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Abstract Earth system models are powerful tools to simulate the climate response to hypothetical climate
intervention strategies, such as stratospheric aerosol injection (SAI). Recent simulations of SAI implement a
tool from control theory, called a controller, to determine the quantity of aerosol to inject into the stratosphere to
reach or maintain specified global temperature targets, such as limiting global warming to 1.5°C above pre‐
industrial temperatures. This work explores how internal (unforced) climate variability can impact controller‐
determined injection amounts using the Assessing Responses and Impacts of Solar climate intervention on the
Earth system with Stratospheric Aerosol Injection (ARISE‐SAI) simulations. Since the ARISE‐SAI controller
determines injection amounts by comparing global annual‐mean surface temperature to predetermined
temperature targets, internal variability that impacts temperature can impact the total injection amount as well.
Using an offline version of the ARISE‐SAI controller and data from Earth system model simulations, we
quantify how internal climate variability and volcanic eruptions impact injection amounts. While idealized, this
approach allows for the investigation of a large variety of climate states without additional simulations and can
be used to attribute controller sensitivities to specific modes of internal variability.

Plain Language Summary Stratospheric aerosol injection (SAI) is a proposed climate intervention
strategy that injects aerosols into the stratosphere to mitigate some climate change impacts. Several studies that
have used climate models to investigate how the atmosphere may respond to SAI implement control algorithms
to determine how much aerosol to inject and where in order to achieve certain climate targets. This work
explores how changes to the controller input can impact the amount of aerosol injected. Here we focus on the
controller from the Assessing Responses and Impacts of Solar climate intervention on the Earth system with
Stratospheric Aerosol Injection (ARISE‐SAI) simulations. This specific controller uses the annual‐mean surface
temperature to determine how much aerosol to inject. Therefore, internal variability that impacts temperature
can impact the total injection amount as well. To quantify how patterns of internal variability impact how much
aerosol is injected, we isolate the ARISE‐SAI controller and pass a variety of temperature patterns into it. While
this method ignores some interactions between the controller and the climate simulation, it is a quick way to
quantify the controller's sensitivity to a large variety of temperature patterns without additional simulations.

1. Introduction
Current actions and plans by global nations to reduce greenhouse gas emissions may not be enough to keep global
warming under 2°C (Liu & Raftery, 2021; Raftery et al., 2017). Climate intervention strategies have been pro-
posed as a solution to reduce some of the negative consequences associated with climate warming (Cice-
rone, 2006; Crutzen, 2006; NASEM, 2021). One such proposed strategy, called stratospheric aerosol injection,
injects aerosols or their precursors into the stratosphere to reflect a small percentage of incoming solar radiation.
Many studies simulate the injection of sulfur dioxide (SO2), which oxidizes into reflective sulfate aerosols. This
approach has been motivated by observed global cooling after certain volcanic eruptions that inject SO2 into the
lower stratosphere (NASEM, 2021).

Several modeling projects have been conducted to understand how the climate system may respond to additional
SO2 in the stratosphere (Kravitz et al., 2013, 2015; Rasch et al., 2008; Richter et al., 2022; Tilmes et al., 2018).
Some of these simulations implement a feedback algorithm, called a controller, which determines how much
aerosol to inject into the stratosphere to maintain the climate system at pre‐established temperature targets
(MacMartin et al., 2014; Richter et al., 2022; Tilmes et al., 2018).
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The Assessing Responses and Impacts of Solar climate intervention on the Earth system with Stratospheric
Aerosol Injection (ARISE‐SAI) simulations, performed with version two of the Community Earth System Model
(CESM2; Danabasoglu et al., 2020), implement a controller to keep global mean surface temperature near 1.5°C
while also maintaining temperature gradients so that atmospheric circulations are minimally impacted (Richter
et al., 2022). The controller accomplishes this by comparing the global temperature (T0), the north‐south tem-
perature gradient (T1) and the Equator‐to‐pole temperature gradient (T2) to predetermined targets of 288.64,
0.8767, and �5.89 respectively (Kravitz et al., 2017). Deviations between the T0, T1, and T2 values calculated
from model output and the individual predetermined targets are used by the controller to determine how much
SO2 to inject at four different locations (30°N, 15°N, 15°S, 30°S).

