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We present an application of stable finite element (FE) approximations of convection-diffusion initial boundary 
value problems (IBVPs) using a weighted least squares FE method, the automatic variationally stable finite 
element (AVS-FE) method [1]. The transient convection-diffusion problem leads to issues in classical FE methods 
as the differential operator can be considered a singular perturbation in both space and time. The stability 
property of the AVS-FE method, allows us significant flexibility in the construction of FE approximations in both 
space and time. Thus, in this paper, we take two distinct approaches to the FE discretization of the convection-
diffusion problem: 𝑖) considering a space-time approach in which the temporal discretization is established using 
finite elements, and 𝑖𝑖) a method of lines approach in which we employ the AVS-FE method in space whereas the 
temporal domain is discretized using the generalized-𝛼 method. We also consider another space-time technique 
in which the temporal direction is partitioned, thereby leading to finite space-time “slices” in an attempt to 
reduce the computational cost of the space-time discretizations.
We present numerical verifications for these approaches, including numerical asymptotic convergence studies 
highlighting optimal convergence properties. Furthermore, in the spirit of the discontinuous Petrov-Galerkin 
(DPG) method by Demkowicz and Gopalakrishnan [2–6], the AVS-FE method also leads to readily available a 
posteriori error estimates through a Riesz representer of the residual of the AVS-FE approximations. Hence, the 
norm of the resulting local restrictions of these estimates serves as error indicators in both space and time for 
which we present multiple numerical verifications in mesh adaptive strategies.

1. Introduction

Transient BVPs are commonplace in engineering applications and 
to date still pose significant challenges in numerical analysis and nu-
merical modeling. Time dependency in many BVPs, such as the heat 
equation, involve partial derivatives of the trial variable with respect to 
time and leads to numerical instabilities unless careful considerations 
are taken. The reason being that the time derivative is a convective 
transport term, i.e., transient problems may lead to unstable discretiza-
tions, particularly in the FE context. Additionally, the target problem of 
convection-diffusion also result in numerical instabilities in its spatial 
discretizations which lead to the development of the AVS-FE method 
in [1]. To overcome the stability issues in both space and time we pro-
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pose two distinct approaches employing the AVS-FE method. First, we 
take a space-time approach in which space and time are discretized 
directly considering time an additional dimension using the AVS-FE 
method. Second, we consider a method of lines to decouple the com-
putations in space and time and employ a generalized 𝛼 method for the 
temporal discretization [7–9].

The use of space-time FE methods remains attractive as the approxi-
mations are standard FE approximations and therefore inherit attractive 
features of FE methods such as a priori and a posteriori error estimation 
and mesh adaptive strategies. Examples of space-time FE methods can 
be found in, e.g., [10–12]. The AVS-FE method [1] being stable for any 
differential operator is therefore a prime candidate for space-time FE 
discretizations. Its stability property is a consequence of the philoso-
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phy of the DPG method in which the test space consists of functions 
that are computed on-the-fly from Riesz representation problems [2–6]. 
In [13], the AVS-FE method is successfully employed in space and time 
for the Cahn-Hilliard BVP. The goal here was the extension of the AVS-
FE method to a nonlinear BVP as well as an initial verification of AVS-FE 
space-time solutions. Similarly, in [14], the AVS-FE method is employed 
for space time solutions of a nonlinear transient wave propagation 
problem, the Korteweg de-Vries equation. Furthermore, its built-in a 
posteriori error estimate and their corresponding error indicators can be 
directly applied to drive adaptivity. The DPG method has been success-
fully applied to several transient problems, e.g., convection-diffusion 
and the Navier-Stokes equations [15–17]. These space-time formula-
tions are available in the DPG FE code Camellia of Nathan Roberts [18]. 
Recent efforts in DPG methods for transient problems include the use of 
optimal testing in time, see e.g., [19,20]

Alternatively, the method of lines can be employed to decouple the 
discretization of space and time where the spatial dimension is dis-
cretized to obtain a discrete system at each time step. Then, using a 
time integrator, the discretization of the temporal domain subsequently 
results in a fully discrete system of equations. Here, we employ the 
AVS-FE method in space and the generalized-𝛼 method in time. Chung 
and Hulbert introduced the generalized-𝛼 method in [9] to solve hyper-
bolic problems and extended it to parabolic differential equations such 
as Navier-Stokes equations in [21]. The method provides second-order 
accuracy in the temporal domain as well as unconditional stability. Al-
though the method allows us to control the numerical dissipation in 
high-frequency regions, it delivers adequately accurate results in low-
frequency domains. Introduction of a user-defined parameter provides 
this control and includes the HHT-𝛼 method of Hilber, Hughes, Tay-
lor [22] and the WBZ-𝛼 method of Wood, Bossak, and Zienkiewicz [23].

In the following, we introduce the AVS-FE method for transient BVPs 
by taking the two distinct approaches introduced above. In Section 2 we 
introduce our model problem and notations in addition to a review of 
the AVS-FE methodology and present the AVS-FE weak formulation to 
be used. In this section we also present the discretization of the weak 
form, an alternative saddle point structure of the AVS-FE method, and 
its built-in a posteriori error estimate. In Section 3 we present the time 
discretization techniques: the method of lines using AVS-FE method in 
space and generalized-𝛼 method in time is presented in Section 3.1; and 
the space-time AVS-FE method in Section 3.2. Results from numerical 
verifications for numerous PDEs and applications are presented in Sec-
tion 4. Finally, we draw conclusions and discuss potential directions of 
future work in Section 5.

2. The AVS-FE methodology

The AVS-FE method [1] allows us to compute stable FE approxima-
tions to BVPs for any differential operator, provided its kernel is trivial 
and the computations of optimal test functions are sufficiently accurate. 
In this section we introduce our model problem and briefly review the 
AVS-FE method, a thorough introduction can be found in [1].

2.1. Model problem and notation

Let Ω ⊂ ℝ𝑁 , 𝑁 ≤ 2 be an open bounded domain with Lipschitz 
boundary 𝜕Ω and outward unit normal vector 𝐧, and let 𝑇 be the 
final time. Then, define Ω𝑇 = Ω × (0, 𝑇 ) to be the space time do-
main which is open and bounded with a Lipschitz boundary 𝜕Ω𝑇 =
Γ𝑖𝑛 ∪ Γ𝑜𝑢𝑡 ∪ Γ0 ∪ Γ𝑇 . Γ𝑖𝑛 and Γ𝑜𝑢𝑡 are the in and outflow boundaries, re-
spectively, and Γ0 and Γ𝑇 are the initial and final time boundaries, 
respectively. The transient model problem is therefore the following 
linear convection-diffusion IBVP:

Find 𝑢 such that:
𝜕𝑢
𝜕𝑡

−𝛁 ⋅ (𝜀𝛁𝑢) + 𝐛 ⋅𝛁𝑢 = 𝑓 , in Ω𝑇 ,
𝑢 = 𝑢𝑖𝑛, on Γ𝑖𝑛,

𝜀𝛁𝑢 ⋅ 𝐧 = 𝑔, on Γ𝑜𝑢𝑡,
𝑢 = 𝑢0, on Γ0,

(1)

where 𝜀 ∈ 𝐿∞(Ω) denotes the isotropic diffusion parameter; 𝐛 ∈
[𝐿2(Ω)]𝑁 the convection coefficient; 𝑓 ∈ 𝐿2(Ω) the source function; 
and 𝑔 ∈ 𝐻−1∕2(Γ𝑜𝑢𝑡) the Neumann boundary data. Note that the gra-
dient operator 𝛁 refers to the spatial gradient operator, e.g., 𝛁(⋅) =
{ 𝜕(⋅)

𝜕𝑥 , 
𝜕(⋅)
𝜕𝑦 }

T.

