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ABSTRACT

The prediction of the wind wave spectrum of the ocean using numerical models are an important tool for
researchers, engineers, and communities living in coastal areas. The governing equation of the wind wave
models, the Wave Action Balance Equation, presents unique challenges for implementing reliable numerical
models because it is highly advective, highly nonlinear and high dimensional. Historically, most operational
models have utilized finite difference methods, others have used finite volume methods but relatively few
attempts at using finite element methods. In this work, we seek to fill this gap by investigating several different
finite element discretizations of the Wave Action Balance Equation. The methods, which include streamline
upwind Petrov-Galerkin (SUPG), least squares, and discontinuous Galerkin, are implemented and convergence
properties are examined for some simplified 2-D test cases. Then, a new spectral wind wave model, WAVEZX, is
formulated and implemented for the full problem setting. WAVEX uses continuous finite elements along with
SUPG stabilization in geographic/spectral space that allows for fully unstructured triangular meshes in both
geographic and spectral space. For propagation in time, a second order fully implicit finite difference method is
used. When source terms are active, a second order operator splitting scheme is used to linearize the problem.
In the splitting scheme, propagation is solved using the implicit method and the nonlinear source terms are
treated explicitly. Several test cases, including analytic tests and laboratory experiments, are demonstrated and
results are compared to analytic solutions, observations, as well as output from another model that is used
operationally.

1. Introduction

free velocity field and possibly nonlinear source/sink terms. Numerical
spectral wind wave models have been in operation since the 1970s and

Wind waves are those that typically range in period from 0.25-30 s,
or wave lengths of 0.1-1500 m, and are the product of disturbances of
the ocean surface due to locally generated winds (Holthuijsen, 2007).
Wind wave models take into consideration the local winds, bathymetry,
and currents in order to approximate how wind waves evolve over time.

This research focuses specifically on spectral wind wave models
that are defined through the Wave Action Balance Equation (WAE).
These spectral wind wave models work by estimating the transport
of wave action distributed among wind waves of various frequencies
and directions as defined through the WAE (Komen et al., 1994; Mon-
baliu, 2003; Khandekar, 1989; Janssen, 2008; Young, 1999). The WAE
presents challenges for numerical discretization techniques because it
is a first order transient hyperbolic equation whose domain lies in
4 dimensions (2 in space, frequency, direction) with a non-divergent
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are used daily as a tool in many fields including engineering, shipping,
and meteorology (Group, 1988; Tolman, 1991; Komen et al., 1994).
They are also important tools for both improving our understanding
of ocean processes and for predicting the impacts of severe weather
events. The wind wave models can produce results regarding the state
of the sea surface (sea state) such as average wave height, significant
wave height, mean weave direction, peak period, and wave radiation
stresses.

Currently, there are many well-known spectral wind wave models
used in practice such as ECWAM (Group, 1988; Janssen, 2004), which
is supported by the European Centre for Medium-Range Weather Fore-
casts (ECMWF), Simulating WAves Nearshore (SWAN) (Booij et al.,
1999), which is supported by Delft University of Technology, and
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WAVEWATCH III (Tolman, 1991), which is supported by the United
States National Oceanic and Atmospheric Administration (NOAA). A
brief summary of the methods employed in contemporary numerical
spectral follows but we note that there are many great historical re-
views on numerical spectral wind wave models see e.g., Roland (2008),
Meixner (2013), Komen et al. (1994), Alves et al. (2007), Monbaliu
(2003), Janssen (2008), Khandekar (1989) and Roland and Ardhuin
(2014).

All numerical spectral wind wave models rely on numerical approx-
imations to the governing partial differential equation (PDE), i.e., the
WAE. Historically, spectral wind wave models used finite difference ap-
proximations along with splitting schemes to separate the propagation
and source terms of the WAE (Alves et al., 2007). For instance, the
ECWAM model contains both a first order explicit upwind scheme and
a second order leapfrog method for the propagation terms with a semi-
implicit second order centered difference for the source terms (Group,
1988). The original WAVEWATCH III model uses an explicit predictor—
corrector method that approximates Crank-Nicholson and an explicit
Euler scheme for the source terms (Tolman, 1991). The scheme of
SWAN was unique at its time of inception in that it used a fully implicit
solver without splitting nonlinear and linear terms using the ideas of
a nonlinear solver by Patankar (1980). In SWAN, a finite difference
formulation based on an implicit upwind scheme is used (Booij et al.,
1999). This idea of using an implicit time step scheme is relatively un-
common in fluid problems such as the WAE but show great promise in
applications where the CFL condition is particularly restrictive (Roland
and Ardhuin, 2014).

It is also common when splitting the WAE into propagation and
source to employ a method of characteristics for the propagation por-
tion (Roland and Ardhuin, 2014). This is an intriguing method because
without source terms the WAE is just an advection problem and the
characteristics should give the exact solution. However, it can be dif-
ficult to use these methods for complex bathymetries and complicated
source terms and thus numerical approximations are necessary in prac-
tice. Two popular models, STWAVE and TOMAWAC, were developed
beginning in the 1990s use this characteristic paradigm and in many
cases with great success (Smith et al., 2001; Benoit et al., 1997).

As the reliability and usage of wave models increased, there was
a push for spectral wind wave models to be used in more shallow
waters. Historically, structured grids are common because they are
easier to implement and may be computationally less expensive than
unstructured grids. However, in order for structured grids to work
for coastal applications, very high levels of refinement are needed
to capture often highly irregular changes in bathymetry (Roland and
Ardhuin, 2014) as well as coastline. Thus, spectral wind wave models
capable of unstructured grids became more popular because they are
often computationally cheaper than refining a structured grid multiple
levels.

The first known model capable of computations on unstructured
meshes is the aforementioned TOMAWAC (Benoit et al., 1997), which
was released in 1997 and was able to represent the geographic do-
main with unstructured triangles using what is often known as a
characteristic-Galerkin or a Lagrange-Galerkin approach. That is, a
method that uses finite element interpolation in combination with
a method of characteristics. In Hsu et al. (2005), Hsu et al. devel-
oped a finite element method (FEM) version of SWAN that used a
Taylor—Galerkin scheme in geographic space while splitting the spectral
frequency, direction, and source terms. This model was further de-
veloped, focusing on improvements in eliminating oscillations around
steep gradients, into wind wave model (WWM) I and WWM II, which
added an implicit and explicit fluctuation splitting schemes (also known
as residual distribution schemes) to the geographic space (Roland et al.,
2006, 2009; Roland, 2012; Abgrall, 2006). This same approach was
added into the WAVEWATCH III model, extending WAVEWATCH III to
allow for unstructured meshes and implicit time steps (Abdolali et al.,
2020). Around the same time, SWAN became available on unstructured
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meshes made of triangular elements by extending its finite difference
upwinding scheme (Zijlema, 2010).

In addition to the model of Hsu, there have been a couple more
finite element methods applied to the WAE. In 2012, Yildirim et al. used
a hybrid approach with discontinuous Galerkin in geographic space
and Fourier collocation in spectral space to create a third generation
model (Yildirim and Karniadakis, 2012). In 2014, Meixner used a
discontinuous Galerkin FEM in spectral and geographic space (Meixner
et al., 2014). Both of the models used Runge-Kutta type explicit time
stepping schemes.

In addition to models that use finite difference methods, and FEMs,
there are models that use finite volume methods. FVCOM-SWAVE is
an implementation of a finite volume method that allows for unstruc-
tured grids (Qi et al., 2009). A summary of all of the aforementioned
schemes are contained in Table 1. As can be seen in Table 1, as these
operational wind wave models have increased capabilities for capturing
the wave spectrum in coastal areas, there are a set of two common
features amongst numerical schemes. The first is a capability of fully
unstructured triangular grids in geographic space and the second is im-
plicit time stepping. These are important features because unstructured
meshes allow for refinement of the irregular bathymetry in the coast
and the implicit time step allows for violation of the highly restrictive
CFL condition that is inherent in the WAE. This research aims to adhere
to these principles but from a finite element perspective.

This work focuses on the development and implementation of a
new spectral wind wave model, called WAVEX, that is capable of using
unstructured meshes via the FEM along with implicit time stepping
using the open source finite element library, FEnicSx (McRae et al.,
2016; Habera et al., 2020). FEMs gained popularity starting in the mid
twentieth century as a means to numerically approximate differential
equations see e.g., Zienkiewicz et al. (2005), Becker et al. (1981),
Carey and Oden (1983) and Reddy (2019). In general a FEM consists
of recasting a differential equation into an equivalent weak form,
partitioning the associated domain into a finite number of subdomains
(i.e., elements), approximating the solution on each element with a
finite dimensional basis, and subsequently solving the associated linear
algebraic system of equations to achieve an approximate solution. The
FEM has many benefits in that it is backed by rigorous mathematical
theory that readily extends to high order approximations, unstructured
meshes, and adaptive meshing see e.g., Ern and Guermond (2013),
Brenner and Scott (2008) and Zienkiewicz et al. (2005) for thorough
introductions and complete discussions on advantages and weaknesses.

FEMs were originally developed for elliptic type problems, which
often arise in structural mechanics (Brenner and Scott, 2008; Ern and
Guermond, 2013). However, the standard (Bubnov-Galerkin) FEMs
have issues when applied to many common fluid problems, which are
often hyperbolic in nature, and has historically led to unstable solutions
and solutions that had spurious oscillations (Johnson, 2012; Ern and
Guermond, 2013; Reddy, 2019; Oden and Demkowicz, 2017). These
problems have been thoroughly analyzed and many stabilized finite el-
ement techniques were developed (Johnson et al., 1984; Pironneau and
Pironneau, 1989; Zienkiewicz et al., 2013) to address the issues. Some
of the methods developed that became popular include artificial vis-
cosity (Ern and Guermond, 2013), Taylor—-Galerkin (Donea and Quar-
tapelle, 1992), Streamlined Upwind Petrov—Galerkin (SUPG) (Brooks
and Hughes, 1982), least squares FEM (Bochev and Gunzburger, 1998),
discontinuous Galerkin (DG) (Dawson and Proft, 2001; Cockburn et al.,
2000; Brezzi et al.,, 2006, 2004), and Lagrange-Galerkin or chara-
cteristic-Galerkin (Douglas and Russell, 1982; Bermejo et al., 2023;
Morton et al., 1988; Dawson et al., 1994).

In the following study, a set of four finite element formulations
of the WAE: SUPG, DG, least squares, and standard Bubnov-Galerkin,
will be considered and implemented using the FEniCSx library in a
simplified two-dimensional domain (1 in space and 1 in frequency)
along with implicit finite difference approximation in time for all FEM
schemes. Two test cases will be demonstrated, one of a propagating
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Table 1

Summary of numerical schemes in contemporary spectral wind wave models.

