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Abstract—Structured Query Language (SQL) plays a pivotal
role in the effective management of relational databases and is
a key skill across domains that engage with database systems,
including research, development, and business management.
However, mastering SQL can be challenging. To comprehend the
approaches employed by students when solving SQL problems
and address the challenges they faced during the learning process,
our study analyzes submissions from the Database Systems course
at the University of Illinois Urbana-Champaign during the Fall
2022 semester. We extend prior research involving line chart
visualizations that facilitate instructors in identifying struggling
students and understanding their submission behaviors. Yet,
we acknowledge the limitations of this approach in providing
timely feedback and actionable insights due to the sheer volume
of visualizations. To address this, we developed an innovative
technique using global sequence alignment scores and regular
expression algorithms to compress student submission sequences.
Our approach reveals submission patterns and pattern elements,
leading to recommendations for instructors to enhance database
education. By integrating student performance data, such as the
number of submission attempts on a particular SQL problem
and whether the student arrived at a correct final solution query,
we aim to empirically support these recommendations, thereby
enabling instructors to more accurately differentiate between
struggling and excelling students.

Index Terms—SQL; Database Education; online assessment;
pattern mining; sequence alignment

I. INTRODUCTION

SQL is the primary language used for managing data and
is widely supported by most Database Management Systems,
making it an essential skill for those who interact with
databases, such as users, developers, and researchers [1].
Its highly structured, English-like syntax makes it accessible
for beginners to learn without requiring proficiency in other
programming languages [2]. However, previous research has
shown that despite its accessibility, some students encounter
challenges in learning SQL [2]. Therefore, it is crucial to
analyze the approach students take when coming up with SQL
solutions and the difficulties they encounter [3].

Database instructors could improve the efficiency and ef-
fectiveness of analyzing student SQL query construction ap-
proaches by automating the examination of SQL submissions
[4]. This is particularly relevant for instructors who use auto-
graders to evaluate student submissions for SQL problems,
as this approach can yield invaluable insights into students’
problem-solving attempts and progress toward crafting an

appropriate solution [5]. Through this process, instructors can
identify the common areas of difficulty that students face in
mastering SQL concepts, and tailor their teaching strategies to
address these challenges [5]. Consequently, by automating the
analysis of student submissions, instructors may more easily
fine-tune their pedagogical approaches and provide students
with the necessary support to acquire SQL proficiency.

Our research work is a continuation and expansion of
previous studies on line chart visualizations that exhibit a stu-
dent’s submission pattern using the sequence alignment score
between each submission on a SQL problem and their final
submission, as described in [6]. However, a major drawback
of this prior research is the limited scalability of the visuals.
Given that the total number of visuals is equal to the number
of students multiplied by the number of SQL problems, it may
be difficult for an instructor to analyze the visuals even in a
small class with approximately 20 students, which can easily
result in over 100 visuals (over five problems). In the case of a
class comprising several hundred students, it is not possible for
instructors to review all of the line chart graphs to differentiate
between struggling and successful students and provide feed-
back in a timely manner. To address this limitation, our prior
research work generates textual representations of the student
submission sequence using global sequence alignment score
inputs, followed by applying regular expression algorithms to
compact and aggregate these textual representation submission
sequences [5]. These textual representation submission se-
quences are what we define as our textual submission patterns,
and the elements making up the submission patterns are what
we define as pattern elements. However, we did not evaluate
the submission patterns and pattern elements with empirical
evidence, such as the student’s performance data. Therefore,
our research aims to extend our prior work to answer the
question: what are the submission patterns that are associated
with improved performance or increased obstacles faced by
students during their learning journey?

According to previous research [7], students have different
learning paths, and their learning experience can be improved
if instructors can identify their individual learning approaches.
Building on this finding, our research aims to improve the
educational quality of students learning SQL in database
courses. Specifically, we examine the data from an upper-
level undergraduate and graduate Database Systems course
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at the University of Illinois Urbana-Champaign in the United
States, which typically has over 400 enrollees but had over
700 enrollees in the Fall 2022 semester. We focus on stu-
dents’ submissions to SQL homework assignments during the
Fall 2022 semester, which consists of 15 problems that are
automatically graded, with immediate feedback provided after
each submission. However, due to the large class size, it is
challenging for instructors to quickly identify common areas of
difficulty or individual students in need of additional support.
Moreover, with students submitting an average of more than
20 attempts per problem, the number of submissions for each
SQL problem is too numerous to be manually examined.
Therefore, our prior research work presented a method for
evaluating students’ progression as they attempt to solve an
SQL problem, which enables instructors to recognize the di-
verse approaches students use to write semantically equivalent
SQL queries. We aim to extend this research work by linking
students’ performance data with their submission patterns and
pattern elements to evaluate and differentiate the ones that may
indicate student challenges from the ones that may indicate
success. As a result, instructors can identify struggling students
more quickly and offer early assistance, leading to proactive
support rather than reactive support.