2.2. Weak formulation and FE discretization

We omit the full derivation of the weak formulation here and men-
tion key points only. The derivation of a weak formulation for the 
AVS-FE method is shown in, e.g. [1]. To establish a weak formulation 
of (1), we need a regular partition ℎ of Ω𝑇 into elements 𝐾𝑚, such 
that:

Ω𝑇 = int(
⋃

𝐾𝑚∈ℎ

𝐾𝑚).

We introduce a flux variable 𝐪 = 𝜀𝛁𝑢, and recast (1) as a system of 
(distributional) first-order PDEs:

Find (𝑢,𝐪) ∈𝐿2([0,𝑇 ];𝐻1(Ω) ×𝐻(div,Ω)) such that:
𝛁𝑢− 1

𝜀
𝐪 = 0, in Ω𝑇 ,

𝜕𝑢
𝜕𝑡

−𝛁 ⋅ 𝐪 + 𝐛 ⋅𝛁𝑢 = 𝑓 , in Ω𝑇 ,
𝑢 = 𝑢𝑖𝑛, on Γ𝑖𝑛,

𝐪 ⋅ 𝐧 = 𝑔, on Γ𝑜𝑢𝑡,
𝑢 = 𝑢0, on Γ0.

(2)

Note that the flux variable 𝐪 depends on time but only has the same 
number of components as the dimension of Ω and in the weak enforce-
ment of the PDE, it belongs to 𝐿2([0, 𝑇 ]; 𝐻(div, Ω)).

To derive the AVS-FE weak formulation, we enforce the PDEs (2)
weakly on each element 𝐾𝑚 ∈ ℎ, apply integration by parts to shift 
all derivatives to the test functions except the time derivative. After 
subsequent summation of the local contributions we arrive at the global 
variational formulation:

Find (𝑢,𝐪) ∈𝑈 (Ω𝑇 ) such that:
𝐵((𝑢,𝐪), (𝑣,𝐰)) = 𝐹 ((𝑣,𝐰)), ∀(𝑣,𝐰) ∈ 𝑉 (ℎ),

(3)
In (3), the bilinear form, 𝐵 ∶ 𝑈 (Ω𝑇 ) × 𝑉 (ℎ) ⟶ ℝ, and linear func-
tional, 𝐹 ∶ 𝑉 (ℎ)⟶ℝ, are defined:

𝐵((𝑢,𝐪), (𝑣,𝐰)) def=
∑

𝐾𝑚∈ℎ

{
∫
𝐾𝑚

[
−𝑢𝛁 ⋅𝐰𝑚 − 1

𝜀
𝐪 ⋅𝐰𝑚 + 𝜕𝑢

𝜕𝑡
𝑣𝑚

+𝐪 ⋅𝛁𝑣𝑚 − (𝐛 ⋅𝛁𝑣𝑚)𝑢
]
d𝐱

+ ∮
𝜕𝐾𝑚

[
(𝐛 ⋅ 𝐧) 𝛾𝑚0 (𝑢)𝛾

𝑚
0 (𝑣𝑚) + 𝛾𝑚𝐧 (𝐰𝑚) 𝛾𝑚0 (𝑢)− 𝛾𝑚𝐧 (𝐪) 𝛾

𝑚
0 (𝑣𝑚)

]
d𝑠
}
,

𝐹 ((𝑣,𝐰)) def=
∑

𝐾𝑚∈ℎ
∫
𝐾𝑚

𝑓 𝑣𝑚 d𝐱,

(4)

where the continuous trial and broken test function spaces, 𝑈 (Ω𝑇 ) and 
𝑉 (ℎ), are defined as follows:

16



E. Valseth, P. Behnoudfar, C. Dawson et al. Computers and Mathematics with Applications 157 (2024) 15–26

𝑈 (Ω𝑇 )
def=

{
(𝑢,𝐪) ∈𝐿2([0,𝑇 ];𝐻1(Ω) ×𝐻(div,Ω)) ∶

𝑢|Γ0 = 𝑢0, 𝑢|Γ𝑖𝑛 = 𝑢𝑖𝑛, 𝐪 ⋅ 𝐧|Γ𝑜𝑢𝑡 = 𝑔
}
,

𝑉 (ℎ)
def=

{
(𝑣,𝐰) ∈𝐻1(ℎ) ×𝐻(div,ℎ)

}
.

(5)

The broken Hilbert spaces are defined:

𝐻1(ℎ)
def=

{
𝑣 ∈𝐿2(Ω𝑇 ) ∶ 𝑣𝑚 ∈𝐻1(𝐾𝑚), ∀𝐾𝑚 ∈ ℎ

}
,

𝐻(div,ℎ)
def=

{
𝐰 ∈ [𝐿2(Ω𝑇 )]2 ∶ 𝐰𝑚 ∈𝐻(div,𝐾𝑚), ∀𝐾𝑚 ∈ ℎ

}
,

(6)

and the norms on these spaces ‖⋅‖𝑈 (Ω𝑇 ) ∶ 𝑈 (Ω𝑇 ) ⟶ [0, ∞) and 
‖⋅‖𝑉 (ℎ) ∶ 𝑉 (ℎ)⟶ [0, ∞) are defined as follows:

‖(𝑢,𝐪)‖𝑈 (Ω𝑇 )
def=

√√√√∫
Ω

[
𝛁𝑢 ⋅𝛁𝑢+ 𝑢2 + (𝛁 ⋅ 𝐪)2 + 𝐪 ⋅ 𝐪

]
d𝐱.

‖(𝑣,𝐰)‖𝑉 (ℎ)

def=
√

∑
𝐾𝑚∈ℎ

∫𝐾𝑚

[
ℎ2𝑚𝛁𝑣𝑚 ⋅𝛁𝑣𝑚 + 𝑣2𝑚 + ℎ2𝑚(𝛁 ⋅𝐰𝑚)2 +𝐰𝑚 ⋅𝐰𝑚

]
d𝐱.

(7)
The operators 𝛾𝑚0 ∶𝐻1(𝐾𝑚) ∶⟶𝐻1∕2(𝜕𝐾𝑚) and 𝛾𝑚𝐧 ∶𝐻(div, 𝐾𝑚) ⟶
𝐻−1∕2(𝜕𝐾𝑚) denote the trace and normal trace operators on 𝐾𝑚.

The bilinear form and linear functional in (4) differs from the ones 
presented in [1] due to the term 𝜕𝑢𝜕𝑡 and the application of integration by parts to all terms involving spatial derivatives. This weak formula-
tion (3) represents a DPG formulation as the test space is broken and 
continuity of the trial space is a result of the definition of its subspaces. 
In the following we review important points of the AVS-FE method and 
for the sake of simplicity, consider the case with homogeneous Dirich-
let boundary conditions (𝑢|𝜕Ω𝑇

= 0) which are enforced strongly in the 
trial space 𝑈 (Ω𝑇 ). We focus only on the equivalent saddle point formu-
lation to (3) of the AVS-FE, and other discrete least squares methods, 
and refer to the extensive literature on the subject, e.g., the classical 
text of Bochev and Gunzberger [24] and in particular the work of Keith 
et al. [25] for further details on the solution of the normal equation (3)
using optimal test functions.

2.3. Equivalent saddle point problem

The discretization of (3) can be implemented in existing FE soft-
ware by redefining routines that compute the element stiffness matrices 
to compute optimal test functions on-the-fly, as in e.g., [1]. However, 
in several commonly used FE solvers, such as FEniCS [26] or Fire-
drake [27], manipulations of the element assembly routines may not 
as easily be performed. Thus, to enable straightforward implementation 
into these FE solvers, we will introduce an equivalent interpretation of 
the AVS-FE method as a global saddle point problem. We omit several 
details here and highlight only key features of this interpretation, inter-
ested readers are referred to [28] for a complete presentation.

