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Abstract—Existing computer analytic methods for the micro-
grid system, such as reinforcement learning (RL) methods, suffer
from a long-term problem with the empirical assumption of
the reward function. To alleviate this limitation, we propose a
multi-virtual-agent imitation learning (MAIL) approach to learn
the dispatch policy under different power supply interrupted
periods. Specifically, we utilize the idea of generative adversarial
imitation learning method to do direct policy mapping, instead of
learning from manually designed reward functions. Multi-virtual
agents are used for exploring the relationship of uncertainties
and corresponding actions in different microgrid environments
in parallel. With the help of a deep neural network, the proposed
MAIL approach can enhance robust ability by minimizing the
maximum crossover discriminators to cover more interrupted
cases. Case studies show that the proposed MAIL approach can
learn the dispatch policies as well as the expert method and
outperform other existing RL methods.

Index Terms—Imitation learning, interrupted power supply,
deep neural networks, machine learning, multi-virtual agents,
and microgrid energy scheduling.

I. INTRODUCTION

The urgency of improving the microgrid energy scheduling

has been highlighted in recent years since the threats of ex-

treme weather incidents and natural disasters to the microgrid

systems increased [1]. To enhance the robust ability of the

microgrid systems, it is critical to optimize microgrid energy

scheduling to cope with the uncertainties with lower costs.

Extensive model-based microgrid scheduling approaches

have been proposed in the literature [2]–[4]. However, these

methods generally rely on an accurate forecast of the uncer-

tainties and a specific physical model of the microgrid system

[5]. To reduce these dependencies of model-based microgrid

scheduling approaches, machine learning (ML)-based methods

have been proposed in recent years, which are referred to as

learning-based methods [6].

Among these learning-based methods, single-agent and

multi-agent reinforcement learning (RL) approaches have

been widely applied in solving microgrid online decision-

making and control problems. There are some single-agent

deep reinforcement learning (DRL) methods for the micro-

grid providing open-source codes online. A novel microgrid

model was proposed in [7] to coordinate among the differ-

ent flexible sources using seven DRL methods. An adaptive

emergency control scheme was designed to leverage the high

dimensional feature extraction and non-linear generalization

capabilities of DRL methods for complex power systems

[8]. Nevertheless, these single-agent RL methods learned and

made energy scheduling decisions according to individual

information and environment, instead of considering overall

profits and supply-demand balance of microgrids in different

situations [9]. Multi-agent RL with a cooperative system is

considered as a potential approach to enhance the performance

of the microgrid system [10]. In [11], the deep deterministic

policy gradients (DDPG) and multi-agent DDPG algorithms

were investigated to conclude that multi-agent approaches can

produce greater profits. Instead of increasing the number of

states [12], asynchronous and synchronous RL approaches

can save computational costs and handle complex tasks. An

aggregating Q-learning approach was proposed in [13], uti-

lizing multiple local Q-learning agents and aggregating the

learned value functions to the global agent to learn different

microgrid events. However, these RL methods rely deeply

on the empirical assumption of the reward function for the

microgrid system.

Generally, the inverse reinforcement learning (IRL) method

and imitation learning (IL) method have the advantage of

avoiding the empirical assumption of the reward function. A

reinforcement and imitation learning approach was proposed

to develop the pricing strategy of electricity retailers with

customers’ flexibility [14]. In [15], a data-driven approach

based on imitation learning was presented to mimic the mixed-

integer linear programming solver to optimize the operations

of the microgrid. To avoid the computation of the state

visitation frequency of the microgrid system and recover the

reward function, our previous work [16] proposed a modified

maximum entropy IRL method for solving the microgrid

energy scheduling problem. However, it’s not suitable for the

microgrid under uncertainties. To our knowledge, there has not

been any research focused on the microgrid energy scheduling

problem using the multi-agent imitation learning method to

improve the robust performance under the uncertainties.

To address the challenges mentioned above, we work on

the optimization of the microgrid energy scheduling problem

under interrupted periods. Specifically, we propose a multi-

virtual-agent imitation learning (MAIL) approach to learn the

dispatch policy under different power supply interrupted peri-
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ods. The contributions of this paper are provided as follows.