II. RELATED WORKS

A substantial number of studies have been conducted to
investigate the difficulties and misunderstandings that students
face when learning procedural programming languages such
as Java [8]–[10], C++ [9], [11]–[13], and Python [8], [9], [13].
In contrast, there has been a comparably smaller amount of re-
search on declarative or database query languages, particularly
SQL [14]–[19]. Although several existing studies have focused
on the SQL problems and concepts that students commonly
find challenging, such research has yet to attain the same
breadth as procedural programming language research. One
of the prior studies that analyzed SQL queries submitted by
students was conducted by Taipalus et al., and the authors
found that students made various syntax, semantic, and logic
errors in their SQL queries [16]. Specifically, Taipalus et al.
identified some of the syntax errors that had been reported
previously in the literature, including undefined parameters,
data type mismatch, and date time field overflow [14]. Ad-
ditionally, Taipalus and Perälä [17] examined persistent error
types that students frequently encounter while creating SQL
queries, along with the SQL query concepts that are linked
to such errors. Other studies have explored the various types
of SQL queries that students find challenging to write [20],
[21], the most frequent SQL semantic errors [22], and the
categorizations of semantic errors [23].

Prior research has highlighted the difficult SQL concepts
and challenges that students encounter, but the underlying
reasons for these difficulties remain largely unexplored. To
unravel the roots of SQL misconceptions, a qualitative research
methodology is necessary. In a think-aloud study, Miedema et
al. analyzed the problem-solving processes of 21 students and
identified four reasons for their SQL errors: interference from

prior course knowledge, incorrect generalization of answers,
flawed mental models, and confusion between SQL and natural
language [18]. Furthermore, Miedema et al. examined factors
that contribute to self-inflicted query complexity based on
correctness, execution order, edit distance, and query intricacy
[24]. Their findings suggest that the reasons for students’
difficulties in SQL query writing are multi-faceted and may
require targeted interventions tailored to the specific underly-
ing causes.

A few studies have explored the difficulties students en-
counter while learning SQL and have also investigated various
techniques for visualizing and identifying these obstacles and
learning strategies [6], [25]–[27]. To illustrate, Miedema et
al. created the SQLVis system, which employs visual query
representation (VQR) to assist novices in learning to write
SQL queries [25]. QueryViz, developed by Danaparamita
and Gatterbauer, is another tool that helps comprehend SQL
queries through visualization [27]. Moreover, the authors of
this study have developed visualization techniques, including
edit distance and clustering, to identify learning obstacles and
approaches based on students’ SQL submission sequences [6],
[26]. By leveraging these techniques, researchers can gain a
deeper understanding of the SQL learning process and provide
effective learning support to students.

A limited number of studies have been conducted to uncover
the causes of students’ difficulties in writing SQL queries, as
evidenced by the works of Miedema et al. [18], Poulsen et
al. [15], Ahadi et al. [20], and Taipalus et al. [17]. However,
there is a dearth of actionable recommendations for SQL
educators to address these issues. One approach suggested
in the literature is to improve the quality of SQL compi-
lation error messages. It is noted that students often face
obstacles and ultimately abandon the task when confronted
with syntax errors [14], [15]. Another recommendation is
to tackle the misconceptions that can arise from transferring
prior knowledge in mathematics, natural language, and other
programming languages [18]. This challenge is not unique to
SQL instruction as it has been observed in other programming
languages as well [28], [29]. Additionally, previous research
has emphasized the utility of generating automated recom-
mendations for instructors based on the various SQL solution
submission patterns exhibited by students [26].

To the best of our knowledge, no prior studies have in-
vestigated the various SQL solution submission patterns that
students exhibit with the aim of identifying problematic pat-
terns and promoting automated instructor recommendations.
To achieve this goal, we adopt regular expression techniques
employed in earlier research studies [30], [31] to transform
input data [6] into a string representation that is easier to
analyze, aggregate, and understand, thereby ensuring trans-
parency in the data processing. The input data comes from
the global sequence alignment scores between each student’s
submission with their final submission on each SQL problem;
the global sequence alignment score is a measure of similarity
between two sequences, aligned optimally end-to-end against
each other, based on dynamic programming [32]. A higher
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FIG. 1: System Overview Diagram.

alignment score indicates higher similarity and overlap, while
a lower alignment score indicates lower similarity between two
sequences. The commonly used edit distance algorithm [33]
in genomic sequencing may be considered a variation of the
global sequence alignment algorithm with a modification in
the scoring matrix. Our research has two main objectives: first,
we aim to analyze the different patterns of SQL submission
sequences displayed by students, which has been explored in
our previous study [5]. We have expanded upon our previous
study and included the average submission attempts for each
pattern and pattern element, and a case study examining the
frequently occurring “ ” pattern. Our second objective is to
identify submission patterns that are linked with superior
performance, as well as those associated with difficulties or
challenges faced by students. Ultimately, we aim to help
database instructors by alerting them on students who are
struggling, based on our analysis of their submission sequence
behaviors. This could assist instructors in identifying students
who require assistance at an early stage.

