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ARTICLE INFO ABSTRACT

We dedicate this work to Prof. Lsezek F.
Demkowicz on the occasion of his 70th

We present an application of stable finite element (FE) approximations of convection-diffusion initial boundary
value problems (IBVPs) using a weighted least squares FE method, the automatic variationally stable finite

birthday element (AVS-FE) method [1]. The transient convection-diffusion problem leads to issues in classical FE methods
Keywords: as the differential operator can be considered a singular perturbation in both space and time. The stability
Stability property of the AVS-FE method, allows us significant flexibility in the construction of FE approximations in both

space and time. Thus, in this paper, we take two distinct approaches to the FE discretization of the convection-
diffusion problem: /) considering a space-time approach in which the temporal discretization is established using
finite elements, and ii) a method of lines approach in which we employ the AVS-FE method in space whereas the
temporal domain is discretized using the generalized-a method. We also consider another space-time technique
in which the temporal direction is partitioned, thereby leading to finite space-time “slices” in an attempt to
reduce the computational cost of the space-time discretizations.

We present numerical verifications for these approaches, including numerical asymptotic convergence studies
highlighting optimal convergence properties. Furthermore, in the spirit of the discontinuous Petrov-Galerkin
(DPG) method by Demkowicz and Gopalakrishnan [2-6], the AVS-FE method also leads to readily available a
posteriori error estimates through a Riesz representer of the residual of the AVS-FE approximations. Hence, the
norm of the resulting local restrictions of these estimates serves as error indicators in both space and time for
which we present multiple numerical verifications in mesh adaptive strategies.

Discontinuous Petrov-Galerkin
Method of lines

Space-time finite element method
Adaptive mesh refeinement

1. Introduction pose two distinct approaches employing the AVS-FE method. First, we

take a space-time approach in which space and time are discretized

Transient BVPs are commonplace in engineering applications and
to date still pose significant challenges in numerical analysis and nu-
merical modeling. Time dependency in many BVPs, such as the heat
equation, involve partial derivatives of the trial variable with respect to
time and leads to numerical instabilities unless careful considerations
are taken. The reason being that the time derivative is a convective
transport term, i.e., transient problems may lead to unstable discretiza-
tions, particularly in the FE context. Additionally, the target problem of
convection-diffusion also result in numerical instabilities in its spatial
discretizations which lead to the development of the AVS-FE method
in [1]. To overcome the stability issues in both space and time we pro-

directly considering time an additional dimension using the AVS-FE
method. Second, we consider a method of lines to decouple the com-
putations in space and time and employ a generalized « method for the
temporal discretization [7-9].

The use of space-time FE methods remains attractive as the approxi-
mations are standard FE approximations and therefore inherit attractive
features of FE methods such as a priori and a posteriori error estimation
and mesh adaptive strategies. Examples of space-time FE methods can
be found in, e.g., [10-12]. The AVS-FE method [1] being stable for any
differential operator is therefore a prime candidate for space-time FE
discretizations. Its stability property is a consequence of the philoso-
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phy of the DPG method in which the test space consists of functions
that are computed on-the-fly from Riesz representation problems [2-6].
In [13], the AVS-FE method is successfully employed in space and time
for the Cahn-Hilliard BVP. The goal here was the extension of the AVS-
FE method to a nonlinear BVP as well as an initial verification of AVS-FE
space-time solutions. Similarly, in [14], the AVS-FE method is employed
for space time solutions of a nonlinear transient wave propagation
problem, the Korteweg de-Vries equation. Furthermore, its built-in a
posteriori error estimate and their corresponding error indicators can be
directly applied to drive adaptivity. The DPG method has been success-
fully applied to several transient problems, e.g., convection-diffusion
and the Navier-Stokes equations [15-17]. These space-time formula-
tions are available in the DPG FE code Camellia of Nathan Roberts [18].
Recent efforts in DPG methods for transient problems include the use of
optimal testing in time, see e.g., [19,20]

Alternatively, the method of lines can be employed to decouple the
discretization of space and time where the spatial dimension is dis-
cretized to obtain a discrete system at each time step. Then, using a
time integrator, the discretization of the temporal domain subsequently
results in a fully discrete system of equations. Here, we employ the
AVS-FE method in space and the generalized-a method in time. Chung
and Hulbert introduced the generalized-a method in [9] to solve hyper-
bolic problems and extended it to parabolic differential equations such
as Navier-Stokes equations in [21]. The method provides second-order
accuracy in the temporal domain as well as unconditional stability. Al-
though the method allows us to control the numerical dissipation in
high-frequency regions, it delivers adequately accurate results in low-
frequency domains. Introduction of a user-defined parameter provides
this control and includes the HHT-a method of Hilber, Hughes, Tay-
lor [22] and the WBZ-a method of Wood, Bossak, and Zienkiewicz [23].

In the following, we introduce the AVS-FE method for transient BVPs
by taking the two distinct approaches introduced above. In Section 2 we
introduce our model problem and notations in addition to a review of
the AVS-FE methodology and present the AVS-FE weak formulation to
be used. In this section we also present the discretization of the weak
form, an alternative saddle point structure of the AVS-FE method, and
its built-in a posteriori error estimate. In Section 3 we present the time
discretization techniques: the method of lines using AVS-FE method in
space and generalized-a method in time is presented in Section 3.1; and
the space-time AVS-FE method in Section 3.2. Results from numerical
verifications for numerous PDEs and applications are presented in Sec-
tion 4. Finally, we draw conclusions and discuss potential directions of
future work in Section 5.