First, different from cooperative multi-agent RL methods, we

utilize the idea of the generative adversarial imitation learning

(GAIL) method [17] combined with multi-virtual agents in

parallel to bypass the assumptive reward function. Moreover,

to improve the robustness, we optimize the upper bound of

the objective function using N maximum crossover discrimi-

nators, which can cover more interrupted microgrid cases. The

performance of the proposed MAIL method is slightly better

than the corresponding expert policy and outperforms other

existing microgrid energy scheduling methods.

The remainder of this paper is organized as follows. Section

II states the main idea and framework of our proposed multi-

virtual-agent imitation learning method. Explanations about

the microgrid system model are given in Section III. Specific

case studies of power supply interruptions happening during

extreme weather events and results are shown in Section IV.

Finally, conclusions are provided in Section V.

II. MULTI-VIRTUAL-AGENT IMITATION LEARNING

APPROACH

A. Markov Decision Process for Microgrid Systems

A Markov decision process (MDP) [18] can be expressed

by a tuple: {S,A,P(s|s′, a′), R, γ, s0}, where S is a set of

states s, A is a set of possible actions a, P(s|s′, a′) is the

transition probability, s′ ans a′ is the next state and the next

action, R is the reward function, γ is the discounted rate,

and s0 is the initial state where the agent will depart from.

The occupancy measure ρπ(s, a) = π(a|s)∑∞
t=0 γ

tPr(st =
s|π,P) is the state-action distribution induced by policy π.

The state distribution is μπ(s) =
∑∞

t=0 γ
tPr(st = s|π,P),

and the initial state distribution is denoted as μ0(s). In the

microgrid system, the cost function is the negative value of

the reward function.

We consider a collection of MDPs for the microgrid sys-

tem, where the state and action spaces are the same while

the cost function is unknown to the agent. The microgrid

system can be varied among these MDPs due to different

interrupted periods. We sample N microgrid systems with

different power supply interrupted periods and denote N en-

vironments with E1, E2, · · · , EN . Each expert policy πj
E will

generate corresponding expert demonstrations set Dj
E , where

j ∈ (1, 2, · · · , N). ξjE stands for the expert demonstration

belonging to Dj
E , and Aj

E is the expert actions set. In our

assumptions, the virtual agents can interact with all sampled

environments. The learner policy of the imitation learning

network for each sampled environment is πi, and the corre-

sponding imitated actions set is Ai, where i ∈ (1, 2, · · · , N).
We assume that we can only acquire expert demonstrations set

Dj
E , while the expert policy πj

E is unknown.

B. Proposed MAIL Method and Framework

To solve the microgrid energy optimization problem under

different interrupted periods caused by uncertain extreme

weather events, we consider the occupancy matching technique

used in the GAIL method [17].

In a single environment, the occupancy measure ρπ(s, a)
satisfies the Bellman flow constraint as

ρπ(s, a) = μ0(s)π(a|s)+ γ

∫
(s′,a′)

P(s|s′, a′)ρπ(s′, a′)π(a|s)
(1)

The GAIL method reproduces the expert’s policy according

to the objective function,

min
π

DJS(ρ̄π, ρ̄πE
)

= min
π

max
D

EρπE
[logD(s, a)] + Eρπ

[log(1−D(s, a))]
(2)

where ρ̄π is the normalized learner occupancy measure, ρ̄πE
is

the normalized expert occupancy measure, DJS is the Jensen-

Shannon (JS) divergence [19], and D is the discriminator used

to distinguish whether a given pair (s, a) is from the expert

or not.

In the multiple environments, the occupancy measure

ρπ(s, a) becomes the mixture with N environments,

ρπ(s, a) =
1

N

N∑
i=1

ρiπ(s, a) = μ0(s)π(a|s)

+ γ
1

N

N∑
i=1

∫
(s′,a′)

Pi(s|s′, a′)ρiπ(s′, a′)π(a|s)
(3)

where Pi is the transition probabilities of the ith environment,

and ρiπ is the ith environment’s occupancy measure.