III. DATA COLLECTION

We collected a large dataset from an elective Database
Systems course in the Computer Science curriculum for
upper-level undergraduate and graduate students offered at
the University of Illinois Urbana-Champaign in the Fall 2022
semester. Enrollment in the course mandates prior completion
of a data structures course, typically taken in the second
year of study. This prerequisite ensures students possess the
necessary programming background, given the inclusion of
programming assignments in the course. The course employed
a flipped-classroom model, which involved the dissemina-
tion of pre-recorded lectures to students, followed by short
quizzes aimed at testing their understanding of the material
presented, which were graded on completion. Classroom time
was reserved for collaborative group activities designed to
reinforce the concepts presented in the pre-recorded lectures,
with groups comprising 4-5 students. Additionally, students
were given a set of approximately 15 SQL programming
questions for homework, to be completed individually over
a week. A total of 730 students were enrolled in the course
during the Fall 2022 semester.

After acquiring a large dataset that contained all of the
SQL submissions and their orders, we safeguarded student
anonymity and privacy by adhering to our institution’s In-

stitutional Review Board (IRB) data safety protocols. These
protocols involved eliminating identifying details from SQL
files and assigning each student a random identifier.

A. Description of Homework Assignments

We obtained our data from PrairieLearn - an online learn-
ing management system that autogrades students’ code and
provides immediate feedback on their submissions [34]. The
autograder serves to validate the students’ solutions by com-
paring their query’s data result output with the expected
solution’s data result output, using a binary grading scale that
does not offer partial credit, although students may see the
passed and failed test cases. Students are unlikely to locally
test their SQL queries before submitting on PrairieLearn due
to random test case data generation and the convenience of
PrairieLearn’s environment, eliminating the need for setting
up local environments. Homework questions can be answered
in any order, and students can submit unlimited attempts
until the deadline. Moreover, students can revisit previously
answered questions, even if they were answered correctly.
For an illustration of a SQL problem and its corresponding
instructor solution, please refer to Figures 2 and 3.

Write an SQL query that returns the ProductName
of each product made by the brand ’Samsung’
and the number of customers who purchased that
product. Only count customers who have purchased
more than 1 Samsung product. Order the results in
descending order of the number of customers and in
descending order of ProductName.

FIG. 2: SQL Homework Problem Statement Example

IV. METHODOLOGY

The graphical representation of our system, illustrated in
Figure 1, provides a comprehensive overview of the steps we
take to analyze the SQL solution queries submitted by students
in the database course via PrairieLearn. First, we gather the
data from the system, which is stored in our dataset as .sql
files. In the data cleansing phase, we remove all non-relevant
information and identifiers from these files. Subsequently, we
employ the Python sqlparse library [35] to parse the SQL
queries based on their component types such as Punctuation,
Keyword, Comment, Name, Literal, Operator, among others.
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Alignment Score 1 2 3 4 5 6 5 4 5 4 5 6 7 6 5 4 3 2
Submission x select customerid firstname phonenumber from customers - - where - firstname = ”%a” - - - - -
Submission y select customerid firstname phonenumber from customers as c where c firstname = ”%a” or c lastname = ”b%”

TABLE I: Example of global sequence alignment

SELECT Pr1 . ProductName , COUNT( C1 . Cus tomer Id ) as numCustomers
FROM P r o d u c t s Pr1 NATURAL JOIN P u r c h a s e s Pu1

NATURAL JOIN Customers C1
WHERE Pr1 . BrandName = ’ Samsung ’

AND C1 . Cus tomer Id IN (
SELECT C2 . Cus tomer Id
FROM Customers C2 NATURAL JOIN P u r c h a s e s Pu2

NATURAL JOIN P r o d u c t s Pr2
WHERE Pr2 . BrandName = ’ Samsung ’
GROUP BY C2 . Cus tomer Id
HAVING COUNT( C2 . Cus tomer Id ) > 1

)
GROUP BY Pr1 . ProductName
ORDER BY numCustomers DESC , Pr1 . ProductName DESC ;

FIG. 3: SQL Homework Solution Example

Components of the SQL queries that do not add to the meaning
of the query, such as white-spaces and comments, are excluded
to minimize noise in our dataset. The remaining tokens are
used to calculate global sequence alignment scores for each
student’s submissions compared to their best attempt, which is
either the first correct attempt or the final attempt if the student
never submitted a correct one. The sequence alignment scores
are then used to generate string representations of line charts
and their features; we compact the string representations using
the regular expression algorithm [30], [31]. We thoroughly
validate our textual representations by comparing them to their
corresponding line chart graphs at each step of our process to
maintain accuracy and consistency.