Model name Year Numerical method Method description Grid type

WAM 1988 Finite difference Advection: Explicit 1st order upwind, leapfrog Structured
Source: Centered difference (semi-implicit)

WAVEWATCH III 1990 Finite difference Advection: QUICKEST (Explicit 3rd order upwind) Structured
Source: Semi-implicit

STWAVE 1990s Method of Advection: Method of characteristics Structured

characteristics/Finite Source: Finite difference
difference

TOMAWAC 1997 Method of characteristics/FEM Advection: Method of characteristics Unstructured
Source: semi-implicit (linear finite elements for
interpolation)

SWAN 1999, 2008 Finite difference Space: Upwinding Unstructured
Time: First order implicit

WWMII/WW3 2009 Contour residual scheme Space: Contour residual distribution Unstructured
Time: Implicit upwind

FVCOM-SWAVE 2009 Finite volume FVCOM finite volume in space, centered difference Unstructured
in directional, flux corrected transport algorithm
for frequency

Yildirim 2011 FEM/Spectral Geographic space: Discontinuous Galerkin Unstructured
Spectral space: Fourier collocation
Time: TVD Runge-Kutta

Meixner 2014 FEM Space: Discontinuous Galerkin Unstructured

Time: SSP Runge-Kutta

sinusoidal signal and one with a developing shock. For each test
case, the L? and [® errors are calculated and studied with respect
to h refinement. Then, employing the strategies of Loveland et al.
in Loveland et al. (2022), WAVEx is implemented for the full four
dimensional WAE. Thus, WAVEX is a finite element model that employs
SUPG stabilization with a second-order implicit time-stepping scheme
(Crank-Nicolson) along with a Strang splitting approach to handle
source terms in the WAE implemented using FEniCSx. The open-source
framework FEniCSx was chosen, as its powerful open-source framework
allows for automation of coding finite element solvers and in hopes
that it will allow for users to more easily experiment with different
numerical techniques or with different source terms via its Python
interface.

Several test cases from the US Office of Naval Research (ONR)
testbed (Ris et al., 2003) are reproduced in order to demonstrate the
validity and applicability of WAVEx. The collection of tests include
theoretical problems with analytic solutions as well as one lab ex-
periment that has physical measurements. To measure accuracy, the
solution generated by WAVEx is compared to the tabulated results at
the given points. From these comparison points, both the root mean
square error (RMSE), i.e., /> and the /*® error are computed. For each
test case, the parameters include significant wave height and mean
wave direction and are computed in WAVEX. The set of test cases were
selected to investigate convergence properties, accuracy, and stability
of our numerical schemes as well as demonstrate the scalability of the
schemes. To the knowledge of the authors, no finite element methods
have been used for the WAE that use SUPG stabilization, least squares
FEM, or discontinuous Galerkin approach along with implicit time
stepping. Furthermore, to the knowledge of the authors, no full scale
wave model has been implemented completely within Python. The use
of Python we believe will increase the code’s readability as well as ease
future collaborations and further development.

2. Methods
2.1. Problem definition

The Wave Action Balance Equation (WAE) is derived as a conser-
vation law of wave action, N, which is a scalar-valued function of

horizontal geographical space (x, y) and spectral space (o, 0), i.e., fre-
quency and direction, and can be found in e.g., Holthuijsen (2007),

Young (1999), Komen et al. (1994) and LeBlond and Mysak (1981).
Assuming source terms are linear with respect to N, the WAE is a linear,
scalar-valued, hyperbolic equation in 4 dimensions with a varying (both
in 4-D space and time), non-divergence free velocity field, (c(x, y, 5, 0)),
which can be determined independently of the unknown N(x, y,s,0).
This is different than most conservation laws such as Navier—Stokes and
related transport equations because typically the propagation velocity
is just a function of the unknown i.e. ¢(N).

The proper boundary and initial conditions are as follows, assuming
we have a bounded domain in four-dimensional space 2 c R* that is
sufficiently regular. Similar to other advection problems, the boundary
is split up into 2 segments, inflow and outflow:

I'_ =x€02 :c-n<0=inflow 1
I't =x€02 :c-n>0=outflow, )
where n is the outwards unit normal vector to the boundary. Then
it has been shown that the following problem possesses a unique
solution (LeVeque and Leveque, 1992; Donea and Quartapelle, 1992;
Pironneau and Pironneau, 1989):

S(N,x,y,0,0,1)
(o2

N, +V-(cN)= on Qx(0,T),

N=N_ on I, 2

N=N, on Q at t=0,

where N, denotes the (partial) time derivative of N, S the source/sink
terms, 2 the computational domain, and N_ the specified essential
boundary condition on the outflow boundary. In the case when S
is either 0 or is independent of N, a fairly straightforward analytic
solution to the above problem can be obtained via the method of
characteristics (Donea and Quartapelle, 1992). However, in practice
S is quite complex, often nonlinear, and realistic problems become
too complex to analyze with pencil and paper and thus the need for
numerical methods to approximately solve (2) arises.

The propagation velocities, ¢, are all determined using the constitu-
tive relation called the dispersion relation, which is derived under as-
sumptions of Airy Wave Theory. The dispersion relation relates relative
radial frequency, o, to wavenumber magnitude, k:

62 = gk tanh(kd). 3)

Here g is the constant of gravitational acceleration and d is total water
depth. The velocity ¢ is a non-constant, non-divergence free vector
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quantity defined as:
€ = (¢ 050 +u, c,sinb + v, ¢, co), C)]

where u, v are the mean water velocities in x, y directions respectively,

¢, the relative group velocity (defined as ‘;—Z, whereas the absolute

group velocity is ‘;i,: = ¢, + w0, and ¢,, ¢, define the advec-
tion of the spectra with respect to direction and relative frequency,
respectively. The group velocity, c,, can be directly obtained by differ-
entiating the dispersion relation in (3) for relative frequency, o, with

respect to wavenumber magnitude k. The explicit expression is:

| 2kd g
=L 1/ tanh (k).
£~ 3 ( * Sinh 2kd> j, tanh (ed) Q)

c.o= =

The propagation velocity c,, represents frequency shifting due
to changes in depths and currents. By applying the chain rule, we can
find an expression of c,:

[ —do___ko %+u%+uﬂ -
° 7 dr sinhQkd) \ or = ox 9y

c k %cosz(ﬂ) + Qcos(e)sin(e) + @sin(e)cos(a) 6)
ox ady ox

+2u c052(0)> .
dy

The full derivation is quite lengthy but can be found in Appendix D
in Holthuijsen (2007). Now the propagation velocity c,, with respect to
0, represents the shift in the spectrum due to refraction and diffraction.
Similarly to ¢,, the derivation is quite lengthy but can be obtained by
applying the chain rule:

do o od . ad
=—=——"__ | sin(0) - =cos(9) ) +
0= 47 ~ Sinh (2kd) <axsm( )~ 5y oSt )> -
@cos(e)sin(e) - @0052(0) + a—”sinz(H) - @cos(e)sin(e).
ox ay ox dy

2.2. Source terms

In the WAE (2), the source term S(N, x, y,0,0,t) was left arbitrary.
However, in practice, it can take many forms but in general it can be
thought of as a sum of three key sources/sinks:

S =8, + Syiss +Su- 8)

where S;, represents any contribution to the spectrum due to wind
input, S;;,, represents any change in the energy spectrum due to
dissipation that can include things like whitecapping and surf zone
breaking, and S, represents changes in the spectrum due to nonlinear
wave interactions. When source terms are active, the WAVEx model
in this study will use the default 3rd generation source term package
used in SWAN cycle III Version 41.41, see details in Team et al. (2022).
The default wind input term is that from WAM Cycle III and first
outlined in Komen et al. (1984), the dissipation from whitecapping,
bottom friction, and depth-induced breaking are included and the DIA
approximation is used to account for nonlinear interactions. More
details on these source terms can be found in Chapter 3 of Loveland
(2023).

2.3. Weak formulations for the wave action balance equation

In this section, several weak forms of the WAE will be presented.
These weak forms will eventually lead to fully discrete systems that are
then solved with FEniCSx. First, for comparison purposes, two forms of
the standard Bubnov-Galerkin approach will be derived for the WAE
and the problems with the standard Bubnov-Galerkin discretizations
will be discussed. Three alternatives to the standard Bubnov-Galerkin
approach: the least squares FEM, the SUPG method, and the DG method
will be derived and discussed. All of these weak forms will then be
run on two simplified test cases using FEniCSx in Section 3 in order to
investigate convergence properties of all the stabilized finite element
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methods with respect to s refinement. The full discretization of an
SUPG method will be described for the full four-dimensional setting
in the subsequent section. Note that we utilize inner product notation
for integrals, i.e., (u,0)o = [, uvdQ.

2.3.1. Bubnov-Galerkin

Taking the strong form of the WAE as in (2), we obtain an equivalent
problem but in the weak form by multiplying both sides by a test func-
tion w € L*(Q) and integrating over a bounded and Lipschitz domain
2 c R* Note that we do not integrate over time because we will
eventually employ finite difference approximation in this dimension.
Thus we have the following weak form that we will call CG Strong
because there are more regularity requirements on the trial space. Find
N € U such that:

IN _(S 2
( o ,w)g +(V-(eN), w)g = (g ,w)g Vw e L2(Q). )
Thus, it is required that U = {N € HY(Q,1); N(I_,t) = N (N e

-
L?(2,1)}, recalling that I'_ is the inflow boundary and N_ is the

Dirichlet condition on that part of the boundary. We will also assume
that velocity vector ¢ and source term S is sufficiently well behaved
for the weak form to have meaning. It can be shown that (9) is well-
posed (in the sense that a solution exists, it is unique, and continuously
depends on the data) see e.g., the book of Ern and Guermond (Ern and
Guermond, 2013). However, it is also known that if (9) is discretized
using the standard Bubnov-Galerkin approach then the discrete inf-
sup condition depends on mesh size, , and therefore does not provide
optimal error estimates (Ern and Guermond, 2013). By optimal, we
mean for polynomial approximations of order k the convergence of
the error in the L? sense to of the same order of convergence as the
underlying FE interpolants, usually #%*! (this classical result can be
found in e.g., Babuska et al. (2010), Brenner and Scott (2008), Reddy
(2019) and Oden and Demkowicz (2017)). In practice this leads to oscil-
latory solutions because only L? stability can be shown (Johnson et al.,
1984; Zienkiewicz et al., 2005). Also, the standard Bubnov—-Galerkin
approximation in this setting often leads to ill-conditioned systems of
equations and can even lead to divergence in the finite element solution
especially if the exact solution is non-smooth (Zienkiewicz et al., 2005;
Johnson, 2012).

