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Climate modelling and analysis are facing new demands to enhance 
projections and climate information. Here we argue that now is the time to 
push the frontiers of machine learning beyond state-of-the-art approaches, 
not only by developing machine-learning-based Earth system models with 
greater fidelity, but also by providing new capabilities through emulators 
for extreme event projections with large ensembles, enhanced detection 
and attribution methods for extreme events, and advanced climate 
model analysis and benchmarking. Utilizing this potential requires key 
machine learning challenges to be addressed, in particular generalization, 
uncertainty quantification, explainable artificial intelligence and causality. 
This interdisciplinary effort requires bringing together machine learning 
and climate scientists, while also leveraging the private sector, to accelerate 
progress towards actionable climate science.

The World Climate Research Programme’s Coupled Model Intercom-
parison Project (CMIP1) brings together multi-model climate projec-
tions to understand past, present and future climate changes. These 
simulations are performed with global coupled Earth system models 
(ESMs) that simulate the physical climate as well as biogeochemical 
cycles under a wide range of forcings, yet large uncertainties remain, 
for example in precipitation2. This limits the models’ ability to accu-
rately project global and regional climate changes, as well as climate 
variability, extremes and their impacts on ecosystems on decadal and 
multi-decadal timescales. In addition, the ever-increasing volume  
of data makes the detection and understanding of patterns of vari ability 
and extreme events difficult. New machine learning (ML) methods 
promise great potential to address these challenges.

ML for Earth system science is rapidly expanding, with ML methods 
already being applied to a wide range of weather prediction applica-
tions3,4, a broad swath of additional climate change questions5, and in 

diverse solution domains, including mitigation, adaptation, tools for 
individual and collective action, education, and finance6.

For climate modelling and analysis, we argue that breakthroughs 
with ML can be achieved in multiple ways, in particular by (1) the devel-
opment of hybrid ESMs where physical modelling is integrated with 
ML to maintain physical consistency and harvest ML versatility7–9; 
(2) ML-based emulation, where ML can provide fast and robust cli-
mate information including extreme event projections, allowing us 
to assess the envelope of recent weather possibilities; (3) ML-based 
detection and attribution of extreme events, where ML can advance 
understanding of the physical processes that underlie extreme occur-
rences; and (4) ML-enhanced climate model analysis and understanding 
of the Earth system, where ML can deliver powerful tools for analysing 
high-dimensional datasets, which are especially prevalent in Earth sci-
ences, including the development of benchmarks10,11. Although ML has 
already made substantial contributions to all of these grand challenges, 
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proposed to be able to address many of the long-standing systematic 
biases and challenges faced by classical climate models7,8,17. Hybrid 
ESMs can be an integral part of initiatives like CMIP and can enhance 
classical models at all scales as proposed previously9.

ML-based hybrid modelling and subgrid-scale parameterizations 
have been developed for different Earth system components, with first 
promising results for the atmosphere, ocean and land already being 
achieved. Here, we provide some examples.

For the atmosphere, the largest sources of uncertainties in  
climate projections stem from the representation of clouds, aerosols 
and their interaction, with significant structural biases remaining for 
example for the simulation of precipitation18. Advances in computing 
now allow for global storm-resolving model simulations of months to 
a few years19, but not century-long projections, while low-level clouds 
and aerosols will continue to depend on parameterizations for their 
representation9. In this context, ML-based parameterizations have been 
developed to represent subgrid-scale physics as simulated by higher 
resolution model simulations20,21, including stochastic parametriza-
tions22. Hybrid modelling has also shown remarkable success in correct-
ing structural errors stemming from unresolved atmospheric processes 
in the bias-correction setting, producing stable, accurate multi-year 
simulations across a range of climates23. Several challenges of these 
approaches were identified early on, such as poor out-of-climate gen-
eralization24, instabilities caused by interactions with the resolved 
dynamics of the parent model, disparities between offline skill (ML 
parameterization performance on the test set) and online skill (that is, 
hybrid model performance)25, and the violation of conservation laws24. 
Solutions to several of these problems have since been proposed, 
including architecture-based constraints to ensure conservation laws26, 
incorporating symmetry to improve generalization27, coupled online 

substantial advances in ML methods are required to fully exploit the 
potential of ML for climate modelling and analysis. These particu-
larly include physical consistency of hybrid models that demonstrate  
the ability to realistically extrapolate to unseen climate regimes12, 
uncertainty quantification13, explainable artificial intelligence 
(XAI) to move away from ML as a black box14, and causal inference  
methods that allow even more information to be extracted from  
Earth system data on how processes interact causally15,16.