In the ARISE‐SAI simulations, the controller impacts the climate system by determining how much SO2 is needed
to maintain the climate system at the pre‐determined targets. Additionally, since the controller determines in-
jection amounts based on deviations of T0, T1, and T2 from their respective targets, global and regional tem-
perature patterns driven by internal climate variability can impact injection amounts. A handful of studies have
begun to explore how the controller and the simulated climate system impact one another. For example, Mac-
Martin et al. (2014) show that the way in which the controller is tuned and the lag between the controller input and
the response of the system can impact the internal variability of the climate system. Diao et al. (2023) use data
from the ARISE‐SAI simulations to show that ENSO accounts for 70% of the year‐to‐year variability in injection
anomalies determined by the controller. In this work, we further explore how internal variability and volcanic
eruptions impact SO2 injection by passing global temperature maps with different internal variability patterns into
an offline version of the ARISE‐SAI controller.

2. Methods
The ARISE‐SAI controller's sensitivity to internal variability is quantified by creating controller inputs, where the
warming pattern and the patterns of internal variability are known. These controller inputs are then passed to the
controller. The way in which the warming patterns and patterns of internal variability are calculated is provided in
Section 2.1. An offline version of the ARISE‐SAI controller is used to explore a large range of climate states
without having to run additional simulations, and details about the changes made to the ARISE‐SAI controller are
in Section 2.2.

2.1. Controller Inputs
The 10 member ARISE‐SAI control simulation (ARISE‐SAI‐CTRL) is used to create the controller inputs
(Richter et al., 2022). The ARISE‐SAI‐CTRL comes from the same model configuration the ARISE‐SAI
controller was tuned for but does not contain any SAI. Using the ARISE‐SAI‐CTRL means thats the
controller inputs will not contain any SAI driven cooling.

Every controller input map contains one forced component which describes the climate warming trend. The
forced component is defined as the smoothed annual‐mean ensemble mean near surface temperature using years
2035–2070 from the ARISE‐SAI‐CTRL. However, since 10 members are not enough to remove all internal
variability (Deser et al., 2012), the ensemble mean is smoothed by fitting a third order polynomial to the time
series at each grid point. These smoothed data are used as the base states, and we focus on the years 2035 and
2045 in this study. The year 2035 defines when SAI begins in ARISE‐SAI. Year 2045 defines when SAI begins in
a different set of simulations which are designed to inform about the atmospheric responses after a delayed
deployment using the same AIRSE‐SAI temperature targets (MacMartin et al., 2022).

Unforced components, or internal variability patterns, are defined as monthly temperature anomalies composited
based on internal variability events. Any number of internal variability patterns of interest can be added onto a
base state to quantify their impacts on total injection amounts. This work focuses on variability associated with the
El‐Niño Southern Oscillation (ENSO; Trenberth, 1997), the Southern Annular Mode (SAM; Ho et al., 2012), the
North Atlantic Oscillation (NAO; Hurrell, 1996), and the eruption of Mt. Pinatubo (Holasek et al., 1996). These
modes of variability are selected because each produces strong temperature anomalies in different regions of the
globe. ENSO influences temperature predominantly at low latitudes, the NAO influences temperature at the high
latitudes of the Northern Hemisphere, the SAM influences temperature the high latitudes of the Southern
Hemisphere, and a Pinatuno‐like volcanic eruption influences temperatures globally.
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The aforementioned internal variability patterns are created by compositing maps of temperature anomalies based
on each climate index. The temperature anomalies are calculated by subtracting the smoothed ensemble mean
from each ensemble member and removing the seasonal cycle. Monthly temperature anomalies are used instead
of annual to increase the amount of the data that goes into each composite. To enhance the robustness of the
results, anomalies from years 2035–2070 from the 100 member CESM2 Large Ensemble historical simulation
(CESM2‐LE; Rodgers et al., 2021) are also analyzed. While ARISE‐SAI utilizes a moderate emissions scenario
and CESM2‐LE utilizes a moderate to high emissions scenario, we show that our conclusions are not impacted by
this difference (Riahi et al., 2017).

