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Abstract—Existing computer analytic methods for the micro-
grid system, such as reinforcement learning (RL) methods, suffer
from a long-term problem with the empirical assumption of
the reward function. To alleviate this limitation, we propose a
multi-virtual-agent imitation learning (MAIL) approach to learn
the dispatch policy under different power supply interrupted
periods. Specifically, we utilize the idea of generative adversarial
imitation learning method to do direct policy mapping, instead of
learning from manually designed reward functions. Multi-virtual
agents are used for exploring the relationship of uncertainties
and corresponding actions in different microgrid environments
in parallel. With the help of a deep neural network, the proposed
MAIL approach can enhance robust ability by minimizing the
maximum crossover discriminators to cover more interrupted
cases. Case studies show that the proposed MAIL approach can
learn the dispatch policies as well as the expert method and
outperform other existing RL methods.

Index Terms—Imitation learning, interrupted power supply,
deep neural networks, machine learning, multi-virtual agents,
and microgrid energy scheduling.

I. INTRODUCTION

The urgency of improving the microgrid energy scheduling
has been highlighted in recent years since the threats of ex-
treme weather incidents and natural disasters to the microgrid
systems increased [1]. To enhance the robust ability of the
microgrid systems, it is critical to optimize microgrid energy
scheduling to cope with the uncertainties with lower costs.

Extensive model-based microgrid scheduling approaches
have been proposed in the literature [2]-[4]. However, these
methods generally rely on an accurate forecast of the uncer-
tainties and a specific physical model of the microgrid system
[5]. To reduce these dependencies of model-based microgrid
scheduling approaches, machine learning (ML)-based methods
have been proposed in recent years, which are referred to as
learning-based methods [6].

Among these learning-based methods, single-agent and
multi-agent reinforcement learning (RL) approaches have
been widely applied in solving microgrid online decision-
making and control problems. There are some single-agent
deep reinforcement learning (DRL) methods for the micro-
grid providing open-source codes online. A novel microgrid
model was proposed in [7] to coordinate among the differ-
ent flexible sources using seven DRL methods. An adaptive
emergency control scheme was designed to leverage the high

979-8-3503-1637-7/24/$31.00 ©2024 IEEE

1

dimensional feature extraction and non-linear generalization
capabilities of DRL methods for complex power systems
[8]. Nevertheless, these single-agent RL methods learned and
made energy scheduling decisions according to individual
information and environment, instead of considering overall
profits and supply-demand balance of microgrids in different
situations [9]. Multi-agent RL with a cooperative system is
considered as a potential approach to enhance the performance
of the microgrid system [10]. In [11], the deep deterministic
policy gradients (DDPG) and multi-agent DDPG algorithms
were investigated to conclude that multi-agent approaches can
produce greater profits. Instead of increasing the number of
states [12], asynchronous and synchronous RL approaches
can save computational costs and handle complex tasks. An
aggregating Q-learning approach was proposed in [13], uti-
lizing multiple local Q-learning agents and aggregating the
learned value functions to the global agent to learn different
microgrid events. However, these RL methods rely deeply
on the empirical assumption of the reward function for the
microgrid system.

Generally, the inverse reinforcement learning (IRL) method
and imitation learning (IL) method have the advantage of
avoiding the empirical assumption of the reward function. A
reinforcement and imitation learning approach was proposed
to develop the pricing strategy of electricity retailers with
customers’ flexibility [14]. In [15], a data-driven approach
based on imitation learning was presented to mimic the mixed-
integer linear programming solver to optimize the operations
of the microgrid. To avoid the computation of the state
visitation frequency of the microgrid system and recover the
reward function, our previous work [16] proposed a modified
maximum entropy IRL method for solving the microgrid
energy scheduling problem. However, it’s not suitable for the
microgrid under uncertainties. To our knowledge, there has not
been any research focused on the microgrid energy scheduling
problem using the multi-agent imitation learning method to
improve the robust performance under the uncertainties.

