most of the SOPC and SOPS were singled out and pushed out of
the clusters formed by other lipids, leading to their increased proximity and interactions with each

other (Figure 5C & 5D).
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Figure 5. Visual representation of lipid clustering. Clusters involving PSM, DOPG, CHOL, and
SLPC in the MO (A) and M1 (B) bilayers. Clusters involving SOPC and SOPS in the M0 (C) and
M1 (D) bilayers. Filled: in cluster; Unfilled: not in cluster; Red: CHOL; Green: DOPG; Blue:
PSM; Black: SLPC; Purple: SOPS; Brown: SOPC; Grey: all other lipids.

3.8 Hydrogen Bonds

Hydrogen bonding plays a crucial role in determining the overall structural organization of

bilayer systems. While intra-lipid H-bonding remained primarily unchanged between the two

models (Figure S11), significant differences were observed in inter-lipid H-bonding, particularly

for SOPC, PLA20, SAPE, SOPE, and SOPS. In the M1 model, a decrease in H-bonding per lipid

with SLPC and DOPG as acceptors was observed for all five lipid types as donors when compared
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to the MO model. This decrease was likely due to the lower composition of SLPC and DOPG in
the M1 model (Table 9).

The 2D-RDF and lipid clustering revealed the formation of clusters involving PSM, CHOL,
DOPG, and SLPC in the M1 model. The H-bond results also suggest that PDM and CHOL shielded
DOPG and SLPC. Despite the decrease in their compositions in the M1 model, no significant
differences are observed for the number of H-bond per lipid formed with DOPG-DOPG, DOPG-
PSM, SLPC-PSM, and SLPC-DOPG donor-acceptor pairs, indicating that SLPC and DOPG
remained energetically favorable for forming such clusters with PSM and CHOL through H bonds.

Interestingly, a decrease in CHOL-DOPG donor-acceptor pairs was also observed, contrary
to the expected increase with the increased proximity between the two. The decrease suggested
that the role of CHOL in interaction with DOPG shifted away from being an H-bond donor.
Additionally, a slight increase in H-bonding events was observed for DOPG-SOPE donor-acceptor
pairs. This increase would contribute to the decrease observed for the SA/lip of DOPG. However,
given that no other results suggested an increased association between the two, this increase in H-
bonding could be due to coincidental placements of the two lipids in close proximity to each other
during the membrane-building process using CHARMM.

The H-bond analysis provided insight into factors that contributed to the lowering of free
energy and promoted the formation of energetically favorable clusters. In addition to the
hydrophobic interactions between lipid chains and CHOL, the stabilizing factor for these clusters
was found to be H-bonding events between DOPG, PSM, SLPC, and CHOL. The significant
decreases in H-bonds per CHOL for DOPG and SLPC indicated that the primary role of CHOL in
the M1 state bilayers was to provide structural integrity in the clusters. H-bonds form per lipid for
PSM-CHOL donor-acceptor pairs also decreased slightly but with no statistical significance. A
representative snapshot of the H-bonding formed within the PSM-DOPG-CHOL cluster was
captured using VMD (Figure 6A). In this cluster, H-bonds were observed between O13 of PSM109
and HO3 of DOPG79, OF of PSM109 and HO2 of DOPG79, and OF of PSM109 and H3’ of
CHOL102 (Figure 6D). A representative image was also captured for PSM-SLPC-CHOL clusters
(Figure 6B). In this cluster, H-bonds were formed between 022 of SLPC60 and HNF of PSM48
(Figure 6E). Within these clusters, CHOL mainly served to provide structural integrity of the

