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Abstract

Species distribution models (SDMs) are increasingly popular tools for profiling disease risk
in ecology, particularly for infectious diseases of public health importance that include an
obligate non-human host in their transmission cycle. SDMs can create high-resolution maps
of host distribution across geographical scales, reflecting baseline risk of disease. However,
as SDM computational methods have rapidly expanded, there are many outstanding meth-
odological questions. Here we address key questions about SDM application, using schisto-
somiasis risk in Brazil as a case study. Schistosomiasis is transmitted to humans through
contact with the free-living infectious stage of Schistosoma spp. parasites released from
freshwater snails, the parasite’s obligate intermediate hosts. In this study, we compared
snail SDM performance across machine learning (ML) approaches (MaxEnt, Random For-
est, and Boosted Regression Trees), geographic extents (national, regional, and state),
types of presence data (expert-collected and publicly-available), and snail species (Biom-
phalaria glabrata, B. straminea, and B. tenagophila). We used high-resolution (1km) climate,
hydrology, land-use/land-cover (LULC), and soil property data to describe the snails’ eco-
logical niche and evaluated models on multiple criteria. Although all ML approaches pro-
duced comparable spatially cross-validated performance metrics, their suitability maps
showed major qualitative differences that required validation based on local expert knowl-
edge. Additionally, our findings revealed varying importance of LULC and bioclimatic vari-
ables for different snail species at different spatial scales. Finally, we found that models
using publicly-available data predicted snail distribution with comparable AUC values to
models using expert-collected data. This work serves as an instructional guide to SDM
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methods that can be applied to a range of vector-bome and zoonotic diseases. In addition, it
advances our understanding of the relevant environment and bioclimatic determinants of
schistosomiasis risk in Brazil.

Introduction

Species distribution models (SDMs) have become increasingly popular tools in the field of dis-
ease ecology to profile transmission risk for vector-borne, zoonotic diseases, and environmen-
tally-mediated diseases, i.e., diseases whose transmission involves a non-human host or vector
species, such as mosquitoes (malaria, dengue, Zika), flies (leishmaniasis, sleeping sickness),
ticks (Lyme disease), triatomine bugs (Chagas disease), and snails (schistosomiasis, fascioliasis)
[1-6]. By using presence data of non-human hosts and remotely-sensed data of potential envi-
ronmental covariates, SDMs are correlative models that can predict species habitat suitability
across areas not sampled by field collection programs [7-9]. These models are typically used to
create high-resolution maps of an inferred species distribution across a geographic area of
interest, which can reflect areas where disease transmission may be possible. In combination
with other processes that influence transmission, such as additional reservoir host distribu-
tions or other disease exposure variables, these predictions can directly inform the understand-
ing of the pathogenic landscape of environmentally-mediated diseases [10].

SDMs are a powerful tool applied in a number of fields, including disease ecology [11, 12],
epidemiology [13], and conservation [14, 15], among many others. Species distribution model-
ing works by using species presence/absence data to identify covariates that are predictive of a
species presence. Because true absence data are not typically available, SDMs often use “back-
ground” or “pseudo-absence” data to simulate locations where an organism could have been
sampled but was not [16, 17]. SDMs use various machine learning methods to identify a suite
of covariates that can accurately predict the presence or absence of the organism in geographic
space, using flexible functional relationships between predictors and responses that can
include nonlinearities and interactions [8, 9]. Model inputs can vary in spatial and temporal
resolution and extent. Many algorithms are available for model training and testing, and they
differ in how they handle covariate-outcome relationships [18]. SDMs are cross-validated by
leaving out part of the data in model training in order to assess model performance on out-of-
sample data, often performed in a spatially-structured way [19]. The outputs of interest include
geographic maps of species presence suitability, lists of variables selected as important predic-
tors, and the functional forms of relationships between predictors and presence. A glossary of
terms and concepts central to the SDM literature are summarized for reference in Table 1.

Increased access to large-scale, remotely-sensed environmental data [20, 21] and species
presence databases [22], such as the Global Biodiversity Information Facility [23], has spurred
rapid expansion of these methods. Further, recent decades have brought rapid development of
statistical models and machine learning algorithms that can be applied to species distribution
models, such as regularized regression [24], decision tree [25], Bayesian [26], neural network
[27], and ensemble methods [28], among many others. Although many machine learning
methods have grown in popularity due to their flexibility, ability to model covariate interac-
tions, and increasing accessibility in common programming languages like R, no single
method has fully eclipsed its counterparts [18, 29]. Due to both their popularity in the litera-
ture and their consistently high performance, we chose three modeling methods to investigate
in this study: Maximum Entropy (MaxEnt), Random Forest (RF), and Boosted Regression
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Table 1. Glossary of terms and concepts central to SDM methodology.

Term/concept Summary Citation

Presence records Observed presence of a species, usually with latitude, longitude. and date. [41]

True absence records Observed absence of a species, also with latitude, longitude, and date. Often difficult to obtain with certainty. [42]

Pseudo-absence / background Locations drawn from the landscape of interest where an organism could have been sampled but was not. Could by [16]

records chance include presence areas.

Thinning Reducing a set of records (presence, absence, background) so only one record is retained for each grid cell. [43]

Environmental covariates Variables hypothesized to impact or predict species presence, such as temperature, precipitation, or land-use type. Often | [41]
remotely-sensed raster images.

Multicollinearity When predictor variables are correlated to one another. Can potentially result in misidentification of relevant predictors, | [44]
their importance, or their relationship with the outcome.

Resolution size Size of the grid cells at which probabilities are predicted. All predictor variables need to be input into the model with the | [35]
same resolution.

Geographic extent The geographic area of interest for which probabilities are estimated. [41]

Model type Choice of statistical or machine learning algorithm. [18]

Cross-validation / spatial cross- | Validation technique that repeatedly leaves out parts (i.e., “folds”) of the data in model training in order to assess [19]

validation performance on out-of-sample data. Spatial cross-validation separates the folds by spatial clusters.

Discrimination The ability for models to distinguish between presence records and absence/background records. Often estimated by [45
ROC-AUC values (defined below).

Threshold The cutoff value at which continuous model output probabilities (ranging from 0 to 1) are split and labelled as presence | [45]
points (above the threshold) or absence/background points (below the threshold). The threshold value is not required to
be 0.5, but can be optimized through AUC or pAUC calculations (discussed below).

Sensitivity The proportion of presences correctly identified as presences. Models with high sensitivity tend to build prediction maps | [45]
that look more full.

Specificity The proportion of absences/backgrounds correctly identified as absences/backgrounds. Models with high specificity tend | [45]
to build prediction maps that look more sparse.