To address the challenges mentioned above, we work on
the optimization of the microgrid energy scheduling problem
under interrupted periods. Specifically, we propose a multi-
virtual-agent imitation learning (MAIL) approach to learn the
dispatch policy under different power supply interrupted peri-
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ods. The contributions of this paper are provided as follows.
First, different from cooperative multi-agent RL methods, we
utilize the idea of the generative adversarial imitation learning
(GAIL) method [17] combined with multi-virtual agents in
parallel to bypass the assumptive reward function. Moreover,
to improve the robustness, we optimize the upper bound of
the objective function using N maximum crossover discrimi-
nators, which can cover more interrupted microgrid cases. The
performance of the proposed MAIL method is slightly better
than the corresponding expert policy and outperforms other
existing microgrid energy scheduling methods.

The remainder of this paper is organized as follows. Section
IT states the main idea and framework of our proposed multi-
virtual-agent imitation learning method. Explanations about
the microgrid system model are given in Section III. Specific
case studies of power supply interruptions happening during
extreme weather events and results are shown in Section IV.
Finally, conclusions are provided in Section V.

II. MULTI-VIRTUAL-AGENT IMITATION LEARNING
APPROACH

A. Markov Decision Process for Microgrid Systems

A Markov decision process (MDP) [18] can be expressed
by a tuple: {S, A, P(s|s’,a’),R,~,s0}, where S is a set of
states s, A is a set of possible actions a, P(s|s’,a’) is the
transition probability, s’ ans a’ is the next state and the next
action, R is the reward function, « is the discounted rate,
and sg is the initial state where the agent will depart from.
The occupancy measure pr(s,a) = w(als) > =7 Pr(s;
s|m,P) is the state-action distribution induced by policy .
The state distribution is pr(s) = > o q V' Pr(s; = s|m,P),
and the initial state distribution is denoted as p(s). In the
microgrid system, the cost function is the negative value of
the reward function.

We consider a collection of MDPs for the microgrid sys-
tem, where the state and action spaces are the same while
the cost function is unknown to the agent. The microgrid
system can be varied among these MDPs due to different
interrupted periods. We sample N microgrid systems with
different power supply interrupted periods and denote N en-
vironments with Fy, Fo, - -, Ey. Each expert policy 7, will
generate corresponding expert demonstrations set D7, where
j € (1,2,---,N). &, stands for the expert demonstration
belonging to D7, and A7, is the expert actions set. In our
assumptions, the virtual agents can interact with all sampled
environments. The learner policy of the imitation learning
network for each sampled environment is 7%, and the corre-
sponding imitated actions set is A%, where i € (1,2,---, N).
We assume that we can only acquire expert demonstrations set
D7, while the expert policy 7%, is unknown.

B. Proposed MAIL Method and Framework

To solve the microgrid energy optimization problem under
different interrupted periods caused by uncertain extreme
weather events, we consider the occupancy matching technique
used in the GAIL method [17].

2

In a single environment, the occupancy measure pr(s,a)
satisfies the Bellman flow constraint as

pa(s,a) = po(s)m(als) +7 /

(s",a%)

P(s|s’,a")pr(s',a")m(als)

(D
The GAIL method reproduces the expert’s policy according
to the objective function,

mﬂin D js(prs prg)

= minmaxE, [logD(s,a)] +E,_[log(1 — D(s,a))] ()

where p is the normalized learner occupancy measure, p, is
the normalized expert occupancy measure, D ;g is the Jensen-
Shannon (JS) divergence [19], and D is the discriminator used
to distinguish whether a given pair (s,a) is from the expert
or not.

In the multiple environments, the occupancy measure
p=(s,a) becomes the mixture with N environments,

1 X
pels,0) = == 3 0l (5,0) = po(s)(als)
=1
S 3)
by [ P ) n(als)
N2

where P is the transition probabilities of the i** environment,

and p’ is the i*" environment’s occupancy measure.
Therefore, considering the multiple environments with un-

certainties [20], the objective function can be changed as

N

minEy g sy e D A(8)D(a(]s), 7h(15))]
j=1

“4)

where ) (s) is the weight to determine how much 7}, (-|s) is
imitated, and Z;\Ll Aj(s) =1.