The climate indices used to composite temperature anomalies associated with ENSO, NAO, and SAM events are
calculated using sea surface temperature and sea level pressure from the ARISE‐SAI‐CTRL and the CESM2‐LE.
Methods used to calculate each climate index are as follows:

1. The ENSO index is defined by the Nino3.4 index (Trenberth, 1997) based on the five month average sea
surface temperature within the 5°N–5°S, 120–170°W region. A positive ENSO event is characterized by
warmer than average temperatures in central and eastern Tropical Pacific and a negative ENSO has cooler than
average temperatures (Trenberth, 1997).

2. The NAO index is defined by the principal component time series of the leading empirical orthogonal function
of surface pressure anomalies within 20–80°N, 90°W�40°E (Hurrell & Deser, 2010). When the NAO is
positive, sea level pressures are anomalously low over the subpolar North Atlantic. The opposite occurs during
the negative phase of the NAO. The sea level pressure anomalies drive circulation responses that impact
regional temperature patterns in a variety of ways (e.g., Hanna & Cropper, 2017; Hurrell & Deser, 2010;
Riviére & Drouard, 2015). For example, when the NAO is in its negative state it drives warmer than average
temperatures across Northern Europe (Fuentes‐Franco et al., 2023).

3. The SAM index is calculated as the principal component of the leading empirical orthogonal function of sea
level pressure over the region 20–90°S (Ho et al., 2012). When the SAM is positive, sea level pressures over
the Southern Hemisphere polar region are anomalously low and temperatures are cooler than average.
However, when the SAM is negative, sea level pressures are anomalously high and temperatures are warmer
than average (e.g., Fogt & Marshall, 2020; Gillett et al., 2006).

The temperature anomaly pattern associated with the Mt. Pinatubo eruption is defined as the average temperature
anomaly two years following the eruption (June 1991–June 1993). The 100 member CESM2‐LE climate warming
trend is estimated by fitting a line at every grid point to the ensemble mean surface temperature anomalies time
series 10 years prior to the eruption (May 1981–May 1991). This line is extrapolated to June 1993, two years
following the eruption, and then subtracted from the ensemble mean. Assuming the internal variability is removed
by calculating the ensemble mean of 100 members and that the linear fit represents a short term continued
warming trend, subtracting the linear fit from the ensemble mean estimates the temperature anomalies associated
with the eruption of Mt. Pinatubo. Figure S1 in the Supporting Information S1 demonstrates an example of fitting
a line to calculate temperate anomalies associated with Mt. Pinatubo.

2.2. Changes to the Controller
The ARISE‐SAI controller is a proportional‐integral control algorithm, or PI controller (Astrom & Mur-
ray, 2021). With a PI controller, the proportional term accounts for the current error between model output and the
predetermined targets and the integral term accounts for any persistent errors in time. Constants, called gains, are
tuned to determine how much of each component is needed to maintain the system at the user‐specified targets
(Astrom & Murray, 2021; Jarvis & Leedal, 2012; MacMartin et al., 2014). The active controller in the ARISE‐
SAI simulations has a ramp up time of 5 years, which reduces shock to the system, and considers errors from
previous years in the calculation via the integral portion of the controller. More details about the complete ARISE‐
SAI simulations and its active controller can be found in Richter et al. (2022) and Kravitz et al. (2017) and the
sources within. This work utilizes an offline version of the ARISE‐SAI controller where the gain values are kept
the same (i.e., no addition tuning) and the controller is not connected to an active simulation.

Some additional changes are made to the offline ARISE‐SAI controller for this work. First, since the offline
controller is not connected to a simulation and cannot shock the simulated climate system by suddenly injecting
large amounts of SO2, the ramp‐up period is reduced from 5 years to 1 year. Second, the offline controller only
receives one input at a time; therefore the controller does not have errors from previous years to use when
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calculating an injection amount for the current input. These changes ensure that when a temperature pattern is fed
through the controller, the injection amount is determined by a single temperature pattern and not an evolving
state.

3. Results
The total injection when only the base states are passed into the controller quantifies the total injection in response
to the climate warming signal. For the base states of 2035 and 2045, the injections are 0.43 Tg/year and 1.44 Tg/
year, respectively (Figure 1). Next, different combinations of internal variability patterns are added onto these
base states to create new controller inputs that, when passed into the controller, quantify the impact of internal
variability on the total injection amounts.