ROC-AUC A measure of discrimination that compares the false positive rate (i.e., 1—specificity) versus sensitivity across all possible | [45]
thresholds. A value of 1 indicates perfect discrimination and 0.5 or less indicates performance is no better than random.
Often referred to as “AUC.”

Partial ROC-AUC An ROC curve bounded above, below, or between sensitivity, specificity, or other threshold values (i.e., the maximum [46]
AUC value is < 1). Recommended when comparing models with varying ranges in suitability probability predictions.
Often referred to as “pAUC.”

AlCc Information criteria measure for regression models that can help balance model complexity and goodness-of-fit during | [47]
model selection.

TSS (true skill statistic) Sensitivity + specificity—1 (i.e., values of zero or less indicate the performance is no better than random). A measure of | [38]
discrimination designed to be less sensitive to species prevalence values than ROC-AUC.

Calibration The degree to which the observed proportion of presences in a grid cell equates to the model estimated probability. Often | [48]
evaluated with a calibration graph.

Variable importance Measurement to estimate how much each covariate contributes to model performance. SHapley Additive exPlanations [49]
(SHAP) are a particularly useful method because they are model agnostic.

Partial dependence plots Line plots that depict the marginal effect each predictor has on suitability probabilities. [50]

hitps://doi.org/10.1371/journal.paph.0002224.1001

Tree (BRT) models [18]. MaxEnt—a regularized, regression-based model—has long been a
well-established method for presence-only applications [30], while flexible, decision tree
model types such as RF and BRT have gained more recent popularity [31]. Along with the
expansion of model types, there has been additional SDM methodological development,
including optimization of sampling techniques for “background” or “pseudo-absence” points
[17, 32], increased rigor for input variable selection [33, 34], investigation on resolution size
[35], defense of spatial cross-validation techniques [19], integration of ecological theory [36,
37], development of gold-standard model evaluation measures [38], and updated guidelines

for method-specific reproducibility standards [39, 40].

Despite these advances, many of these new methods have not been recently documented,
especially not in a cohesive, accessible manner for scientists new to SDMs or those interested

PLOS Global Public Health | https://doi.org/10.1371/joumal.pgph.0002224  August 2, 2024

3/28


https://doi.org/10.1371/journal.pgph.0002224.t001
https://doi.org/10.1371/journal.pgph.0002224

PLOS GLOBAL PUBLIC HEALTH Species distribution modeling for disease ecology

in adopting new methods [31]. To our knowledge, there has not been an analysis comparing
machine learning algorithms, data sources, and geographic extents in combination and assess-
ing the consequences for presence probabilities and covariate relationships. We hypothesize
that algorithm performance will vary across geographic scales given differences in model struc-
ture, such as ability to handle covariate interactions and potential to overfit [18]. Additionally,
there are very few analyses that directly compare the effects of using GBIF presence records
versus records from expert-executed field collection programs. Given the known spatial bias in
GBIF data, we ask how well GBIF data can approximate predictions created from expert-col-
lected data sources [51, 52]. Finally, although there has been discussion on the effect of resolu-
tion size [35], there has been limited discussion on how SDM performance varies across areas
of differing geographic extent when resolution size is held constant.

In an effort to answer these methodological questions in a biologically and epidemiologi-
cally relevant study system, we will use the intermediate hosts of Schistosoma mansoni Sam-
bon, 1907—Biomphalaria Preston, 1910 snails—as a case study. Simultaneously, we will make
substantial contributions to knowledge on predicting schistosomiasis risk in Brazil. Schistoso-
miasis is a debilitating parasitic disease caused, in Brazil, by S. mansoni, a parasite that relies
on both freshwater Biomphalaria snails and human beings to complete its life cycle [53]. In
Brazil, approximately 6 million people are infected and 25 million live in areas where they are
at risk of infection [54]. The disease predominantly impacts poor communities dependent on
open water sources for occupational activities or other components of daily life [55, 56]. More
recently, schistosomiasis transmission has also been recorded in urban and peri-urban areas,
impacting people who are either without access to basic sanitation services or whose sewage
systems overflow in times of heavy rainfall [57, 58].

Because Biomphalaria freshwater snails are obligate intermediate hosts of S. mansoni para-
sites, SDMs of the non-human hosts of schistosomiasis allow us to predict areas of suitable
snail habitat where transmission may be possible. There are three competent Biomphalaria
snail hosts in Brazil: Biomphalaria glabrata Say, 1818, Biomphalaria straminea Dunker, 1848,
and Biomphalaria tenagophila D’Orbigny, 1835. Because snails are ectotherms (i.e., their body
temperature is dependent on their environment), their reproduction, survival, and dispersal
are strongly affected by their surrounding temperature [59]. The snails live in slow-moving
freshwater, including permanent and temporary sources, which are both influenced strongly
by precipitation and drainage patterns [60]. Land-use and land-cover (LULC) characteristics
affect snail presence through multiple pathways, including affecting temperatures through
changes in tree canopy and vegetation cover and influencing water patterns through deforesta-
tion and agriculture [61]. Finally, chemical factors and soil properties—such as pH and soil
water content—are known to impact the survival of Biomphalaria snails, due to their impact
on freshwater quality [62].

SDMs capture the snails’ biological relationships to these environmental factors and build
predictive risk maps that can help to target disease intervention efforts such as mass drug
administration [63]. There have been multiple studies using SDMs to predict suitable snail
habitat across multiple geographical scales in Brazil, from national [64-66] to sub-national
analyses, including those specific to areas within Pernambuco [67], Sdo Paulo [68], and Minas
Gerais [69, 70]. However, all of these analyses test only MaxEnt models, with the exception of
Guimardes et al., 2009 who used an indicator kriging procedure [69]. Moreover, with the
exception of Palasio etal,, 2021, the quality and quantity of accessible, remotely-sensed envi-
ronmental data has grown substantially since time of publication [68]. Finally, our group has
collected a large dataset of presence records throughout Brazil that reflect best expert knowl-
edge of the constraints on snail habitat, presenting an alternative to publicly available GBIF
presence data. Therefore, Biomphalaria snails in Brazil provide a ripe opportunity to compare
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and contrast current methods on SDMs, providing a rare comparative case study to guide
SDM approaches for disease ecology and contributing updated risk models that can guide Bra-
zil’s schistosomiasis elimination efforts [71].

We compare multiple combinations of SDM methods—three machine learning algorithms,
two data sources, and three geographic extents—and assess the consequences for suitability
probabilities and covariate relationships of three snail species. We address the questions: How
do statistical/machine learning models compare depending on research question or applica-
tion of interest? How do model accuracy, variable importance, and geographic predictions
vary across spatial scales? How does model performance compare using expert-collected data
versus publicly-available data?