Our analysis aims to identify prevalent submission patterns
that can indicate challenges and potential areas of difficulty
faced by students. We use this information to provide recom-
mendations to instructors to support their teaching and assist
students in overcoming these challenges.

A. Global Alignment Score Computation

We employed the Needleman-Wunsch algorithm [32] as
the basis for our global sequence alignment approach. This
algorithm, which is based on dynamic programming, is well-
suited for aligning two sequences end-to-end in an optimal
manner, making it particularly sensitive to differences in the
lengths of the sequences being aligned.

In order to adapt this algorithm to our specific needs, we
made a few key modifications to the scoring matrix and the
keys used in the alignment process. Instead of using the
alphabetical letters commonly used in sequence alignment,
we defined our alignment dictionary with the tokenized com-
ponents of the SQL queries that we were analyzing. This
allowed us to assign an equivalent weight to each token in
the alignment scores, thereby eliminating any bias that might
arise based on the length of the individual tokens.

For example, consider a scenario in which one query
includes a SELECT token, while another query includes a

NATURAL JOIN token. If we were to rely on character
counts alone to evaluate the similarity between these two
queries, the SELECT token would be counted as six matches,
while the NATURAL JOIN token would be counted as twelve
matches. Yet, by using a token-based approach to alignment
with uniform token weighting, we are able to compare the
two queries more accurately and impartially, regardless of the
length or complexity of the individual tokens involved.

In order to facilitate the understanding of how the global
alignment scores are computed, we present an example align-
ment of two pre-processed SQL query submissions.
Submiss ion x :
[ ’ s e l e c t ’ , ’ c u s t o m e r i d ’ , ’ f i r s t n a m e ’ , ’ phonenumber ’ , ’ from ’ ,
’ c u s t o m e r s ’ , ’ where ’ , ’ f i r s t n a m e ’ , ’= ’ , ’”%a ” ’ ]
Submiss ion y :
[ ’ s e l e c t ’ , ’ c u s t o m e r i d ’ , ’ f i r s t n a m e ’ , ’ phonenumber ’ , ’ from ’ ,
’ c u s t o m e r s ’ , ’ a s ’ , ’ c ’ , ’ where ’ , ’ c ’ , ’ f i r s t n a m e ’ , ’= ’ , ’”%a ” ’ ,
’ o r ’ , ’ c ’ , ’ l a s t n a m e ’ , ’= ’ , ’ ” b%” ’ ]

The global alignment of the two pre-processed SQL query
submissions can be visualized in Table I. The matches are
represented by blue highlights, assigned an alignment score
of +1, while the mismatches/gaps are indicated by orange
highlights and assigned an alignment score of -1. The final
alignment score of 2 is marked in green. The top row of
numbers displays the current alignment score up until the
specified sequence component.

B. String Representations of Line Charts

Textual line-chart visualizations that demonstrate the
progress of students towards their final solutions are created
using both the global alignment scores and the median length
of all submissions for a particular problem, measured in SQL
tokens. The median length of submissions for each homework
problem is calculated using the percentile function of the
NumPy library [36], which gives the number of SQL tokens
that a 50th percentile submission contains. The mean length
was found to be skewed due to some students having a high
number of submissions or long queries. As a result, the median
was deemed a better measure.

Subsequently, we determine the variation in the alignment
scores between successive submissions made by a student for
a SQL homework problem and compare that value with the
number of tokens contained in a 50th percentile submission.
Whenever the absolute difference is less than one-third of the
tokens found in a median length submission, we mark that
submission attempt with the character “ ” since it contains
only minor changes, resulting in an almost level line chart
shape between the two submissions. When the difference
falls between one-third and two-thirds of the tokens in a
median length submission, we assign the submission attempt
the characters “ ` ” or “ ´ ”, depending on the value sign, as it
indicates moderate changes, resulting in a line chart shape that
moderately slopes between the two submissions. In case the
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difference is equal to or greater than two-thirds of the tokens in
a median length submission, we assign the submission attempt
the characters “/” or “\”, depending on the value sign, as it
indicates significant changes, resulting in a steeply sloping
line chart shape between the two submissions. If only one
submission attempt is found for the student on the problem,
we indicate it with a “ . ” character, representing one data
point on the line chart.