2. The AVS-FE methodology

The AVS-FE method [1] allows us to compute stable FE approxima-
tions to BVPs for any differential operator, provided its kernel is trivial
and the computations of optimal test functions are sufficiently accurate.
In this section we introduce our model problem and briefly review the
AVS-FE method, a thorough introduction can be found in [1].

2.1. Model problem and notation

Let Q c RY, N <2 be an open bounded domain with Lipschitz
boundary dQ and outward unit normal vector n, and let 7" be the
final time. Then, define Q; = Q X (0,T) to be the space time do-
main which is open and bounded with a Lipschitz boundary 0Q; =
r,,ul,,ulbul'y. I';, and I'y,, are the in and outflow boundaries, re-
spectively, and I'y and I'; are the initial and final time boundaries,
respectively. The transient model problem is therefore the following
linear convection-diffusion IBVP:

16
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Find u such that:
%—V-(EVM)+b-Vu=f, in Qrp,
u=u, only, )
eVu-n=g¢g, onl,,,
u = uy onlj,

where € € L*®(Q) denotes the isotropic diffusion parameter; b €
[L2()]Y the convection coefficient; f € L%(Q) the source function;

and g € H~'/%(T,,,) the Neumann boundary data. Note that the gra-

dient operator V refers to the spatial gradient operator, e.g., V(-) =
90) IONT

{ ox’ dy 3

2.2. Weak formulation and FE discretization

We omit the full derivation of the weak formulation here and men-
tion key points only. The derivation of a weak formulation for the
AVS-FE method is shown in, e.g. [1]. To establish a weak formulation
of (1), we need a regular partition P, of Q; into elements K,,, such
that:

Qp = int( U K,).
K, €Py

We introduce a flux variable q = ¢Vu, and recast (1) as a system of
(distributional) first-order PDEs:

Find (u,q) € L*([0,T]; H'(Q) x H(div,Q)) such that:
Vu-— lq =0, in Qg,
£
%—V-q+b-Vu=f, in Qr, &)
u=u, onl;,
q-n=g, on Fzmt’
u = uy onlj.

Note that the flux variable q depends on time but only has the same
number of components as the dimension of Q and in the weak enforce-
ment of the PDE, it belongs to L2([0,T]; H (div, Q)).

To derive the AVS-FE weak formulation, we enforce the PDEs (2)
weakly on each element K,, € P, apply integration by parts to shift
all derivatives to the test functions except the time derivative. After
subsequent summation of the local contributions we arrive at the global
variational formulation:

Find (u,q) € U(Qy) such that:

B((M, q)a (Ua W)) = F((Ua W)), V(”? W) € V(ph)7

3

In (3), the bilinear form, B : U(Qr) X V(P;,) — R, and linear func-
tional, F : V' (P,) — R, are defined:

du
Zo,

B, Y {/[—uV-wm ~1g-w, + 2
K, €P),

+q-Vv, — (b-Vum)u] dx
4
+ ?{ [(b ‘) ¥y Wy (0,) + vy (W) 1y W) —V,T(q)y('{’(vm)] dS},

oK,

Few= Y / Fu, dx,
Kn€Pig

where the continuous trial and broken test function spaces, U () and
V (P},), are defined as follows:
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UQr) = {(u,q) € L*([0,T]; H/(Q) x H(div,Q)) :

ulry =ug, ulp, =w;,, q-nlp, = g}, 5)
def 1 .
VP, = < (v,w)e H (Py)x H(div,Py) .
The broken Hilbert spaces are defined:
1 def 2 . 1
H'(P,) =qveLlQp): v, H(K,), VK, EP), ¢,
(6)

def
H(div, P;) = {w e[L*Qp))? : w,, € H(div,K,,), VK, € P, }

and the norms on these spaces ||~||U(QT) : U(Qp) — [0,00) and
”'”V(ph) 1 V(P,) — [0, o0) are defined as follows:

def 5 5
||(u,q)||U(QT) = Vu-Vu+u?+(V-q)*+q-q| dx.
Q

I, Wy,
def
= . zp /Km [hanUm Vo, + 02 +h2(V-w,)? +w, - wm] dx.
mE€Pp

@
The operators y' : H'(K,,) :— H'/?(0K,,) and y" : H(div,K,,) —
H~'/2(0K,,) denote the trace and normal trace operators on K,,.

The bilinear form and linear functional in (4) differs from the ones
presented in [1] due to the term % and the application of integration
by parts to all terms involving spatial derivatives. This weak formula-
tion (3) represents a DPG formulation as the test space is broken and
continuity of the trial space is a result of the definition of its subspaces.
In the following we review important points of the AVS-FE method and
for the sake of simplicity, consider the case with homogeneous Dirich-
let boundary conditions (u|q, = 0) which are enforced strongly in the
trial space U (7). We focus only on the equivalent saddle point formu-
lation to (3) of the AVS-FE, and other discrete least squares methods,
and refer to the extensive literature on the subject, e.g., the classical
text of Bochev and Gunzberger [24] and in particular the work of Keith
et al. [25] for further details on the solution of the normal equation (3)
using optimal test functions.

2.3. Equivalent saddle point problem

The discretization of (3) can be implemented in existing FE soft-
ware by redefining routines that compute the element stiffness matrices
to compute optimal test functions on-the-fly, as in e.g., [1]. However,
in several commonly used FE solvers, such as FEniCS [26] or Fire-
drake [27], manipulations of the element assembly routines may not
as easily be performed. Thus, to enable straightforward implementation
into these FE solvers, we will introduce an equivalent interpretation of
the AVS-FE method as a global saddle point problem. We omit several
details here and highlight only key features of this interpretation, inter-
ested readers are referred to [28] for a complete presentation.