Methods

All data and methods used in this analysis are publicly available and can be found at https://
github.com/alyson-singleton/sdm-disease-ecology-multi-scale.

Species data and background sampling

We acquired B. glabrata, B. straminea, and B. tenagophila presence data from two main
sources (1) an ongoing, Brazil-wide field program supported by multiple government-funded
groups across Brazil, including the Colegdo de Malacologia Médica, Fundagao Oswaldo Cruz
(CMM-Fiocruz) and the Coordination for Disease Control of the State Health Secretariat of
Sao Paulo (CCD-SP) [72-79] and (2) the Global Biodiversity Information Facility (GBIF), a
database of publicly available presence records commonly used to build SDMs [22].

The Brazil-wide field collection program, hereafter referred to as the expert-collected data-
set, consisted of 11,299 total snail records that spanned 1992-2019 and included 25 species. As
part of national efforts to control schistosomiasis, the Brazilian Ministry of Health has
approved routine collection and monitoring of Biomphalaria snail species. Geographical coor-
dinates of each collection site were acquired with a Garmin eTrex GPS device and species iden-
tification was done using morphological and molecular tools. Prior to model input, all records
were spatially filtered such that only one presence record was retained for each 1km grid cell
(i.e. “thinned to 1km”) to minimize pseudo-replication and oversampling bias [43]. After each
species was separately thinned to 1km, the dataset was reduced to 972 records of our snail
hosts of interest: 305 B. glabrata, 396 B. straminea, and 271 B. tenagophila presence points
(Fig 1, Table 2).

To compare model performance between expert-collected and publicly available GBIF data
and to create a background dataset (described below), we constructed a GBIF dataset by
searching Brazil for all species included in the expert-collected dataset and records of all fresh-
water animals found in South America, as defined by the International Union for Conserva-
tion of Nature [81]. This resulted in a total of 74,960 records that spanned 1985-2020,
included over 2,000 species, and reduced to 193 records of our snail hosts of interest—29 B.
glabrata, 28 B. straminea, and 136 B. tenagophila—post thinning. Our inclusion criteria for
GBIF records were (i) year was between 1985-2020, (ii) latitude and longitude each included
at least three decimal places and (iii) basis of record excluded “fossil specimen” and “machine
observation” to ensure that the record was field-collected at the latitude and longitude reported
and was identified by a human. For our snail hosts of interest we also required a complete spe-
cies taxonomic identification. We limited our comparison of expert-collected versus GBIF
data to B. fenagophila in Sao Paulo due to lack of sufficient data availability in other areas.

Given a lack of true absence data, we constructed a background dataset of freshwater ani-
mals across Brazil as our comparison group, thereby representing the freshwater landscape in
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Fig 1. Biomphalaria presence points by species (color) and source (shape), thinned to 1 km. A) National, B) Minas Gerais, C) Sao Paulo. Maps were builtin
R (version 4.2.2) using shapefiles from the geobr package [80].

hitps://doi.org/10.1371/journal. paph.0002224.9001

which snails could plausibly be sampled. Species distribution models are often constructed
using presence data only, without data on true absences of the species. To do so, models typi-
cally calculate the probability of species presence relative to a set of randomly-sampled

Table 2. Biomphalaria presence point quantity by species, scale, and source, thinned to 1 km.

Species Scale Source Presence point quantity Proportion of national data
B. glabrata National Expert+GBIF 327 1
Sudeste Expert+GBIF 244 0.74
Minas Gerais Expert+GBIF 200 0.61
B. straminea National Expert+GBIF 414 1
Sudeste Expert+GBIF 217 0.52
Minas Gerais Expert+GBIF 162 0.39
B. tenagophila National Expert+GBIF 358 1
Sudeste Expert+GBIF 318 0.89
Sao Paulo Expert+GBIF 234 0.65
Sao Paulo Expert® 169 NA
Sao Paulo GBIF* 115 NA

*Source comparisons only made for B. fenagophila in Sao Paulo (the only scale where data quantities were comparable and sufficient).

hitps://doi.org/10.1371/journal.pgph.0002224.1002
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background points across an area in which a species hypothetically could have been sampled
but was not. Instead of random sampling, we use presences of ecologically similar species (i.e.,
freshwater animals) as “pseudo-absence” or “background” points to control for sampling effort
and to capture the relationships with environmental covariates that distinguish the presence of
the species of interest from that of others [16]. We would expect sampling efforts of freshwater
animals to be similar for that of our species of interest. By constructing a background dataset
of freshwater animals, we are better able to represent typical sampling practices of freshwater
species in Brazil, rather than selecting background points randomly throughout the study area.
Using background records means the model will predict whether or not a record is a presence
(labeled as 1) or a background point (labeled as 0), rather than 0’s representing true absences.
The extent of the background dataset should be also chosen to represent the environmental
variation of the study area [16]. Our background dataset was a combination of (1) the remain-
ing expert-collected data after excluding our three species of interest (4.8%) and (2) the pub-
licly-available GBIF data described above (95.2%), which included a total of 2,091 freshwater
animal species and 77,785 presence records. Each background dataset was built by sampling
two times the number of presence data points for each model (i.e., a model with 100 presence
points was given 200 background points): this ratio was selected to balance the sample between
groups [82], while providing sufficient data to represent all environments and promote model
convergence [17, 83]. Background points were sampled without replacement across a proba-
bility distribution that maintained the frequency of background points per 1km grid cell.
Therefore, we retained a maximum of one record per grid cell, generating a “background
mask” that helped address sampling bias concerns [16, 84].

Environmental data and multicollinearity analysis

We used high-resolution (1km) climate, hydrology, soil property, and land-use/land-cover
(LULC) data to describe the environmental conditions associated with each species presence
record and background sample. We limited the number of covariates to variables previously
found to impact snail presence for ease of interpretation and comparison between model
design choices [44]. Climate data were obtained from CHELSA (version 2.1), a high resolution
(1km®) global downscaled climate data set [85]. Four climatology variables, averaged over
thirty years (1981-2010), were included in the analysis: temperature seasonality (bio4), mean
temperature of coldest quarter (biol1), mean precipitation of wettest quarter (biol6), and
mean precipitation of driest quarter (biol7). Hydrology data (height above nearest drainage—
HND—and soil water percentage) were obtained from the Merit Hydro data [86] and Open-
LandMap Soil Water Content [87], respectively, and soil property data (pH and clay) was
obtained from OpenLandMap Soil pH in H,O [88] and OpenLandMap Clay Content [89],
respectively. Because hydrology and soil variables were measured at finer spatial resolution
than the climate data, we scaled them up to the maximum value (HND) or mean value (water
content, pH, clay content) for each 1km” grid cell. Finally, our two LULC covariates—distance
to high population density and proportion of temporary crop cover during the year of sam-
pling—were constructed from WorldPop [90] and MapBiomas [21], respectively. High popu-
lation density was defined as a 1km grid cell with a density of at least 1500 inhabitants per
km’, per the World Bank definition [92]. Proportion of temporary crop cover was defined—in
natural areas—as farming areas where it was not possible to distinguish between pasture and
agriculture and—in urban areas—as areas of urban vegetation, including cultivated vegetation,
natural forest, and non-forest vegetation [91]. We selected these two LULC variables based on
our team’s on-the-ground knowledge of snail presence [93]. In total, we provided our models
with 12 environmental covariates (Fig A in S1 Text), none of which had pairwise Pearson
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correlation coefficients above 0.7 with any of the other covariates [44]. Although our studied
models can handle multicollinearity when calculating probabilities, collinear variables obscure
the variable importance and partial dependence plot interpretation [44].