The AVS-FE method is a weighted least squares, or minimum resid-
ual method, in the sense that its solution realizes the minimum of a 
functional according to the following principle:

𝑢ℎ = argmin
𝑣ℎ∈𝑈ℎ(Ω)

1
2‖B𝑣

ℎ −F‖2𝑉 (ℎ)′
, (8)

where B and F are operators induced by the bilinear and linear forms, 
respectively. Furthermore, we can relate the norm on the dual space 
𝑉 (ℎ)′ ‖⋅‖𝑉 (ℎ)′ to the energy norm:

‖(𝑢,𝐪)‖B
def= sup

(𝑣,𝐰)∈𝑉 (ℎ)⧵{(0,𝟎)}

|𝐵((𝑢,𝐪), (𝑣,𝐰))|
‖(𝑣,𝐰)‖𝑉 (ℎ)

, (9)

using the Riesz representers (𝑝, 𝐫) that solves the following problem for 
(𝑢, 𝐪):

( (𝑝, 𝐫), (𝑣,𝐰) )𝑉 (ℎ) = 𝐵( (𝑢,𝐪), (𝑣,𝐰)), ∀(𝑣,𝐰) ∈ 𝑉 (ℎ). (10)
Analogously, we can consider a Riesz representer of the approximation 
error (𝑢 − 𝑢ℎ, 𝐪 − 𝐪ℎ), which we refer to as an error representation func-
tion [3]. This error representation function (𝑒, 𝐄̂) is then defined as the 
solution of the following weak problem:

Find (𝑒, 𝐄̂) ∈ 𝑉 (ℎ) such that:
((𝑒, 𝐄̂), (𝑣,𝐰))𝑉 (ℎ)

= 𝐹 (𝑣,𝐰)−𝐵( (𝑢ℎ,𝐪ℎ), (𝑣,𝐰) )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Residual

∀ (𝑣,𝐰) ∈ 𝑉 (ℎ).
(11)

The energy norm of (𝑢 −𝑢ℎ, 𝐪 −𝐪ℎ) can be identified by the 𝑉 (ℎ) norm 
of the error representation function:

Proposition 2.1. Let (𝑢, 𝐪) ∈ 𝑈 (Ω) be the solution of the AVS-FE weak 
form (3) and (𝑢ℎ, 𝐪ℎ) ∈ 𝑈ℎ(Ω) its corresponding AVS-FE approximation. 
Then, the energy norm of (𝑢 − 𝑢ℎ, 𝐪 − 𝐪ℎ) is identical to the 𝑉 (ℎ) norm of 
(𝑒, 𝐄̂):

‖(𝑢− 𝑢ℎ,𝐪− 𝐪ℎ)‖B = ‖(𝑒, 𝐄̂)‖𝑉 (ℎ). (12)

Proof. This proof is known from existing DPG literature (see Section 1
and equation (1.17) in [6]). The identity is a consequence of the defini-
tion of the energy norm (9) and the weak problem governing the error 
representation function (11). □
The norm of approximate error representation function (𝑒ℎ, 𝐄̂ℎ) is there-
fore an a posteriori error estimate, i.e.,

‖(𝑢− 𝑢ℎ,𝐪− 𝐪ℎ)‖B ≈ ‖(𝑒ℎ, 𝐄̂ℎ)‖𝑉 (ℎ). (13)
Furthermore, its local restriction can be computed element-wise as the 
space 𝑉 (ℎ) is broken to yield the error indicator:

𝜂 = ‖(𝑒ℎ, 𝐄̂ℎ)‖𝑉 (𝐾𝑚). (14)
This type of error indicator has been applied with great success to mul-
tiple problems (see, e.g., [3,6,29,30]), and we show several numerical 
experiments using this indicator for the AVS-FE method in Section 4. 
It should be noted that this error estimate and the error indicator 
are known to be robust (i.e., bounded above and below) under the 
assumption of the existence of DPG Fortin operators and localizable 
norms [3,31,32].

The minimum residual interpretation allows us to establish the fol-
lowing AVS-FE saddle point formulation to which we seek the approxi-
mate solution (𝑢ℎ, 𝐪ℎ) under the constraint that the error representation 
function minimizes the residual of the AVS-FE method, see (11):

Find (𝑢ℎ,𝐪ℎ) ∈𝑈ℎ(Ω), (𝑒ℎ, 𝐄̂ℎ) ∈ 𝑉 ℎ(ℎ) such that:
(
(𝑒ℎ, 𝐄̂ℎ), (𝑣ℎ,𝐰ℎ)

)
𝑉 (ℎ)

+𝐵((𝑢ℎ,𝐪ℎ), (𝑣ℎ,𝐰ℎ)) = 𝐹 (𝑣ℎ,𝐰ℎ),
∀(𝑣ℎ,𝐰ℎ) ∈ 𝑉 ℎ(ℎ),

𝐵((𝑝ℎ, 𝐫ℎ), (𝑒ℎ, 𝐄̂ℎ)) = 0, ∀(𝑝ℎ, 𝐫ℎ) ∈𝑈ℎ(Ω).

(15)
Solution of (15) gives both the AVS-FE solution for (𝑢ℎ, 𝐪ℎ) and its er-
ror representation functions (𝑒ℎ, 𝐄̂ℎ) in a single global solution step. 
This is very convenient as we now have a built-in a posteriori error es-
timate and error indicators immediately upon solving (15). However, 
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the computational cost of doing so has been shifted from local compu-
tations for optimal test functions to the global cost of a larger system of 
equations. Fortunately, the global nature of (15) allows for very simple 
implementation of the AVS-FE method in readily available FE solvers 
like FEniCS [26] and Firedrake [27]. Note that dropping the weighted 
derivative terms from the inner product corresponding to the norm 
‖⋅‖𝑉 (ℎ) reduces (15) to a DPG implementation of the first-order system 
least squares method. Note that the analysis of (15) can be performed 
using the famous Brezzi theory [33,34]. In [25], a general framework 
for saddle point problems arising in discrete least squares methods, such 
as (15) is presented which is also applicable in the present setting. Since 
the inner product is a coercive linear operator, and the bilinear form 
satisfies a discrete inf-sup condition, the saddle point system is also well 
posed. □

3. Time discretization

In the weak formulation (3) we have made no assumptions on the 
type of discretization of the time domain. Here, we consider two dis-
tinctive cases of time discretization techniques. In both cases the spa-
tial discretizations are performed with finite elements and the AVS-FE 
methodology. First, we consider a discretization of the time domain 
by employing the method of lines to decouple the spatial and time 
discretization and subsequently employing the generalized-𝛼 method. 
Second, the discrete stability property of the AVS-FE method allows us 
to discretize the time domain with finite elements in a space-time ap-
proach.

3.1. Method of lines

In this section, we first discuss the method in an abstract setting 
before proceeding to the particular case of the AVS-FE method and 
generalized-𝛼 methods. To this end, we define two Hilbert spaces U(Ω)
and V(Ω), and introduce a well-posed weak formulation for a transient 
BVP, e.g., the convection-diffusion problem of Section 2.1:

Find u ∈ U(Ω) such that:
b(u,v) = 𝐹 (v), ∀v ∈ V(Ω), (16)

where the bilinear form b contains all spatial and temporal terms. To 
seek approximations of (16), we introduce the time derivative operator , and consider FE polynomial subspaces of U(Ω) and V(Ω), i.e., Uℎ(Ω)
and Vℎ(Ω). Thus, we get:

Find uℎ ∈ Uℎ(Ω) such that:
((uℎ),vℎ)𝐿2(Ω) + bℎ(uℎ,vℎ) = 𝐹 (vℎ), ∀vℎ ∈ Vℎ(Ω),

(17)
where (⋅, ⋅)𝐿2(Ω) denotes the 𝐿2(Ω) inner product, and the bilinear oper-
ator bℎ(⋅, ⋅) contains only spatial derivative terms. We assume that this 
formulation is well-posed.