In this Perspective, we focus on these key grand challenges in  
climate modelling and analysis that can be substantially improved  
with ML and discuss the fundamental advances in ML techniques  
that are required to advance across these grand challenges as  
schematically displayed in Fig. 1 and summarized in Table 1. We also 
provide a perspective on remaining gaps, opportunities and promis-
ing future directions. We argue that to achieve the full potential of  
ML for improved climate modelling and analysis, collaboration 
between academia and the private sector will be essential (Box 1).

ML for climate modelling and analysis
ML has great potential to substantially enhance our understanding of 
the Earth system and to reduce uncertainties in climate projections. 
In this section, we discuss key approaches in which climate modelling 
and analysis could be substantially enhanced with ML, in particular 
hybrid Earth system modelling, emulation of climate model simula-
tions, extreme event detection and attribution, and climate model 
analysis and benchmarking (Table 1).

Hybrid Earth system modelling
Approaches in which ML methods are combined and integrated into 
classical climate models, so called hybrid models (Fig. 2), have been 
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Fig. 1 | How ML can advance climate modelling and analysis. Each of these key sectors are discussed in this Perspective. While progress has been made, the full 
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in its ability to utilize existing and new observational data, coupled with 
physical understanding constraining land processes across a range of 
time scales. Fast processes, such as photosynthesis, can be constrained 
by data and are a good target for ML-based parameterizations, while 
slow processes, such as carbon allocation, do not have frequent obser-
vations and thus need to rely on physical knowledge as they cannot be 
derived from data alone. The advantage of hybrid modelling is its capac-
ity to extrapolate and generalize beyond the scope of the observational 
data. This approach was recently developed for estimating ecosystem 
evapotranspiration41, where a hybrid model showed a greater ability 
to generalize during extreme events compared to a pure ML model. 
Other successful cases of hybrid modelling for the land have combined 
traditional hydrologic modelling with ML to increase skill in predicting 
flood risk42 and groundwater flow43. An ML component was also inte-
grated within a physical model to learn total water storage with a neural 
network44. While these studies show early success in employing hybrid 
modelling for the land, there are several important considerations 
for future work. First, capturing extreme events on land (for example, 
wildfires, floods and droughts) in the context of a changing climate is 
a high priority45. Second, data availability, sparsity and observational 
uncertainties remain ongoing issues for land modelling. Variations 
across land datasets, unequal geographic distributions, and spatial 
and climatic biases in observations are key challenges for the use of 
data at scale, potentially biasing the retrievals46.

Hybrid modelling, as described above, also introduces new chal-
lenges, such as stability after coupling25, differences between offline 
and online behaviour25,28 and generalizability. The latter describes 
the question whether the models will be able to accurately project 
warming and extremes when they were trained against the current 
climate, rather than future climates. There may be unknown physical 
processes arising and the distribution of the data is likely changing 
with climate change. Thus, it is necessary to understand when models 
diverge and fail and take corrective actions. More comprehensive 

detection, analyses and metrics regarding their out-of-climate gener-
alization and performance beyond time-averaged errors (for example, 
on extremes) are needed. Ideally, the community will increasingly 
draw on the advances made in interpretable and explainable ML and 
other ML challenges to further advance hybrid models as we further 
discuss below.