Geographic extent

To investigate model performance across varying geographic extent, we created models span-
ning national, regional (Sudeste, composed of four states: Espirito Santo, Minas Gerais, Rio de
Janeiro and Sao Paulo), and state (Minas Gerais and Sao Paulo) extents in Brazil. The region
and states of interest were chosen based on the quantity of data available to input into the
models. Past studies have shown that model performance substantially declines with fewer
than 30-50 presence records [94, 95]. We selected only states with greater than 100 presence
records for a species of interest: Minas Gerais for B. glabrata and B. straminea and Sdo Paulo
for B. tenagophila (Table 2).

Statistical model type

To compare between machine learning modeling methods, we built three model types: Maxi-
mum Entropy (MaxEnt), Random Forest (RF), and Boosted Regression Tree (BRT). All mod-
els were built using the R program (version 4.2.2).

MaxEnt uses a maximum-entropy approach to estimate a species’ relative probability distri-
bution in response to environmental covariates [24]. MaxEnt models create smooth fitted
curves, which can facilitate straightforward ecological interpretation [16]. The degree to which
this “smoothness” is enforced can be controlled through choice of regularization settings and
by which feature types are provided, where options include linear, quadratic, hinge, threshold,
and product features [16]. Product features are equivalent to interaction terms in regression,
and they allow for limited interactions between covariates [16]. We allow MaxEnt all five of
these options and use the frainMaxNet function from the enmSdmX package, which includes
an L1 regularization feature [96].

On the other hand, RF, BRT, and other tree-based methods provide enhanced flexibility
that allow for automatic fitting of precise interactions between the environmental covariates
[97]. RF models take bootstrap samples from the training data and fit a decision tree to each
sample [83]. These individual trees can have high variance (i.e., depend heavily on the training
data), but have strong generalizability when averaged together to make a prediction over all fit-
ted trees [97]. RF models use random subsets of the available predictor variables (parameter
miry) on each decision tree split, which results in decorrelated trees and subsequently
improves model performance [83, 98]. Due to its relative ease of implementation and concep-
tual simplicity, RF has become a common SDM approach [18]. However, RF models have the
potential to overfit, especially when provided data with high class imbalance (e.g., many more
background points than presences) [83]. We use the trainRF function from the enmSdmX
package [96], which is a wrapper of the randomForest function from the randomForest package
(99].

BRT is similar in structure to RF, but the decision trees are recursively updated as the algo-
rithm learns. During each step of the learning process, BRT fits new trees to the residuals for
the previously fitted trees, which allows the algorithm to improve on the observations that are
not yet predicted correctly [25]. We use the trainBRT function from the enmSdmX package
[96], which is a wrapper of the gbm.step function from the dismo package [100]. Similar to RF,
BRT also has the potential to overfit to training data but can better handle class imbalance and
missing data due to its additional hyperparameters [25]. While these hyperparameters make
BRT the most flexible model of the three included in our analysis, they require an additional
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tuning step that can be computationally expensive [25]. As of now, no one model type has fully
eclipsed the others as the SDM standard, but tree-based methods have been shown to improve
performance in multiple settings [18].

Model evaluation

Our goals in model evaluation were first to assess the accuracy of each model in classifying
presence versus background (how well does each model classify snail distribution?), second to
compare model accuracy among methods (which machine learning approach represents the
data best?), third to assess the importance of different environmental covariates and the shapes
of their relationships with presence (what environmental characteristics are associated with
the observed snail distribution and with what functional form?), and fourth to compare this
variable importance and functional form among model methods (are the relationships
between predictors and snail presence consistent among models?). Before quantifying accu-
racy, we first assessed model biological realism qualitatively by using expert opinion to visually
compare maps where each pixel shows the mean value across 10 bootstrapping iterations in
which models were provided 80% of presence records available for each species at the scale of
interest. Qur group of experts consisted of scientists from CMM-Fiocruz and CCD-SP who
have studied and organized field collection of Biomphalaria snails in Brazil for over three
decades. Second, we assessed accuracy using four out-of-sample model performance metrics,
as described below, calculated through ten-fold spatial cross-validation (a process where folds
are divided in space instead of through random sampling, to avoid inflating SDM performance
measures due to spatial autocorrelation of environmental covariates [19]). We determined the
ten spatial folds using a k-means clustering algorithm where the size of folds was allowed to
vary [101]. We choose this mode of data partitioning to prioritize the degree of spatial separa-
tion while also minimizing unnecessary computational time, as compared to checkerboard, n
—1I jackknife, or block methodologies [101, 102]. Each fold was required to have at least one
presence and one background point.