The AVS-FE method is a weighted least squares, or minimum resid-
ual method, in the sense that its solution realizes the minimum of a
functional according to the following principle:

ul = arg min lll[th —F

vheUh(Q)

2
V@’

(8)

where B and F are operators induced by the bilinear and linear forms,
respectively. Furthermore, we can relate the norm on the dual space
V(Ph)’ ||-||V(ph)r to the energy norm:

17
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| B((4,q), (v, W)

(C)]
I, Wy,

def
I, @l =
(LW)EV (Pp)\{(0,0)}
using the Riesz representers (p,r) that solves the following problem for
(u, q):

((p,l'),(l), W) )V(Ph) = B( (u7 Q),(U7W))a V(U,W) € V(Ph) (10)

Analogously, we can consider a Riesz representer of the approximation
error (u —u",q — q"), which we refer to as an error representation func-
tion [3]. This error representation function (é, E) is then defined as the
solution of the following weak problem:

Find (6,E) e V(P,) such that:

(@B, (0. W)y p,)

an
= F(v,w)— B( (u",qh),(v, w)) V(v,w)eV(Py,).

Residual

The energy norm of (u—u”", q— q") can be identified by the V(P};,) norm
of the error representation function:

Proposition 2.1. Let (u,q) € U(Q) be the solution of the AVS-FE weak
form (3) and (u",q") € UNQ) its corresponding AVS-FE approximation.
Then, the energy norm of (u — u”,q — q") is identical to the V (P,) norm of
6,E):

lw—u",a=q"lp = 1@ B)llyp,). (12)
Proof. This proof is known from existing DPG literature (see Section 1
and equation (1.17) in [6]). The identity is a consequence of the defini-
tion of the energy norm (9) and the weak problem governing the error
representation function (11). []

The norm of approximate error representation function (é,, £,,) is there-
fore an a posteriori error estimate, i.e.,

II(u—uh,q—qh)IIB i ”(éhvﬁh)”V(P,,)' 13)

Furthermore, its local restriction can be computed element-wise as the
space V' (P,,) is broken to yield the error indicator:

=@ Eplly,)- (14)

This type of error indicator has been applied with great success to mul-
tiple problems (see, e.g., [3,6,29,30]), and we show several numerical
experiments using this indicator for the AVS-FE method in Section 4.
It should be noted that this error estimate and the error indicator
are known to be robust (i.e., bounded above and below) under the
assumption of the existence of DPG Fortin operators and localizable
norms [3,31,32].

The minimum residual interpretation allows us to establish the fol-
lowing AVS-FE saddle point formulation to which we seek the approxi-
mate solution (i, q") under the constraint that the error representation
function minimizes the residual of the AVS-FE method, see (11):

Find (u",q") € UNQ), ¢,.E,) e VI(Py)

((éh,ﬁh),(v”,wh) )V(p :
h
vh,wh e vh®,),
B((p",x"), (¢, Ep) =0, V(' r")eUMQ).

such that:

+ B(W", g"), (0", wh) = F(", wh),

(15)

Solution of (15) gives both the AVS-FE solution for ", q") and its er-
ror representation functions (éh,ﬁh) in a single global solution step.
This is very convenient as we now have a built-in a posteriori error es-
timate and error indicators immediately upon solving (15). However,
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the computational cost of doing so has been shifted from local compu-
tations for optimal test functions to the global cost of a larger system of
equations. Fortunately, the global nature of (15) allows for very simple
implementation of the AVS-FE method in readily available FE solvers
like FEniCS [26] and Firedrake [27]. Note that dropping the weighted
derivative terms from the inner product corresponding to the norm
1111 VP reduces (15) to a DPG implementation of the first-order system
least squares method. Note that the analysis of (15) can be performed
using the famous Brezzi theory [33,34]. In [25], a general framework
for saddle point problems arising in discrete least squares methods, such
as (15) is presented which is also applicable in the present setting. Since
the inner product is a coercive linear operator, and the bilinear form
satisfies a discrete inf-sup condition, the saddle point system is also well
posed. []

3. Time discretization

In the weak formulation (3) we have made no assumptions on the
type of discretization of the time domain. Here, we consider two dis-
tinctive cases of time discretization techniques. In both cases the spa-
tial discretizations are performed with finite elements and the AVS-FE
methodology. First, we consider a discretization of the time domain
by employing the method of lines to decouple the spatial and time
discretization and subsequently employing the generalized-a method.
Second, the discrete stability property of the AVS-FE method allows us
to discretize the time domain with finite elements in a space-time ap-
proach.

3.1. Method of lines

In this section, we first discuss the method in an abstract setting
before proceeding to the particular case of the AVS-FE method and
generalized-a methods. To this end, we define two Hilbert spaces U(2)
and V(£2), and introduce a well-posed weak formulation for a transient
BVP, e.g., the convection-diffusion problem of Section 2.1:

Find ue U(Q) such that:

16
b(u,v) = F(v), (16)

Vv evQ),

where the bilinear form b contains all spatial and temporal terms. To
seek approximations of (16), we introduce the time derivative operator
L, and consider FE polynomial subspaces of U(Q) and V(Q), i.e., U"(Q)
and V2(Q). Thus, we get:

such that:
+b, ", v = Fh), vvhevi(Q),

Find u* € U"(Q)

(ﬁ(“h)’ Vh)L2(§Z)

a7

where (-, ) 12Q) denotes the L%(Q) inner product, and the bilinear oper-
ator by, (-,-) contains only spatial derivative terms. We assume that this
formulation is well-posed.