Emulation of climate model simulations
For climate modelling, many challenges remain including the relation-
ship of model error and resolution47,48 and limits on near-term predict-
ability due to internal variability of the climate system49. The emulation 
of weather and climate models with ML has demonstrated potential to 
accelerate resolution of these challenges and has therefore become a 
rapidly evolving field3,4,10,50. Those algorithms aim to emulate a physi-
cally based weather or climate model at a small fraction of its cost. In 
substantial part, this speed-up arises by eliminating the mathematical 
condition that higher spatial resolution requires shorter time steps 
governing classical models that solve the full equations of motion. 
Some important applications are the use of those emulators to generate 
massive weather forecast and climate projection ensembles to better 
capture internal variability. Because the number of emulated simula-
tions is several orders of magnitude larger than in the initial weather 
or climate forecast models, this is opening unique perspectives in the 
assessment of extreme events or very rare events (1st or 99th percen-
tiles of the distribution), which often cannot be captured by the tens of 
ensemble members in the weather forecast or climate models. There 
is hope that much larger ensembles generated with emulators could 
capture such very rare events. There are caveats to the use of those 
emulator-based ensembles, especially related to checking whether they 
correctly capture the distribution generated by the emulated chaotic 
physical model. Emulators can also be used to answer scientific ques-
tions that would require running many climate model simulations and 
would therefore be computationally infeasible. Applications include 
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Fig. 2 | Schematic diagram for integrating ML with process modelling. 
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Figure adapted with permission from: a, ref. 7, Wiley; b, ref. 8, Springer Nature Ltd.

http://www.nature.com/natureclimatechange


Nature Climate Change | Volume 14 | September 2024 | 916–928 922

Perspective https://doi.org/10.1038/s41558-024-02095-y

the characterization of extreme event evolution or sampling10,51 and 
the emulations of regional-scale events52,53. Again, in this context, care 
needs to be taken to systematically check that the emulator respects 
both the physical response and statistics of the host physical model. 
Advancing beyond emulation, climate models and observations have 
been optimally merged using a technique called transfer learning to 
better predict El Niño54 or to better project climate change55. Transfer 
learning can improve the accuracy of climate predictions and projec-
tions spanning the past to the future by reducing systematic errors and 
increasing correlation to key observables in the recent climate record.

Extreme event detection and attribution
Low-likelihood high-impact (LLHI) extremes are a class of phenomena 
where the high but unknown risks of substantial and negative societal 
and environmental effects are mismatched with inconsistent evidence 
and limited consensus regarding how LLHIs will evolve under global 
warming56. Two of the major obstacles to reducing the uncertainty in 
how LLHIs will change in warmer climates are the need to objectively 
yet rapidly search through petabytes of climate model projections 
while simultaneously harmonizing across highly diverse methods 
for detecting these extremes57. ML exhibits considerable promise to 
address these challenges. Deep learning approaches have enabled 
training algorithms to find and track extremes in climate model output 
at exascale speeds58, and ML methods have been successfully deployed 
to study a wide variety of severe weather59. In addition, projections of 
LLHI evolution accompanied by quantifiable and objective measures 
of uncertainty can be generated using threshold-free Bayesian detec-
tion methods calibrated with Markov chain Monte Carlo60. Extreme 
phenomena have been identified using human-expert-labelled data-
sets of tropical cyclones, atmospheric rivers and weather fronts in 
climate model output combined with deep61 and CNNs62. Topological  
data analysis combined with support vector machines provide a 
threshold-free method for identifying atmospheric rivers in climate 
projections produced under a wide range of horizontal resolutions and 
climate scenarios63. Persistent phenomena, such as hurricanes, can 
readily and accurately be tracked using convolutional long short-term 
memory methods64. ML can also provide insights into the physical 
drivers of extreme phenomena and how these drivers will change in 
future projections65. In addition, certain applications of deep learning 

methods have shown the capability of generalizing from present-day 
to future climatic conditions, provided an extensive hyperparameter 
grid search is performed to find appropriate model hyperparameters66. 
Successful demonstrations that physical mechanisms can be learned 
from data rather than prescribed include analyses of the extreme pre-
cipitation circulation patterns and strongly rotating thunderstorms66. 
ML algorithms have also been used to emulate classical downscaling 
methods to enhance the horizontal spatial resolution of climate model 
simulations67. ML methods are exhibiting substantial potential to 
considerably accelerate projections of extremes in warmer climates. 
Recent applications include prediction of heat waves68 and droughts69. 
These approaches advance addressing several long-standing chal-
lenges involving LLHIs, including the difficulty of sampling LLHIs from 
observations and climate model simulations of insufficient duration, 
and biases in projecting LLHIs involving physical processes that are 
under-resolved or highly parameterized in ESMs.