To determine each model’s discrimination ability, we calculated sensitivity, specificity, the
area under the receiver operator characteristic curve (ROC-AUC, often referred to as AUC),
the partial ROC-AUC (pAUC), and true skill statistic (TSS). Sensitivity is the proportion of
presences correctly identified as presences, and specificity is the number of background points
correctly identified as background records. ROC-AUC measures the false positive rate (ie., 1
—specificity) versus sensitivity across all possible thresholds [45]. An AUC value of 1 indicates
perfect discrimination and 0.5 or less indicates the performance is no better than random). We
allowed AUC threshold values to vary across each fold for each model [103]. TSS is defined as
sensitivity + specificity—1 (i.e., values of zero or less indicate the performance is no better than
random) and is designed to be less sensitive to species prevalence values [38]. Given our inter-
est in comparing each of our models’ ability to distinguish relative suitability of sites, output
suitability probabilities were scaled such that all distributions ranged from 0 to 1 [48, 95]. We
also calculated partial ROC-AUC (pAUC) to better compare performance between model
types, as pAUC calculates the AUC values bounded between each model’s range of predicted
probabilities [46]. We implemented pAUC as described in Peterson et al., 2008 [46] using the
NicheToolbox package [104], which also substitutes “proportion of area predicted as present”
for the 1 —specificity x-axis. Background points are not actual absences; they can, in fact, repre-
sent areas of suitable species habitat. This substitution eliminates their impact on pAUC val-
ues. Instead, models are only evaluated on their ability to correctly identify presence points,
while still being penalized for overprediction of presence areas [46]. With the intention of
achieving an “out-of-sample” pAUC measure, we compared each test fold’s presence
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predictions with the training data’s total range of predictions. We also include a measure of
pAUC significance to establish if models are performing better than random since pAUC null
hypotheses can be <0.5 due to bounding between each model’s range of predicted probabili-
ties [46]. AICc is another common, useful measure for balancing model complexity and good-
ness-of-fit during model selection [47]. However, we are unable to calculate AICc for two of
our models (RF and BRT) due to their model structure (i.e., no obvious likelihood function or
number of parameters) and therefore do not calculate the measure in this study. Calibration is
a measure of how well the observed proportion of presence records in a grid cell equals the
model estimated probability (i.e., 60% of grid cells predicted with a probability of 0.6 contain a
presence record [48]). The main calibration evaluation technique is a calibration graph, which
plots model probability estimates against the observed proportion of presences, and is pre-
dominantly used in studies with true absence data [48]. Although not applicable for this analy-
sis, there are other situations where the calibration of the model is an additional aspect that
should be tested, such as when evaluating estimates of true prevalence [48].

Finally, partial dependence plots and variable importance measures were calculated across
the ten folds for each model to investigate each covariate’s contribution to model accuracy and
functional relationship with presence probability. Partial dependence plots (PDP) were drawn
using the pdp R package and show the marginal effect of each predictor on model probabilities
[105]. Partial dependence plots allow for comparison of inferred relationships between covari-
ates and suitability probability with a priori knowledge of factors that drive snail ecological
niche suitability. Variable importance measures were calculated using the vi_shap function
from the vip package [106], which calculates SHapley Additive exPlanations (SHAP) variable
importance values (a method of calculating how much covariates contribute to model predic-
tions) [49, 107]. Notably, SHAP values are model agnostic and can estimate comparable values
of variable contribution for both regression-based and tree-based methods [49].

Results

Model types produce remarkably different national prediction maps for all species despite
using the same presence and background records and environmental data (Fig 2). Although
probability prediction varies widely (Fig 2), spatially cross-validated AUC (Fig 3) and TSS (Fig
B in 81 Text) values of national models do not substantially differ across model types. RF
models tended to have somewhat higher sensitivity—they were more likely to accurately pre-
dict presence points—than MaxEnt and BRT across species (Table 3 and Fig B in S1 Text).
RF models also had consistently higher pAUC values—they were more likely to correctly pre-
dict presence points relative to the proportion of area predicted as present—across all species
and scales (Table 3 and Fig B in S1 Text). BRT models tended to have higher specificity—they
were more likely to accurately predict background points—than MaxEntand RF across species
(Table 3 and Fig B in S1 Text). When comparing de-identified national prediction maps,
expert opinion selected BRT maps for B. glabrata, B. straminea, and B. tenagophila as best
matching a priori knowledge of current suitable snail habitat.

Compared to these national models, model accuracy remained consistent at smaller geo-
graphic scales for B. glabrata and B. straminea and increased at smaller geographic scales for B.
tenagophila (Fig 3 and Fig B in S1 Text), as measured by spatially cross-validated out-of-sam-
ple AUC, sensitivity, specificity, and TSS. Spatially cross-validated out-of-sample pAUC values
decreased somewhat at smaller geographic scales for all species (Fig B in S1 Text). pAUC sig-
nificance values indicate that almost all spatially cross-validated models were better than ran-
dom at correctly classifying presence points, with the exception of B. glabrata MaxEnt and
BRT models (Table 3). However, when testing models fit to national-scale data at predicting
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Fig 2. Large variation in snail suitability probabilities at a national scale. National prediction maps of B. glabrata (A-C), B. straminea (D-F), and B.
tenagophila (G-I suitability probabilities by model type (MaxEnt: A, D, G; Random Forest: B, E, H; Boosted Regression Tree: C, F, I). Each pixel shows the
mean value across 10 bootstrapping iterations in which models were provided 80% of the available species presence records. Maps were builtin R (version
4.2.2) using shapefiles from the geobr package [80].

hitps://doi.org/10.1371/journal.pgph.0002224.q002

state-level presences, all models for all species produced lower in-sample AUC and pAUC val-
ues than state models (Table B in S1 Text). State models also generally produced higher in-
sample sensitivity and specificity values but the nationally-fit models occasionally produced
higher sensitivity values (i.e., sometimes the nationally-fit models were able to correctly iden-
tify presence points that the state-specific models missed). Differences in predictive accuracy
between models trained on state versus national data when tested on state data occurs due to
differences in predicted suitability maps, which are visually apparent (Fig 4 and Figs Cand D
in S1 Text). We also directly measure the differences between state suitability maps produced
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Fig 3. Scale and species drive SDM performance metrics more than model type. Plots of ten-fold spatially cross-validated, out-of-sample AUC values across
species (A, B, C), scales (panels), and model types (colors). Plots display mean (point) and +/- standard error (error bars).

hitps://doi.org/10.1371/journal. pgph.0002224.g003

by state and national models across species and model types by calculating pixel by pixel Pear-
son correlation coefficients and their significance (Table 4). As evident in the predicted suit-
ability maps, MaxEnt suitability maps remain most similar across scales for all species, while
RF and BRT maps change more readily at smaller scales and produce larger improvements in
model performance (Table B in S1 Text). Suitability maps of B. tenagophila were the most cor-
related for all model types (Fig D in S1 Text).

Mean, 95% confidence intervals, and significance values of in-sample pixel by pixel Pearson
correlation coefficients between the state suitability maps produced by state and national mod-
els across species and machine learning model type. Values are calculated across 10 bootstrap-
ping iterations in which models were provided 80% of the species presence records available at
the given scale. The values correspond to comparisons between the two columns of suitability
maps in Fig 4 and Fig C in S1 Text, and Fig D in S1 Text, displaying the comparisons for B.
glabrata, B. straminea, and B. tenagophila, respectively. P-values were calculated using a t-test,
comparing the 10 bootstrapped values with correlations from 1000 randomly permuted maps.

Despite similar overall accuracy across machine learning model types within geographic
extents (ie., MaxEnt national compared to RF national (Fig 3)), the models infer strikingly dif-
ferent relationships between covariates and suitability probability, which imply distinct biolog-
ical relationships. We use three specific examples to illustrate how responses differ across
model types, spatial extents, and focal species, by comparing plots in each column of Fig 5.
First, model types produce different curve shapes: MaxEnt often fits smoother or linear forms
in comparison to the flexible, nonlinear shapes produced by RF and BRT, as illustrated by dis-
tance to high population density (Fig 5A). Second, functional forms vary across scales: both B.
glabrata and B. tenagophila responses to soil clay percentage are directionally opposite at
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Table 3. Model performance of national Biomphalaria snail models across machine learning model types.