Figure 1 shows how the controller responds to the same patterns of internal variability occurring under different
background warming. The difference between the 2035 base state and 2045 base state is found in Supporting
Information S1 in the Figure S2. Controller input (a) in Figure 1 shows the base state from 2035, the temperature
anomaly pattern associated with an ENSO index between 1.0 and 1.2, and the temperature anomaly pattern
associated with NAO index between�1.2 and�1.0. When these three patterns are added together and then passed
into the controller, the controller injects 0.71 Tg/year of SO2 into the stratosphere. Adding the same internal
variability patterns onto the base state 2045 (controller input (b)), the total injection increases to 1.56 Tg/year. The
two patterns of internal variability shown in Figure 1 are responsible for increasing the total injection by 0.28 Tg/
year in 2035 and by 0.12 Tg/year in 2045. These increases are similar in magnitude, but in relation to the base
injection (i.e., percent change), the patterns of internal variability have a greater impact in 2035 than 2045: 65.1%
increase compared to a 8.3% increase. This shows the amount of SO2 injected in response to internal variability in
2035 is not equal to the amount of SO2 injected in response to the same internal variability in 2045. In the

Figure 1. Schematic showing patterns that make up two different controller inputs. For controller input (a), the patterns
associated with an North Atlantic Oscillation (NAO) index between �1.2 and �1.0 and El‐Niño Southern Oscillation
(ENSO) index between 1.0 and 1.2 are added onto the 2035 base state. The same patterns of internal variability are added
onto the 2045 base state to create controller input (b). The base injection is the amount injected given only the base state while
the new injection is the injection amount when all components are summed. Percent change shows how much internal
variability changes the total injection as a function of the base state.
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following analysis, we add different combinations of internal variability patterns onto each base state (see
Supporting Information S1 in the Figure S3 for what climate indices are used in each figure).

Since the impacts from internal variability on the controller‐determined total injection depends on the base state,
the ENSO, NAO, and SAM impacts on the total injection amounts are quantified as percent changes in Figure 2
(see Supporting Information S1 in the Figure S4 for total change). The percent change is calculated as the change
in injection amount divided by the base injection amount (Figure 1). In Figure 2, positive ENSO events are shown
to increase the amount of SO2 injected and negative ENSO events decrease the amount SO2 injected (Figure 2a),
since positive ENSO events are shown to increase the global average temperature and negative events do the
opposite (Angell, 1990). The stronger the ENSO event, the greater the impact on the total injection, although, the
impact of ENSO anomalies on the controller decreases substantially from year 2035 to year 2045. This is because
as the climate warming signal increases, the ENSO internal variability pattern is a smaller percentage of the input
and thus a smaller role in the total injection amount.

The NAO has a smaller impact on the total injection in 2035 when compared to ENSO and its impact switches
signs from 2035 to 2045. The SAM also has a smaller impact on the total injection than ENSO but its impact
doesn't change from 2035 to 2045. Similar SAM and NAO impacts exist in both the ARISE‐SAI‐CTRL and
CESM2‐LE data and are therefore not a result of noise in the composites but a response to the internal variability

Figure 2. Percent change in total SO2 injection as a function of (a) El‐Niño Southern Oscillation (ENSO), (b) North Atlantic
Oscillation (NAO), and (c) Southern annular mode (SAM) events. Solid lines use data from ARISE‐SAI‐CTRL and dashed
lines use data from CESM2‐LE. Green lines use year 2035 base state and orange lines use year 2045 base state. Black dashed
line marks zero percent change.
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patterns. In Figure 2, the base state pattern is the only difference between the green and orange lines in each panel,
further demonstrating how the same internal variability pattern can have a different impact on the total SO2
injection depending on the background state.