microdomains instead of being an H-bond donor.
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The H-bond analysis revealed an increase in the overall H-bonds formed with SOPS in the
M1 model despite a decrease in H-bond formations with DOPG and SLPC. This decrease was
counterbalanced by increased H-bonding between the SOPC-SOPS donor-accepter pairs. Notably,
the role of SOPS as an H-bond acceptor decreased as H-bonds formed between SOPE-SOPS and
PLA20-SOPS donor-acceptor pairs decreased. Based on these observations, it could be inferred
that clustering events would be observed for SOPC and SOPS. However, no significant differences
were observed for their Re-Rn values (Table 8). It was possible that during the formation of CHOL-
DOPG-PSM clusters, SOPC and SOPS were displaced from the CHOL-rich clusters and into
regions of the bilayer that were less ordered, leading to increased interactions between the two. A
representative VMD snapshot of the SOPC and SOPS pair was obtained, and H-bonds identified
between this pair were between HN3 of SOPS241 and O14 of SOPC201, as well as between HN1
of SOPS241 and 032 of SOPC201 (Figure 6C & 6F).
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Table 9. Number of hydrogen bonds per lipid for lipids shared across the MO and M1 model®.

Donors

Acceptors
SOPE SAPE® PLA20° SOPS DOPG PSM SOPC SLPC
MO 0.135 0.040 0.087*  0.147* 0.147**  0.016 0.048 0.063*
SOPE +0.017 £0.003 +0.005 =+0.017 =£0.003 +0.002 +0.002 £0.007
M 0.135 0.037 0.055*  0.093* 0.079** 0.014 0.057 0.029*
+0.005 +0.009 £0.006 £0.007 ==0.009 =+0.003 +0.005 +0.004
MO 0.135 0.118 0.078 0.135  0.142**  0.018 0.040 0.066*
SAPE +0.010 +0.004 +0.006 +£0.004 £0.011 =£0.003 =+£0.006 =+0.006
M 0.135 0.111 0.066 0.142  0.050%** 0.017 0.057 0.026*
+0.016 +0.009 +£0.005 =£0.018 +£0.004 =+0.005 =+£0.012 +0.004
MO 0.135 0.049 0.156  0.136* 0.142** 0.015 0.050 0.066**
PLA20 +0.002 +0.001 £0.010 £0.004 =0.005 =0.000 +=0.004 =+0.003
M1 0.135 0.048 0.142 0.104*  0.063**  0.011 0.066 0.023**
+0.009 +0.012 +£0.006 =+0.014 £0.007 +0.002 +0.004 £0.009
MO 0.079 0.056 0.078 0.196 0.103*  0.007  0.032* 0.048*
+0.010 =£0.002 +£0.010 =£0.009 £0.008 0.002 £0.002 =+0.005
SOPS Ml 0.078 0.061 0.054 0.192 0.046*  0.006  0.048* 0.020*
+0.030 =+0.011 £0.016 =£0.054 £0.006 =+0.000 =+0.005 =+0.009
MO 0.030* 0.021 0.031 0.027 0.514 0.023 0.029 0.035
DOPG +0.002 +0.001 =£0.003 =£0.003 £0.003 +=0.000 +0.002 +0.007
M 0.047* 0.018 0.022 0.026 0.492 0.022 0.030 0.018
+0.003 +0.002 +£0.004 =£0.002 £0.010 +0.003 +0.004 +£0.005
MO 0.014 +0.014 0.007 0.037 0.054 0.563 0.026 0.043
PSM +0.007 +£0.000 £0.005 =£0.012 +£0.009 =£0.005 +£0.003 =+0.013
M1 0.019 0.014 0.018 0.021 0.044 0.570 0.017 0.034
+0.003 +0.005 =£0.003 £0.010 =£0.011 =+£0.002 £0.006 =£0.004
MO 0.027**  0.021 0.029* 0.025  0.037**  0.023 0.025 0.032**
CHL1 +0.002 +0.001 £0.002 =£0.001 =£0.000 =+0.002 =£0.001 +0.002
M 0.041**  0.018 0.022* 0.021  0.031** 0.019 0.031 0.018**
+0.003 +0.004 =£0.005 =£0.012 +£0.003 =£0.002 =£0.007 =+0.003

“Errors are reported in standard errors (SE) obtained from the triplicates for each model.