Species Model Type AUC Sensitivity Specificity pAUC pPAUC p-value* TSS
B. glabrata MaxEnt 0.78 0.69 0.67 052 0.72 036
(0.75-0.82) (0.61-0.78) (0.58-0.76) (0.44-0.60) (0.00-1.00) (0.20-0.52)
RF 0.73 0.62 0.60 0.60 0.00 022
(0.69-0.77) (0.49-0.76) (0.54-0.66) (0.56-0.64) (0.00-0.96) (0.05-0.40)
BRT 0.73 0.64 0.60 0.52 0.46 024
(0.69-0.76) (0.53-0.75) (0.53-0.67) (0.45-0.59) (0.00-1.00) (0.08-0.40)
B. straminea MaxEnt 0.80 0.86 0.72 0.62 0.00 0.58
(0.76-0.84) (0.81-0.91) (0.67-0.77) (0.55-0.69) (0.00-1.00) (0.51-0.65)
RF 0.77 0.76 0.77 0.64 0.00 0.53
(0.73-0.80) (0.70-0.81) (0.72-0.83) (0.60-0.67) (0.00-0.35) (0.46-0.59)
BRT 0.76 0.73 0.79 061 0.00 0.52
(0.73-0.80) (0.68-0.79) (0.74-0.84) (0.54-0.67) (0.00-1.00) (0.45-0.59)
B. tenagophila MaxEnt 0.67 0.53 0.47 0.54 0.00 -0.01
(0.63-0.71) (0.39-0.66) (0.36-0.57) (0.45-0.64) (0.00-1.00) (-0.22-0.20)
RF 0.68 0.53 0.52 0.63 0.00 0.05
(0.66-0.71) (0.39-0.66) (0.42-0.63) (0.58-0.68) (0.00-0.00) (-0.15-0.25)
BRT 0.68 0.46 0.59 0.59 0.00 0.05
(0.65-0.72) (0.35-0.57) (0.47-0.72) (0.52-0.66) (0.00-0.18) (-0.15-0.25)

Mean and +/- standard errors of spatially cross-validated out-of-sample AUC, sensitivity, specificity, pAUC, and true skill statistic (TSS) values for national models of all
species across machine learning model type. *Median and 10%-90% percentiles of pAUC significance reported due to better representlarge outlier values. The
corresponding table for in-sample estimates for all species can be found in Table A in 51 Text.

hitps://doi.org/10.1371/journal. pgph.0002224.1003

national versus state scales for all model types (Fig 5B). It is important to note that the range of
environmental covariates may differ remarkably across geographic extents. Third, species dif-
fer in the functional forms: B. glabrata and B. tenagophila suitability both respond nonlinearly
to temperature in the coldest quarter, but with different functional responses that vary between
scales (Fig 5C). By contrast, other functional forms remain relatively consistent across species
and scale, such as the response to distance to high population density (Fig 5A). These differ-
ences in inferred biological relationships highlight the potential pitfalls of using SDMs to
extrapolate environmental suitability beyond the scope of the data, and of assuming generality
from a single modeling approach.

Given the importance of understanding how Biomphalaria snails are responding to land
use and land cover (LULC) change, we investigated how the relative importance of LULC vari-
ables changes with scale. We hypothesized that LULC variables would become increasingly
important compared to climatic gradients at relatively smaller scales. Evidence for this predic-
tion was mixed. Supporting this prediction, the relative importance of LULC variables
increased consistently from national to regional to state scales for B. tenagophila models
(Fig 6C). However, LULC variable importance for B. glabrata models (Fig 6A) remained
more constant across scales and decreased at the state scale when using a MaxEnt model. Simi-
lar to B. glabrata, LULC variable importance for B. straminea models (Fig 6B) dipped in
regional models and was equivalently high in national and state models.

To investigate impacts of using presence data from an expert-executed field collection pro-
gram versus from a publicly-available species presence database, we constructed models using
two distinct datasets: expert-collected and GBIF. As anticipated, each dataset produced distinct
predictions of presence probability. Limiting these analyses to B. tenagophila in Sdo Paulo,
model accuracy was similar across both datasets (expert-collected mean AUC = 0.84,+/-
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Fig 4. State and national models produce substantially different state-level prediction maps. Minas Gerais prediction maps of B, glabrata suitability
probabilities by model type (rows) and model geographic extent (columns) Each pixel shows the mean value across 10 bootstrapping iterations in which
models were provided 80% of the species presence records available at a given scale. Parallel prediction maps of B. straminea in Minas Gerais and B.
tenagophila in Sao Paulo can be found in Figs C and D in 51 Text. Compared to national models (Fig 2), at smaller geographic scales it becomes more obvious
that suitability probabilities can be highly localized, producing points of high suitability surrounded by areas with low suitability. Maps were built in R (version
42.2) using shapefiles from the geobr package [80].
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Table 4. Correlation values between state and national models when predicting state-level suitability probabilities
across species and model types.

Species Model Type Mean correlation (95% CI) P-value

B. glabrata MaxEnt 0.48 (0.31-0.65) 0.00
RF -0.04 (-0.10-0.02) 0.26
BRT -0.02 (-0.09-0.05) 0.63

B. straminea MaxEnt 0.59 (0.53-0.65) 0.00
RF 0.27 (0.21-0.33) 0.00
BRT 0.31 (0.24-0.38) 0.00

B. tenagophila MaxEnt 0.80 (0.68-0.92) 0.00
RE 0.69 (0.66-0.73) 0.00
BRT 0.76 (0.73-0.78) 0.00

https://doi.org/10.1371/journal.pgph.0002224.1004

standard errors: (0.82, 0.86, publicly-available GBIF mean AUC = 0.79, [0.77, 0.82]), yet the
prediction maps show substantial variation regardless of model type (Fig 7). Despite somewhat
lower AUC values when the two datasets were combined (0.70, [0.68, 0.73]), experts judged
the suitability maps as preferable when data from both sources is included, across all model
types (Fig 7C, 7F, and 7I). Notably, the two data sets have different data quantities, with the
expert-collected dataset (# = 169) and combined dataset (n = 234) containing more presence
points than the GBIF dataset (1 = 115). The same maps and AUC comparisons for models
with data quantity held constant (n = 115) can be found in the (Fig E in S1 Text), with slightly
more variation between model suitability maps but generally small changes to above results.