Climate model analysis and benchmarking
ML-based parametrizations that perform well in evaluations where 
they are not yet coupled online into the host ESM but rather trained, 
validated and tested offline on high-resolution model data, may exhibit 
surprising failure modes when coupled online within a climate model25. 
This all needs to be carefully tested. Tools such as the Earth System 
Model Evaluation Tool (ESMValTool70) facilitate the evaluation of 
ML-based online climate model simulations against Earth observa-
tions and other climate models. In addition, as ML for climate modelling 
efforts have matured, the community has recognized a growing need to 
develop metrics, datasets and tools to benchmark ML performance in 
more rigorous and consistent ways10,11. Another approach is data-centric 
AI, which focuses on how ML results can be improved by identifying 
ways to increase the quality and diversity of training data.

On the analysis side, climate networks reconstructed from statisti-
cal correlations of time series at grid points have been used together 
with measures from information theory to detect hidden structures 
in climate data71. ML has started to demonstrate its great potential 
to enhance climate model analysis through the application of causal 
inference, XAI, nonlinear multi-variate emergent constraints and the 
development of more targeted observational products for model evalu-
ation. Causal discovery algorithms learn causal dependencies beyond 
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traditional correlation and regression methods15. Causal model evalu-
ation compares causal dependencies as learned from observational 
data to the ones from climate models, thus enhancing process-oriented 
model evaluation72,73. XAI can be applied to identify prototypical behav-
iour linked to physics-based processes from images for Earth system 
science applications and with this provide a new approach for model 
evaluation74. ML methods have also been used to constrain uncertain-
ties in multi-model projections based on process analysis and causal 
discovery73 or the combination of emergent constraints on the global 
scale to reduce uncertainties on the regional scale75, which is often more 
relevant for policymakers. In addition, ML-based approaches based 
on nonlinear dimensionality reduction with variational autoencod-
ers could help evaluating data intense high-resolution simulations76.

Cross-cutting challenges in ML method 
developments
Addressing key challenges in climate modelling and analysis with 
ML as discussed in the previous section does not only benefit from  
the application of current ML methods, but also requires address-
ing several challenges in ML method development that are shared by 
all these different applications. In this section, we focus on four ML  
challenges that have seen recent breakthroughs, but for which  
more work is needed in order to utilize full potential (Table 1). This 
particularly will require further progress in physical consistency and 
generalization, uncertainty quantification, explainable AI and causal 
inference.

Physical consistency and generalization
Physical models are designed to be valid in a broad range of regimes, 
while ML models are usually trained to best fit a specific training set. 
Therefore, ML models can make inconsistent predictions when tested 
on out-of-distribution samples12, such as warmer climates. There has 
been notable progress on making the quality of ML-based inference 
less sensitive to changes in the data, broadly referred to as robust-
ness. Performance on outliers and extremes can be improved using 
custom losses that weigh extremes more without compromising 
mean predictions77, or custom frameworks that normalize data using 
extreme value theory78. Physical consistency can be improved using 
custom losses that penalize physically inconsistent predictions79 or 
architectures that strictly enforce physical constraints26,29. Overall, 
although improving robustness is application dependent, we encour-
age conducting out-of-distribution tests over out-of-sample tests that 
are still independent and identically distributed with respect to the 
training data, addressing non-stationarity in the data if possible12, and 
considering tests to ask whether the ML model can properly predict a 
causal intervention15. Making robustness tests a standard component 
of benchmark datasets for weather and climate would help establish 
the most generalizable ML frameworks on distinct cases, paving the 
way towards their routine use in climate science.