To advance the solution in time, we consider a uniform partition
of the time domain from ¢y = 0 to the final time ¢ty =T, with 7
the distance between each step ¢;. We compute approximations to u
at each step using second-order accurate generalized-a methods pre-
sented in [9,21]. For parabolic or first-order hyperbolic problems, the
generalized-a method for the transient term L(u") in (17) is to find
uZ“ € U"(Q), such that:

n+a n+a X
O, Vi) +bau, v = FT (), Vv, €VQ),, (18)
0 on s ou(., t,)
where uj, ) are the approximations to u(.,7,) and —5', respec-

tively. We discuss the initialization of 8, in Remark 3.1 and Sec-

18
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tion 3.1.2. The unknowns at time step n + 1 are updated using the
solutions at n + a; and n+a, as:

utY =u" +aps(u”), S(u")= u —u

+
9 =9 L a 590, S9N =9 — 9.

19

Using a Taylor expansion, we have u"*! = u” + 78" + 7y5(9") as a lin-
ear combination of u”,d" with y guaranteeing second-order accuracy.
Substitution of the expressions in (19) into (18) gives:

1
O Vi@ + bR v = (1), Vv, V@), (20)
g
where { = oy , and:
g
= ey (ag—1) (192, Vh)Lz(g) +za;(y —1)b, (19;”, vh) o1

—by, (), vp).
It can be shown that this scheme is formally second order accurate
(see [21]) if we select:

1
y=§+ag—af. (22)

To avoid having to select both a, and a/, these parameters are defined
in terms of the spectral radius p,. This parameter essentially provides a
means to control numerical dissipation. Hence, a, and a, are defined:

(23)

0_1(3—/)00) w1
£ 2\14p. /) I 1+ py
Remark 3.1. The generalized-a method requires additional initial data for
82. This value is obtained by setting ay = a, = n =0 and solving (18).

Remark 3.2. The spectral radius p, is a user-defined parameter that pro-
vides control on the numerical dissipation such that for p,, =1 there is no
dissipation control, and the maximum control is delivered by setting p, = 0.
Numerical dissipation can occur for example in the case of poor spatial res-
olution (for more details, see, [35,36]).

3.1.1. Generalized-a and the AVS-FE method

Having introduced the generalized-a method for a well defined weak
formulation, we now extend it to the AVS-FE method for our model
IBVP of convection-diffusion. Hence, let us consider the AVS-FE weak
formulation (3), and the trial and test spaces U (L) and V' (P,,) analogous
to (5). The generalized-a method for the AVS-FE method is:

Find (192“, q;’l“) € UMQ) such that:

O 0 2 + B L @i 0 W) = o 0w,
8
Y (v*,w*) € V¥(Pp),

@4
where the operators are defined:
Bh((”» (I)» (U’ W))
d=ef Z /[—uEV~Wm—q.wm+q.VUm_(b,vvm)u]dx
K,, Py K
+ }{ [(b M)y @y ) + 1y (W) vy @) = 7' (Q) y(')"(um)] ds } (25)

0K,

I (ow)E Y

Kn&Py
+ra;(y — 1) B, ((97.,0), (,w)) — B, (. q}), (v, W) .

(" o) dx+ (g = D (9, 0) 12y
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To establish the solutions to (24) we take the same approach intro-
duced in Section 2.3 and define a saddle point system similar to (15).
The major difference between the “original” weak form (3) and the one
corresponding to the generalized-a method, i.e., (24) other than the ad-
justed bilinear and linear forms, is the term (19;’1“, V)12()- Analogous
to the case in Section 2.3, the approximation to (24) is governed by the
following minimization problem:

19"“ = arg min —|||]"Jrl

(M+¢By,) 2,12 (26)
z,€UNQ)

V/7

where the operators B, and ["*! correspond to the actions of the
adjusted forms B, and £"*!, respectively, and M to the new term
(’9h L v) 12(9) Thankfully, the Riesz map (induced by the equivalent
of the Riesz representation problem (10) for (24)) allows us to relate
the norm on the dual space ||-||Vh/ to the energy norm on U(£2). Hence,
we define the following error representation function:

Find (¢"t!, "1y e V(P,) such that:
((énH, E"H), (v, W))V(ph)

=" 0, W) = I 0) 20 + BRI @i, (0, w)),

<

(27)

Residual

YV (v,w) € V(Py).

which now measures how far we are from the best approximation of
(19Z+1,q;'l+1) at the current time step. In the same fashion as in Sec-
tion 2.3, the norm of this function is an a posteriori error estimate and
its restriction to each K, € P, an error indicator. We finally can intro-
duce the saddle point problem for each time step:

Find (9}, ¢+ € UM(Q), @1+ EI*!) € V,(Py) such that:
@B, (0 wh)ly, + (95,0), (0, W) 120

+C - By((9 qi), (uhvwh»:a‘—gﬂ“((vh,wh)),

(28)
Y (v, W")Ae Vi(Pp),
(zpop) - @00 20y + C - By((zp1p) (@0 B =0,
Y (zp.1p) € UMQ),
where the inner product (-, ')Vh is defined:
((éZH,EZH) , (Uh’wh))Vh 29)

= (¢ - ERD, W W)y, + (E5F,0), (0 W) 120

Computing 19’;1“ from (28), we obtain u”Jrl from a Taylor expansion at

each time step. The overall procedure requlres a matrix solve at each
time step as well as two explicit updates. Note that as both (25) and
the inner product (29) both depend on ¢ in the same fashion. Hence,
the solutions u;, computed from (28) do not change with {, whereas the
error representation function (e”Jrl E"“) does.