We can also derive a second weak form if we integrate by parts,
which we will call the CG form, find N € U:
( ION

s
7,w)g—(cN, Viw)g+(eN -nw)y, = (;,w)g Vw e H'(Q). (10)

In order for the term on the boundary to have meaning we must
require additional regularity than just N € L?(£2) and so the analysis
is not so straightforward but has been shown to be well posed for
cases of homogeneous boundary conditions and in cases with lower
dimensionality (Ern et al., 2021). When discretized, similar problems
can be expected to that of the strong CG from in (9). In order to
mitigate the problems inherent in these standard Bubnov-Galerkin
discretizations, we will investigate a least squares method, an SUPG
method, and a DG method.

2.3.2. Least squares

The least squares approach is fundamentally different to the
Galerkin approach in that the least squares method is posed as a mini-
mization problem of a linear differential operator. A good reference on
the properties of least squares can be found in the text of Bochev and
Gunzburger (2006). To derive the least squares form for the WAE, we
start with the strong form as in (2), we define the differential operator
£ and right hand side as in Bochev and Gunzburger (2006) so that the
above equation £ would be defined:

=24V (e
Lo= 224V (o). an
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Then the least squares variational form then is defined as follows. Find
N eU:

(LN, Lw)g = (3, Lw)y YweU. 12)
o

This problem is equivalent to minimizing the functional J(V) =
%(E(V),t(V))_Q — (LV,S/0)q. Explicitly writing out the definition of
L gives the formulation for the WAE will be, find N € U:

(aa—]:/+V~(cN),V~(cw))Q=(§,V~(cw))g Yw e U, 13)

where U = (N € H'(Q,); N(I'_,t) = N_; % € L%(Q)}, and again ¢, S
are assumed sufficiently regular to give the integrals meaning. We note
that the time derivative on the test space will be omitted because the
time derivative will be discretized via finite difference and not finite
elements.

The least squares problem generates a symmetric problem (trial
and test spaces are the same) and thus when discretized exhibits
different properties than the Bubnov-Galerkin approximations. It has
been shown that for similar problems, such as the advection-reaction
equation, the least squares method can reduce oscillations and provide
stability (Ern and Guermond, 2013). It can be shown that least squares
produces optimal error convergence in the streamline directions how-
ever it has yet to be shown that the least squares method produces
optimal errors with respect to 4 refinement in the L? norm (Ern and
Guermond, 2013).

2.3.3. SUPG

The next stabilized form that will be investigated is the SUPG
method. Because the WAE is an advection dominated equation, the
method is a natural choice to employ. The method originally from
Brooks and Hughes (1982) was designed for fluid problems and has had
much success in stabilizing advection dominated problems for fluids by
adding diffusion in the upwind direction in the weak formulation. The
SUPG scheme is formulated by adding a term with a vanishing residual
to the standard Bubnov-Galerkin form in the discrete section. This in
turn modifies the discrete test space, which results in the change from
a standard Bubnov-Galerkin form to a so called Petrov—-Galerkin form.
We can add this residual term to either CG strong as in (9) or the CG
form as in (10). We will demonstrate both possible SUPG formulations
now. We start with CG strong form and taking it into the discrete setting
where the test and trial functions are piecewise smooth and globally
continuous. We will call the resulting form SUPG strong, which is find
N, € Up():

IN, IN, S
7+V'(cNh),wh Q+ 7+V'(CN}1)—;,TC’V(W}1)

= ()
o g

Here Q, is the interior over each finite element. Because in the analytic
setting the residual term is identically O, then this problem inherits the
well-posedness from (9). The weak form can be simplified by adding
the integrals together:

Q

e

Ywy, € V4(Q). 14

JdN,, S
4V (eNy) wy, +1e-V(wy,) ) = (—,wh+rc~V(wh)>
ot o ] Q

A e

Y, € V(). (15)

This will be called the SUPG strong form that will be discretized
with continuous finite elements in FEniCSx. It has been shown that
adding this diffusion in the streamline direction improves the stability
of the discrete problem by improving the discrete inf-sup condition
(see Johnson et al. (1984) and Brooks and Hughes (1982)) and allowing
for discrete stability in the H' sense. Furthermore, error estimates
for very similar problems to the WAE, such as the advection-reaction
equation, show nearly optimal rates at O(h**%-3) (Johnson et al., 1984;
Burman, 2010; Burman and Smith, 2011).
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We can also arrive at an SUPG form by taking (10) into the discrete
setting and adding the residual to get, find N, € U, (22):

ON,
<—h,wh> — (eNy, Vuwy,) , + (eN, - n, wh)l_+ +
Q

ot
(O‘ w )Q
h

e

<aﬂ +V- (cNh) - g,‘rc . V(w,,))

Yw, € V,(Q2).
ot wp € Vil

2
1e)

After discretization of both the SUPG strong and SUPG forms, 7 is taken
from Codina (2000), Burman (2010) and is chosen to be:

r=B an
el

where 4 is the characteristic length of an element.

2.3.4. Discontinuous Galerkin

The next stabilized form that will be examined is the DG method
as in the work of Meixner et al. (2014). The DG method is different to
any of the other methods discussed up to this point in that it allows
for discontinuities between element interfaces. The DG formulation is
obtained by taking the strong form of the WAE, multiplying by a test
function, and integrating by parts over each element. Find N, € Uj:

ON, N S
<a—th,wh>[)£ - (cNh,th)_Qe + (cNh -n, wh)a(ze = (;,wh)ge

Vuw, € W, (18)

The test and trial spaces are virtually the same with W), = {v € L?>(2) :
vlg, € PX(Q,)VQ, € T,} and U, being W}, but with a finite energy
lift on the inflow boundary. P* are polynomials of degree k, and £,
corresponds to the interior of an element while T, is s finite element
partition of the domain Q. N, is a uniquely defined flux on the bound-
ary, which is required to form a closed system of equations (see Meixner
et al. (2014), Cockburn et al. (2000) and Dawson and Proft (2001)). In
this implementation, the fluxes on the element boundaries are uniquely
defined in this case using the Lax-Friedrichs flux, which is described in
detail in the work of Meixner et al. (2014). The DG method has well
documented analysis on stability and error estimation for hyperbolic
problems such as the advection reaction equation, which is essentially
what the Wave Action Balance Equation is Cockburn et al. (2000),
Brezzi et al. (2004) and Brezzi et al. (2006). It has been shown that
for a DG scheme like the one above, stabilit?l in the H! sense exists
and that almost optimal convergence, O(hk+5) can be shown (Brezzi
et al., 2004).

2.4. WAVEx: Implementation of wave action balance equation solver with
FEniCSx

We now introduce WAVEx, which is capable of solving the WAE in
its full 4-dimensional spatial domains using the techniques described
in Loveland et al. (2022), and is implemented with the finite element
library FEniCSx. WAVEX in its current state allows for SUPG stabi-
lization along with Strang splitting to deal with the nonlinear source
terms. The codebase for WAVEx is publically available and on Github
at https://github.com/Markloveland/WAVEXx. This section will explain
in detail the numerics currently available in WAVEXx including the finite
element schemes as well as the time stepping schemes.

2.4.1. Semi-discrete form

This particular implementation in WAVEx will use a continuous
FEM approach along with SUPG stabilization. We first limit ourselves
to cases where the global domain is a Cartesian product between two
subdomains (geographic space, and spectral space). This means we can
construct the product basis:

N M
N(x,y.0,0) & Y Y Ny dbi(x, 9w (0, 0), 19

i=1 j=1
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where N, ; are the scalar weights of the interpolating functions.

As we know, the standard Bubnov-Galerkin approximation of ad-
vective equations leads to ill conditioned discrete problems and as in
Section 2.3, we will use SUPG stabilization. SUPG was chosen because
it performed well in our preliminary 2D studies (see Section 3), and the
fact that it is also computationally cheapest. We begin by first recalling
the two possible weak forms as described in Section 2.3, SUPG strong
and SUPG. The latter being when integration by parts is conducted
and the former is when integrating by parts is omitted. Both options
are included in the WAVEx code repository. For the form without
integration by parts, SUPG strong, we begin with (15) and substitute in
the product basis to get the semi-discrete (i.e., discrete in space, infinite
dimensional in time) system:

ORI
( ot
The source terms, S in general are quite complex, so we will only seek
the L? projections of their exact form as shown in (20). Analogously,
the SUPG weak form of the WAE (16) in the semidiscrete setting is
defined by substituting in our product basis into (16) to get:

0(¢1Wj Ni,j)
( ot

+V- (cd’inN,',j) - ¢,'WjSi,j77’kﬂ1 +7C- V(J’kﬁ[))g =0. (20)

B — €y N, V(1B o + (ediy; - nN, ;. v Boo+

oy N, ;)
(T +V- (c¢inNf,j) - ¢[WjSi,j, ¢ - V(b)a
=y Si > 1iPa-

@1

This takes care of the terms not related to the time step, the choice of

finite difference approximation in time will dictate the full discretiza-

tion.

2.4.2. Time step choice and fully discrete form
WAVEX uses a generalized one step finite difference approximation
for the time derivative in (20) and (21):
A7)
(T, vib +te- VB = F(N, 1) —
Gy NTEL gyt N (22)
——— " nb e Vg = o F(N, "

+(1 = a,)F(N, ).

where term F(N,1) is shorthand from (20) and equals:

F(N,t)==(V-(chy;N; ;) — d;w;S; j, viBy + 7¢ - V(i B, (23)
and for (21):
F(N,t) = (cdw;N; ;. V(b)) o — (edy; - 0N, ;.7 Boo
+w;Si ;. viBo (24)
—(V - (edy;N; ;) — diy; S, j.te - V(1B s

the superscripts represent the discrete level in time, n will be the
previous time step and n+1 is the point in time to be solved for, and «,
is a time step parameter between 0 to 1. The scheme is implicit unless
a, =0, as o, = 0 would be the first order explicit Euler approximation,
a, = 1 would be the first order implicit Euler approximation, and 6 = 0.5
would be the second order Crank-Nicolson scheme. The terms with
superscript n are known and move to the RHS while the terms n + 1
will be part of the global stiffness matrix at each time step.