Uncertainty quantification
Another challenge to be addressed in the ML space is uncertainty quan-
tification of the predictive performance of ML models. Systematic 
uncertainties arise due to the choice of the ML model itself, and the 
variability of its predictions, for example, due to the stochastic gradi-
ent descent methods used for training. Stochastic (statistical) uncer-
tainty is also present due to noise in the data used for training, and the 
choice of predictive variables being an incomplete representation of 
the Earth system49. Therefore, even the best model of the Earth system 
cannot produce definitive predictions. However, stochastic and sys-
temic uncertainty are not mutually exclusive and can be combined to 
address data sparsity and out-of-distribution generalization issues80. It 
is known that deep neural networks alone are not providing uncertainty 
estimates and tend to produce overconfident predictions. Therefore, 
uncertainty quantification is receiving growing interest in ML81.

There are roughly two types of uncertainty quantification methods 
in deep learning. The first one focuses on robustness via employing 
parameterized distributions to describe stochastic uncertainty sam-
pling over solutions to the loss minimization procedure during training 
or bootstrapping to approximate parent distributions. Perturbations 
are made to the inference procedure in initialization via deep ensem-
ble82, neural network weights via Monte Carlo dropout81, and datasets 
via bootstrapping83. The other type is Bayesian, such as variational 
autoencoders84, which aims to model posterior beliefs of connection 
weights given the data. Bayesian methods are typically more robust in 
mean prediction, while confidence levels obtained from frequentist 
methods provide more extensive coverage over data variations13.

Uncertainty quantification presents distinctive challenges for 
weather and climate projection. For weather forecasting, much pro-
gress has been made to ensemble forecasts, leading to increased 
forecast skills and more reliable probabilistic estimates. For climate 
projection, despite the effort in multi-model ensembles to quantify 
systematic uncertainty, the multi-scale nature of the system and its 
internal variability make it challenging to produce and validate reliable 
uncertainty estimates and risk assessments. Deep learning has also 
been used to create ensemble forecasts, including for medium-range 
weather systems4, typically through Monte Carlo dropout81 or deep 
ensembles82. Specifically, multiple deep learning models are trained 
by varying the dropout units or training data and then generate fore-
casts jointly. Recently, deep generative models have also been used for 
probabilistic forecasts4,85. The accelerated inference enabled by deep 
learning emulators can in principle enable very large ensembles to 
quantify the uncertainty due to natural variability in weather forecasts, 
but also in climate projections86.

Explainable artificial intelligence
Although most ML techniques have previously been viewed as ‘black 
boxes’, XAI methods have the potential to change how these tools are 
viewed and used in climate science by assisting scientists to determine 
whether the ML approach is obtaining the right answers for the right 
reasons14. XAI approaches are beginning to appear more frequently 
in ML climate studies, including for identifying sources of predict-
ability within the climate system87 and analysing the physical impacts 
of climate change66. XAI methods can be used to ensure that neural 
network models are physically consistent with the true dynamics of 
the climate system88. Such model interpretation and visualization can 
help ML methods capture the physically salient aspects of a problem, 
operate within the limits of the training data, and help identify new 
scientific hypotheses14. For example, neural networks and their explain-
ability tools can be harnessed to identify patterns of the forced signal 
within combined fields89. XAI can identify which oceanic patterns of sea 
surface temperature anomalies lead to the largest gains in predictabil-
ity90. The applicability of XAI approaches originally trained for image 
classification are now being tested on climate prediction tasks. The 
sensitivity to the choice of XAI method and its specific parameters is 
still being resolved91. Furthermore, XAI methods are applied post-hoc 
to an otherwise black box model, and so, gaining insights from XAI 
into the decision-making process of the ML algorithm requires simpli-
fications of the model itself92,93. As an alternative, scientists should 
therefore consider developing interpretable models which are built to 
incorporate the decision-making process explicitly into their structure 
in order to be completely understood by a human without the need for 
post-hoc methods92.

Causal inference
Standard ML methods, including deep learning, excel at learning highly 
nonlinear statistical relationships from complex, large-scale data-
sets and are being increasingly applied in Earth and environmental  
sciences8. However, research questions in climate science are often 
about causal relationships rather than purely statistical associations. 
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