Next, we show that our proposed saddle-point problem (28) is un-
conditionally stable in the temporal domain. To achieve this, we must
show that our AVS-FE spatial discretization scheme does not alter the
unconditional stability of generalized-a method.

Theorem 3.1. The saddle-point problems in (28) provide unconditionally
stable solutions in temporal domain.

Proof. Our proof relies on established bounds from literature for the
generalized-a method [35], and reasoning based on the properties of
the AVS-FE saddle point problem (28). By applying the generalized-a
method on the continuous parabolic problem (2) to discrete the tempo-
ral domain, we obtain a fully discrete problem that can be written:

19
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n+1 n
[T’fgnﬂ] o [ Lfgn] + T
with E and II being a 2 X 2 amplification matrix and a 2 X 1 matrix,
respectively. The amplification matrix allows us to write the solution
at time step n + 1 using an initial condition and a forcing term. The
derivation and development of the amplification matrix can be found in,
e.g., [7-9]. If the eigenvalues of this amplification matrix are bounded
by one, the method is stable see Theorem 2 in [8]. Hence:

(30)

o912, o, <7193 —”ﬂ'z e (31

12Q) = L2(Q) L2(Q)’

where 7, is the second component of Il. Considering the saddle-point
problem (28) with unknown 192“, we add the term ||192+l — 9 12@)
to the right-side of the inequality (31) and the inequality still holds.
Next, using [|9™! — 19"+ 2 < |9+l — 8;’;’1 lly,)> the Cauchy-
Schwartz inequality, and the error representation provided by the AVS-
FE method, we get:

n+1 n n+1 n+1 2 ntay
TN g S TN I g + N =9I, o+ Sl I
n sn+1 = n+ay
ST I g, + OV g + Tl 7 12
<Tl812,
j=N-1

+ Z (VA S NG TN

where C > 0 is a constant. Hence, the solution is bounded by the initial
solution, forcing, and error representation terms. []

3.1.2. Retrieving initial data
As pointed out in Remark 3.1, we need to retrieve the additional
initial data 192 to solve (28). Hence, we set a =y = 0 and get:

Find (190,qh) eU"Q), (@, EO) € V},(P),) such that:
((eh,Eh N (U/'Nwh))l/h + ((19h,0) (Uh’ wh))Lz(Q)
=%y W) = ¢ - bh((uoﬂqh) 0> Wp)),

V(Uh,wh) (S Vh(Ph)’
VY (z. 1) €UMQ),

(32)

((zp, 1), (é(,),’ 0))L2(g) =0,

where «°, q°, and fo((vh,wh)) correspond to the initial data. To ascer-
tain that the problem for the initial data is well posed (32), we have the
following proposition.

Proposition 3.1. Let (v,,,w;,) € V}, be arbitrary test functions. Then, 8?1 €
UM(Q) exists and is unique.

We omit the proof here as it is trivial to show that ((89,0),
(U, Wy)) 12(Q)> i.e. the L2(Q) inner product, satisfies the following three
properties:

C,

+ Stability: There exists a constant Cy,

size, such that:

> 0 independent of the mesh

|((zh’ 0)’ (Uha wh))L2(Q)|

(33)

= “sta*

inf sup
0#2,€Un @ 0zv,ev;,  1Znll 2@ 1ol 12

Consistency: Employing a similar argument as [30] to study the
consistency of the saddle-point problem, we can state the consis-
tency as:

((89.0). (0. W) 120 = (0. (04 W)
V(Uh, Wh) (S Vh

(34
=& by, q9), (v, W),

Boundedness: There exists a constant Cy,,4 < oo, uniformly with re-
spect to the mesh size, such that:



E. Valseth, P. Behnoudfar, C. Dawson et al.

V(z,v,) €U XV,
(35)

((z,0), (Uh,Wh))LZ(Q) < Chng ”Z”LZ(Q)”U};”LZ(Q),

See [37] for details on these conditions. []

Thus, using (32), we have a stable and adaptive method to find the
initial data which is critical for the generalized-¢ method to ensure
second-order accuracy in time.

3.2. Space-time FE approach

The use of FE discretizations for transient problems is commonly
avoided due to the inherently unstable nature of transient problems.
The discretizations must be very carefully constructed to achieve dis-
crete stability using the classical FE method. However, the stability of
the AVS-FE method allows us to discretize the entire space-time domain
with finite elements in a straightforward manner. Furthermore, a pos-
teriori error estimates and error indicators are immediately available to
us as error indicators are obtained directly in the saddle point approach
of the AVS-FE method (15).