In our exploratory study, we selected one-third and two-
thirds as our threshold values after evaluating several other
options. The threshold values of one-thirds and two-thirds
performed better at minimizing noise (i.e. not having smaller
changes be considered steep changes and not having larger
changes be considered a small change) in our textual se-
quences. The even division of threshold values among the
three categories (flat, gradual, and steep) likely contributed to
this improved performance. These values, therefore, resulted
in improved accuracy and consistency between the textual
representations and the corresponding line chart features.
Further research with more extensive testing will be conducted
to determine the optimal threshold value.

C. Sequence Compaction of the String Representation
To simplify the representation of student submission pat-

terns and minimize noise, we adopt a compaction method that
eliminates consecutive duplicate elements in a sequence. For
example, if a sequence consists of successive occurrences of
“ ” characters, only one will be displayed unless followed
by other elements later in the sequence. This approach leads
to a more concise representation of submission patterns that
facilitates aggregation across students.

To further streamline the sequence, we apply a string regular
expression algorithm to match “ ` ” with “ ´ ” characters, which
are represented as either a “ ˆ ” or a “U” depending on the
direction of the curve in the line chart. Similarly, we match
“\” with “/” characters and also represent them as a “ ˆ ” or
a “U” depending on the direction of the curve.

We conduct a validity check on the sequence before and af-
ter each compaction step to ensure the resulting representation
accurately reflects the corresponding line chart features.

V. RESULTS

In this section, we will present an exploratory data analysis
[37] of student submission patterns and sub-patterns (pattern
elements), including an analysis of the average number of
submission attempts associated with each pattern element.
We will also analyze the distribution of incorrect submis-
sion pattern elements, and compare the submission elements
between successful and challenged student groups. Finally,
we will examine the relationship between student homework
assignment grades and the pattern elements displayed in their
submissions.

A. Most Common Student Submission Patterns
Table II summarizes the top five submission patterns among

all SQL homework problems and students to address the dif-
ferent types of SQL solution submission patterns exhibited by

Pattern # of Occurrences % of All Occurrences Average Submission Attempts

3724 35.21% 6.02
. 1355 12.81% 1.00
´ 759 7.18% 14.25
/ 609 5.76% 12.75
´ 324 3.06% 7.77

TABLE II: Most Common Student Submission Patterns

students. The findings were unexpected, as the most recurrent
pattern was “ ”, indicating that students made only slight
modifications between submissions before achieving their best
solution. The second most prevalent pattern was “ . ” which
signifies that the majority of students submitted only once
to the SQL problem, and were successful in doing so. The
remaining three patterns imply that students initially made
minor alterations to their SQL query before making moderate
or significant changes and then reaching their best solution
or made additional minor tweaks before reaching the best
solution. Other patterns not shown occurred infrequently so
they were excluded for the sake of brevity.

B. The “ ” Submission Pattern and Element Case Study

FIG. 4: Breakdown of Student Submissions on the “ ” Pat-
tern. The x-axis shows homework question number, the y-axis
displays pre-best attempt number of submission attempts, and
color intensity indicates corresponding student count.

With further analysis of the submission behaviors within the
category of the “ ” pattern, which constitutes 35.21% of all
student submissions as reported in Table II, we aimed to gain
a deeper understanding of the breakdown of the number of
submission attempts made by students. The high occurrence
of the “ ” pattern, which requires all elements of a submission
sequence to be “ ”, was a surprising finding. To visually depict
our findings, we created Figure 4.

The results of our analysis shed light on the reason behind
the lower average submission attempt number observed in the
“ ” pattern, as presented in Table II; a considerable portion of
students who exhibited the “ ” pattern had a limited number of
submissions (a majority only had 2-5 attempts per problem),
as evidenced by the concentration of cases in the lower range
of the submission attempts on the y-axis in Figure 4. The less
common instances of students submitting over 10 attempts per
problem are scattered along the upper range of the y-axis in
light yellow.

Authorized licensed use limited to: University of Illinois. Downloaded on November 01,2024 at 18:47:43 UTC from IEEE Xplore.  Restrictions apply. 



Element # of Occurrences % of All Occurrences Average Submission Attempts

8975 47.51% 13.16
´ 3083 16.32% 18.49
/ 2774 14.69% 18.14
U 1591 8.42% 28.02
. 1355 7.17% 1.00
` 535 2.83% 30.20
ˆ 291 1.54% 39.99
\ 285 1.51% 35.48

TABLE III: Average Submission Attempts for Each Pattern
Element

C. Pattern Elements and Average Submission Attempts

To gain a better understanding of the most common sub-
patterns within student submission sequences, we analyzed
the frequency of occurrence of each pattern element across
all students and SQL homework problems. The “Average
Submission Attempts” column shows the average number
of submissions made by students for each pattern element,
and the occurrences columns display the frequency that each
element is seen across all submission patterns. The results,
displayed in descending order by frequency in Table III, reveal
that the element “ ” was the most frequently occurring. This
is consistent with our previous findings that students mostly
made minor changes throughout their submission sequence.
The next two most common patterns, “ ´ ” and “/”, suggest
that students were getting closer to their best submission query.