Next, in Figure 3, we show how the total SO2 injection changes as a function of the combination of the two climate
indices, with the top row using the 2035 base state and the bottom row using the 2045 base state. Since the
controller responds similarly whether anomalies are calculated from ARISE‐SAI‐CTRL or CESM2‐LE data as
shown in Figures 2, Figure 3 shows results only using CESM2‐LE anomalies. Results using ARISE‐SAI‐CTRL
are in Supporting Information S5. Responses quantified in Figure 2 are also seen in Figure 3, such as the increase
in total injection in response to a positive ENSO and a negative SAM. Figure 3 further shows that when these
events occur together in 2035, the total injection increases more than when the patterns occur individually. A
similar but opposite response is seen when a negative ENSO and a positive SAM occur simultaneously and drive a
larger decrease in the total injection.

The impact on the total SO2 injection from multiple internal variability patterns can change based on the base state
(Figure 3). When using the 2035 base state, the largest impacts typically occur when the internal variability events
are the strongest, as shown by the largest magnitudes of percent change found in the corners of the top row panels
in Figure 3. For a base state year of 2045 (bottom row), we find that the largest magnitude changes no longer
necessarily occur when the internal variability events are strongest. For instance, when the NAO is positive, the
strongest impact to the total injection occurs when the ENSO index is near one rather than two (Figure 3d). When
looking at the T0, T1, and T2 errors for the individual temperature patterns in Figure 3 (see Supporting

Figure 3. Percent change in total SO2 injection as a function of two internal variability indices using composites from the CESM2‐LE. Top row uses the year 2035 base
state and bottom row uses the year 2045 base state. Black line in each panel separates positive percent change (red shading) from negative percent change (blue shading).
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Information S1 in the Figure S6), the sign of the T1 error relative to the T1 target (0.8767) changes sign from
negative in 2035 to positive in 2045 while the sign of T0 and T2 errors stay the same. The T1 value describes the
north‐south temperature gradient where a positive T1 value means the Northern Hemisphere is warmer than the
Southern Hemisphere. Therefore, the sign change in T1 errors is likely in response to the uneven hemispheric
warming that occurs in response to climate change. For more details about how deviations in T0, T1, and T2
change the total SO2 injection see Figure S7 in the Supporting Information S1.

We now explore the controller sensitivity to a volcanic eruption represented by the temperature anomaly pattern
associated with the 1,991 Mt. Pinatubo eruption (Figure 4a). Introducing the volcanic eruption temperature
pattern to the 2035 and 2045 base states decreases the amount of SO2 the ARISE‐SAI controller injects. When the
volcanic pattern is added to the 2035 base state alone, the controller injects nothing and when added to the 2045
base state, the injection decreases by 0.58 Tg/year. The Mt. Pinatubo eruption injected approximately 10 Tg of
SO2 into the stratosphere (Bluth et al., 1992; Wilson et al., 1993) and was estimated to cool the Earth's surface by
0.5°C (Parker et al., 1996). Therefore, a volcanic eruption the size of the Mt Pinatubo eruption would reduce the
errors in T0 and thus decrease the total injection determined by the controller. In 2035, the global cooling in
response to a Pinatubo‐like eruption is enough to negate all experienced global‐mean warming (at least from the
controller's perspective), removing the need to inject any additional SO2. The amount of SO2 naturally injected by
Mt Pinatubo is not enough to combat the amount of warming experienced in 2045.

Including an internal variability pattern in addition to the Mt. Pinatubo eruption pattern allows for the quanti-
fication of how much a Pinatubo‐like eruption in combination with internal variability impacts the controller‐
determined SO2 injection (Figures 4b, 4c, and 4d). In 2035, when a Pinatubu‐like eruption removes the need
to inject SO2, only an ENSO event stronger than 0.5 forces the controller to inject. Warming associated with a
positive ENSO greater than 0.5 is enough to cause the ARISE‐SAI controller to inject despite the volcanic
eruption.