To establish AVS-FE space-time approximations of weak formu-
lation (3) or (15), we pick appropriate discretizations of the space
L2([0,T]; HY(Q) x H(div, Q)). For L([0,T1]; H'(Q)), the choice is clas-
sical FE basis functions that are C° continuous functions in the space-
time domain Qj such as Lagrange or Legendre polynomials. For
L2([0,T]; H(div,Q)), a conforming choice of basis is, e.g., a tensor prod-
uct basis of Raviart-Thomas and L?[0,T] functions. However, as in [1],
we employ approximations for q" by C° polynomials for each of its
components as this has shown to yield superior results for convex do-
mains and sufficiently regular sources. In particular, we generate 3D
FE meshes on which the bases are defined, which for the scalar valued
function is trivial, and in the case of q", we employ restrictions of the
3D C? basis functions to 2D. The discretized saddle point problem is
therefore:

Find (", q") € UM(Qy), (4. E,) € VA(P,)
PR 7, h wh
(@nBo. 0w ))wm (36)
= F@h,wh), Yo,wheVvi®,),
B((p".x"), (64 E) =0, V(p'.r") e UNQy).

such that:

+ B(W", qM), (0", wh)

where the components of U”(Q7) are spanned by continuous FE basis
functions and V”(Ph) by discontinuous FE basis functions.

3.2.1. Time slice approach

As an alternative to the space-time discretization of the full space-
time domain Q, in this section we introduce a time slice approach for
the AVS-FE method. While the space-time approach introduced in the
preceding section allows straightforward implementation of the AVS-
FE method and its “built-in” error indicator can drive mesh adaptive
refinements, the large number of degrees of freedom quickly makes the
method intractable. In an effort to localize the computational cost of the
space-time approach, we propose to partition the space-time domain
into “space-time slices”. The slices can be constructed in a number of
ways, from uniformly to a graded mesh structure as considered in [15,
38] for the DPG method.

To advance in time, a solution can be obtained on a slice which can
be transferred to the neighboring slice as an initial condition. Hence, we
can perform mesh refinements on each slice to ensure the complete res-
olution of any interior or boundary layer (i.e., physical features) before
proceeding to the next. This is of particular interest in applications in
which physical parameters are time dependent leading to widely differ-
ent solution features as time progresses. In Fig. 1, an arbitrary domain
Qr is shown and is partitioned into two space-time slices. Note that
the approach of time slices is not fully equivalent to the full space-time
domain as only information of 1" is transferred between slices.
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Tsl ice|

Fig. 1. Partition of space-time domain into slices.

4. Numerical verifications

To conduct numerical verifications, we consider the following form
of our model scalar-valued convection diffusion problem (1):

%—eAu+b-Vu=f, in Qr,
u=u, on 0Q, (37)
U= Ujpials on 0Q N {t =0},

where the coefficient ¢ is a constant diffusion coefficient. We first study
the effect of approximation degree of the optimal test functions in Sec-
tion 4.1. Next, we verify the convergence properties of the AVS-FE
method for both time discretization schemes in Section 4.2. In this sec-
tion, we also investigate the use of time slices as well as compare the
space-time method to the method of lines with generalized-a time step-
ping. Last, in Section 4.4 we present verifications of a problem with both
a hyperbolic and a parabolic part, i.e., a transient convection-diffusion
problem. The particular case we investigate corresponds to a challeng-
ing physical application, a shock wave problem.

In all the presented numerical experiments we use the saddle point
description in (15) implemented in legacy FEniCS [26] with the lat-
est stable release from Anaconda. The verifications in which we employ
adaptive refinements all use the same criterion as in [30], i.e., the built-
in error indicator (14) as well as a Dorfler marking strategy [39] using
the approximate energy error computed using (12). To solve the system
of linear algebraic equations, we use the direct solver MUMPS [40,41].
Also note that in all cases where we report the number of degrees of
freedom, we do not include the degrees of freedom for the error rep-
resentation function in the saddle point systems (15) and (28). The
polynomial degree of approximation used for this error representation
function is identical to the degree of the trial space with the results in
Section 4.1 being the sole exception.

4.1. Optimal test function resolution

As an initial verification, we perform a study to ensure proper reso-
lution of the optimal test space. To this end, we consider the following
exact solution:

by By
S ] e, (38)

u(x,y,t)=e"" [x +—

bx by
l—e-

l—e*
from which we establish initial and exact solution boundary conditions
and a corresponding source term f. For these studies we consider the
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(b) Quadratic polynomial approximations.

Fig. 2. Convergence histories for the space-time convergence study.

Table 1
Increasing degree of approximation for the error representation function.

Prrial Prest llu = 4"l 12, (coarsest mesh) llu = u" || 2, (finest mesh)
1 1 1.1439e-01 2.6374e-03
1 2 1.1439-01 2.6559¢-03
1 3 1.1439-01 2.6576e-03
1 4 1.1439e-01 2.6582¢-03
2 1 6.8837e-02 1.4028e-04
2 2 6.7822e-02 1.3770e-04
2 3 6.8246e-02 1.3716e-04
2 4 6.8277e-02 1.3698e-04
2 5 6.8288e-02 1.3695e-04

moderately convection dominated case with e =0.1, b= {1, 1}, and se-
lect the final time of computation to be 7" = 0.5s. We consider only
the space-time case here and assume that the conclusions apply to the
generalized-a case as well. Due to the smoothness of the exact solution,
we consider continuous polynomial approximations for both variables
of equal order - p. The error representation functions are then dis-
cretized with discontinuous polynomials of order p + 0, 1,2,3, as well
as p— 1 for p >2. In Table 1, these results are presented for linear and
quadratic trial functions for two uniform meshes: 6 and 24,576 space-
time tetrahedrons, respectively. The results in this table indicate that
for linear and quadratic bases for the trial space, the impact of increas-
ing test space degree is vanishing small. We observe the same trend for
p> 2. Note that for p =2, we observe satisfactory results for a test space
degree p=1.