In order to handle A;(s), we can replace Zjvzl Aj(s) with
max; to yield the upper bound as (5).

&)

which can be regarded as the mapping between the expert
action set A%, and the imitated actions set A’ as (6).

minE, g max D(r'([s), 75 (]s))

N
1 ) .
mTén i Z mjax D;; (A%, AY) (6)
i=1
We denote (7) as the loss function of the imitation learning
network. The discriminator D;; uses the mean squared error
(MSE) to calculate the discrimination of A’ and A%

N
1 o
L(w) = N ijaxDij(Al,AjE) (7)
i=1

Fig.1 shows the framework of the implementation of our
proposed multi-virtual-agent imitation learning method in the
microgrid optimization problem.

We use NV virtual environments and N corresponding expert

I to generate N expert demonstrations sets D%,

policies
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Fig. 1. The framework of our proposed multi-virtual-agent imitation learning
approach for the microgrid system. Several virtual environments’ expert
demonstrations are used to imitate parallel, and the maximum crossover
discriminators are calculated as the loss function.

and N expert actions sets A%, where j € (1,2,-+-,N).
Meanwhile, we initial the imitation learning network with
random weights and use 8-dimensional expert states as the
input data to imitate the actions in AJ, as the imitated
actions set A°, where i € (1,2,---,N). Then we use N2
crossover discriminators to compare the difference of A? and
A7, and select N maximum discriminators to calculate the loss
function £(w) as (7). L(w) is used to update the weights of
the imitation learning network by calculating the gradient. The
updated imitation learning network will output new imitated
actions to do new comparations. After the data aggregation and
imitation learning network update, we will get a final imitation
learning network that can generate robust actions against the
uncertainties of the environment.

III. MODEL DESCRIPTION AND PROBLEM FORMULATION

In this paper, we consider a grid-connected microgrid con-
sisting of four units from the perspective of energy generation
and load demand in [13], including the battery energy storage
system (BESS), the distributed generations, the main grid, and
the residential load. The connection with the main grid makes
the microgrid flexibly export/import power to/from the utility
network.

In this problem, we aim to schedule the generation units
efficiently with the lowest cost over a time period of T
(24 hours), based on the defined probabilistic power supply
interruptions. The generation units’ decisions/actions include
the power output of diesel generators (DG) py 4, the power p; ,,
purchased from (positive) or sold to (negative) the main grid,
and the charging or discharging power of BESS p, ;, which is
positive when discharging.

The state at the hour ¢ is defined as:

®)

where s, 5, is the state of charge (SOC) of the BESS, s; 4 is the
binary variable that indicates the ON/OFF status of DG, s; 4
is the output of renewable generations (RG), s; , is the retail

St = (St,b7 St,ds St,g» St,p»> St,l» St,pr)

3

energy price, s, is the residential load demand, and s; ;. is
the probability of the power supply interruption happening.

As mentioned in the Sec.II-A and (6), A* and A%, stand
for the imitated actions set and expert actions set for the
corresponding environment, respectively. They are composed
of several individual actions a;, which is defined as:

ar = (Pt,b, Pt,d> Pt.p) )
The transition function of SOC is given as
ASt b
St4+1,b = St,b — : (10)

where £}, is the rated energy capacity, and As,  is the energy
changing amount of BESS at hour ¢,

ny, PepAL, if pry <0

Ptb
ny

A$t7b =

(1)

At, otherwise

where At is the time step size, 7, and n;r stand for the
charging and discharging efficiencies respectively.

The SOC of the battery is constrained by s, < 545 < sp4,
which are the lower and upper bounds of SOC, respectively.
The value of p;; needs to be in a scope of maximum
discharging power PbJr and maximum charging power P, .