Discussion

SDMs are increasingly used in disease ecology to understand environmental drivers of reser-
voir host or vector species distributions and to project how they might change with anthropo-
genic modification. We showed, by systematically comparing SDM approaches that employed
different modeling techniques, spatial extents, data types, and species, that both the spatial pre-
dictions and the inferred relationships with environmental features can vary substantially
across methods, even when performance measures (i.e., AUC, sensitivity, specificity, pAUC,
and TSS) are very similar.

A first important result is that even when given the same presence, background, and covari-
ate data, the three model types produce remarkably different suitability maps despite similar
accuracy. Although differences in spatially-cross validated mean AUC values were minimal
when compared within geographic extents (i.e., MaxEnt national compared to RF national),
we found that RF models had higher pAUC and tended to have somewhat higher sensitivity,
producing more ‘dense’ maps of predicted suitable habitat, than MaxEnt or BRT across species
and scales (Table 3 and Fig B in S1 Text). Consistently higher pAUC values highlight that RF
models are the best at predicting presence points correctly, even when controlling for overpre-
diction of presence areas. On the other hand, BRT models tended to have higher specificity,
producing more ‘sparse’ predictions, as compared to MaxEnt and RF across species and scales
(Lable 3 and Fig B in S1 Text).

Our analysis demonstrates the importance of individually investigating sensitivity, specific-
ity, and pAUC (separate from AUC), especially if models are intended to inform disease con-
trol policy [108, 109]. If total elimination is of high priority, high sensitivity and/or pAUC—
the ability for models to accurately identify all presence locations—might be emphasized to
safely capture all presence areas, with less concern for mistakenly implementing control inter-
ventions in places that actually contained only background records, which in this case would
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Fig5. Examples of marginal effects of covariates on suitability probabilities that vary across model type (A), geographic scale (B), and species (C). Partial
dependence plots for three covariates (columns) across model types (color), species (top two rows vs. bottom two rows), and scale (first row vs. second and
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generally suggest using RF models for most species and scales (Table 3 and Fig B in S1 Text).
Alternatively, with more limited resources, policymakers might prioritize models with high
specificity (i.e., the ability to accurately identify locations where the species is not expected),
such as the BRT models at all scales for B. tenagophila and B. straminea (Table 3 and Fig B in
S1 Text). These models would minimize potential efficiency losses that could result from con-
trol programs deploying available resources in places that do not actually contain the species
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Fig 7. Expert collected and public GBIF data produce visually different suitability maps for B. tenagophila in Sio Paulo across model type. Predicted
suitability maps with varying input data (columns) supplied to all model types (rows). Compared to national models (Fig 2), at smaller geographic scales it
becomes more obvious that suitability probabilities can be highly localized, producing points of high suitability surrounded by areas with low suitability. Maps
were builtin R (version 4.2.2) using shapefiles from the geobr package [80].

https://doi.org/10.1371/journal.pgph.0002224.q007

of interest. Notably, decisions regarding prevention and intervention efforts will change
depending on the species of interest, and our discussion centers around snail control. Conser-
vation efforts, for example, would likely consider different policy decisions based on modeled
species distribution maps, as they are concerned with maintaining the presence of species as
opposed to the absence. Finally, our experts consistently selected de-identified BRT models as
producing maps that best aligned with their a priori knowledge of suitable snail habitat across
multiple geographic contexts (national and Sdo Paulo scales): these models tended to have
higher specificity and lower sensitivity, making their suitability predictions relatively more
sparse. Overall, our findings align with previous comparisons of statistical model types in the
SDM literature: MaxEnt, RF, and BRT can all produce high model performance measures,
although which is the best can vary across species types [18, 41]. Therefore, we encourage
modelers to use the suite of SDM resources (including the R packages dismo, enmSdmX, etc.)
to draft multiple models for their application and explicitly test which model type is best suited
for their question in close collaboration with experts in the field, particularly those who have
extensive expertise in on-the-ground surveillance, as detailed further below.
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validation measures (AUC, TSS)?
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{ Are intervention resources J

Is total elimination top priority?
{ RPERID: J limited?
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Choose most specific model Choose best performing model

Fig 8.
https://doi.org/10.1371/journal.pgph.0002224.008

When prediction maps are used to inform intervention and/or funding decisions, signifi-
cant differences in the suitability maps could warrant radically differing deployment of control
strategies [63, 108, 109]. Therefore, in addition to evaluating multiple model performance
measures (AUG, sensitivity, specificity, pAUC, TSS, etc.), it is crucial to leverage local ecologi-
cal knowledge to assess the biological realism of each model’s predicted suitability map, as well
as of the estimated ecological relationships derived from partial dependence plots [93]. Other
analyses have leveraged expert assessment of model outputs when AUC was unable to clearly
rank models by performance [51]. This aligns with the well-known but underemployed guide-
line that remotely-sensed, big data models need to be integrated with local, on-the-ground
knowledge to create the best understanding of the system of interest [93]. Fig 8 displays our
recommended Standard Operating Procedure summarizing SDM model choice for disease
vector and host control efforts (Fig 8).

Subtle differences in performance across scales suggest that the most relevant geographic
extent may depend on the application and the relative distribution of data at different geo-
graphical scales; yet we also found that model performance could be high from national down
to state scales. Comparing across geographic scales, spatially cross-validated AUC values

PLOS Global Public Health | https:/doi.org/10.1371/joumal.pgph.0002224  August 2, 2024 19/28



https://doi.org/10.1371/journal.pgph.0002224.g008
https://doi.org/10.1371/journal.pgph.0002224

PLOS GLOBAL PUBLIC HEALTH Species distribution modeling for disease ecology

decreased at smaller geographic scales for B. glabrata and B. straminea, but increased at
smaller geographic scales for B. tenagophila (Fig 3; Fig B in S1 Text). This phenomenon can
likely be attributed to the varying proportion of presence data for each species within each
state (Table 2). While 89% of national B. fenagophila data is from within the Sudeste region
and 65% is within Sdo Paulo state, only 74% of national B. glabrata data is from the Sudeste
region and 61% is from Minas Gerais. B. straminea had an even smaller proportion of total
national data at the Sudeste (52%) and state level (39%). Accordingly, we hypothesize that larger
amounts of localized data for B. fenagophila Sudeste and Sao Paulo models improved model
accuracy, while limiting the ability for national models to capture ecological heterogeneity
across the entirety of Brazil. On the other hand, B. glabrata and B. straminea records are more
widely distributed across the nation, allowing for improved national predictions, whereas the
smaller data set from Minas Gerais limits the relative performance of state and regional models.
When specifically aiming to create best predictions for small geographic regions, we demon-
strate thatlocally-fit SDMs moderately increase model discrimination ability (Table B in S1
Text) and create maps with substantially different predictions as compared to nationally-fit
models (Table 4 and Fig 4 and Figs Cand D in S1 Text). However, when data are more uni-
formly distributed at the national scale, national scale models can be cropped to smaller scales
relatively effectively, indicating that building national models can also be warranted when
needed for large-scale applications or when investigating smaller geographic regions that have
limited local data. A final key factor affecting choice of geographic extent is whether the aim is
to identify covariate relationships specific to a geographic area of interest or to see generalized
covariate relationships that span heterogeneous habitats and geographies, including ranges not
yet observed in a given geographic region. This is particularly important when researchers aim
to use SDMs to project species distributions under scenarios of future climate change, which
include temperature and precipitation patterns not yet experienced in a given region.