Therefore, considering the multiple environments with un-

certainties [20], the objective function can be changed as

min
π

Es∼ 1
N

∑N
i=1 μi

π
[
N∑
j=1

λj(s)D(π(·|s), πj
E(·|s))] (4)

where λj(s) is the weight to determine how much πj
E(·|s) is

imitated, and
∑N

j=1 λj(s) = 1.

In order to handle λj(s), we can replace
∑N

j=1 λj(s) with

maxj to yield the upper bound as (5).

min
π

Es∼ 1
N

∑N
i=1 μi

π
max

j
D(πi(·|s), πj

E(·|s)) (5)

which can be regarded as the mapping between the expert

action set Aj
E and the imitated actions set Ai as (6).

min
π

1

N

N∑
i=1

max
j

Dij(A
i, Aj

E) (6)

We denote (7) as the loss function of the imitation learning

network. The discriminator Dij uses the mean squared error

(MSE) to calculate the discrimination of Ai and Aj
E .

L(w) = 1

N

N∑
i=1

max
j

Dij(A
i, Aj

E) (7)

Fig.1 shows the framework of the implementation of our

proposed multi-virtual-agent imitation learning method in the

microgrid optimization problem.

We use N virtual environments and N corresponding expert

policies πj
E to generate N expert demonstrations sets Dj

E

2
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Fig. 1. The framework of our proposed multi-virtual-agent imitation learning
approach for the microgrid system. Several virtual environments’ expert
demonstrations are used to imitate parallel, and the maximum crossover
discriminators are calculated as the loss function.

and N expert actions sets Aj
E , where j ∈ (1, 2, · · · , N).

Meanwhile, we initial the imitation learning network with

random weights and use 8-dimensional expert states as the

input data to imitate the actions in Aj
E as the imitated

actions set Ai, where i ∈ (1, 2, · · · , N). Then we use N2

crossover discriminators to compare the difference of Ai and

Aj
E and select N maximum discriminators to calculate the loss

function L(w) as (7). L(w) is used to update the weights of

the imitation learning network by calculating the gradient. The

updated imitation learning network will output new imitated

actions to do new comparations. After the data aggregation and

imitation learning network update, we will get a final imitation

learning network that can generate robust actions against the

uncertainties of the environment.

III. MODEL DESCRIPTION AND PROBLEM FORMULATION

In this paper, we consider a grid-connected microgrid con-

sisting of four units from the perspective of energy generation

and load demand in [13], including the battery energy storage

system (BESS), the distributed generations, the main grid, and

the residential load. The connection with the main grid makes

the microgrid flexibly export/import power to/from the utility

network.

In this problem, we aim to schedule the generation units

efficiently with the lowest cost over a time period of T
(24 hours), based on the defined probabilistic power supply

interruptions. The generation units’ decisions/actions include

the power output of diesel generators (DG) pt,d, the power pt,p
purchased from (positive) or sold to (negative) the main grid,

and the charging or discharging power of BESS pt,b, which is

positive when discharging.

The state at the hour t is defined as:

st = (st,b, st,d, st,g, st,p, st,l, st,pr) (8)

where st,b is the state of charge (SOC) of the BESS, st,d is the

binary variable that indicates the ON/OFF status of DG, st,g
is the output of renewable generations (RG), st,p is the retail

energy price, st,l is the residential load demand, and st,pr is

the probability of the power supply interruption happening.

As mentioned in the Sec.II-A and (6), Ai and Aj
E stand

for the imitated actions set and expert actions set for the

corresponding environment, respectively. They are composed

of several individual actions at, which is defined as:

at = (pt,b, pt,d, pt,p) (9)

The transition function of SOC is given as

st+1,b = st,b − Δst,b
Eb

(10)

where Eb is the rated energy capacity, and Δst,b is the energy

changing amount of BESS at hour t,

Δst,b =

⎧⎨
⎩
η−b pt,bΔt, if pt,b ≤ 0
pt,b

η+b
Δt, otherwise

(11)

where Δt is the time step size, η−b and η+b stand for the

charging and discharging efficiencies respectively.