The definition given for the finite difference approximation to the
time derivative leads to a fully discrete system described by (22)
depending on the choice of F(NV,f). Choosing (23) will yield the fully
discrete system for SUPG strong (no integration by parts) and choos-
ing (24) will give the fully discrete system for SUPG weak. Once a
choice of finite basis is made for trial and test spaces, the forms above
will yield a system of equations that in turn can be solved for the action
balance at the next time step, Ni’f;.fl. However, there are two difficulties
that need to be addressed in order to reach a final implementation: (i),
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FEniCS(x) cannot evaluate these integrals on the entire 4-dimensional
domain Q. In the next section, the discrete equations in (22) will be
broken down into products of the geographic and spectral subdomains
using the product rule as in Loveland et al. (2022) into a discrete form
that is implementable in FEniCSx. (ii), in general the source term S is
nonlinear with respect to N. This means that the discrete form of (22)
will not yield a system of linear equations as long as we are using an
implicit time step, a, > 0. To avoid this, an operator splitting method
will described in Section 2.4.4 in order to avoid having to solve a
nonlinear system. Although in the future a fully implicit solver for the
nonlinear problem is of great interest.

2.4.3. FEniCSx compatible format

Now because we want to only evaluate functions in the 2-dim-
ensional subdomains with FEniCSx we need to take advantage of the
product rule. As an example, starting with the second term from (21)
we get:

(e, VB = —(ediy;, vi V(B + B V(ri)) - (25)

Similar to the previous examples, using the property that the basis
functions are only non-constant in their respective subdomains we
get the following simplifications (V,; denotes gradient operator in the
geographic subdomain, and V, denotes the gradient operator in the
spectral subdomain, and same for velocity):

=y, i VB + BV i) o = —(€10w;, BV o — (dw;. i V2 (B)) o
(26)

This importantly allows us to pull integrands apart in the following
fashion so that we can use FEniCSx:

=105, BV1 () — (@b, i Vo (Ao = — /Q ;b
2

x / $ic1 - Viyedxdy @)
2

—/ wjvzﬁ,-/ v dxdy.
2, 2,

Where (27) represents a term that can be evaluated using FEniCSx.
Integrands inside 2, each create a N, X Ny, sparse matrix and to
form the full discrete system we will need a matrix at each quadrature
point in the second subdomain. Each matrix will be different because
of the changes in ¢ in both subdomains. The remainder of the terms in
(22) can be rewritten in this way via the product rule. The full process
is the same can be seen in detail in Appendix.

2.4.4. Operator splitting

The source terms are in general non-linear, in the interest of saving
computational complexity we will employ a splitting scheme to handle
the source terms of the WAE. More extensive notes on operator splitting
can be found in Glowinski et al. (2016). We will be employing the
second order Strang splitting (Strang, 1968) scheme, which can be
defined on a system of ODEs as follows:

dX
— 4+ A(X,1)=0,€ (0, 7),
o TAXCD 0,7) 28)

X(0) = X,.

In our case A will be the discrete finite element operator in 4D space

and X will be the action balance at all of the degrees of freedom at

a particular point in time. The Strang splitting scheme splits up A as a
Anal

sum of two operators A; and A, for n > 0, X" - X"*2 - X"*7 - xn+l,

Solve:

dx
L rAX, D=01€ @ "+ %),

dt (29)

X, (") = X",
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Convergence of L-infinity Error for Propagation Case
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Fig. 1. L? and [® errors at T = 5 for all schemes for case 1.

1 1
then set X"*2 = X,(+""2) and solve:

dX,
T + Ay(X,,1) = 0,1 € (1", 1" + Ar),

1 (30)
X,(t")y = X1,
N
then set X"*7 = X,(4r) and solve:
dX 1
LA X, D=0t € (T2, Y,
dt (31)

Xl(z'“%) = X™1,

This gives X"*! = X,(#"*!). We will apply this second order Strang
splitting to the WAE by setting A, to be the source terms and A, as all
remaining terms. In particular, for the case of the semi-discretization
in (20), the operators will be:

Ay = =S j. b +7¢ - VB
Ay = (V- (edy;N; ), viBy + ¢ - V(riB)g-

(32)

We will implement the Strang splitting with an implicit-explicit scheme.

The time step associated with operator A, will be the scheme from
Section 2.4.2, whereas the two time steps associated with operator 4,
will be an explicit second order Runge-Kutta (RK2) scheme (Gottlieb
et al., 2017). The RK2 used in WAVEX is defined as:

ND = N" 4 AtA (N, 1",

1 (33)

N = SN+ %(N(” + ArA (ND, ),

To summarize, WAVEX utilizes SUPG stabilization in 4 dimensions
and employs Strang splitting to separate advection from the source
terms. The source terms are integrated in time with an explicit RK2
scheme while the advection part is integrated in time with an implicit
generalized one step finite difference. Because WAVEx uses the FEniCSx
framework, it is automatically parallelized via MPI and the linear
algebra backend that is used is the Portable, Extensible Toolkit for
Scientific Computation (PETSc) (Balay et al., 2019). The linear solver
that is used in all the following cases is the default GMRES solver with
block Jacobi preconditioning. Also, WAVEXx is designed to allow for the
addition of different discretizations in both time and space besides just
the specific choices made in this case.

3. Convergence test case results

To investigate the asymptotic convergence properties of the sta-
bilized methods introduced in Section 2.3, two test cases will be
considered. These test cases will be run with reduced dimension (2
instead of 4 in space) and the velocity fields will be simplified. For each
case the error in the finite element solution, N, relative to the exact
solution, N,,,.,, will be computed both in the L*(€2) and the /®()

norm that are defined as:

INy = Nexaerll 12 = /(Nh - Nexacr)de’
Q (€D)]

“Nh - Nexact||l°° = max (lNh(xi) - Nexact(xi)l)'
i€ng,f

3.1. Propagation of a sinusoidal wave

The first test case is a harmonic wave propagating through a square
domain over time. The goal of this test case is to evaluate the capa-
bilities of the different FEM schemes in a “pure advection” scenario
by setting source, .S, to 0. Harmonic waves are propagating across 2D
domain in the direction of the velocity vector, ¢ = (1,1), which is
constant in space and time. The domain is a square, 2 = (0, 10) x(0, 10).
The exact solution is:

Nana,y,ic = sin(x — c,t) + cos(y — cyt). (35)
This dictates the initial and boundary conditions:
No(x,y) = sin(x) + cos(y),
’ (36)
N(x,y,t) = Nygpgryrie  for (x,y) € I,

and as a consequence of the velocity field the Dirichlet boundary, 0£2,,
is the bottom and left sides of the square domain. The test case has a
total simulation time of 5 units, which is split up into 1000 time steps.
The time step is set small to minimize error from the approximation in
time and focus on FEM error convergence with respect to s refinement.

Each scheme introduced in Section 2.3 is discretized with uniform
triangular elements in space and order 1 Lagrange finite element func-
tions for both trial and test space. Each scheme is fully implicit in
time with order 1 implicit Euler finite difference approximation. The
computational grid is refined in space with a uniform spacings of L/4,
L/8, L/12, L/16, L/20, L/24. For each finite element scheme, the
global L? and I errors are computed. The errors at the final time 7 = 5
are plotted for both norms and for all schemes in Fig. 1.

For the smooth solution present in case 1, nearly optimal con-
vergence rates of O(h**!) were shown for the SUPG cases. The CG
methods without stabilization converged at a rate of 4> until machine
precision was met at L/20, which brings down the average shown
in Table 2 to 1.559. The errors in the SUPG converged at a better
rate than its theoretical rate of O(h!”) most likely due to the minimal
amount of residual present in the smooth solution. Least squares had
the highest in magnitude of L? error and converged at a rate between
h'S and h?. Lastly, we observe that the DG method had the lowest
magnitude in errors for stabilized schemes and converged near the
optimal theoretical rate of A!~.
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Table 2
Error convergence rates for case 1.
Method Avg. L2 rate Avg. Linf rate
CG strong 1.559 1.445
CG 1.559 1.445
SUPG strong 1.988 2.01
SUPG 1.988 2.01
Least squares 1.790 1.730
DG 1.611 1.981
Table 3
Error convergence rates for case 2.
Method Avg. L2 rate Avg. Linf rate
CG strong 1.287 1.270
CG 1.287 1.270
SUPG strong 1.948 1.461
SUPG 1.795 1.461
Least squares 1.907 1.440
DG 1.999 1.460

3.2. Formation of a shock near the boundary

This test case is an adaptation of a common numerical test for
advection dominated PDEs and is adapted from the work of Egger and
Schoberl (2010). This case has an analytic solution that begins as a
smooth bump then shifts into a shock towards the right boundary.
The aim is to see how the stabilized schemes handle ill-conditioned
problems and formation of discontinuities. Stability in this situation is
critical for an operational model because a shock in the solution may
form from sharp changes in bathymetry, currents, or wind forcing.

The domain is the unit square Q = (0,1) x (0,1) with a uniform
velocity field ¢ = {1,0}. The analytic solution is:

w_-1] (37)

Noraer = (—4(y = 0.5 + 1) [x + T

where y = 1001, ¢, = 1, and ¢ € [0.01, 1]. The number of time steps for
each run is set to 1000. A consequence of this analytic solution is that
S should be:

looeIOOI(eIOOZx -1 looxelOOIx
2 2
(=4(y = 0.5) +1)[ = o o ]+(—4(y—0.5) +1)
100ze? x>
x |1+ T ] (38)

The domains are the same structure as in case 1, and the levels of h
refinement for this case are L/4, L/8, L/12, L/16, L/20, L/24, L/28,
L/32, L/36. The errors at final time T = 1 are plotted for both L?
and /® norms are displayed in Fig. 2. Even with a small time step
that is guaranteed stable, the solutions from the CG weak forms both
produced the infamous oscillations in the final solution. A comparison
in the solution at T = 1 of CG and SUPG implementations are shown
in Fig. 3. Consequently, the resulting error convergence rates in the CG
implementations were not optimal as in the former case. Interestingly,
the SUPG and SUPG strong results did have differences as presented in
Fig. 2 with the SUPG strong version performing best. All the stabilized
schemes did not produce visible oscillations at any level of refinement
and all schemes converged at equal to or higher than the best theoreti-
cal rates as presented in Table 3. The DG method had the lowest error
of all the stabilized schemes, which is not surprising because for the
same polynomial order the DG method has nearly double the degrees
of freedom as the continuous implementations. We now move onto the
test cases for the full WAE problem. For the full implementation, SUPG
was chosen because it performed well in our preliminary 2D studies,
it is most simple to implement and computationally the cheapest. In
the future we would like to also implement the Least Squares and DG
schemes.
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4. Full scale test cases

In this section, 6 test cases from the ONR testbed will be imple-
mented. For each of the cases the RMSE and /*® errors will be computed
with respect to the WAVEx output and analytic solution or lab data
depending on the case. The RMSE is computed using the definition:

N,
Zi;’l (x; — yi)z
N,

RMSE(x,y) = ) (39)
where x represents the set of parameters generated by the wave model,
y is the set of parameters that come from either the analytic solution or
observation, and N, is the number of points the ONR test bed has data
for. Using the same nomenclature as in (39), the /® measure is defined
as:

1®(x,y)= 1221)51,,|x" -yl (40)

In all cases, the data that is compared to the WAVEx model is either
significant wave height (H,), or both H, and mean wave direction
(0,,00n)- Significant wave height is defined as the highest 1/3 of recorded
waves at a point, and mean wave direction is the mean direction of
the spectrum. In WAVEZX, the aforementioned statistical values must be
estimated. The significant wave height is estimated by first calculating
the zeroth moment of the spectrum, m. In general the ith moment of
the spectrum is defined as:

m;(x,y) = / / " ¢ E(x,y,0,0)dod®, (41)
and recall E = No. The significant wave height is subsequently
estimated by:

H(x,y) = 4+/mq. (42)

The reasoning behind this being a decent approximation to the highest

one third of waves is not trivial but its assumptions and derivation can

be found in several books such as the (Holthuijsen, 2007; LeBlond and

Mysak, 1981). The mean wave direction in degrees is computed as:
180 [, [omax cos (B)E(x, . 0,0)dodd

ra J2 S sin(@)E(x, y, 0,0)dodd

Oean(X, ¥) = 43)

In all the presented test cases, WAVEX is run using the SUPG strong
scheme as in (20) and the implicit time stepping uses the Crank—
Nicolson scheme, which is when ¢, = 0.5 from (22) for second order
accuracy in time.

4.1. A21: Shoaling

The first test case is an idealized situation where some waves are
propagating from the deep ocean directly into the coastline. The water
depth in the domain is uniformly decreasing from 20 m to 0 m with
a slope of 0.005. The waves are propagating perpendicular to the
coastline and are approximately monochromatic. The waves at the
inflow boundary have a significant wave height of 1 m with a mean
period of 10 s. All source terms are zero and there are no currents in
this case. Because all source terms are zero, the analytic solution for
the significant wave height can easily be computed because the WAE
becomes a pure advection equation with nonuniform velocity field. The
result is that the significant wave height should be:

¢, (0)
(%)

An unstructured mesh is used in the WAVEx simulations for cases A11
and A21 illustrated in Fig. 4. The mesh has 7458 nodes comprising
13841 triangular elements and has variable resolution with element
size ranging from 800 m near on the bottom to 20 m near the top. In
WAVEZX, the spectral grid is capable of being unstructured but for all

H(x) = Hy(0)

(44)
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Convergence of L-infinity Error for Boundary Layer Case
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Fig. 4. The unstructured geographic mesh used for test cases All, A21.

of the ONR cases it is structured with logarithmic spacing in frequency
and uniform in direction. An example is shown in Fig. 5. The time step
is set to 50 s for all the cases, and WAVEX solves until the iterative
solver reaches a steady state. The significant wave height is computed
along the propagation direction and results are plotted in Fig. 6. The
results in this figure also clearly demonstrate the effect of instability in
the Bubnov-Galerkin solution as its oscillations makes the solution very
poor. The computed RMSE error vs the analytic solution is 0.000695 m
for WAVEx with SUPG stabilization and 0.313 m without, while /®
error is 0.0018 m with SUPG and .9916 m without.

4.2. Al1: Refraction

The second test case is similar to case A21 in that the bathymetry
is the same and the domain is identical. The only difference is that
the waves on the inflow boundary now approach the shoreline at a
direction 30 degrees above the direction perpendicular to the shoreline.
This too has an analytic solution. Again, no source terms are present

and the currents are all 0. In addition to significant wave height, the
mean wave direction is measured and the analytic solutions are:

sin(30))
c(0) 7

- ¢, (0)cos(30)
0= B O S eos@e

The significant wave height is plotted against the analytic solution
in Fig. 7 while the mean wave direction is plotted in Fig. 8. In both
figures, the WAVEx and analytic results agree very well. The observed
RMSE error in H; is 0.00261 m and RMSE error in degrees is 0.119
degrees while the /* error is 0.00865 m and 0.1946 degrees.

0(x) = arcsin(c(x)

(45)

4.3. A31-34: Currents

Cases A31 through A34 are situations in deep water where there are
interacting currents but no source terms. All simulations are performed
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Fig. 5. Logarithmic spaced spectral grid as used in cases All, A21.
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Fig. 7. Significant wave height for case A11.

on the same domain, and is a rectangle shape of constant arbitrarily
deep water (set to 10000 m) and is 4000 m long in the principal
direction. To avoid any noise from the side boundaries, the width of
the domain is set to 10000 m. Each case has either different currents
or different mean wave directions on the inflow boundary. Case A31
has an inflow boundary where the mean wave direction is parallel with
the principle axis with a current that is also parallel with the principle
axis and increases from 0 m/s at the inflow boundary to 2 m/s at the

10
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Fig. 8. Mean wave direction for case All.

outflow boundary. Case A32 has the same boundary conditions as A31
but the currents in this case decrease from 0 m/s at the inflow boundary
to —2 m/s at the outflow boundary. Case A33 has the same current
profile as case A31 but the inflow boundary condition now has a mean
wave direction of 120 degrees relative to the positive direction of the
principle axis. Finally, case A34 is the same as A33 but instead of 120
degrees, it is set to 60 degrees. All waves at the inflow boundary have a
significant wave height of 1 m and peak period of 10 s. Similar to cases
Al1 and A21, an analytic expression for the directions and significant
wave heights may be derived. These are more complex due to the
nonzero currents and are different for cases A31, A32 and the A33,
A34 pair. The solutions are different because the former have incoming
spectra parallel to the currents while the latter are at an angle. The
analytic solution for significant wave height in cases A31 and A32 is:

_ c(0)2
Hy() = H,0) \ cCote) + 2utx)’
¢(x) = ()05 + 0.5 [1+ 4%)

while the solution for cases A33 and A34 along with the analytic
solution for mean wave direction is:

~ [sin6(0)
H,(0 = HO1 T ma0)”
gk(0)cos(6(0))
— u(x)k(0)cos(B(0))%

(46)

(47)

0(x) = arccos(

Pkper
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Fig. 9. Geographic mesh for cases A31-A34.

Significant Wave Height Along a Cross Section Case A31

—— Analytic
— 0.975 «  WAVEX

0 500 1000 1500 2000 2500 3000 3500 4000
Distance (m)

Fig. 10. Significant wave height from case A31.

For these cases, the mesh is uniformly spaced with triangular ele-
ments. The mesh contains 10,201 nodes that comprise 20,000 elements.
This mesh is 10 000 m in the x direction and 4000 m in the y direction.
Each element has a size of around 110 m. The mesh is 100 elements
wide and 100 elements tall. The mesh is illustrated in Fig. 9. The
resulting significant wave heights from case A31 and A32 are shown in
Figs. 10, 11, and the computed RMSE are 0.000255 m, and 0.00109 m
respectively while /® error is 0.0003737 m and 0.00257 m. Significant
wave height for cases A33 and A34 are plotted in Figs. 12 and 14.
The RMSE for significant wave height for A33 is 0.000315 m, while
A34 is 0.000899 m. The /*® for case A33 is 0.000659 m while A34 is
0.00128 m. The resulting mean wave direction for cases A33 and A34
are shown in Figs. 13 and 15. The RMSE for mean wave direction in
case A33 is 0.1793 degrees while for case A34 it is 0.436. The [/ for
case A33 is 0.028 degrees while case A34 is 0.0436 degrees. We observe
close agreement of WAVEx and the analytic solutions in all cases. This
agreement is further witnessed in the low errors in both mean wave
direction and significant wave height.

4.4. L11: Wave breaking on a beach

The final test case is the L11 case, a laboratory experiment intended
to simulate groups of waves breaking on a beach. The bathymetry
varies in slope as it approaches the beach but is uniform in the along-
shore direction. The input spectrum is a JONSWAP spectrum with
peakedness parameters specified in the manual (Ris et al., 2003). The

11

Significant Wave Height Along a Cross Section Case A32
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Fig. 12. Significant wave height from case A33.

mesh that is used is in this case and is set as the rectangle [0,113] x
[7.4,30], it is a structured, uniform mesh with triangular elements. Each
element is approximately 1 m wide and there are 4681 total nodes
comprising 9000 elements. The mesh is shown in Fig. 16. In addition
to comparison to the measured results from the ONR testbed (Ris et al.,
2003), we also compare the WAVEX results to results from SWAN. The
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Mean Wave Direction Along a Cross Section Case A33
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Fig. 15. Mean wave direction from case A34.

SWAN numerical model is set up with the third generation source terms
are turned on, however there is no wind in this case. The significant
wave heights are recorded both from SWAN and WAVEx and plotted
against the observations in Fig. 17. The RMSE in significant wave
height with respect to the observations were 0.0064 m for WAVEx and
0.00556 m for SWAN while the /® errors were 0.0179 m and 0.015 m
respectively. We note that SWAN was run in 1-D mode while WAVEx
was used in full 2-D mode, we suspect this could have a slight impact
in the results.
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5. Conclusions

The purpose of this work was to develop a finite element spectral
wind wave model using the open source FEniCSx library, which we
call WAVEx. The motivation behind this was to create a platform so
that different numerical schemes and source terms can easily be imple-
mented and tested in the future. First, some stabilized FEM methods
were introduced (least squares, SUPG, DG) and convergence rates with
respect to mesh refinement were verified in simple 2D test cases. All
of the stabilized schemes demonstrated convergence in the L? and /*®
norms with respect to 4 refinement while also reducing oscillations
when compared to the standard Bubnov-Galerkin CG approach that
produced oscillations when the solution became less smooth.

Next, a spectral wave model with SUPG stabilization in 4 dimen-
sions was implemented. The WAE was split into propagation and source
terms via Strang splitting for computational efficiency. The propagation
portion was implemented with an implicit time stepping scheme while
the (nonlinear) source term portion was implemented with an explicit
time stepping scheme in order to keep the discrete problem linear. The
new wave model showed accuracy and stability in the analytic test
cases and a laboratory test case that included source terms.