The appearance of the “U” element in our sequence analysis
suggests that the student initially submitted a query, modified
it, and then returned to a version that was similarly distant
from the best solution. Our speculation is that this pattern
is indicative of query testing, where the student temporarily
comments out a section of their query to identify the source
of the error, and then resubmits a query that closely resembles
their initial submission. Our analysis of the data supports this
hypothesis, as we found that testing occurred in 77.55% of
the cases where the “U” pattern was observed. To reach this
conclusion, we evaluated the two submissions at the ends of
the “U” pattern; we computed their edit distance [33] and
validated whether their difference was less than our previously
used threshold value to be considered a “ ” or minor change.

The presence of the “ `” and “ \ ” elements indicates that
the student moved away from their best submission, while
the presence of the “ ˆ ” element suggests that the student
started moving in the right direction but then deviated from it
by making changes to their query. Fortunately, these patterns
are less frequent. Moreover, we believe that the elements “U”
and “ ˆ ” can be classified similarly - both elements exhibit
query testing behavior, but with changes made in opposite
directions relative to the best submission. This hypothesis
is also supported by our analysis of the data, as we found
that testing occurred in 84.46% of the cases where the “ ˆ ”
pattern was observed; we believe testing to have occurred if
the two submissions at the ends of the “ ˆ ” pattern have an
edit distance that’s less than the threshold value used for the
“ ” pattern (therefore within the range of a minor change).
To strengthen this conclusion, we recommend performing a

qualitative evaluation with students to analyze their cognitive
processes during the debugging process.

The highest average submission attempts were observed for
the pattern elements “ ` ” and “ ˆ ” with 30.20 and 39.99 sub-
missions, respectively. The next highest average submission
attempts were made for the pattern element “U” with 28.02
submissions. The lowest average submission attempts were
made for the pattern element “ . ” with only one submission,
as it corresponds to the submission pattern “ . ” with only one
attempt. The other pattern elements had an average of 13.16 to
18.49 submissions. These findings offer valuable insights into
student submission behavior and the difficulty level of various
pattern elements in SQL problem submission sequences.

D. Pattern Element Occurrences for Incorrect Submissions

Element # of Occurrences % of All Occurrences Average Submission Attempts

164 46.07% 18.05
´ 64 17.98% 21.08
/ 42 11.80% 20.10
U 41 11.52% 33.46
. 23 6.46% 1.00
` 12 3.37% 24.58
ˆ 5 1.40% 27.80
\ 5 1.40% 58.00

TABLE IV: Pattern Elements Found in Incorrect Submissions

In order to obtain a deeper view on the sub-patterns of
students who are struggling (fail to correctly solve the problem
in the end), we exclude all student submissions to homework
problems that eventually resulted in a correct submission
attempt - results are displayed in Table IV. The element
“ ” has the highest number of occurrences (164) and the
highest percentage of all occurrences (46.07%). The element
“\” has the highest average number of submission attempts
(58.00), followed by the element “U” (with an average of
33.46 submission attempts) and element “ ˆ ” (with an average
of 27.80 submission attempts).

While the order of number of occurrences for the pattern
elements are consistent with Table III, we observe a slightly
decreased percentage of occurrence for the “ / ” element
(14.69% vs. 11.80%) and a slightly increased percentage of
occurrence for the “U” element (8.42% vs 11.52%).

E. Average Submission Attempts for Pattern Elements in Suc-
cessful Student Groups

Element
Detected # of Occurrences % of All Occurrences Average Submission Attempts

1003 45.38% 3.07
. 869 39.32% 1.00
/ 192 8.69% 3.60
´ 129 5.84% 3.74
` 8 0.36% 5.00
U 7 0.32% 5.57
ˆ 1 0.05% 7.00
\ 1 0.05% 7.00

TABLE V: Average Submission Attempts for Pattern Elements
in Lower 25th Percentile Submissions

To analyze submission pattern elements in high-achieving
or successful students that are able to complete a SQL problem

Authorized licensed use limited to: University of Illinois. Downloaded on November 01,2024 at 18:47:43 UTC from IEEE Xplore.  Restrictions apply. 



relatively quickly, we excluded all student submissions where
their submission count to the particular homework problem ex-
ceeded the class-wide 25th percentile number of submissions.
We believe this may help validate pattern elements thought
to be linked to successful student behaviors and shed light
on the frequency of unfavorable sequences among successful
students. Table V displays the frequency and average submis-
sion attempts of pattern elements occurring in the lower 25th
percentile submissions (by submission count).