Covariate relationships not only varied depending on geographic extent, but also by species
and machine learning model used. Even for two snail species in the same genus, their
responses to environmental covariates varied in both magnitude and direction (Fig 5), con-
tributing to the large suitability map differences (Fig 2 and Fig 7). Compounding these true
biological differences among species is the fact that different model structures produce differ-
ently shaped partial dependence plot curves, weighting interpretability versus flexibility and
differentially favoring nonlinearity and interactions [16, 30, 97]. For example, even when pro-
viding our MaxEnt models maximum flexibility in fitting the observed data, the resulting PDP
curves still exhibit more limited shapes than RF or BRT. MaxEnt’s smooth curves offer simple,
interpretable predictor relationships—potentially preferred for modelers whose primary inter-
est is general mechanisms that underlie habitat suitability and/or ease of explanation for pol-
icymakers who need to make decisions with limited time [16]. On the other hand, the hyper-
flexible curves produced by RF and BRT (and other tree-based methods) can produce
improved model performance and variable interactions, especially when models include suites
of variables known to interact in nonlinear ways, such as temperature and precipitation or sets
of LULC variables [25, 83, 97]. If model classification ability is held at the highest priority and
modelers believe it is ecologically feasible for predictors to have flexible relationships, partial
dependence plots and the other model evaluation methods discussed here can assist in retain-
ing clear model interpretation [49, 107]. Finally, we note that SDMs are correlative analyses.
Therefore, modeled covariate relationships may not be directly related to species presence but
with other environmental variables not included in the model. SDMs should be followed by
causal analyses if the goal is to understand true causes of species presence.

LULC variables became proportionally more important for predicting B. fenagophila snail
presence at smaller geographic scales as compared to bioclimatic variables. However, LULC
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variable importance remained relatively constant across scales for both B. glabrata and B. stra-
minea. Given that remotely-sensed bioclimatic variables predominantly change at larger spa-
tial scales (i.e., they are highly spatially-autocorrelated), we expected that models of smaller
geographic extent would rely more heavily on LULC variables, which contribute more local-
ized variation (Fig A in S1 Text). This hypothesized effect may have been mitigated for two of
the three snail species due to the fact that we held spatial resolution (1km?”) constant over the
three geographic extents. Other analyses varying resolution size have shown that biotic interac-
tions dominate at local scales, while abiotic factors dominate regionally [35]. Holding resolu-
tion constant likely allowed even national scale models to leverage localized variation derived
from LULC variables.

Given an adequate number of presence points, publicly-available GBIF data creates models
with comparable snail distribution predictions and model performance measures as models
given an expert-collected dataset. This is a very encouraging finding given that expert-executed
field collection programs can be logistically infeasible and public species presence resources
have grown in size and popularity [22]. Moreover, even when expert field collection is feasible,
it is often not possible to execute surveillance programs across large areas, such as the entirety
of Brazil. GBIF cannot always guarantee the same level of species identification accuracy as the
morphological and molecular tools often used in expert-executed field sampling, but the acces-
sibility of large amounts of species data has dramatically increased the potential for species dis-
tribution analyses [22]. Although only a singular case-study, our findings support the utility of
GBIF data for producing accurate SDMs without targeted field collection programs. It is criti-
cal to employ methods to overcome spatial biases inherent in these publicly available data
sources [51, 52], such as through geographically stratified background sampling and careful
inclusion criteria, but our findings support the growing use of these resources [34]. Impor-
tantly, many of these conclusions rest on our example where there was sufficient quantity of
GBIF data, which was only true of one species in Sdo Paulo state. Our findings demonstrate
the value that GBIF data can offer to disease control and elimination efforts and we support
ongoing initiatives working to increase access, precision, and quality of GBIF data across all
species and geographies [110].

Although our analysis contributes substantially to describing and quantifying current best
practices in the SDM literature, there are several limitations. First, the smallest geographic
extent we investigated was at the state level, which is still a large area. Other modeling studies,
including some of specific Biomphalaria species, have been conducted at the municipality or
intra-municipality scale [67, 68]. Although infeasible due to data quantity constraints across
species for this study, it is possible that our comparisons could have been augmented for local
specificity if we had included models built for specific municipalities. Secondly, we included a
limited number of predictors in this case study for ease of interpretation, especially given our
plan to compare models across geographic extents, machine learning models, and data
sources. However, some of our findings could be sensitive to the number, resolution, and/or
spatial-autocorrelation of predictors included [111]. For example, a set of predictors domi-
nated by LULC variables—rather than our models that included only two—could come to dif-
fering conclusions on changes in variable importance or partial dependence relationships.
However, our set of predictors was chosen to be biologically relevant, sufficient to capture eco-
logical relationships, and sufficiently general to be representative for other species distribution
modeling studies. A combination of bioclimatic, LULC, and other variables is very common in
the body of literature informing this analysis [41]. Lastly, while this analysis does compare
results across three species of snails, the species are very similar in that they are all from the
same genus and are all freshwater mollusks. Other species, even among those relevant to dis-
ease ecology, could vary in their response to our analyses across machine learning models,
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spatial extents, and data sources [18]. However, our analysis shows that even species in the
same genus may have significantly different ecological niches, indicating that modeling deci-
sions need to be grounded in system-specific ecological and biological knowledge.

There rightfully remains no single gold-standard of SDM methods suitable for all species,
geographic locations, and applications because differing contexts and intended uses warrant
differing modeling decisions. Making species distribution models that are useful and accurate
for a given question of interest requires careful design and in-depth evaluation. This paper
aims to serve as a resource and reference for current methods in species distribution modeling,
with applications to disease ecology. Given the extent to which these models are used to inform
fieldwork, policy, funding, and intervention strategies, continuous assessment and model eval-
uation are imperative. Species distribution models are powerful tools if used appropriately,
and this work illustrates the importance of three key dimensions of variation—model type,
spatial extent, and data source—highlighting that the former two can have large implications
for model predictions and interpretation.
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