In the future, a first step to improving WAVEx would be to in-
troduce a custom FEniCSx assembler in order to speed up run times.
One drawback of the way WAVEX is currently implemented is that
the assembly routine is relatively slow, but this can be circumvented
by developing new tools in the FEniCSx. Other future investigations
include how WAVEXx scales with more complex test cases in addition
to fully implicit time stepping by extending WAVEX to solve nonlin-
ear problems. Additionally, implementing the DG and least squares
schemes in the full (4D) operational setting is a natural extension that
we have not done at the present time. While we have considered several
FEMs, there is a plethora of methods of interest that show promise
in handling problems like the WAE such as Lagrange-Galerkin or dis-
continuous Petrov-Galerkin (DPG) (Demkowicz and Gopalakrishnan,
2010) methods.

CRediT authorship contribution statement

Mark Loveland: Methodology, Software, Validation, Writing — orig-
inal draft. Eirik Valseth: Methodology, Writing — review & editing.
Jessica Meixner: Methodology, Writing — review & editing. Clint
Dawson: Resources, Supervision, Project administration.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
Data will be made available on request.
Acknowledgments

Author Loveland has been supported by the CSEM Fellowship from
the Oden Institute at the University of Texas at Austin, USA. Authors
Loveland, Valseth, and Dawson have been supported by the United
States National Science Foundation - NSF PREEVENTS Track 2 Pro-
gram, under NSF Grant Number 1855047 and the Department of Home-
land Security Coastal Resilience Center, USA research project “Accurate
and Fast Wave Modeling and Coupling with ADCIRC”. Author Meixner
has been supported by the National Oceanic and Atmospheric Admin-
istration, USA. The authors would also like to thank the reviewers of
this manuscript for their time and thoughtful suggestions.



M. Loveland et al.

AL %
Va V¥4 4 Y4 ¥4 %4 7744

N b

RNNSNSSRRRIIRSERE,

o A A mnmm
'A'A'A'A'A"'A'A"'A'A'A'A"A'A'A'A" V4 V444 Y474 )
'A'AVA'A'A'A'A'A'A"'A'A'A 1V V44 d Y4 Y4 "4 74
AT

VA YA T4 VA PATATATd
vava"

SRSRRR]
RRRRRR

RRRRRRRR
N

RRRRRRRRRRRY

N RRRRN

7

% %
e mn ATATa%
A YAVAYa VA VA YA YA T4

4 AT
FAYAYAYAYd r.m.unmmrm
T

7%

N
RRRRRRRRRRRRRRRR

A A Y Y

NSNS

S

SIRSNNRERN

SRR RRRRRRRRRRRR
RN
SRRRE

N
NSNS,
S
NSRRI
RRNRNSNSSRNSRRRR,

RRRR
RN
RN
S,
AR

PAYAYAVAas!
s

VAP A
17444 4 % A' A'A'AA’ A’A"'A' 'A'A"'A'I'A'A'A VA'A"'A V4 V4 74 4 % %4

%
VAP A VA VA VA VA VA AVa AV VAV VaVaVaYaYa%
T VA VA VA VA VA VA VA VA VA VA VA A

VAYA%4%4 Y4444

Coastal Engineering 187 (2024) 104425

ammnmfmfimmawr

N
KR
N

NN

RRRRRRRRRRRRRARRRRN
SRR RN RRRR

9 0909 A0 A Y S S N
Y D A
S

%
7
%
%
%

NSNS
NSRRRN
S

7

RRRRRRN

N
RN

i
T
71
AR o
uaw‘q?manm v O
]

N

P44
AT
YA%Aa 4y A%)

Fig. 16. Geographic mesh for case L11.

Significant Wave Height Along a Cross Section Case L11

__0.155

— 0.150

=

20.145

-

o 0.140

©

= 0.135

£0.130

S ;

& 01250 Observations ?

= « SWAN B

»n 0.120 . WAVEX :

7.5 10.0 125 15.0 17.5 20.0 22.5 25.0 275
Distance (m)
Fig. 17. Significant wave height for case L11.

Appendix

This appendix illustrates how to rewrite both (20) and (21) into
a product of 2-dimensional integrals so that FEniCSx can interpret it
through the unified form language (UFL) framework. We evaluate the
third term in (21):

(C¢ill/j 0,y f)so = (c¢i'I/j .

y/jﬁ,/ by -mydxdy +
00,

0, 7o x2,00, %002,

(48)
o frdxdy,
1

v;pm, -
2
and for the continuous Galerkin components of the form in (20) we
have:
("a—]:’ V- (eN) =S, 0)0. (49)

Replacing the functions with the finite element basis and omitting the
transient and source term we get:

(V- (edy)). viBa = (- Vgy)) + (dw)V - ¢, i Bo =,

(50)
(e y;Vidi+ ¢ d;Voy; + diy; V- ¢p + iy Vs - 3,71 B s
which decomposes into the following terms:
(e v;Vidi, 7P = v;b A ¢y Vi(@)redxdy,
2 1
(e & Vow. viPa =/ BVay; - | cadiyidxdy,
* 1)
@w; Vi e, 7o = - (edivdxdy,

VB
2

(¢inV2'Cz’7kﬂ1)Q=[2 ¢i7k/9 V, - (e)y; fid ydx.
1 2

Now for SUPG stabilization terms in both forms we need to add the
upwind component:

(% +V-(eN)-S,7c-V(0)g. (52)
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The source term will be absorbed into the RHS and we will first focus

our attention on the streamline diffusion term:
(V-(eN),zc- Vv)q. (53)

Using our product basis expansion, we consider this term now in the
discrete setting and expand using the product rule:

(V- (eN),7c- Vo)g = (V- (edy;), ¢ - V(i f)a

(V- (edy)), thie; - Viye + Triey - Vaba

(c-V(gyw)) + (Qw)V -c.tfic; - Viyp + 77,6 - Voo
(c1-y; V(@) + ¢ Vo)) + (W)Y - e + (Qw))V;y - e, Thiey - Vv
+77,€ - Vafo-

(54

We have 4 scalar terms on the left hand part of the inner product and
2 on the right, if we expand all of these out it will lead to a sum of 8
total terms:

(er - w; V@), e - BV 1 (ri))as
(¢ - V/jvl(¢i), 7¢3 - 7 V2B,
(e - #;Va(w)), e - BV 1(vi))q-
(e - ;Va(w)), 7¢5 - i Vo (B s
(Diwj)V, - BViras
(P;w)V, 7 V2B s
(Diwj)V, - BVitria,
(iw)Vy - 7 Va(B))ga-
Now looking term by term we have first:

(55)
€y, 7¢ -

©Cp,TCy ¢
€y, 7C; -

€y, 7Cy

(eyy; - Vid, thiey - Vivo = v;b 7y - Vigier - Virdxdy. (56)
2

2

The second term we ge

v Vab - (57)

2 2,

(cly//- Vi, trie, - Voo = ¢Tyi€y - Vi gdxdy.

The third term will be:

e ey - Vyyrdxdy. (58)

1

(C20; - Vowj, ey - Vv = Voy; B -
2

Fourth term:

(59

(C20; - Vawj, 71y - Vo) = /Q ik /Q 7€y - Vo -V, fid ydx.
1 2

Fifth term:

(Ve ter-B V(e = v; B 7¢;Vi-¢1¢1-V (v )dxdy. (60)
3

Sixth:

(V-1 7¢ 7 Vo (B ))o = v; Vo (Bp)- 77, Vi-eqdxdy. (61)
2)

2,

Seventh

(@iw)Vy-er.7¢1 5V (i)g

&:Viry) | rw; BV, -cdydx. (62)
2

2,
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Eighth:

((¢illfj)vz'czsTCz'kaz(ﬂl))g=/ ¢[7k/ 7€y Vo (Bw; Vo cydydx. (63)
2 )

Now the last part that remains is the upwinding portion based on the
choice of time step. Choosing a simple implicit time step we get:
Gttt — gy

— V@ih)a-
The component with the previous time step n will go to RHS and the
part that is in current time step n + 1 will be in stiffness matrix. Both
discretizations however will be the same so I will just do the n+ 1 time
step after multiplying by Ar:

ON
(E,Tc Vo) = ( (64)

@iy e VPa = (v, 7(ee - BV (ri) + ¢, - 7 V(B (65)

Focusing on left term we can evaluate using this decomposition:

Biwj.tee - [V (riDa = /Qz v /!21 T¢;cy - Vyypdxdy. (66)

Then on the right we get:

@wjte, 1V, (B)a = /Q WV, B - /Q 7¢,d,7dxdy. 67)
2 1

References

Abdolali, A., Roland, A., Van Der Westhuysen, A., Meixner, J., Chawla, A., Hesser, T.J.,
Smith, J.M., Sikiric, M.D., 2020. Large-scale hurricane modeling using domain
decomposition parallelization and implicit scheme implemented in WAVEWATCH
III wave model. Coast. Eng. 157, 103656.

Abgrall, R., 2006. Residual distribution schemes: current status and future trends.
Comput. & Fluids 35 (7), 641-669.

Alves, J.-H., Ardhuin, F., Babanin, A., Banner, M., Belibassakis, K., Benoit, M.,
Donelan, M., Groeneweg, J., Herbers, T., Hwang, P., Janssen, P., Janssen, T.,
Lavrenov, I, Magne, R., Monbaliu, J., Onorato, M., Polnikov, V., Resio, D.,
Rogers, W., Cavaleri, L., 2007. Wave modelling - The state of the art. Prog.
Oceanogr. 75, 603-674. http://dx.doi.org/10.1016/j.pocean.2007.05.005.

Babuska, 1., Whiteman, J., Strouboulis, T., 2010. Finite Elements: An Introduction to
the Method and Error Estimation. Oxford University Press.

Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune, P., Buschelman, K., Dalcin, L.,
Dener, A., Eijkhout, V., Gropp, W., et al., 2019. PETSc users manual.

Becker, E.B., Carey, G.F., Oden, J.T., 1981. Finite Elements: An Introduction, Vol. 1.
Prentice Hall.

Benoit, M., Marcos, F., Becq, F., 1997. TOMAWAC. A prediction model for offshore
and nearshore storm waves.

Bermejo, R., Carpio, J., Saavedra, L., 2023. New error estimates of Lagrange-
Galerkin methods for the advection equation. http://dx.doi.org/10.48550/ARXIV.
2301.03438, URL https://arxiv.org/abs/2301.03438.

Bochev, P.B., Gunzburger, M.D., 1998. Finite element methods of least-squares type.
SIAM Rev. 40 (4), 789-837.

Bochev, P., Gunzburger, M., 2006. Least-Squares Finite Element Methods, Vol. 166.
http://dx.doi.org/10.1007/b13382.

Booij, N., Ris, R.C.,, Holthuijsen, L.H.,, 1999. A third-generation wave model
for coastal regions: 1. Model description and validation. J. Geophys. Res.:
Oceans 104 (C4), 7649-7666. http://dx.doi.org/10.1029/98JC02622, arXiv:
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/98JC02622 URL https:
//agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/98JC02622.