This comes from replicas that have unequal distribution of SAPE (see methods)

Statistical differences for MO vs. M1 are denoted with “p < 0.05 *p < 0.005
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Figure 6. Representative VMD snapshots of the CHOL-DOPG-PSM cluster, the PSM-SLPC-
CHOL clusters, and SOPC-SOPS pairs. A) Cluster of CHOL, PSM, and DOPG. B) Cluster of
CHOL, PSM, and SLPC. C) SOPC and SOPS pair. Hydrogen bonds between D) PSM, DOPG,
and CHOL in the cluster, E) PSM, SLPC, and CHOL in the cluster, and F) SOPC and SOPS pairs.
Atoms with hydrogen bonding potential were shown in red for oxygen and white for hydrogen.
Red: CHOL; Blue: PSM; Green: DOPG; Black: SLPC; Brown: SOPC; Purple: SOPS; Light blue
dashes: hydrogen bonds.

3.9 Lipid Wobble Analysis

The lipid wobble analysis enables the investigation of lipid mobility by calculating the

relaxation times for the cross-chain vectors. Using MATLAB, the correlation functions for all
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glycerol lipids and individual lipids, including PSM, DOPG, and SOPE, were fitted to a second-

order exponential function (Figure S12 & S13). The relaxation times obtained from the fits were

reported (Table 10). Given the timescale of the study, although the fast relaxation times (11)

captured some trend, the intermediate relaxation times (12) are of greater interest for analysis.

Table 10. Average values and 95% confidence levels (CL) of the second-order exponential fit to correlation
functions of the cross-chain vector of the upper carbons for all glycerol lipids, PSM, DOPG, and SOPE*.

. . Lipid
Relaxation Glycerol Lipids PSM DOPG SOPE
. Model
Time (ns) Average Average Average Average
95% CI 95% CI1 95% CI 95% CI
MO 0.8275 2.791* 0.8256* 0.1876*
o (0.8018, 0.8532) (2.615, 2.967) (0.7932, 0.8581) (0.1806, 0.1927)
M1 0.8599 1.402* 0.6548* 0.94*
(0.8307, 0.8890) (1.291, 1.513) (0.6227, 0.6869) (0.8851, 0.9949)
MO 14.05 29.67* 14.14* 15.03
o (13.92, 14.19) (29.10, 30.24) (13.97,14.31) (14.59, 15.47)
M1 14.1 25.28* 13.52* 15.2

(13.94, 14.25) (24.86, 25.70)

(13.36, 13.69)

(14.89, 15.51)

“Errors are reported in standard errors (SE) obtained from the triplicates for each model.

* Non-overlapping 95% CL for MO vs. M1
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The relaxation times for all glycerol lipids and sphingolipids were assessed separately due

to differences in atom naming in CHARMM topology. As glycerol lipids were dominant in both

MO and M1 models, the relaxation times of the glycerol lipids in these models may serve as an

approximate value for overall bilayer relaxation times. Statistical analysis revealed no significant

difference between the bilayer relaxation times of the two models.

However, statistical differences were found for individual lipids. Although no significant

differences are observed in SOPE, a control lipid, between the MO and M1 models, the 72 of PSM
and DOPG were significantly decreased in the M1 model. In the M1 model, PSM and CHOL were
found to form clusters with DOPG. As PSM and DOPG were present in clusters where lipid

mobility was limited and acyl chain movements were restrained, their relaxation times became

shorter.
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4. Discussion

In this study, we have observed significant differences in the chemical and physical
properties of MA plasma membranes between MO and M1 states, indicating that changes in plasma
membrane composition play an important role in modulating MA functions under various
conditions.