To advance the solution in time, we consider a uniform partition 
of the time domain from 𝑡0 = 0 to the final time 𝑡𝑁 = 𝑇 , with 𝜏
the distance between each step 𝑡𝑖. We compute approximations to uℎ
at each step using second-order accurate generalized-𝛼 methods pre-
sented in [9,21]. For parabolic or first-order hyperbolic problems, the 
generalized-𝛼 method for the transient term (uℎ) in (17) is to find 
u𝑛+1ℎ ∈ Uℎ(Ω), such that:

(𝜗𝑛+𝛼𝑔ℎ , vℎ)𝐿2(Ω) + bℎ(u
𝑛+𝛼𝑓
ℎ , vℎ) = 𝐹𝑛+𝛼𝑓 (vℎ), ∀vℎ ∈ V(Ω)ℎ, (18)

where u𝑛ℎ, 𝜗𝑛ℎ are the approximations to u(., 𝑡𝑛) and 𝜕u(., 𝑡𝑛)
𝜕𝑡 , respec-

tively. We discuss the initialization of 𝜗𝑛ℎ in Remark 3.1 and Sec-

tion 3.1.2. The unknowns at time step 𝑛 + 1 are updated using the 
solutions at 𝑛 + 𝛼𝑓 and 𝑛 + 𝛼𝑔 as:

u𝑛+𝛼𝑓 = u𝑛 + 𝛼𝑓 𝛿(u𝑛), 𝛿(u𝑛) = u𝑛+1 − u𝑛.
𝜗𝑛+𝛼𝑔ℎ = 𝜗𝑛ℎ + 𝛼𝑔𝛿(𝜗𝑛ℎ), 𝛿(𝜗𝑛ℎ) = 𝜗𝑛+1ℎ − 𝜗𝑛ℎ.

(19)

Using a Taylor expansion, we have u𝑛+1 = u𝑛 + 𝜏𝜗𝑛 + 𝜏𝛾𝛿(𝜗𝑛) as a lin-
ear combination of u𝑛, 𝜗𝑛 with 𝛾 guaranteeing second-order accuracy. 
Substitution of the expressions in (19) into (18) gives:

(𝜗𝑛+1ℎ , vℎ)𝐿2(Ω) + bℎ(𝜁 𝜗𝑛+1ℎ , vℎ) = ( 1
𝛼𝑔

𝑙𝑛+1,vℎ), ∀vℎ ∈ V(Ω)ℎ, (20)

where 𝜁 = 𝜏𝛾𝛼𝑓
𝛼𝑔

, and:

𝑙𝑛+1 = 𝐹𝑛+𝛼𝑓 + (𝛼𝑔 − 1)
(
𝜗𝑛ℎ, vℎ

)
𝐿2(Ω) + 𝜏𝛼𝑓 (𝛾 − 1)bℎ

(
𝜗𝑛ℎ, vℎ

)

− bℎ
(u𝑛ℎ, vℎ

)
.

(21)

It can be shown that this scheme is formally second order accurate 
(see [21]) if we select:

𝛾 = 1
2 + 𝛼𝑔 − 𝛼𝑓 . (22)

To avoid having to select both 𝛼𝑔 and 𝛼𝑓 , these parameters are defined 
in terms of the spectral radius 𝜌∞. This parameter essentially provides a 
means to control numerical dissipation. Hence, 𝛼𝑔 and 𝛼𝑓 are defined:

𝛼𝑔 =
1
2

(3− 𝜌∞
1 + 𝜌∞

)
, 𝛼𝑓 = 1

1 + 𝜌∞
. (23)

Remark 3.1. The generalized-𝛼 method requires additional initial data for 
𝜗0ℎ. This value is obtained by setting 𝛼𝑓 = 𝛼𝑔 = 𝑛 = 0 and solving (18).

Remark 3.2. The spectral radius 𝜌∞ is a user-defined parameter that pro-
vides control on the numerical dissipation such that for 𝜌∞ = 1 there is no 
dissipation control, and the maximum control is delivered by setting 𝜌∞ = 0. 
Numerical dissipation can occur for example in the case of poor spatial res-
olution (for more details, see, [35,36]).

3.1.1. Generalized-𝛼 and the AVS-FE method
Having introduced the generalized-𝛼 method for a well defined weak 

formulation, we now extend it to the AVS-FE method for our model 
IBVP of convection-diffusion. Hence, let us consider the AVS-FE weak 
formulation (3), and the trial and test spaces 𝑈 (Ω) and 𝑉 (ℎ) analogous 
to (5). The generalized-𝛼 method for the AVS-FE method is:

Find (𝜗𝑛+1ℎ , 𝐪𝑛+1ℎ ) ∈𝑈ℎ(Ω) such that:
(𝜗𝑛+1ℎ , 𝑣∗)𝐿2(Ω) +𝐵ℎ((𝜁 𝜗𝑛+1ℎ , 𝐪𝑛+1ℎ ), (𝑣∗,𝐰∗)) = 1

𝛼𝑔
𝓁𝑛+1(𝑣∗,𝐰∗),

∀ (𝑣∗,𝐰∗) ∈ 𝑉 ∗(ℎ),

(24)
where the operators are defined:
𝐵ℎ((𝑢,𝐪), (𝑣,𝐰))
def=

∑
𝐾𝑚∈ℎ

{
∫
𝐾𝑚

[
−𝑢𝜀𝛁 ⋅𝐰𝑚 − 𝐪 ⋅𝐰𝑚 + 𝐪 ⋅𝛁𝑣𝑚 − (𝐛 ⋅𝛁𝑣𝑚)𝑢

]
d𝐱

+ ∮
𝜕𝐾𝑚

[
(𝐛 ⋅ 𝐧) 𝛾𝑚0 (𝑢)𝛾

𝑚
0 (𝑣𝑚) + 𝛾𝑚𝐧 (𝐰𝑚) 𝛾𝑚0 (𝑢)− 𝛾𝑚𝐧 (𝐪) 𝛾

𝑚
0 (𝑣𝑚)

]
d𝑠
}
,

𝓁𝑛+1((𝑣,𝐰)) def=
∑

𝐾𝑚∈ℎ
∫
𝐾𝑚

(𝑓𝑛+𝛼𝑓 𝑣) d𝐱 + (𝛼𝑔 − 1)
(
𝜗𝑛ℎ, 𝑣

)
𝐿2(Ω)

+𝜏𝛼𝑓 (𝛾 − 1) ⋅𝐵ℎ
(
(𝜗𝑛ℎ,𝟎), (𝑣,𝐰)

)
−𝐵ℎ

(
(𝑢𝑛ℎ,𝐪

𝑛
ℎ), (𝑣,𝐰)

)
.

(25)
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To establish the solutions to (24) we take the same approach intro-
duced in Section 2.3 and define a saddle point system similar to (15). 
The major difference between the “original” weak form (3) and the one 
corresponding to the generalized-𝛼 method, i.e., (24) other than the ad-
justed bilinear and linear forms, is the term (𝜗𝑛+1ℎ , v)𝐿2(Ω). Analogous 
to the case in Section 2.3, the approximation to (24) is governed by the 
following minimization problem:

𝜗𝑛+1ℎ = argmin
𝑧ℎ∈𝑈ℎ(Ω)

1
2‖l

𝑛+1 −
(
M+ 𝜁Bℎ

)
𝑧ℎ‖2𝑉 ′

ℎ
, (26)

where the operators Bℎ and l𝑛+1 correspond to the actions of the 
adjusted forms 𝐵ℎ and 𝓁𝑛+1, respectively, and M to the new term 
(𝜗𝑛+1ℎ , v)𝐿2(Ω). Thankfully, the Riesz map (induced by the equivalent 
of the Riesz representation problem (10) for (24)) allows us to relate 
the norm on the dual space ‖⋅‖𝑉 ′

ℎ
to the energy norm on 𝑈 (Ω). Hence, 

we define the following error representation function:

Find (𝑒𝑛+1, 𝐄̂𝑛+1) ∈ 𝑉 (ℎ) such that:
((𝑒𝑛+1, 𝐄̂𝑛+1), (𝑣,𝐰))𝑉 (ℎ)

= 𝓁𝑛+1(𝑣,𝐰)− (𝜗𝑛+1ℎ , 𝑣)𝐿2(Ω) +𝐵ℎ((𝜁 𝜗𝑛+1ℎ , 𝐪𝑛+1ℎ ), (𝑣,𝐰))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Residual

,

∀ (𝑣,𝐰) ∈ 𝑉 (ℎ).