Brenner, S.C., Scott, L.R., 2008. The Mathematical Theory of Finite Element Methods,
Vol. 3. Springer.

Brezzi, F., Cockburn, B., Marini, L.D., Siili, E., 2006. Stabilization mechanisms in
discontinuous Galerkin finite element methods. Comput. Methods Appl. Mech.
Engrg. 195 (25-28), 3293-3310.

Brezzi, F., Marini, L.D., Siili, E., 2004. Discontinuous Galerkin methods for first-order
hyperbolic problems. Math. Models Methods Appl. Sci. 14 (12), 1893-1903.

Brooks, A.N., Hughes, T.J., 1982. Streamline upwind/Petrov-Galerkin formulations for
convection dominated flows with particular emphasis on the incompressible Navier-
Stokes equations. Comput. Methods Appl. Mech. Engrg. 32 (1), 199-259. http://
dx.doi.org/10.1016,/0045-7825(82)90071-8, URL https://www.sciencedirect.com/
science/article/pii/0045782582900718.

Burman, E., 2010. Consistent SUPG-method for transient transport problems: Stability
and convergence. Comput. Methods Appl. Mech. Engrg. 199 (17-20), 1114-1123.

Burman, E., Smith, G., 2011. Analysis of the space semi-discretized SUPG method for
transient convection—diffusion equations. Math. Models Methods Appl. Sci. 21 (10),
2049-2068.

Carey, G.F., Oden, J.T., 1983. Finite Elements: A Second Course. Prentice-hall.

Cockburn, B., Karniadakis, G.E., Shu, C.-W., 2000. The Development of Discontinuous
Galerkin Methods. Springer.

14

Coastal Engineering 187 (2024) 104425

Codina, R., 2000. On stabilized finite element methods for linear systems of convection—
diffusion-reaction equations. Comput. Methods Appl. Mech. Engrg. 188 (1),
61-82. http://dx.doi.org/10.1016/50045-7825(00)00177-8, URL  https://www.
sciencedirect.com/science/article/pii/S0045782500001778.

Dawson, C., Proft, J., 2001. A priori error estimates for interior penalty versions of
the local discontinuous Galerkin method applied to transport equations. Numer.
Methods Partial Differential Equations: Int. J. 17 (6), 545-564.

Dawson, C., Van Duijn, C., Wheeler, M., 1994. Characteristic-Galerkin methods for
contaminant transport with nonequilibrium adsorption kinetics. SIAM J. Numer.
Anal. 31 (4), 982-999.

Demkowicz, L., Gopalakrishnan, J., 2010. A class of discontinuous Petrov-Galerkin
methods. Part I: The transport equation. Comput. Methods Appl. Mech. Engrg.
199 (23), 1558-1572. http://dx.doi.org/10.1016/j.cma.2010.01.003, URL https:
//www.sciencedirect.com/science/article/pii/S0045782510000125.

Donea, J., Quartapelle, L., 1992. An introduction to finite element methods for transient
advection problems. Comput. Methods Appl. Mech. Engrg. 95 (2), 169-203. http://
dx.doi.org/10.1016,/0045-7825(92)90139-B, URL https://www.sciencedirect.com/
science/article/pii/004578259290139B.

Douglas, Jr., J., Russell, T.F., 1982. Numerical methods for convection-dominated
diffusion problems based on combining the method of characteristics with finite
element or finite difference procedures. SIAM J. Numer. Anal. 19 (5), 871-885.
http://dx.doi.org/10.1137/0719063, arXiv:https://doi.org/10.1137/0719063.

Egger, H., Schoberl, J., 2010. A hybrid mixed discontinuous Galerkin finite-element
method for convection—diffusion problems. IMA J. Numer. Anal. 30 (4), 1206-1234.

Ern, A., Guermond, J.-L., 2013. Theory and Practice of Finite Elements, Vol. 159.
Springer Science & Business Media.

Ern, A., Vohralik, M., Zakerzadeh, M., 2021. Guaranteed and robust L2-norm a
posteriori error estimates for 1D linear advection problems. ESAIM Math. Model.
Numer. Anal. 55, S447-S474.

Glowinski, R., Osher, S., Yin, W., 2016. Splitting Methods in Communication, Imaging,
Science and Engineering. http://dx.doi.org/10.1007/978-3-319-41589-5.

Gottlieb, S., Grant, Z.J., Isherwood, L., 2017. Strong stability preserving integrating
factor runge-kutta methods. http://dx.doi.org/10.48550/ARXIV.1708.02595 URL
https://arxiv.org/abs/1708.02595.

Group, T.W., 1988. The WAM model—A third generation ocean wave prediction model.
J. Phys. Oceanogr. 18 (12), 1775-1810.

Habera, M., Hale, J.S., Richardson, C., Ring, J., Rognes, M., Sime, N., Wells, G.N.,
2020. FEniCSX: A sustainable future for the FEniCS project. http://dx.doi.org/10.
6084,/m9.figshare.11866101.v1, URL https://figshare.com/articles/presentation/
FEniCSX_A sustainable_future_for_the FEniCS_Project/11866101.

Holthuijsen, L.H., 2007. Waves in Oceanic and Coastal Waters. Cambridge University
Press, http://dx.doi.org/10.1017/CB09780511618536.

Hsu, T.-W., Ou, S.-H., Liau, J.-M., 2005. Hindcasting nearshore wind waves using a FEM
code for SWAN. Coast. Eng. 52, 177-195. http://dx.doi.org/10.1016/j.coastaleng.
2004.11.005.

Janssen, P., 2004. The Interaction of Ocean Waves and Wind. Cambridge University
Press.

Janssen, P., 2008. Progress in ocean wave forecasting. J. Comput. Phys. 227,
3572-3594. http://dx.doi.org/10.1016/j.jcp.2007.04.029.

Johnson, C., 2012. Numerical Solution of Partial Differential Equations by the Finite
Element Method. Courier Corporation.

Johnson, C., Navert, U., Pitkaranta, J., 1984. Finite element methods for linear
hyperbolic problems. Comput. Methods Appl. Mech. Engrg. 45, 285-312.

Khandekar, M., 1989. Operational Analysis and Prediction of Ocean Wind Waves, Vol.
33. http://dx.doi.org/10.1007/978-1-4613-8952-1.

Komen, G.J.,, Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S.,
Janssen, P.A.E.M., 1994. Dynamics and Modelling of Ocean Waves. Cambridge
University Press, http://dx.doi.org/10.1017/CB09780511628955.

Komen, G.J., Hasselmann, S., Hasselmann, K., 1984. On the existence of
a fully developed wind-sea spectrum. J. Phys. Oceanogr. 14 (8), 1271-
1285. http://dx.doi.org/10.1175/1520-0485(1984)014<1271:0TEOAF>2.0.CO;2,
URL https://journals.ametsoc.org/view/journals/phoc/14/8/1520-0485_1984_014_
1271 _oteoaf 2_0_co_2.xml.

LeBlond, P., Mysak, L., 1981. Waves in the Ocean. In: ISSN, Elsevier Science, URL
https://books.google.com/books?id=TYGIwzz_k8kC.

LeVeque, R.J., Leveque, R.J., 1992. Numerical Methods for Conservation Laws, Vol.
214. Springer.

Loveland, M., 2023. WAVEx: A New Sepctral Wind Wave Model Using Stabilized Finite
Elements (Ph.D. thesis). The University of Texas at Austin.

Loveland, M., Valseth, E., Lukac, M., Dawson, C., 2022. Extending fenics to work in
higher dimensions using tensor product finite elements. J. Comput. Sci. 64, 101831.

McRae, A.T., Bercea, G.-T., Mitchell, L., Ham, D.A., Cotter, C.J., 2016. Automated
generation and symbolic manipulation of tensor product finite elements. SIAM J.
Sci. Comput. 38 (5), S25-547.

Meixner, J., 2013. Discontinuous Galerkin Methods for Spectral Wave/Circulation
Modeling (Ph.D. thesis).

Meixner, J., Dietrich, J.C., Dawson, C., Zijlema, M., Holthuijsen, L.H., 2014. A discon-
tinuous Galerkin coupled wave propagation/circulation model. J. Sci. Comput. 59
(2), 334-370. http://dx.doi.org/10.1007/s10915-013-9761-5.