The power balance of the microgrid can be expressed as

P+ Prd + Pep+ St,g = S (12)

The objective function is to min,, Zthl C(s¢, ar). The cost
function C'(s¢, at) is defined as

C(st,ar) = prpsep + St.a(aapi g + bapr.a +ca) (13

where a4, by, and ¢4 are the coefficients of the quadratic func-
tion. Note, that the cost function is only used for performance
comparisons in our proposed MAIL method.

IV. SIMULATION RESULTS AND ANALYSIS

To investigate the impact of power supply interruptions on
the microgrid operations, we assume during extreme weather-
related events, the utility grid goes down for a certain period,
and the microgrid operates in an isolated mode during this
period [13]. The RG outputs are taken from the system
advisory model by the National Renewable Energy Laboratory
for the city of Phoenix, AZ [21]. For the load-demand, a
small residential community load-demand data is collected
from [22]. All the comparison experiments are based on the
same assumptions for other existing approaches, including
dynamic programming (DP) method, aggregated Q-learning
method [13], and cooperative Q-learning method [23].

For the simulations, we consider three virtual environments
that the power supply interruptions happen at the time-period
10%"-13"" hours, 11*"-14'" hours, and 12"-15" hours. Three
local virtual agents are applied to imitate the corresponding
virtual environment’s actions. We use the DP method and
the aggregated Q-learning method as the expert policies to
validate our proposed method. Note that the DP approach is
an offline optimization technique. Besides, we conduct two
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case studies with low probability (30%) and high probability
(70%) rates of weather-related events and test the performance
on the microgrid systems for all methods at a new interrupted
period 10t"-15" hours.

A. Comparative Performance with Different Methods

To validate our proposed MAIL method, we first consider
the power supply interruptions happening with the probability
of 100%. Our proposed imitation learning approach can output
the microgrid scheduling decisions online, given the current
state of the microgrid system.

The imitation learning network we apply has three hidden
layers with the sizes of (500, 1000, 500). The input states of
the network are shown in Fig.1, including

« Residential load demand (kWh)

o Wind turbine output (kWh)

e Photovoltaic (kWh)

o Solar irradiation (kWh/m?)

o Generation units’ energy (kWh)

o Retail energy price ($/kWh)

o Current time (hour)

o Interruption flag

To apply the DP and the aggregated Q-learning expert
methods, discretized battery SOC and DG ON/OFF status must
be used to define the states. On one hand, we analyze the in-
fluence of the SOC state sizes from 7 to 51. On the other hand,
we test the proposed method and other existing approaches at
a new interrupted period 10*"-15t" hours, different from three
training time slots 10*"-13*" hours, 11**-14*" hours, and 12*"-
15" hours. The performance comparison is presented in Tab.1.

TABLE 1
TOTAL OPERATIONAL COST ($) USING DIFFERENT METHODS AND
DISCRETIZED-STATE SIZES WHEN INTERRUPTIONS HAPPEN AT
THE TIME-PERIOD 10¢"-15" HOURS.

SOC Sizes | DP  MAIL(DP) ‘ Aggregated Q MAIL(AQ) ‘ Cooperative Q

7 19.7 19.4 21.3 21.5 19.9
11 19.3 18.8 21.2 20.7 20.4
21 18.8 18.7 20.7 20.1 22.1
31 18.8 18.7 20.5 20.1 21.5
41 18.7 18.6 20.5 20.1 21.7
51 18.7 18.6 20.4 20.0 22.5

In Tab.I, MAIL (DP) means the proposed MAIL method
using DP expert demonstrations, and MAIL (AQ) means the
proposed MAIL method using aggregated Q-learning expert
demonstrations. From the results, we can see that our proposed
imitation learning method can achieve a lower operational
cost, slightly better than the corresponding expert methods
without the need for reward functions. This is because our
proposed MAIL method decides to charge extra energy and
sell it when the energy price is higher. The performances
of the MAIL method and the corresponding expert method
get closer when the discretized-state size increases. While
the cooperative Q-learning method suffers from overfitting