(27)

which now measures how far we are from the best approximation of 
(𝜗𝑛+1ℎ , 𝐪𝑛+1ℎ ) at the current time step. In the same fashion as in Sec-
tion 2.3, the norm of this function is an a posteriori error estimate and 
its restriction to each 𝐾𝑚 ∈ ℎ an error indicator. We finally can intro-
duce the saddle point problem for each time step:

Find (𝜗𝑛+1ℎ ,𝐪𝑛+1ℎ ) ∈𝑈ℎ(Ω), (𝑒𝑛+1ℎ , 𝐄̂𝑛+1
ℎ ) ∈ 𝑉ℎ(ℎ) such that:

((𝑒𝑛+1ℎ , 𝐄̂𝑛+1
ℎ ) , (𝑣ℎ,𝐰ℎ))𝑉ℎ + ((𝜗𝑛+1ℎ ,𝟎), (𝑣ℎ,𝐰ℎ))𝐿2(Ω)

+𝜁 ⋅𝐵ℎ((𝜗𝑛+1ℎ ,𝐪𝑛+1ℎ ), (𝑣ℎ,𝐰ℎ)) =
1
𝛼𝑔
𝓁𝑛+1((𝑣ℎ,𝐰ℎ)),
∀ (𝑣ℎ,𝐰ℎ) ∈ 𝑉ℎ(ℎ),

((𝑧ℎ, 𝐫ℎ) , (𝑒𝑛+1ℎ ,𝟎))𝐿2(Ω) + 𝜁 ⋅𝐵ℎ((𝑧ℎ, 𝐫ℎ) , (𝑒𝑛+1ℎ , 𝐄̂𝑛+1
ℎ )) = 0,

∀ (𝑧ℎ, 𝐫ℎ) ∈𝑈ℎ(Ω),

(28)

where the inner product (⋅, ⋅)𝑉ℎ is defined:

((𝑒𝑛+1ℎ , 𝐄̂𝑛+1
ℎ ) , (𝑣ℎ,𝐰ℎ))𝑉ℎ

= ((𝜁 ⋅ 𝑒𝑛+1ℎ , 𝐄̂𝑛+1
ℎ ) , (𝑣ℎ,𝐰ℎ))𝑉 (ℎ) + ((𝑒𝑛+1ℎ ,𝟎) , (𝑣ℎ,𝐰ℎ))𝐿2(Ω).

(29)

Computing 𝜗𝑛+1ℎ from (28), we obtain 𝑢𝑛+1ℎ from a Taylor expansion at 
each time step. The overall procedure requires a matrix solve at each 
time step as well as two explicit updates. Note that as both (25) and 
the inner product (29) both depend on 𝜁 in the same fashion. Hence, 
the solutions 𝑢ℎ computed from (28) do not change with 𝜁 , whereas the 
error representation function (𝑒𝑛+1ℎ , 𝐄̂𝑛+1

ℎ ) does.
Next, we show that our proposed saddle-point problem (28) is un-

conditionally stable in the temporal domain. To achieve this, we must 
show that our AVS-FE spatial discretization scheme does not alter the 
unconditional stability of generalized-𝛼 method.

Theorem 3.1. The saddle-point problems in (28) provide unconditionally
stable solutions in temporal domain.

Proof. Our proof relies on established bounds from literature for the 
generalized-𝛼 method [35], and reasoning based on the properties of 
the AVS-FE saddle point problem (28). By applying the generalized-𝛼
method on the continuous parabolic problem (2) to discrete the tempo-
ral domain, we obtain a fully discrete problem that can be written:

[
𝑢𝑛+1
𝜏𝜗𝑛+1

]
= Ξ

[
𝑢𝑛
𝜏𝜗𝑛

]
+Π 𝑙𝑛+𝛼𝑓 , (30)

with Ξ and Π being a 2 × 2 amplification matrix and a 2 × 1 matrix, 
respectively. The amplification matrix allows us to write the solution 
at time step 𝑛 + 1 using an initial condition and a forcing term. The 
derivation and development of the amplification matrix can be found in, 
e.g., [7–9]. If the eigenvalues of this amplification matrix are bounded 
by one, the method is stable see Theorem 2 in [8]. Hence:

𝜏‖𝜗𝑛+1‖2𝐿2(Ω) ≤ 𝜏‖𝜗𝑛‖2𝐿2(Ω) +
1
𝜏
‖𝜋2 𝑙𝑛+𝛼𝑓 ‖2𝐿2(Ω), (31)

where 𝜋2 is the second component of Π. Considering the saddle-point 
problem (28) with unknown 𝜗𝑛+1ℎ , we add the term ‖𝜗𝑛+1ℎ − 𝜗𝑛+1‖𝐿2(Ω)
to the right-side of the inequality (31) and the inequality still holds. 
Next, using ‖𝜗𝑛+1 − 𝜗𝑛+1ℎ ‖𝐿2(Ω) ≤ ‖𝜗𝑛+1 − 𝜗𝑛+1ℎ ‖𝑉 (ℎ), the Cauchy-Schwartz inequality, and the error representation provided by the AVS-
FE method, we get:

𝜏‖𝜗𝑛+1ℎ ‖2𝐿2(Ω) ≤ 𝜏‖𝜗𝑛‖2𝐿2(Ω) + 𝜏‖𝜗𝑛+1ℎ − 𝜗𝑛+1‖2𝐿2(Ω) +
1
𝜏
‖𝜋2 𝑙𝑛+𝛼𝑓 ‖2𝐿2(Ω)

≤ 𝜏‖𝜗𝑛‖2𝐿2(Ω) +𝐶
√
𝜏‖(𝑒𝑛+1ℎ ‖2𝑉 (ℎ)

+ 1
𝜏
‖𝜋2 𝑙𝑛+𝛼𝑓 ‖2𝐿2(Ω),

≤ 𝜏‖𝜗0‖2𝐿2(Ω)

+
𝑗=𝑁−1∑
𝑗=0

(
𝐶
√
𝜏‖(𝑒𝑗ℎ‖2𝑉 (ℎ)

+ 1
𝜏
‖𝜋2 𝑙𝑗+𝛼𝑓 ‖2𝐿2(Ω)

)
,

where 𝐶 > 0 is a constant. Hence, the solution is bounded by the initial 
solution, forcing, and error representation terms. □

3.1.2. Retrieving initial data
As pointed out in Remark 3.1, we need to retrieve the additional 

initial data 𝜗0ℎ to solve (28). Hence, we set 𝛼𝑓 = 𝛼𝑔 = 0 and get:

Find (𝜗0ℎ,𝐪
0
ℎ) ∈𝑈ℎ(Ω), (𝑒0ℎ, 𝐄̂

0
ℎ) ∈ 𝑉ℎ(ℎ) such that:

((𝑒0ℎ, 𝐄̂
0
ℎ , (𝑣ℎ,𝐰ℎ))𝑉ℎ + ((𝜗0ℎ,𝟎), (𝑣ℎ,𝐰ℎ))𝐿2(Ω)

= 𝓁0((𝑣ℎ,𝐰ℎ))− 𝜁 ⋅ 𝑏ℎ((𝑢0,𝐪0ℎ), (𝑣ℎ,𝐰ℎ)),

∀ (𝑣ℎ,𝐰ℎ) ∈ 𝑉ℎ(ℎ),
((𝑧ℎ, 𝐫ℎ) , (𝑒0ℎ,𝟎))𝐿2(Ω) = 0, ∀ (𝑧ℎ, 𝐫ℎ) ∈𝑈ℎ(Ω),

(32)

where 𝑢0, 𝐪0, and 𝓁0((𝑣ℎ, 𝐰ℎ)) correspond to the initial data. To ascer-
tain that the problem for the initial data is well posed (32), we have the 
following proposition.