4.2. Convergence studies

To numerically investigate the convergence properties of our meth-
ods, we consider a well-known example of transient convection-
diffusion, the Eriksson-Johnson problem [42]. This problem has a
known exact solution that satisfies the following form of (37):

Jdu d

u
U _cA &y,
o EAur =S

Additionally, Dirichlet boundary conditions on u, the initial condition
on u, and the source f are ascertained from the exact solution:

in Qp. (39)

OpX _ 01X
u(x,y,t)ze_lt (e’llx —e’12x)+cos(7ry) ¢ ¢

e %2 0 |

(40)

where [ =2, and:

21

o oieyiae
125 T 57
1+ V1+4x2e?
2¢e ?
The problem domain Qp = (—1,0) X (—0.5,0.5) X (0,0.5). For these stud-
ies we consider the moderately convection dominated case of (39) with
e =0.075.

In Fig. 2 the convergence plots for linear and quadratic polyno-
mial degrees for the space-time approach are shown. In Fig. 2, we
plot error norms versus the number of degrees of freedom N, which
increases at ()(h~2), i.e., the h-convergence rates of the FE approxi-
mations can be extracted from these by a simple adjustment. For the
case of ||u — u” l12(0,)> We get O(N~Y = O(h*) = O(h?*1) order of con-
vergence. The observed rates for |q— q"|| 2@Q) are slightly lower,
whereas the energy error converges at the expected rates of O(h”). In
error bounds for the AVS-FE method applied to a second order PDE, see,
e.g., [43], it is only guaranteed that the energy norm (9) and the error
in the norm on U (27 ) converges at O(h”).

Analogously, in Fig. 3, the convergence plots for generalized-a are
presented to study the convergence of the method at the final time
T = 0.5s with time step of 7 = 1073. The observed rates of convergence
in Fig. 3 are the optimal rates expected from the polynomial approxima-
tions employed. Note that the L? errors in the base variable u become
flat near the end of the refinement process as the temporal discretiza-
tion error becomes dominant. Comparison of the results in Figs. 2 and 3
for the two methods reveal that the number of degrees of freedom is
significantly larger for the space-time approach.

(41)
51,2 =

4.2.1. H — (div) conforming basis functions

To complete our numerical verifications we consider the generali-
zed-a system (28) and use Raviart-Thomas basis functions for the flux
q". Following the known results from e.g., [33], the Raviart-Thomas
functions are of order p — 1, where p is the order of the approximations
for u”. We also use discontinuous Raviart-Thomas bases for the vector
valued error representation function of order p and the scalar valued
function of the same order p.

We again consider the same Eriksson-Johnson problem with 7', =
1.0s, set e =1x 1073, p=2, P = 0.9 and perform both uniform
and adaptive mesh refinements. In the adaptive refinements and the
Dorfler marking strategy, we pick the parameter 6 = 0.5. In Fig. 4,
we present the corresponding convergence histories. Clearly, for the
strongly convection-dominated case considered, the uniform refine-
ments are not an optimal choice. However, the adaptive refinement
scheme performs significantly better and is able to reduce the consid-
ered errors approximately two orders of magnitude.



E. Valseth, P. Behnoudfar, C. Dawson et al.

10°

Error Norm

102}

— |ju- "hHl.I[n”

- Hq—q"ll,,:(“,,

103
10?

10°

104

dofs

10° 10°

(a) Linear polynomial approximations, P = 0.

10°

107

Error Norm
-
e
5

-
o
o

10

— lu—u"|z20y

— lla—q"|2@y

10
10?

dofs

10* 10°

(c) Quadratic polynomial approximations, p. = 0.

Computers and Mathematics with Applications 157 (2024) 15-26

Fig. 3. Convergence study of the solution obtained using the generalized-a method for time discretization at final time 7'=0.5s.
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(b) Adaptive mesh refinements.

Fig. 4. Convergence study of the solution obtained using the generalized-a approach T = 1.0 using fully conforming FE basis functions.

4.3. Comparison between space-time and time stepping

As the space-time and time-stepping methods are fundamentally
different, a comparison between the two methods is not trivial. Compar-
ison of accuracy of the two methods is not straightforward to compare,

as the errors reported in Fig. 2 are global for the full space-time do-
main and the errors in Fig. 3 are at the final time step. Furthermore,
the computational cost is distributed differently in the two methods.
In this subsection, we perform heuristic comparisons between the two
methods by considering the results at the final time of simulation.
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Fig. 5. Convergence at the final time 7 = 0.5 for increasingly fine uniform
meshes.

4.3.1. Uniform refinement

First, we compare the error at the final time T = 0.5 for the case of
p =1 with the problem setup from Section 4.2. In the space-time ap-
proach the initial mesh consists of six uniform space-time tetrahedrons
whereas in the generalized -a method it consists of two triangular el-
ements. In the generalized -a method we set p, = 0.9 and perform 5
time steps. We perform uniform refinements to the initial mesh and
compute the errors in the space-time approach at the final time step
and plot them alongside the final time error from generalized-a against
the (2 dimensional) element size h at the final time in Fig. 5. It is inter-
esting to observe that the errors in both methods shown in this figure
are nearly identical. In terms of computational time, the space-time ap-
proach required 75 seconds whereas the generalized -a method took
49 seconds. In both cases the experiments were performed on a 2022
MacBook pro with the Apple M2 chip.