4.1 The need for realistic models

The orientation of transmembrane regions of integral proteins can be influenced by the tilt
angles of CHOL, which is not considered in homogeneous lipid bilayer models. It has been shown
that for DPPC systems, the inclusion of sterols, such as CHOL and ergosterol, can significantly
affect the tilt angle of sterols in a concentration-dependent manner and subsequently impact the
chain tilt and chain order of neighboring DPPC lipids 3!. Therefore, simple homogeneous or
heterogeneous glycerol phospholipid models may not fully capture the structural and functional
detailed interactions between the membrane and the transmembrane regions of proteins. Moreover,
in the context of MAs, many crucial proteins, such as those involved in cytokine recognition,
inflammatory activation, and substance transportation, are localized in CHOL-rich lipid rafts >34,
Thus, CHOL should be included in the lipid systems used for protein docking studies to better
understand macrophage integral proteins using computational methods. As computational power
advances and bilayer models grow in complexity, representing the composition of realistic
membranes, the bilayers used for in silico studies would closely mimic membrane behaviors under
in vitro, in vivo, or ex vivo conditions.

In addition, realistic membrane models would benefit in silico studies on lipid-protein
interactions and have a broader implication for studies investigating the biological appropriateness
of bioengineered exogenous agents. Luo et al. used MD simulations to probe the potential
interactions between two-dimensional (2D) nanomaterials and MA plasma membranes with
homogeneous POPC bilayers *°. Later, improved from the homogeneous PC model, Gu et al.
employed a more realistic human monocyte bilayer that lacks chain diversity to investigate the
molecular mechanism of PEGylated molybdenum disulfide-induced macrophage immune
response *°. The trend of applying realistic membrane models in in silico studies has stressed the
need for realistic cell type- and state-specific bilayer models to better probe the mechanistic details

of the interactions of interest. This has further demonstrated the importance of this work in
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providing a starting point for those who aim to study and compare interactions across MA

phenotypes.

4.2 Validity of our models

As Silva Filho et al. and Chakraborty et al. had examined, MAs possess negative surface
charges regardless of their phenotype 37 3. At the same time, the activated MAs should have a
more negative surface charge than the naive MAs. Similarly, in our models constructed based on
the lipidomic analysis for MO and M1 MAs by Andreyev et al., both our MO and M1 models have
net negative charges (Table 2). However, the charge for the MO model was more negative than the
M1 model. At first glance, this might conflict with the published literature. A clear distinction of
what contributes to the negative surface charge is needed in this case. Upon further examination,
the net negative surface charges of MAs and the changes in surface charges observed for activated
MAs are contributed mainly by the changes in the number of sialic acid residues on the plasma
membrane and by the changes in the electrostatic distribution on the extracellular regions of MA
surface proteins *7 3%, Montenegro Burke et al. and Morgan et al. both profiled the lipids of MAs
under different states. However, both studies employed a bulk approach and did not isolate and
analyze the lipid profile of each cell organelle > *°. Andreyev et al.’s lipidomic study that this
work is based on remains to be the only study available that has conducted a thorough and detailed
profiling of lipids present in different organelles of MO and M1 state RAW 256.9 cells, a common
MA cell line of mouse origin 3. Therefore, whether the lipid composition on plasma membranes
of MAs contributes to the changes in the net surface charge remains unclear due to the lack of
available literature investigating the lipid compositions of various cell compartments of MAs.
Nevertheless, Andreyev et al. have presented one possibility that the lipids did not play a
significant role in contributing to the negative surface charges but contributed by assisting the
assembly of proteins with negative surface charges and presenting negatively charged residues on
MA surfaces.

One well-known feature of plasma membranes is the lipid composition asymmetry between
the intra- and extracellular leaflets. Verkleij et al. were one of the first to put forward this concept,
where they found that more SM and PC lipids were found on the extracellular leaflet, more PE
lipids were located on the intracellular leaflet, and PS lipids were almost exclusively present in the

t41

intracellular leaflet **. Our proposed MO and M1 MA plasma membrane models were constructed
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based on the assumption that bilayers have symmetric lipid composition. With this assumption,
one might question whether the observations made from the clustering analysis have any biological
significance. PG lipids, while being a major lipid on bacterial membranes, only comprise 1-2% of
phospholipids found in mammalian cells **. Because PG is a minority anionic lipid, little is known
about its distributions on the two leaflets. While negatively charged lipids tend to reside on the
intracellular leaflet, SM and CHOL are present in both leaflets. Therefore, our observation of
clusters involving DOPG, PSM, and CHOL represents a possibility that PG might play some role
in facilitating the functions of the M1 state MAs.