Proposition 3.1. Let (𝑣ℎ, 𝐰ℎ) ∈ 𝑉ℎ be arbitrary test functions. Then, 𝜗0ℎ ∈
𝑈ℎ(Ω) exists and is unique.

We omit the proof here as it is trivial to show that ((𝜗0ℎ, 𝟎),
(𝑣ℎ, 𝐰ℎ))𝐿2(Ω), i.e. the 𝐿2(Ω) inner product, satisfies the following three 
properties:

• Stability: There exists a constant 𝐶sta > 0 independent of the mesh 
size, such that:

inf
0≠𝑧ℎ∈𝑈ℎ(Ω)

sup
0≠𝑣ℎ∈𝑉ℎ

|((𝑧ℎ,𝟎), (𝑣ℎ,𝐰ℎ))𝐿2(Ω)|
‖𝑧ℎ‖𝐿2(Ω)‖𝑣ℎ‖𝐿2(Ω)

≥ 𝐶sta. (33)

• Consistency: Employing a similar argument as [30] to study the 
consistency of the saddle-point problem, we can state the consis-
tency as:
((𝜗0ℎ,𝟎), (𝑣ℎ,𝐰ℎ))𝐿2(Ω) = (𝑓 0, (𝑣ℎ,𝐰ℎ))

− 𝜁 ⋅ 𝑏ℎ((𝑢0ℎ,𝐪
0
ℎ), (𝑣ℎ,𝐰ℎ)), ∀ (𝑣ℎ,𝐰ℎ) ∈ 𝑉ℎ

(34)

• Boundedness: There exists a constant 𝐶bnd <∞, uniformly with re-
spect to the mesh size, such that:

19



E. Valseth, P. Behnoudfar, C. Dawson et al. Computers and Mathematics with Applications 157 (2024) 15–26

((𝑧,𝟎), (𝑣ℎ,𝐰ℎ))𝐿2(Ω) ≤ 𝐶bnd ‖𝑧‖𝐿2(Ω)‖𝑣ℎ‖𝐿2(Ω), ∀ (𝑧,𝑣ℎ) ∈𝑈 × 𝑉ℎ.

(35)

See [37] for details on these conditions. □
Thus, using (32), we have a stable and adaptive method to find the 

initial data which is critical for the generalized-𝛼 method to ensure 
second-order accuracy in time.

3.2. Space-time FE approach

The use of FE discretizations for transient problems is commonly 
avoided due to the inherently unstable nature of transient problems. 
The discretizations must be very carefully constructed to achieve dis-
crete stability using the classical FE method. However, the stability of 
the AVS-FE method allows us to discretize the entire space-time domain 
with finite elements in a straightforward manner. Furthermore, a pos-
teriori error estimates and error indicators are immediately available to 
us as error indicators are obtained directly in the saddle point approach 
of the AVS-FE method (15).

To establish AVS-FE space-time approximations of weak formu-
lation (3) or (15), we pick appropriate discretizations of the space 
𝐿2([0, 𝑇 ]; 𝐻1(Ω) ×𝐻(div, Ω)). For 𝐿2([0, 𝑇 ]; 𝐻1(Ω)), the choice is clas-
sical FE basis functions that are 𝐶0 continuous functions in the space-
time domain Ω𝑇 such as Lagrange or Legendre polynomials. For 
𝐿2([0, 𝑇 ]; 𝐻(div, Ω)), a conforming choice of basis is, e.g., a tensor prod-
uct basis of Raviart-Thomas and 𝐿2[0, 𝑇 ] functions. However, as in [1], 
we employ approximations for 𝐪ℎ by 𝐶0 polynomials for each of its 
components as this has shown to yield superior results for convex do-
mains and sufficiently regular sources. In particular, we generate 3D 
FE meshes on which the bases are defined, which for the scalar valued 
function is trivial, and in the case of 𝐪ℎ, we employ restrictions of the 
3D 𝐶0 basis functions to 2D. The discretized saddle point problem is 
therefore:

Find (𝑢ℎ,𝐪ℎ) ∈𝑈ℎ(Ω𝑇 ), (𝑒ℎ, 𝐄̂ℎ) ∈ 𝑉 ℎ(ℎ) such that:
(
(𝑒ℎ, 𝐄̂ℎ), (𝑣ℎ,𝐰ℎ)

)
𝑉 (ℎ)

+𝐵((𝑢ℎ,𝐪ℎ), (𝑣ℎ,𝐰ℎ))
= 𝐹 (𝑣ℎ,𝐰ℎ), ∀(𝑣ℎ,𝐰ℎ) ∈ 𝑉 ℎ(ℎ),

𝐵((𝑝ℎ, 𝐫ℎ), (𝑒ℎ, 𝐄̂ℎ)) = 0, ∀(𝑝ℎ, 𝐫ℎ) ∈𝑈ℎ(Ω𝑇 ).

(36)

where the components of 𝑈ℎ(Ω𝑇 ) are spanned by continuous FE basis 
functions and 𝑉 ℎ(ℎ) by discontinuous FE basis functions.

3.2.1. Time slice approach
As an alternative to the space-time discretization of the full space-

time domain Ω𝑇 , in this section we introduce a time slice approach for 
the AVS-FE method. While the space-time approach introduced in the 
preceding section allows straightforward implementation of the AVS-
FE method and its “built-in” error indicator can drive mesh adaptive 
refinements, the large number of degrees of freedom quickly makes the 
method intractable. In an effort to localize the computational cost of the 
space-time approach, we propose to partition the space-time domain 
into “space-time slices”. The slices can be constructed in a number of 
ways, from uniformly to a graded mesh structure as considered in [15,
38] for the DPG method.

To advance in time, a solution can be obtained on a slice which can 
be transferred to the neighboring slice as an initial condition. Hence, we 
can perform mesh refinements on each slice to ensure the complete res-
olution of any interior or boundary layer (i.e., physical features) before 
proceeding to the next. This is of particular interest in applications in 
which physical parameters are time dependent leading to widely differ-
ent solution features as time progresses. In Fig. 1, an arbitrary domain 
Ω𝑇 is shown and is partitioned into two space-time slices. Note that 
the approach of time slices is not fully equivalent to the full space-time 
domain as only information of 𝑢ℎ is transferred between slices.

Fig. 1. Partition of space-time domain into slices.

4. Numerical verifications

To conduct numerical verifications, we consider the following form 
of our model scalar-valued convection diffusion problem (1):
𝜕𝑢
𝜕𝑡

− 𝜀Δ𝑢+ 𝐛 ⋅𝛁𝑢 = 𝑓 , in Ω𝑇 ,

𝑢 = 𝑢0, on 𝜕Ω𝑇 ,

𝑢 = 𝑢𝑖𝑛𝑡𝑖𝑎𝑙 , on 𝜕Ω𝑇 ∩ {𝑡 = 0},

(37)

where the coefficient 𝜀 is a constant diffusion coefficient. We first study 
the effect of approximation degree of the optimal test functions in Sec-
tion 4.1. Next, we verify the convergence properties of the AVS-FE 
method for both time discretization schemes in Section 4.2. In this sec-
tion, we also investigate the use of time slices as well as compare the 
space-time method to the method of lines with generalized-𝛼 time step-
ping. Last, in Section 4.4 we present verifications of a problem with both 
a hyperbolic and a parabolic part, i.e., a transient convection-diffusion 
problem. The particular case we investigate corresponds to a challeng-
ing physical application, a shock wave problem.