The SOC of the battery is constrained by sb− ≤ st,b ≤ sb+,

which are the lower and upper bounds of SOC, respectively.

The value of pt,b needs to be in a scope of maximum

discharging power P+
b and maximum charging power P−

b .

The power balance of the microgrid can be expressed as

pt,b + pt,d + pt,p + st,g = st,l (12)

The objective function is to minat

∑T
t=1 C(st, at). The cost

function C(st, at) is defined as

C(st, at) = pt,pst,p + st,d(adp
2
t,d + bdpt,d + cd) (13)

where ad, bd, and cd are the coefficients of the quadratic func-

tion. Note, that the cost function is only used for performance

comparisons in our proposed MAIL method.

IV. SIMULATION RESULTS AND ANALYSIS

To investigate the impact of power supply interruptions on

the microgrid operations, we assume during extreme weather-

related events, the utility grid goes down for a certain period,

and the microgrid operates in an isolated mode during this

period [13]. The RG outputs are taken from the system

advisory model by the National Renewable Energy Laboratory

for the city of Phoenix, AZ [21]. For the load-demand, a

small residential community load-demand data is collected

from [22]. All the comparison experiments are based on the

same assumptions for other existing approaches, including

dynamic programming (DP) method, aggregated Q-learning

method [13], and cooperative Q-learning method [23].

For the simulations, we consider three virtual environments

that the power supply interruptions happen at the time-period

10th-13th hours, 11th-14th hours, and 12th-15th hours. Three

local virtual agents are applied to imitate the corresponding

virtual environment’s actions. We use the DP method and

the aggregated Q-learning method as the expert policies to

validate our proposed method. Note that the DP approach is

an offline optimization technique. Besides, we conduct two

3
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case studies with low probability (30%) and high probability

(70%) rates of weather-related events and test the performance

on the microgrid systems for all methods at a new interrupted

period 10th-15th hours.

A. Comparative Performance with Different Methods

To validate our proposed MAIL method, we first consider

the power supply interruptions happening with the probability

of 100%. Our proposed imitation learning approach can output

the microgrid scheduling decisions online, given the current

state of the microgrid system.

The imitation learning network we apply has three hidden

layers with the sizes of (500, 1000, 500). The input states of

the network are shown in Fig.1, including

• Residential load demand (kWh)

• Wind turbine output (kWh)

• Photovoltaic (kWh)

• Solar irradiation (kWh/m2)

• Generation units’ energy (kWh)

• Retail energy price ($/kWh)

• Current time (hour)

• Interruption flag

To apply the DP and the aggregated Q-learning expert

methods, discretized battery SOC and DG ON/OFF status must

be used to define the states. On one hand, we analyze the in-

fluence of the SOC state sizes from 7 to 51. On the other hand,

we test the proposed method and other existing approaches at

a new interrupted period 10th-15th hours, different from three

training time slots 10th-13th hours, 11th-14th hours, and 12th-

15th hours. The performance comparison is presented in Tab.I.

TABLE I
TOTAL OPERATIONAL COST ($) USING DIFFERENT METHODS AND

DISCRETIZED-STATE SIZES WHEN INTERRUPTIONS HAPPEN AT

THE TIME-PERIOD 10th-15th HOURS.