We observe that the element “ ” has a similar level of
presence compared to Tables III and IV; however, we have
a noticeably elevated percentage of “ . ” submissions, under-
standably since they only consist of one submission attempt
which counts towards the lower 25th percentile. We saw a
reduced presence for both elements “ ´ ” and “ / ”, and very
scarcely observed “ `”, “U”, “ ˆ ”, and “ \ ” elements.

F. Average Submission Attempts for Pattern Elements in Chal-
lenged Student Groups

Element
Detected # of Occurrences % of All Occurrences Average Submission Attempts

2446 37.52% 28.97
´ 1275 19.59% 31.28
/ 1037 15.91% 32.82
U 984 15.09% 36.98
` 336 5.15% 40.25
ˆ 229 3.51% 46.82
\ 212 3.25% 42.43
. 0 0.00% -

TABLE VI: Average Submission Attempts for Pattern Ele-
ments in Top 75th Percentile Submissions

To analyze submission pattern elements in challenged stu-
dents that require more time or submission attempts to com-
plete an SQL problem, we excluded all student submissions
where their submission count to the particular homework
problem was lesser than the class-wide 75th percentile number
of submissions. We believe doing so may help validate pattern
elements that we thought to be associated with challenged
student behaviors. This may also offer perspectives on the
frequency of unfavorable sequences in challenged student
groups. Table VI displays the frequency and average submis-
sion attempts of pattern elements occurring in the upper 75th
percentile submissions (by submission count).

We observe that the element “ ” has a much lower level of
presence compared to Tables III, IV, and V; instead, we have
almost double the proportion of “U” elements compared to
Table III (8.42% vs. 15.09%). There are also almost double or
more than double the percentages of occurrence for elements
“ `”, “ ˆ ”, and “ \ ”, compared to Table III. Understandably,
there were no occurrences of the “ . ” element given the top
75th percentile submission attempts.

G. Student Performance Grades and Pattern Elements

In order to explore the relationship between pattern elements
and students’ performance grades, we showcase the students’
grades data associated with submission patterns containing

Element # of Correct
Submissions

# of Incorrect
Submissions

# of Total
Submissions % Correct

/ 2732 42 2774 98.49%
. 1332 23 1355 98.30%
ˆ 286 5 291 98.28%
\ 280 5 285 98.25%

8811 164 8975 98.17%
´ 3019 64 3083 97.92%
` 523 12 535 97.76%
U 1550 41 1591 97.42%

TABLE VII: Relationship Between Pattern Elements and
Student Grades

the corresponding pattern elements, in an aggregated (aver-
aged) format in Table VII. However, PrairieLearn’s autograder
feedback, along with unlimited attempts before the deadline,
resulted in a high average grade for the SQL assignment. As a
result, the majority of students received full credit for the SQL
problems. This is reflected in the data shown in the column “%
Correct” in the table, which demonstrates that there were no
substantial differences in the grades received for the various
pattern elements.

VI. INTERPRETATIONS

In this section, we will provide an in-depth examination
of our findings and delve into the patterns or sub-patterns to
answer our research question: what are the submission patterns
that are associated with better performance or more obstacles
encountered by students in their learning journey?

First, we look at patterns that seem to indicate difficulty
among students, thereby requiring additional attention from
the instructor. Specifically, elements such as “ `”, “ \ ”, and
“ ˆ ” are worth paying attention to as they may indicate a
flawed mental model with misconceptions for SQL syntax or
semantics. For instructors teaching advanced SQL problems
such as ones containing correlated subqueries, they should be
especially mindful of students with the “ . ” pattern (who
received full credit), as this indicates that they only made
one submission attempt, which could be a sign of plagiarism
or cheating and should be investigated further. Otherwise,
element “\” is of particular concern in a student’s submission
sequence, which suggests that they are rapidly moving further
away from their final submission. The “ ˆ ” element may
indicate uncertainty with SQL concepts, as the student makes
progress but then reverses those changes to arrive at a solution
that is further from the final answer.

Our analysis with submissions of students who failed to
correctly solve a SQL problem showed that elements “ ˆ ”,
“\”, and “U” had the highest average submission attempts
associated with patterns containing them (27.80, 58.00, and
33.46, respectively). These values appear to be much higher
than the rest of the elements which ranged from 1.00 to 24.58
(refer to Table IV) attempts. While the “U” and the “ ˆ ”
elements may be indicative of testing behaviors, the testing
behaviors presented in this particular group of students (who
either abandoned the question or ran out of time) are likely
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ineffective testing behaviors; therefore, instructors who see
student patterns with the “U” or “ ˆ ” elements coupled with
high submission attempts may want to provide clarification or
support to improve debugging and testing skills. However, it
is unclear if the pattern elements (and misconceptions) caused
the students to not develop a correct solution, or if the high
submission attempts led to abandonment.