http://refhub.elsevier.com/S0378-3839(23)00149-7/sb1
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb1
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb1
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb1
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb1
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb1
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb1
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb2
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb2
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb2
http://dx.doi.org/10.1016/j.pocean.2007.05.005
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb4
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb4
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb4
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb5
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb5
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb5
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb6
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb6
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb6
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb7
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb7
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb7
http://dx.doi.org/10.48550/ARXIV.2301.03438
http://dx.doi.org/10.48550/ARXIV.2301.03438
http://dx.doi.org/10.48550/ARXIV.2301.03438
https://arxiv.org/abs/2301.03438
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb9
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb9
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb9
http://dx.doi.org/10.1007/b13382
http://dx.doi.org/10.1029/98JC02622
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/98JC02622
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/98JC02622
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/98JC02622
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/98JC02622
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/98JC02622
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/98JC02622
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb12
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb12
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb12
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb13
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb13
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb13
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb13
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb13
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb14
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb14
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb14
http://dx.doi.org/10.1016/0045-7825(82)90071-8
http://dx.doi.org/10.1016/0045-7825(82)90071-8
http://dx.doi.org/10.1016/0045-7825(82)90071-8
https://www.sciencedirect.com/science/article/pii/0045782582900718
https://www.sciencedirect.com/science/article/pii/0045782582900718
https://www.sciencedirect.com/science/article/pii/0045782582900718
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb16
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb16
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb16
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb17
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb17
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb17
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb17
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb17
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb18
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb19
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb19
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb19
http://dx.doi.org/10.1016/S0045-7825(00)00177-8
https://www.sciencedirect.com/science/article/pii/S0045782500001778
https://www.sciencedirect.com/science/article/pii/S0045782500001778
https://www.sciencedirect.com/science/article/pii/S0045782500001778
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb21
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb21
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb21
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb21
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb21
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb22
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb22
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb22
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb22
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb22
http://dx.doi.org/10.1016/j.cma.2010.01.003
https://www.sciencedirect.com/science/article/pii/S0045782510000125
https://www.sciencedirect.com/science/article/pii/S0045782510000125
https://www.sciencedirect.com/science/article/pii/S0045782510000125
http://dx.doi.org/10.1016/0045-7825(92)90139-B
http://dx.doi.org/10.1016/0045-7825(92)90139-B
http://dx.doi.org/10.1016/0045-7825(92)90139-B
https://www.sciencedirect.com/science/article/pii/004578259290139B
https://www.sciencedirect.com/science/article/pii/004578259290139B
https://www.sciencedirect.com/science/article/pii/004578259290139B
http://dx.doi.org/10.1137/0719063
https://doi.org/10.1137/0719063
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb26
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb26
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb26
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb27
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb27
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb27
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb28
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb28
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb28
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb28
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb28
http://dx.doi.org/10.1007/978-3-319-41589-5
http://dx.doi.org/10.48550/ARXIV.1708.02595
https://arxiv.org/abs/1708.02595
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb31
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb31
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb31
http://dx.doi.org/10.6084/m9.figshare.11866101.v1
http://dx.doi.org/10.6084/m9.figshare.11866101.v1
http://dx.doi.org/10.6084/m9.figshare.11866101.v1
https://figshare.com/articles/presentation/FEniCSX_A_sustainable_future_for_the_FEniCS_Project/11866101
https://figshare.com/articles/presentation/FEniCSX_A_sustainable_future_for_the_FEniCS_Project/11866101
https://figshare.com/articles/presentation/FEniCSX_A_sustainable_future_for_the_FEniCS_Project/11866101
http://dx.doi.org/10.1017/CBO9780511618536
http://dx.doi.org/10.1016/j.coastaleng.2004.11.005
http://dx.doi.org/10.1016/j.coastaleng.2004.11.005
http://dx.doi.org/10.1016/j.coastaleng.2004.11.005
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb35
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb35
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb35
http://dx.doi.org/10.1016/j.jcp.2007.04.029
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb37
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb37
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb37
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb38
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb38
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb38
http://dx.doi.org/10.1007/978-1-4613-8952-1
http://dx.doi.org/10.1017/CBO9780511628955
http://dx.doi.org/10.1175/1520-0485(1984)014%3C1271:OTEOAF%3E2.0.CO;2
https://journals.ametsoc.org/view/journals/phoc/14/8/1520-0485_1984_014_1271_oteoaf_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/phoc/14/8/1520-0485_1984_014_1271_oteoaf_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/phoc/14/8/1520-0485_1984_014_1271_oteoaf_2_0_co_2.xml
https://books.google.com/books?id=TYGIwzz_k8kC
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb43
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb43
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb43
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb44
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb44
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb44
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb45
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb45
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb45
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb46
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb46
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb46
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb46
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb46
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb47
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb47
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb47
http://dx.doi.org/10.1007/s10915-013-9761-5

M. Loveland et al.

Monbaliu, J., 2003. Chapter 5 spectral wave models in coastal areas. In: Lakhan, V.
(Ed.), Advances in Coastal Modeling. In: Elsevier Oceanography Series, vol. 67,
Elsevier, pp. 133-158. http://dx.doi.org/10.1016/50422-9894(03)80122-8, URL
https://www.sciencedirect.com/science/article/pii/S0422989403801228.

Morton, K., Priestley, A., Suli, E., 1988. Stability of the Lagrange-Galerkin method with
non-exact integration. ESAIM Math. Model. Numer. Anal. 22 (4), 625-653.

Oden, J.T., Demkowicz, L.F., 2017. Applied Functional Analysis. Chapman and
Hall/CRC.

Patankar, S.V., 1980. Numerical Heat Transfer and Fluid Flow. CRC Press.

Pironneau, O., Pironneau, O., 1989. Finite Element Methods for Fluids. Wiley

Chichester.

J., Chen, C., Beardsley, R.C., Perrie, W., Cowles, G.W., Lai, Z., 2009. An

unstructured-grid finite-volume surface wave model (FVCOM-SWAVE): Implemen-

tation, validations and applications. Ocean Model. 28 (1), 153-166. http://
dx.doi.org/10.1016/j.0cemod.2009.01.007, URL https://www.sciencedirect.com/
science/article/pii/S1463500309000067, The Sixth International Workshop on

Unstructured Mesh Numerical Modelling of Coastal, Shelf and Ocean Flows.

Reddy, J.N., 2019. Introduction to the Finite Element Method. McGraw-Hill Education.

Ris, R., Holthuijsen, L., Smith, J., Booij, N., van Dongeren, A., 2003. The ONR TEST
bed for coastal and oceanic wave models. ISBN: 9789812382382, pp. 380-391.
http://dx.doi.org/10.1142/9789812791306_0033.

Roland, A., 2008. Development of WWM II: Spectral Wave Modeling on Unstructured
Meshes (Ph.D. thesis).

Roland, A., 2012. Application of residual distribution (RD) schemes to the geographical
part of the wave action equation. In: ECMWF Workshop on Ocean Waves. pp.
25-27.

Roland, A., Ardhuin, F., 2014. On the developments of spectral wave models: numerics
and parameterizations for the coastal ocean. Ocean Dyn. 64, 833-846.

Roland, A., Cucco, A., Ferrarin, C., Hsu, T.-W., Liau, J.-M., Ou, S.-H., Umgiesser, G.,
Zanke, U., 2009. On the development and verification of a 2-D coupled
wave-current model on unstructured meshes. J. Mar. Syst. 78, S244-S254.

Qi,

15

Coastal Engineering 187 (2024) 104425

Roland, A., Zanke, U., Hsu, T.-W., Ou, S.-H., Liau, J.-M., 2006. Spectral wave modelling
on unstructured grids with the WWM (Wind Wave Model) I: The deep water case.
In: Third Chinese-German Joint Symposium on Coastal and Ocean Engineering,
Tainan, Taiwan. p. 17.

Smith, J.M., Sherlock, A.R., Resio, D.T., 2001. STWAVE: Steady-State Spectral Wave
Model User’s Manual for STWAVE, Version 3.0. Tech. Rep., Engineer Research and
Development Center Vicksburg MS Coastal and Hydraulics Lab.

Strang, G., 1968. On the construction and comparison of difference schemes. SIAM
J. Numer. Anal. 5 (3), 506-517. http://dx.doi.org/10.1137/0705041, arXiv:https:
//doi.org/10.1137/0705041.

Team, S., et al., 2022. SWAN, Scientific and Technical Documentation, SWAN Cycle
III version 41.41. Delft University of Technology, http://www.swan.tudelft.nl URL
https://swanmodel.sourceforge.io/download/zip/swantech.pdf.

Tolman, H.L.,, 1991. A third-generation model for wind waves on slowly vary-
ing, unsteady, and inhomogeneous depths and currents. J. Phys. Oceanogr. 21
(6), 782-797. http://dx.doi.org/10.1175/1520-0485(1991)021<0782:ATGMFW>2.
0.CO;2, URL https://journals.ametsoc.org/view/journals/phoc/21/6/1520-0485_
1991_021_0782_atgmfw 2 0_co_2.xml.

Yildirim, B., Karniadakis, G.E., 2012. A hybrid spectral/DG method for solving the
phase-averaged ocean wave equation: Algorithm and validation. J. Comput. Phys.
231 (14), 4921-4953. http://dx.doi.org/10.1016/j.jcp.2012.04.013, URL https:
//www.sciencedirect.com/science/article/pii/$0021999112001854.

Young, LR., 1999. Wind Generated Ocean Waves. Elsevier.

Zienkiewicz, O.C., Taylor, R.L., Nithiarasu, P., 2013. The Finite Element Method for
Fluid Dynamics. Butterworth-Heinemann.

Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z., 2005. The Finite Element Method: Its Basis
and Fundamentals. Elsevier.

Zijlema, M., 2010. Computation of wind-wave spectra in coastal waters with SWAN on
unstructured grids. Coast. Eng. 57 (3), 267-277.


http://dx.doi.org/10.1016/S0422-9894(03)80122-8
https://www.sciencedirect.com/science/article/pii/S0422989403801228
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb50
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb50
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb50
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb51
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb51
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb51
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb52
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb53
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb53
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb53
http://dx.doi.org/10.1016/j.ocemod.2009.01.007
http://dx.doi.org/10.1016/j.ocemod.2009.01.007
http://dx.doi.org/10.1016/j.ocemod.2009.01.007
https://www.sciencedirect.com/science/article/pii/S1463500309000067
https://www.sciencedirect.com/science/article/pii/S1463500309000067
https://www.sciencedirect.com/science/article/pii/S1463500309000067
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb55
http://dx.doi.org/10.1142/9789812791306_0033
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb57
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb57
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb57
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb58
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb58
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb58
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb58
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb58
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb59
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb59
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb59
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb60
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb60
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb60
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb60
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb60
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb61
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb61
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb61
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb61
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb61
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb61
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb61
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb62
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb62
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb62
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb62
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb62
http://dx.doi.org/10.1137/0705041
https://doi.org/10.1137/0705041
https://doi.org/10.1137/0705041
https://doi.org/10.1137/0705041
http://www.swan.tudelft.nl
https://swanmodel.sourceforge.io/download/zip/swantech.pdf
http://dx.doi.org/10.1175/1520-0485(1991)021%3C0782:ATGMFW%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1991)021%3C0782:ATGMFW%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1991)021%3C0782:ATGMFW%3E2.0.CO;2
https://journals.ametsoc.org/view/journals/phoc/21/6/1520-0485_1991_021_0782_atgmfw_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/phoc/21/6/1520-0485_1991_021_0782_atgmfw_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/phoc/21/6/1520-0485_1991_021_0782_atgmfw_2_0_co_2.xml
http://dx.doi.org/10.1016/j.jcp.2012.04.013
https://www.sciencedirect.com/science/article/pii/S0021999112001854
https://www.sciencedirect.com/science/article/pii/S0021999112001854
https://www.sciencedirect.com/science/article/pii/S0021999112001854
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb67
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb68
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb68
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb68
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb69
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb69
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb69
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb70
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb70
http://refhub.elsevier.com/S0378-3839(23)00149-7/sb70

	WAVEx: Stabilized finite elements for spectral wind wave models using FEniCSx
	Introduction
	Methods
	Problem Definition
	Source Terms
	Weak Formulations For the Wave Action Balance Equation
	Bubnov-Galerkin
	Least Squares
	SUPG
	Discontinuous Galerkin

	WAVEx: Implementation of Wave Action Balance Equation Solver with FEniCSx
	Semi-Discrete Form
	Time Step Choice and Fully Discrete Form
	FEniCSx Compatible Format
	Operator Splitting


	Convergence Test Case Results
	Propagation of a Sinusoidal Wave
	Formation of a Shock Near the Boundary

	Full Scale Test Cases
	A21: Shoaling
	A11: Refraction
	A31–34: Currents
	L11: Wave Breaking on a Beach

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix
	References