A comparative study done by van Duyl et al. has demonstrated that CHOL has a greater
tendency to interact with sphingolipids than with phospholipids, revealing the role of CHOL-PSM
interactions in the context of lipid rafts . The study is supported by Lonnfors et al., which
demonstrated that sterols, specifically CHOL, have a higher affinity for sphingolipids than
phospholipids when bilayers contain only CHOL and SM or CHOL and PC, while no significant
differences were reported for bilayer acyl-chain orders in these systems **. These findings are
further supported by Bera et al.’s in silico study, which demonstrated that the introduction of POPC
or POPE into systems containing PSM and CHOL resulted in decreased lipid axial relaxation time
and increased formation of PSM-CHOL clusters *°. It suggested that the decreased relaxation time
was due to the preferential interaction between CHOL and PSM. In our models with diverse lipid
profiles, we observed that the relaxation times for PSM in both models have further decreased to
around 30 ns, whereas systems containing only PSM or PSM and CHOL would have relaxation
times that are approximately 3-5 times higher depending on their relative concentrations and
system temperature.

In sum, the observations made for our models are in agreement with findings from relevant
in vitro and in silico studies. With the evidence drawn from the similarity found between the
hydrophobic thicknesses of our models and the common MA integral proteins, it is reasonable to
conclude that our proposed models are biologically representative and suitable for future in silico

studies.
4.3 Applicability of our models

MAs are known to be highly diverse, consisting of many subsets. Previous studies have

shown that the sensitivity of these subsets towards the inflammatory environment can be
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influenced by the internalization of exogenous lipids and incorporation of these lipids into
macrophage plasma membranes ** “-43_ It can be inferred that such modification would further
promote macrophage subset differentiation and change the sensitivity of the cells to a local
environment through alterations in lipid compositions on the plasma membrane. Such alterations
would most likely impact the composition of the lipid rafts, where important proteins of
macrophages are reported to be located 234, In our study, we probed the presence of lipid rafts
through the lipid clustering analysis on a nanometer scale. After KLA activation of MO MAs, we
observed an increase in clusters involving DOPG or SLPC with PSM and CHOL when they
entered the M1 state for proinflammatory actions. Because of the increased DOPG involvement,
the clusters formed were more negative in the M1 state than those in the MO state. Together, our
observations suggested that these lipids might play a role in regulating the M1 subsets by
constructing local environments that are energetically favorable for certain transmembrane
proteins.

Previous research by Rubio et al. has demonstrated that ethanolamine plasmalogens are
important for facilitating MA phagocytosis *. The findings showed that MAs with plasmalogen
deficiency exhibited reduced phagocytic activity, but when supplemented with exogenous
plasmalogen, their phagocytic activity was significantly improved, along with increased lipid raft
formation. The lipidomic study conducted by Andreyev et al. showed that the KL A-activated M1
state macrophage has increased ether-linked phospholipids, particularly the ether-linked
phosphatidyl ethanolamine subclass '*. However, the clustering analysis for our models did not
observe increased clustering for PLA20, partly due to the asymmetric distribution of PLA20 in the
MO model. The three phenotypes of MA demonstrate various levels of phagocytic activities, with
M2 MAs having the highest phagocytic activity, M1 MAs possessing a modest phagocytic activity,
and MO MAs being the least active in phagocytosis °*2. Therefore, it may be challenging to
observe the contribution of plasmalogens to lipid clustering when comparing M0 and M1 state
MAs. Nonetheless, West et al. have validated the plasmalogen force field parameters in
CHARMM36 all-atom force field for PLA18 and have demonstrated that the incorporation of
plasmalogens into POPC bilayers increases bilayer thickness and tail orders, indicating the ability
of plasmalogens to contribute to lipid clustering '°.