4.3.2. Adaptive refinement

As a second comparison, we compare the final time meshes obtained
using adaptive mesh refinements. We consider the following exact solu-
tion:

u(x, y,8) = (t +0.1)(1 + tanh(0.5(0.1 — 0.5 — V/X2 + y2|))), (42)

from which we ascertain boundary and initial conditions, as well as
the source f. The problem domain Q = (0, 1) X (0, 1) X (0,0.25) and we
consider the moderately convection dominated case of (37) with e =0.1
and b = {—y, x}. In the space-time approach the initial mesh again con-
sists of six uniform space-time tetrahedrons whereas in the generalized
-a method it consists of two triangular elements, in both cases we se-
lect p = 1. In the generalized -a method we set p,, = 0.9 and perform
250 time steps. We perform adaptive mesh refinements to the initial
meshes using the Dorfler marking strategy, and select the parameter
6 = 0.3. In the space-time case we perform 24 adaptation cycles, and
in the generalized-a case 30 adaptation cycles. In Fig. 6 we present the
traces of the meshes produced in the refinement process at 7' = 0.25s.
The final meshes in both cases are similar in that the refinements are
focused around the internal layer. Both experiments were performed on
the same desktop computer with an Intel Xeon Processor type W-2245
from 2020, where the space-time case required 10833 seconds, and in
the case of the generalized-a 2430 seconds.

4.4. Shock problem
As a final numerical verification, we present a consideration of (37)

in which the solution behaves as two shocks traveling through the
space-time domain while rotating about the origin. Furthermore, the
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choices we make for the problem parameters are such that the inter-
face of the shock is skewed and rotates in the space-time domain as
t = Tf;nq- Thus, we have the following choices:

b= {-x+2y,0}7,

ug = 0,
e= 1073,
ug = 0, (43)
f= —2xe+x(1-)2).
Tfing = 2.50s

Q= (-1,)x(-1,1)

For this particular problem, we present the time slice approach in which
we perform mesh adaptations between each slice and we apply lin-
ear polynomial approximations for the trial functions. Experience has
shown that the slice containing the initial condition is critical to the
proper resolution of the space-time process. Thus, we consider the case
of three space-time slices, the first from Os to 0.2s and the final two of
equal size from 0.2s to 2.5s. In Figs. 7, 8, and 9 we present the AVS-
FE solution for the base variable at different time steps. As expected,
two shock-waves originate at the boundaries of x = +1, and as time
progress, the two waves approach the center of the domain while rotat-
ing. The adaptively refined meshes shown in Figs. 7(b), 8(b), and 9(b)
(the final times of each slice) show that the mesh refinements are fo-
cused at the interfaces of the shocks, further indicating the applicability
of the built-in error indicators.

5. Conclusions

The AVS-FE method is a Petrov-Galerkin method which uses clas-
sical continuous FE trial basis functions, while the test space consists
of functions that are discontinuous across element edges. This broken
topology in the test space allows us to employ the DPG philosophy and
introduce an equivalent saddle point problem which we implement us-
ing high level FE solvers. We have introduced two distinct approaches
to transient problems using the AVS-FE method. First, we take a space-
time approach in which the entire space-time domain is discretized
using finite elements, and second, using the method of lines to dis-
cretize the spatial domain independently. Then, using a time-marching
method, we obtain a fully discrete system.

The space-time method allows us to exploit the unconditional stabil-
ity of the AVS-FE method and perform a single global solve governing
the FE approximation. As the AVS-FE approximations computed from
the saddle point system (26) come with built-in error indicators, we
are capable of utilizing mesh adaptive strategies in space and time.
In an effort to control the computational cost of the space-time ap-
proach in solving the global system of equations, we consider a time
slice approach. Here, the space-time domain is partitioned into finite
sized space-time slices on which we employ the AVS-FE method. The
advantage here is that the size of the global system is reduced and we
are able to employ mesh adaptive strategies on each slice.

The method of lines, in which we use the AVS-FE method for the
spatial discretization and a generalized-a method to derive a fully-
discretized system. In this case, the discrete stability in the temporal
domain is ensured by the generalized-a method leading to highly effi-
cient stable FE computations. We show that the AVS-FE method uses a
corresponding norm as a function of the time-step. Another distinguish-
ing feature of this method is that due to the influence of the initial data
on the accuracy of the solution, we find a stable approximation for % at
the initial time. Accordingly, at each time step, one is required to solve
a system with a smaller number of degrees of freedom in comparison
with the space-time approach.

Numerical verifications for several cases of the transient convection-
diffusion IBVP show that both methods exhibit optimal asymptotic
convergence behavior as well as similar norms of the numerical approx-
imation error. For degrees of approximation above 2, the space-time
approach becomes more accurate as it is not limited to the second-order
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(a) Space-time. (b) Generalized -a.

Fig. 6. Comparison of the adaptive refined meshes at the final time.
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Fig. 7. AVS-FE approximations of the shock problem, i.e., (37) with parameters from (43).
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Fig. 8. AVS-FE approximations of the shock problem, i.e., (37) with parameters from (43).
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(a) Solution u" at 1 = 2.0s.
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(b) Solution u at t = 2.5s with final adapted mesh.

Fig. 9. AVS-FE approximations of the shock problem, i.e., (37) with parameters from (43).

accuracy of the generalized-a method. However, we do not advocate
one method over the other but we point out these differences for poten-
tial users as their available computational resources will likely dictate
which approach to use. For both cases, we present additional numerical
verifiactions highlighting the adaptive mesh refinement capabilities. In
future efforts, we expect to pursue alternative error estimators and in-
dicators as well as the AVS-FE approximation of challenging transient
physical phenomena. The use of basis functions that are of higher or-
der regularity, e.g., as in [44] is another potential direction of future
research efforts.
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