In all the presented numerical experiments we use the saddle point 
description in (15) implemented in legacy FEniCS [26] with the lat-
est stable release from Anaconda. The verifications in which we employ 
adaptive refinements all use the same criterion as in [30], i.e., the built-
in error indicator (14) as well as a Dörfler marking strategy [39] using 
the approximate energy error computed using (12). To solve the system 
of linear algebraic equations, we use the direct solver MUMPS [40,41]. 
Also note that in all cases where we report the number of degrees of 
freedom, we do not include the degrees of freedom for the error rep-
resentation function in the saddle point systems (15) and (28). The 
polynomial degree of approximation used for this error representation 
function is identical to the degree of the trial space with the results in 
Section 4.1 being the sole exception.

4.1. Optimal test function resolution

As an initial verification, we perform a study to ensure proper reso-
lution of the optimal test space. To this end, we consider the following 
exact solution:

𝑢(𝑥,𝑦, 𝑡) = 𝑒−𝑡
[
𝑥+ 𝑒

𝑏𝑥
𝜀 𝑥 − 1

1− 𝑒
𝑏𝑥
𝜀

]⎡
⎢
⎢⎣
𝑦+ 𝑒

𝑏𝑦
𝜀 𝑦 − 1

1− 𝑒
𝑏𝑦
𝜀

⎤
⎥
⎥⎦
, (38)

from which we establish initial and exact solution boundary conditions 
and a corresponding source term 𝑓 . For these studies we consider the 
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Fig. 2. Convergence histories for the space-time convergence study.

Table 1
Increasing degree of approximation for the error representation function.
𝑝𝑡𝑟𝑖𝑎𝑙 𝑝𝑡𝑒𝑠𝑡 ‖𝑢− 𝑢ℎ‖𝐿2 (Ω𝑇 ) (coarsest mesh) ‖𝑢− 𝑢ℎ‖𝐿2 (Ω𝑇 ) (finest mesh)
1 1 1.1439e-01 2.6374e-03
1 2 1.1439e-01 2.6559e-03
1 3 1.1439e-01 2.6576e-03
1 4 1.1439e-01 2.6582e-03
2 1 6.8837e-02 1.4028e-04
2 2 6.7822e-02 1.3770e-04
2 3 6.8246e-02 1.3716e-04
2 4 6.8277e-02 1.3698e-04
2 5 6.8288e-02 1.3695e-04

moderately convection dominated case with 𝜀 = 0.1, 𝐛 = {1, 1}, and se-
lect the final time of computation to be 𝑇 = 0.5𝑠. We consider only 
the space-time case here and assume that the conclusions apply to the 
generalized-𝛼 case as well. Due to the smoothness of the exact solution, 
we consider continuous polynomial approximations for both variables 
of equal order - 𝑝. The error representation functions are then dis-
cretized with discontinuous polynomials of order 𝑝 + 0, 1, 2, 3, as well 
as 𝑝 − 1 for 𝑝 ≥ 2. In Table 1, these results are presented for linear and 
quadratic trial functions for two uniform meshes: 6 and 24,576 space-
time tetrahedrons, respectively. The results in this table indicate that 
for linear and quadratic bases for the trial space, the impact of increas-
ing test space degree is vanishing small. We observe the same trend for 
𝑝 > 2. Note that for 𝑝 = 2, we observe satisfactory results for a test space 
degree 𝑝 = 1.

4.2. Convergence studies

To numerically investigate the convergence properties of our meth-
ods, we consider a well-known example of transient convection-
diffusion, the Eriksson-Johnson problem [42]. This problem has a 
known exact solution that satisfies the following form of (37):
𝜕𝑢
𝜕𝑡

− 𝜀Δ𝑢+ 𝜕𝑢
𝜕𝑥

= 𝑓 , in Ω𝑇 . (39)

Additionally, Dirichlet boundary conditions on 𝑢, the initial condition 
on 𝑢, and the source 𝑓 are ascertained from the exact solution:

𝑢(𝑥,𝑦, 𝑡) = 𝑒−𝑙 𝑡
(
𝑒𝜆1 𝑥 − 𝑒𝜆2 𝑥

)
+ cos(𝜋 𝑦) 𝑒

𝛿2 𝑥 − 𝑒𝛿1 𝑥

𝑒−𝛿2 − 𝑒−𝛿1
, (40)

where 𝑙 = 2, and:

𝜆1,2 =
−1 ±

√
1− 4𝜀 𝑙

−2𝜀 ,

𝛿1,2 =
1 ±

√
1 + 4𝜋2 𝜀2
2𝜀 ,

(41)

The problem domain Ω𝑇 = (−1, 0) × (−0.5, 0.5) × (0, 0.5). For these stud-
ies we consider the moderately convection dominated case of (39) with 
𝜀 = 0.075.

In Fig. 2 the convergence plots for linear and quadratic polyno-
mial degrees for the space-time approach are shown. In Fig. 2, we 
plot error norms versus the number of degrees of freedom 𝑁 , which 
increases at (ℎ−2), i.e., the ℎ-convergence rates of the FE approxi-
mations can be extracted from these by a simple adjustment. For the 
case of ‖𝑢− 𝑢ℎ‖𝐿2(Ω𝑇 ), we get (𝑁−1) =(ℎ2) =(ℎ𝑝+1) order of con-
vergence. The observed rates for ‖𝐪− 𝐪ℎ‖𝐿2(Ω𝑇 ) are slightly lower, 
whereas the energy error converges at the expected rates of (ℎ𝑝). In 
error bounds for the AVS-FE method applied to a second order PDE, see, 
e.g., [43], it is only guaranteed that the energy norm (9) and the error 
in the norm on 𝑈 (Ω𝑇 ) converges at (ℎ𝑝).

Analogously, in Fig. 3, the convergence plots for generalized-𝛼 are 
presented to study the convergence of the method at the final time 
𝑇 = 0.5𝑠 with time step of 𝜏 = 10−3. The observed rates of convergence 
in Fig. 3 are the optimal rates expected from the polynomial approxima-
tions employed. Note that the 𝐿2 errors in the base variable 𝑢 become 
flat near the end of the refinement process as the temporal discretiza-
tion error becomes dominant. Comparison of the results in Figs. 2 and 3
for the two methods reveal that the number of degrees of freedom is 
significantly larger for the space-time approach.

4.2.1. 𝐻 − (𝑑𝑖𝑣) conforming basis functions
To complete our numerical verifications we consider the generali-

zed-𝛼 system (28) and use Raviart-Thomas basis functions for the flux 
𝑞ℎ. Following the known results from e.g., [33], the Raviart-Thomas 
functions are of order 𝑝 − 1, where 𝑝 is the order of the approximations 
for 𝑢ℎ. We also use discontinuous Raviart-Thomas bases for the vector 
valued error representation function of order 𝑝 and the scalar valued 
function of the same order 𝑝.

We again consider the same Eriksson-Johnson problem with 𝑇𝑓𝑖𝑛𝑎𝑙 =
1.0𝑠, set 𝜀 = 1 × 10−3, 𝑝 = 2, 𝜌∞ = 0.9 and perform both uniform 
and adaptive mesh refinements. In the adaptive refinements and the 
Dörfler marking strategy, we pick the parameter 𝜃 = 0.5. In Fig. 4, 
we present the corresponding convergence histories. Clearly, for the 
strongly convection-dominated case considered, the uniform refine-
ments are not an optimal choice. However, the adaptive refinement 
scheme performs significantly better and is able to reduce the consid-
ered errors approximately two orders of magnitude.
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Fig. 3. Convergence study of the solution obtained using the generalized-𝛼 method for time discretization at final time 𝑇 = 0.5 𝑠.

Fig. 4. Convergence study of the solution obtained using the generalized-𝛼 approach 𝑇 = 1.0 using fully conforming FE basis functions.