4

when the discretized-state size increases. Note that to compare
the performance fairly, we discretize our imitated results to
corresponding discretized-state size. For practical applications,
our proposed method has the natural advantage of providing
continuous power decisions. Besides, our MAIL method using
DP demonstrations can achieve similar performance using a
smaller expert SOC discretized state size, which saves the
computational cost of collecting expert demonstrations. For
example, when the SOC state size = 11, our proposed method
has a total cost of $18.8 almost the same as $18.6 with the dis-
cretized size = 51. Overall, the proposed MAIL algorithm can
achieve performance comparable to expert policies, no matter
whether using expert demonstrations from the DP method or
the aggregated Q-learning method. It also outperforms other
existing RL methods with the lowest total operational cost.

Power outputs of the expert DP method
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Fig. 2. The power outputs for DP method and proposed MAIL method using
DP expert demonstrations with a discretized-state size=1000. The upper figure
is the decisions of the DP method (expert), and the lower figure is the decisions
of the proposed MAIL method.

We plot the power outputs of the microgrid resources
obtained from the DP method and the MAIL approach using
DP expert demonstrations shown in Fig.2. The discretized-
state size used in this figure is 1000. We can see that the
decisions of the generation units for these two methods are
almost the same. There is a little difference where the BESS
output of the MAIL policy is negative at time = 16" hour. This
is because the net load at this time is negative, so it is better
to charge the power of BESS and sell extra energy to the grid.
We also compare with the imitation learning method using all
the expert demonstrations of the three virtual training environ-
ments. We find that the MAIL method performs slightly better
than the IL method using all expert demonstrations aggregated.

B. Two Case Studies with Different Interrupted Probabilities

We consider two case studies with a low (30%) probability
and a high (70%) probability of interruptions and apply the
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MAIL method using DP expert demonstrations with the SOC
size = 11. The comparison results are shown in Tab.II.

TABLE II
TOTAL OPERATIONAL COST ($) WITH A LOW/HIGH INTERRUPTED
PROBABILITY AND A DISCRETIZED-STATE SIZE=11 AT THE
TIME-PERIOD 10*"-15"" HOURS.

Probability MAIL DP  Aggregated Q Cooperative Q

30%
70%

18.7
18.7

18.8
19.1

20.2
20.7

22.3
22.0

From the results, we can conclude that our proposed MAIL
method achieves performance with fewer variations when the
interrupted probability is changed. Its cost $18.7 is the lowest
one, no matter with a low probability or a high probability.

V. CONCLUSION AND DISCUSSION

In this paper, an imitation learning approach with multi-
virtual agents called the MAIL method, is proposed to learn
the microgrid system’s decisions under different interrupted
periods. The main contribution of our work is the new solution
for microgrid energy optimization using imitation learning
with multi-virtual agents. By direct mapping of the policy
with a deep neural network, our approach can learn the
dispatch policy for a new interrupted period, avoiding the
assumptive reward function and the direct expert policy of the
new environment. Besides, the framework with multiple virtual
agents improves the robust ability through the utilization of
maximum discriminators to cover more interrupted cases.
The case studies with different interrupted probabilities are
conducted to validate the effectiveness of the proposed MAIL
approach. Our experiments show that the MAIL algorithm can
match the performance of expert policies and outperform other
existing methods without the need for reward functions.

The proposed MAIL method presents a potential solution
for microgrid applications based on MDP formulations while
incorporating resiliency factors. For example, it’s suitable
for the microgrid stochastic optimization problem in [24] to
accommodate the uncertain extreme events systematically. The
proposed MAIL method can employ local learning agents to
interact with pertinent microgrid events in a distributed way
and minimize the maximum crossover discrimination. We will
apply our proposed method for this application in the future.
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