In 2045, when the controller input also contains a single internal variability pattern, a Pinatubo‐like eruption
decreases the total injection by about 40% as shown by the orange line in Figure 4 centered around �40% rather
than around 0% as it is in Figure 2. Additionally, the slope of the orange lines in Figure 4 are smaller than the
slopes of the orange lines in Figure 2 indicating that internal variability has a smaller impact on the total injection

Figure 4. Mt. Pinatubo's impact on the total injection where (a) are the temperature anomalies associated with the Mt. Pinatubo eruption. The injection with Pinatubo is
the total SO2 injected given the base state and the volcano component. Panels (b), (c), and (d) show the percent change in total SO2 injection as a function of Pinatubo
with El‐Niño Southern Oscillation, North Atlantic Oscillation, and Southern annular mode respectively. Solid lines use data from ARISE‐SAI‐CTRL and dashed lines
use data from CESM‐LE. Green lines use the 2035 base state and orange lines use the 2045 base state. Black dashed line marks zero percent change.
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when occurring alongside a Pinatubo‐like eruption. In summary, a volcanic eruption the size of Pinatubo in 2035
can reduce the total SO2 injection by 100% except when the ENSO index is greater than 0.5. In 2045, a volcanic
eruption of the same size can reduce the total SO2 injection by about 40% and lessen the impacts of ENSO, NAO,
and SAM on total injection amounts.

4. Discussion
By design, controllers respond to variability of a system and therefore work well in systems with uncertainty
(Jarvis & Leedal, 2012). However, a controller's ability to respond and impact internal variability can result in
complicated feedbacks where the controller can amplify or attenuate the frequency of internal variability, a
feature explored thoroughly in MacMartin et al. (2014). These features of a controller are considered and balanced
during the tuning phase of a controller. While this may present a challenge toward implementing a control al-
gorithm in reality, Kravitz et al. (2014) showed that a control algorithm designed in one model could be used to
meet the targets in a different model, demonstrating the controller's ability to generalize to different systems. The
results in this work show a way to quantify a controller's sensitivities to a variety of temperature patterns post
tuning, including to those outside of the system used to tune the control algorithm. While the method produces
some climate states that may have statistically low chances of occurring or that may never occur, it allows for
quick and cheap quantification of internal variability's impact on the total injection determined by the controller.
Results in this work are confined to the 2035 and 2045 base states calculated from the ARISE‐SAI control
simulations (i.e., temperature patterns are from the system the controller was tuned for). Given that this work
shows that the internal variability's impact on the total injection depends on the background warming, using a
different emissions scenario or model for the base state may result in different quantified sensitivities.

Once sensitivities are quantified, one can consider whether the magnitude in which different internal variability
patterns impact the total injection is acceptable. For example, consider the ARISE‐SAI controller's response to a
Pinatubo‐like eruption. The controller injects less when there are naturally occurring aerosols cooling the planet.
However, in regards to patterns of internal variability, is it acceptable that more SO2 is injected when the
atmospheric‐ocean system is in an El Niño phase rather than a La Niña phase? Or should there be focus on ways to
ensure that the majority of the SO2 injection is in response to climate warming signal alone? Doing so would
require the ability to separate the forced and unforced response in our current atmosphere or to predict them with
considerable accuracy. Given that knowing or predicting the forced or unforced response with high accuracy is an
ongoing area of research (Dai et al., 2015; Mariotti et al., 2018; Xu & Darve, 2022), implementing current
methods to determine these responses would introduce further uncertainty into the feedback system.

5. Conclusions
This work quantifies the ARISE‐SAI controller sensitivity to internal variability and demonstrates a method that
allows for a quick and effective quantification of controller sensitivity post tuning. The ARISE‐SAI controller's
response to patterns of internal variability associated with ENSO, NAO and SAM as well as a Pinatubo‐like
eruption are quantified as these patterns cover Northern Hemisphere, Southern Hemisphere, and global tem-
perature impacts. Focus is placed on quantifying these patterns of internal variability in relation to years 2035 and
2045, which correspond to the deployment year in ARISE‐SAI and the deployment year in delayed start,
respectively (MacMartin et al., 2022). Using these two base state years, we show that internal variability's impact
on the total injection is dependent on the background warming it is occurring under. Using this method to explore
and quantify sensitivities of a tuned controller provides the opportunity to explore controller responses to a system
it is not tuned for, facilitates sensitivity comparisons between scenarios and earth system models, and may
promote discussion about the extent to which an SAI‐controller responds to variability internal to the climate
system.

Data Availability Statement
The CESM2‐LE is available at (Danabasoglu et al., 2021). The ARISE‐SAI control simulation is available at
(Mills et al., 2022). Code used in this work can be found at (Connolly, 2024a) and the processed data is available
at (Connolly, 2024b).
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