Our analysis of students who faced challenges and submit-
ted more frequently (higher submission percentiles) showed
that as the percentile increased for the # of submissions, there
seems to also be a rise in the occurrence of unfavorable
patterns such as “ `”, “ ˆ ”, “\”, where students deviated
from their solution. We analyzed both the submissions in the
75th percentile (as shown in Table VI) and those in the 90th
percentile (excluded for the sake of conciseness).

In contrast, when examining the submissions of successful
students who made fewer attempts (lower submission per-
centiles), we predominantly found favorable patterns, such as
“ / ”, “ ”, and “ ´ ”, which indicated that the students were
making progress towards their best solution. Conversely, unfa-
vorable patterns appeared only infrequently, with occurrences
ranging from 0.05% to 0.36% (as shown in Table V).

Therefore, while there was no relationship between a par-
ticular pattern element and a student’s grade, as most students
performed exceptionally well due to the unlimited submissions
and relaxed deadline, elements such as “ / ”, “ ”, and “ ´ ” were
linked to fewer attempts before arriving at the best solution.
On the other hand, elements like “ `”, “ ˆ ”, “\” were more
frequently observed in longer submission sequences and had
the highest number of attempts in incorrect submissions.

VII. LIMITATIONS & FUTURE WORK

The results of our study are based on data from the
University of Illinois Urbana-Champaign, with a highly ranked
Computer Science department, which may not be representa-
tive of the broader population. To enhance the generalizability
of our findings, it is recommended to gather and analyze data
from a diverse range of institutions and universities.

While a strong association was established between the
“U” and “ ˆ ” elements and testing behavior, it is unclear
if such testing behavior is productive to learning or leads to
further frustration. The elevated average number of submission
attempts linked to these elements introduces complexity and
poses a challenge in determining whether students’ struggles
arise from the elements (and their behaviors) themselves or
from the substantial number of attempts, which may be influ-
enced by confounding factors. To gain a deeper understanding,
a qualitative study through interviews with students would
be valuable to comprehend their cognitive processes and the
sources of frustration when exhibiting these pattern elements.

This highlights another limitation of our study, which is that
the number of submission attempts may not accurately reflect
a student’s understanding or learning of the SQL problem.
While a high number of submissions may indicate frustration
or a sense of challenge, and conversely, a low number of
submissions may indicate ease or success, there is no clear

connection between these factors and actual learning. For
instance, there may be students who are process-oriented and
prefer to solidify their understanding at each step of their
query, leading to a higher number of submissions, and there
may also be students who are result-oriented and only seek
to receive full credit on the autograder, possibly resorting to
blind experimentation or even cheating (as possibly indicated
by the “ . ” pattern). These two groups of students would likely
have vastly different levels of learning, contrary to our current
findings. We have conducted analyses to determine if students
with higher submissions on earlier problems in the assignment
performed better on later problems, and vice versa, but we
did not find any strong associations to debunk our current
findings. However, we still believe that an interview study to
understand students’ cognitive processes and learning would
greatly benefit our technique and help make it more accurate
and adaptive to different student behaviors.

Next, we plan to integrate study findings into an instructor-
friendly dashboard system and validate the effectiveness of this
technique through an empirical study with database instructors.

VIII. CONCLUSION

In this study, we expand on our previous research work by
conducting an exploratory data analysis on student submission
patterns and pattern elements, examining average submission
attempts, distribution of incorrect submission elements, and
disparities between successful and challenged students. The
relationship between homework grades and submission ele-
ments is also investigated.

We discovered that although no pattern element was found
to be directly linked to higher grades because students gener-
ally performed well on the assignment due to unlimited sub-
missions and a lenient deadline, certain pattern elements, such
as “ / ” (steep change getting closer to the best submission),
“ ” (minor change), and “ ´ ” (moderate change getting closer
to best submission), were linked to fewer submissions before
reaching the best solution. Elements such as “ `” (moderate
change getting farther from best submission), “ ˆ ” (getting
closer then farther from best submission), and “\” (steep
change getting farther from best submission) appeared more
frequently in longer submission sequences and were associated
with higher submission attempts in incorrect submissions.

These findings, which help to validate submission patterns
and pattern elements with empirical evidence, allow us to
establish more robust associations between pattern elements
and student performance, whether improved or challenged.
Consequently, we can equip database instructors with data-
driven techniques to swiftly differentiate struggling students
from successful ones. By adopting a proactive approach,
instructors can provide timely support and guidance, prevent-
ing the entrenchment of student misconceptions that may be
difficult to address through a reactive approach.
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