Furthermore, Petkevicius et al. have previously reported a linkage between PC metabolism

and pro-inflammation activation of MAs . In particular, MAs deficient in the rate-limiting
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enzyme in the de novo PC biosynthesis pathway, phosphocholine cytidylyltransferase A (CCTa),
have shown decreased membrane PC turnover and significantly reduced proinflammatory activity
in response to palmitate, highlighting the critical role of PC in the proinflammatory actions of MAs.
Our findings showed an increase in clusters involving PSM, SLPC, and CHOL, even when the
number of SLPC in the M1 model was reduced to half of that in the MO model. This observation
underscores the importance of such microdomains and indirectly supports the role of PC
metabolism in guiding the proinflammatory actions of macrophages.

Gaus et al. conducted a study investigating the lipid profiles of the raft and non-raft regions
on the MA plasma membrane of THP-1 cells, a human-origin monocyte cell line >*. They have
observed more SM lipids present in raft regions and non-raft regions. Further, authors have found
that SM contents are still higher in raft regions for cells treated with sphingomyelinase, partially
depleting the SM content on membranes. In summary, our observations of clusters involving PSM

match the observations made in vivo, further supporting the applicability of our models.

4.4 Future directions

One important aspect of our model that is in need of improvement is the consideration of
the asymmetry of our bilayers. The differential lipid composition between the intra- and
extracellular leaflets could serve important functions and provide important indicators of cell
conditions. Our proposed models were constructed based on the assumption that the bilayers have
symmetric leaflets due to the limited data available on the lipid profiles of the MA plasma
membrane by leaflet. Further, the limited data availability has grounded our work to compare only
between MO and M1 state MAs, excluding the anti-inflammatory M2 state MA. This calls for
future lipidomic studies on plasma membranes of the different states of mouse-derived MA cell
lines, human-origin MA cell lines, or primary human monocytes. These studies profiling the
plasma membrane of MAs in various states and detailing the asymmetry of their membranes could
significantly improve our understanding of this subject and facilitate the development of accurate
plasma membrane models of future in silico research involving MAs.

In this work, the term “realistic” is narrowly defined where the composition of the bilayer
models mirrors that of living cells, and these bilayers should possess similar properties to the
plasma membranes of living cells. Homogeneous PC or PE bilayers are the most commonly used

for protein structural-functional in silico studies. As demonstrated in this work, this approach has
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overlooked the physical and chemical diversities of membrane lipids. It is reasonable to conclude
that potential lipid-protein interactions that might be important for protein anchoring or
functioning remain understudied. Future work should aim to broaden the definition of “realistic”
so that these dynamic cellular events can be produced and studied in such in silico models. Beyond
constructing realistic bilayer models based on lipidomes available, we shall seek applications of
such models with the incorporation of membrane proteins to mimic the actual membrane
environments. The continuous improvements of force fields and developments in computational
algorithms would further facilitate the efforts to mirror what happens in living cells in a
computational space, with the potential to reveal key interactions and help identify novel targets

for therapeutics.

5.  Conclusion

The MO and M1 models in this study represent a step toward developing accurate MA
membrane models. More complex models are needed to accurately reflect the bilayer properties,
including but not limited to membrane asymmetry, lipid flip-flop, and incorporation of membrane
proteins. Additionally, given the dynamic nature of MAs, distinct MA subsets may exhibit unique
bilayer features that are currently beyond our ability to model. Nonetheless, considering the
support from previous in vitro and in silico studies, our models are reasonably physiologically
accurate and can serve as a basis for future computational studies investigating the characteristics

of the MA plasma membrane and its integral proteins.
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