4.3. Comparison between space-time and time stepping

As the space-time and time-stepping methods are fundamentally 
different, a comparison between the two methods is not trivial. Compar-
ison of accuracy of the two methods is not straightforward to compare, 

as the errors reported in Fig. 2 are global for the full space-time do-
main and the errors in Fig. 3 are at the final time step. Furthermore, 
the computational cost is distributed differently in the two methods. 
In this subsection, we perform heuristic comparisons between the two 
methods by considering the results at the final time of simulation.
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Fig. 5. Convergence at the final time 𝑇 = 0.5 for increasingly fine uniform 
meshes.

4.3.1. Uniform refinement
First, we compare the error at the final time 𝑇 = 0.5 for the case of 

𝑝 = 1 with the problem setup from Section 4.2. In the space-time ap-
proach the initial mesh consists of six uniform space-time tetrahedrons 
whereas in the generalized -𝛼 method it consists of two triangular el-
ements. In the generalized -𝛼 method we set 𝜌∞ = 0.9 and perform 5 
time steps. We perform uniform refinements to the initial mesh and 
compute the errors in the space-time approach at the final time step 
and plot them alongside the final time error from generalized-𝛼 against 
the (2 dimensional) element size ℎ at the final time in Fig. 5. It is inter-
esting to observe that the errors in both methods shown in this figure 
are nearly identical. In terms of computational time, the space-time ap-
proach required 75 seconds whereas the generalized -𝛼 method took 
49 seconds. In both cases the experiments were performed on a 2022 
MacBook pro with the Apple M2 chip.

4.3.2. Adaptive refinement
As a second comparison, we compare the final time meshes obtained 

using adaptive mesh refinements. We consider the following exact solu-
tion:

𝑢(𝑥,𝑦, 𝑡) = (𝑡+ 0.1)(1 + tanh(0.5(0.1− |0.5−
√
𝑥2 + 𝑦2|))), (42)

from which we ascertain boundary and initial conditions, as well as 
the source 𝑓 . The problem domain Ω𝑇 = (0, 1) × (0, 1) × (0, 0.25) and we 
consider the moderately convection dominated case of (37) with 𝜀 = 0.1
and 𝐛 = {−𝑦, 𝑥}. In the space-time approach the initial mesh again con-
sists of six uniform space-time tetrahedrons whereas in the generalized 
-𝛼 method it consists of two triangular elements, in both cases we se-
lect 𝑝 = 1. In the generalized -𝛼 method we set 𝜌∞ = 0.9 and perform 
250 time steps. We perform adaptive mesh refinements to the initial 
meshes using the Dörfler marking strategy, and select the parameter 
𝜃 = 0.3. In the space-time case we perform 24 adaptation cycles, and 
in the generalized-𝛼 case 30 adaptation cycles. In Fig. 6 we present the 
traces of the meshes produced in the refinement process at 𝑇 = 0.25𝑠. 
The final meshes in both cases are similar in that the refinements are 
focused around the internal layer. Both experiments were performed on 
the same desktop computer with an Intel Xeon Processor type W-2245 
from 2020, where the space-time case required 10833 seconds, and in 
the case of the generalized-𝛼 2430 seconds.

4.4. Shock problem

As a final numerical verification, we present a consideration of (37)
in which the solution behaves as two shocks traveling through the 
space-time domain while rotating about the origin. Furthermore, the 

choices we make for the problem parameters are such that the inter-
face of the shock is skewed and rotates in the space-time domain as 
𝑡 → 𝑇𝑓𝑖𝑛𝑎𝑙 . Thus, we have the following choices:

𝐛 = {−𝑥+ 2𝑦,0}𝑇 ,
𝑢0 = 0,
𝜀 = 10−3,
𝑢0 = 0,
𝑓 = −2𝑥𝜀+ 𝑥(1− 𝑦2).

𝑇𝑓𝑖𝑛𝑎𝑙 = 2.50𝑠
Ω = (−1,1) × (−1,1)

(43)

For this particular problem, we present the time slice approach in which 
we perform mesh adaptations between each slice and we apply lin-
ear polynomial approximations for the trial functions. Experience has 
shown that the slice containing the initial condition is critical to the 
proper resolution of the space-time process. Thus, we consider the case 
of three space-time slices, the first from 0𝑠 to 0.2𝑠 and the final two of 
equal size from 0.2𝑠 to 2.5𝑠. In Figs. 7, 8, and 9 we present the AVS-
FE solution for the base variable at different time steps. As expected, 
two shock-waves originate at the boundaries of 𝑥 = ±1, and as time 
progress, the two waves approach the center of the domain while rotat-
ing. The adaptively refined meshes shown in Figs. 7(b), 8(b), and 9(b) 
(the final times of each slice) show that the mesh refinements are fo-
cused at the interfaces of the shocks, further indicating the applicability 
of the built-in error indicators.

5. Conclusions

The AVS-FE method is a Petrov-Galerkin method which uses clas-
sical continuous FE trial basis functions, while the test space consists 
of functions that are discontinuous across element edges. This broken 
topology in the test space allows us to employ the DPG philosophy and 
introduce an equivalent saddle point problem which we implement us-
ing high level FE solvers. We have introduced two distinct approaches 
to transient problems using the AVS-FE method. First, we take a space-
time approach in which the entire space-time domain is discretized 
using finite elements, and second, using the method of lines to dis-
cretize the spatial domain independently. Then, using a time-marching 
method, we obtain a fully discrete system.

The space-time method allows us to exploit the unconditional stabil-
ity of the AVS-FE method and perform a single global solve governing 
the FE approximation. As the AVS-FE approximations computed from 
the saddle point system (26) come with built-in error indicators, we 
are capable of utilizing mesh adaptive strategies in space and time. 
In an effort to control the computational cost of the space-time ap-
proach in solving the global system of equations, we consider a time 
slice approach. Here, the space-time domain is partitioned into finite 
sized space-time slices on which we employ the AVS-FE method. The 
advantage here is that the size of the global system is reduced and we 
are able to employ mesh adaptive strategies on each slice.

The method of lines, in which we use the AVS-FE method for the 
spatial discretization and a generalized-𝛼 method to derive a fully-
discretized system. In this case, the discrete stability in the temporal 
domain is ensured by the generalized-𝛼 method leading to highly effi-
cient stable FE computations. We show that the AVS-FE method uses a 
corresponding norm as a function of the time-step. Another distinguish-
ing feature of this method is that due to the influence of the initial data 
on the accuracy of the solution, we find a stable approximation for 𝜕𝑢𝜕𝑡 at the initial time. Accordingly, at each time step, one is required to solve 
a system with a smaller number of degrees of freedom in comparison 
with the space-time approach.

Numerical verifications for several cases of the transient convection-
diffusion IBVP show that both methods exhibit optimal asymptotic 
convergence behavior as well as similar norms of the numerical approx-
imation error. For degrees of approximation above 2, the space-time 
approach becomes more accurate as it is not limited to the second-order 
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Fig. 6. Comparison of the adaptive refined meshes at the final time.

Fig. 7. AVS-FE approximations of the shock problem, i.e., (37) with parameters from (43).

Fig. 8. AVS-FE approximations of the shock problem, i.e., (37) with parameters from (43).
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Fig. 9. AVS-FE approximations of the shock problem, i.e., (37) with parameters from (43).

accuracy of the generalized-𝛼 method. However, we do not advocate 
one method over the other but we point out these differences for poten-
tial users as their available computational resources will likely dictate 
which approach to use. For both cases, we present additional numerical 
verifiactions highlighting the adaptive mesh refinement capabilities. In 
future efforts, we expect to pursue alternative error estimators and in-
dicators as well as the AVS-FE approximation of challenging transient 
physical phenomena. The use of basis functions that are of higher or-
der regularity, e.g., as in [44] is another potential direction of future 
research efforts.
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Data will be made available on request.
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