SOC Sizes DP MAIL(DP) Aggregated Q MAIL(AQ) Cooperative Q

7 19.7 19.4 21.3 21.5 19.9

11 19.3 18.8 21.2 20.7 20.4

21 18.8 18.7 20.7 20.1 22.1

31 18.8 18.7 20.5 20.1 21.5

41 18.7 18.6 20.5 20.1 21.7

51 18.7 18.6 20.4 20.0 22.5

In Tab.I, MAIL (DP) means the proposed MAIL method

using DP expert demonstrations, and MAIL (AQ) means the

proposed MAIL method using aggregated Q-learning expert

demonstrations. From the results, we can see that our proposed

imitation learning method can achieve a lower operational

cost, slightly better than the corresponding expert methods

without the need for reward functions. This is because our

proposed MAIL method decides to charge extra energy and

sell it when the energy price is higher. The performances

of the MAIL method and the corresponding expert method

get closer when the discretized-state size increases. While

the cooperative Q-learning method suffers from overfitting

when the discretized-state size increases. Note that to compare

the performance fairly, we discretize our imitated results to

corresponding discretized-state size. For practical applications,

our proposed method has the natural advantage of providing

continuous power decisions. Besides, our MAIL method using

DP demonstrations can achieve similar performance using a

smaller expert SOC discretized state size, which saves the

computational cost of collecting expert demonstrations. For

example, when the SOC state size = 11, our proposed method

has a total cost of $18.8 almost the same as $18.6 with the dis-

cretized size = 51. Overall, the proposed MAIL algorithm can

achieve performance comparable to expert policies, no matter

whether using expert demonstrations from the DP method or

the aggregated Q-learning method. It also outperforms other

existing RL methods with the lowest total operational cost.
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Time(hour)
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Fig. 2. The power outputs for DP method and proposed MAIL method using
DP expert demonstrations with a discretized-state size=1000. The upper figure
is the decisions of the DP method (expert), and the lower figure is the decisions
of the proposed MAIL method.

We plot the power outputs of the microgrid resources

obtained from the DP method and the MAIL approach using

DP expert demonstrations shown in Fig.2. The discretized-

state size used in this figure is 1000. We can see that the

decisions of the generation units for these two methods are

almost the same. There is a little difference where the BESS

output of the MAIL policy is negative at time = 16th hour. This

is because the net load at this time is negative, so it is better

to charge the power of BESS and sell extra energy to the grid.

We also compare with the imitation learning method using all

the expert demonstrations of the three virtual training environ-

ments. We find that the MAIL method performs slightly better

than the IL method using all expert demonstrations aggregated.

B. Two Case Studies with Different Interrupted Probabilities

We consider two case studies with a low (30%) probability

and a high (70%) probability of interruptions and apply the

4
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MAIL method using DP expert demonstrations with the SOC

size = 11. The comparison results are shown in Tab.II.

TABLE II
TOTAL OPERATIONAL COST ($) WITH A LOW/HIGH INTERRUPTED

PROBABILITY AND A DISCRETIZED-STATE SIZE=11 AT THE

TIME-PERIOD 10th-15th HOURS.

Probability MAIL DP Aggregated Q Cooperative Q

30% 18.7 18.8 20.2 22.3

70% 18.7 19.1 20.7 22.0

From the results, we can conclude that our proposed MAIL

method achieves performance with fewer variations when the

interrupted probability is changed. Its cost $18.7 is the lowest

one, no matter with a low probability or a high probability.

V. CONCLUSION AND DISCUSSION

In this paper, an imitation learning approach with multi-

virtual agents called the MAIL method, is proposed to learn

the microgrid system’s decisions under different interrupted

periods. The main contribution of our work is the new solution

for microgrid energy optimization using imitation learning

with multi-virtual agents. By direct mapping of the policy

with a deep neural network, our approach can learn the

dispatch policy for a new interrupted period, avoiding the

assumptive reward function and the direct expert policy of the

new environment. Besides, the framework with multiple virtual

agents improves the robust ability through the utilization of

maximum discriminators to cover more interrupted cases.

The case studies with different interrupted probabilities are

conducted to validate the effectiveness of the proposed MAIL

approach. Our experiments show that the MAIL algorithm can

match the performance of expert policies and outperform other

existing methods without the need for reward functions.

The proposed MAIL method presents a potential solution

for microgrid applications based on MDP formulations while

incorporating resiliency factors. For example, it’s suitable

for the microgrid stochastic optimization problem in [24] to

accommodate the uncertain extreme events systematically. The

proposed MAIL method can employ local learning agents to

interact with pertinent microgrid events in a distributed way

and minimize the maximum crossover discrimination. We will

apply our proposed method for this application in the future.
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