
Journal of Machine Learning ISSN: 2790-2048(e), 2790-203X(p)

Enhancing Accuracy in Deep Learning Using Random
Matrix Theory

Leonid Berlyand1, Etienne Sandier2, Yitzchak Shmalo1, and Lei Zhang * 3

1Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA.
2LAMA-CNRS UMR 8050, Université Paris-Est Créteil, Créteil 94010, France.
3Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.

Abstract. We explore the applications of random matrix theory (RMT) in the training of deep neural networks
(DNNs), focusing on layer pruning that reduces the number of DNN parameters (weights). Our numerical
results show that this pruning leads to a drastic reduction of parameters while not reducing the accuracy of
DNNs and convolutional neural network (CNNs). Moreover, pruning the fully connected DNNs actually in-
creases the accuracy and decreases the variance for random initializations. Our numerics indicate that this
enhancement in accuracy is due to the simplification of the loss landscape. We next provide rigorous math-
ematical underpinning of these numerical results by proving the RMT-based Pruning Theorem. Our results
offer valuable insights into the practical application of RMT for the creation of more efficient and accurate
deep-learning models.

Keywords:
Deep learning,
Marchenko-Pastur distribution,
Random matrix theory,
Increasing accuracy,
Pruning

Article Info.:
Volume: X
Number: X
Pages: 1 - 66
Date: /2024
doi.org/10.4208/jml.231220

Article History:
Received: 20/12/2023
Accepted: 29/08/2024

Communicated by:
Zhi-Qin John Xu

Contents

1 Introduction 3

2 Background on deep learning 5

3 Numerical algorithm and experiments 6
3.1 Numerical algorithm . 7

3.1.1 An overview of the Marchenko-Pastur (MP) distribution and its ap-
plications in machine learning . 7

3.1.2 Using MP for pruning DNN weights 8
3.1.3 MP and Tracy-Widom distribution for DNN training 10

3.2 Numerical experiments . 10
3.2.1 Training of fully connected DNNs on MNIST: Simplifying the loss

landscape . 11
3.2.2 MP-based pruning of CNNs on MNIST and Fashion MNIST 19

*Corresponding author. lzhang2012@sjtu.edu.cn

https://www.global-sci.com/jml Global Science Press

J. Mach. Learn., X(X):1-66 2

3.2.3 Numerics for training DNNs on CIFAR-10: Reducing parameters
via MP-based pruning . 22

4 Mathematical underpinning of numerical results 24
4.1 The classification confidence . 24
4.2 How pruning affects classification confidence (for deterministic weight

layer matrices) . 25
4.3 Assumptions on the random matrix R and the deterministic matrix S 26
4.4 Key technical lemma: Removing random weights for DNN with arbitrary

many layers does not affect classification confidence 29
4.5 Pruning Theorem for DNN with arbitrary many layers: How pruning

random weights using PM distribution affects the classification confidence . 31
4.6 Simple example of DNN with one hidden layer 33
4.7 Pruning Theorem for accuracy: How pruning affects accuracy 35

A Some known results on perturbation of matrices 37
A.1 Asymptotics of singular values and singular vectors of deformation matrix 37
A.2 Gershgorin’s circle theorem . 38

B An approximation lemma – pruned matrix W′ approximates the deterministic
matrix S 39
B.1 Numerics for Example 4.2 . 43
B.2 Details for Example 4.3 . 43

C Proof for Pruning Theorem 43
C.1 Proof for key technical Lemma 4.2 . 44
C.2 Proof of Pruning Theorem for accuracy . 48

D Other algorithms required for implementing RMT-SVD based pruning of DNN 49
D.1 BEMA algorithm for finding λ+ . 49
D.2 The role of singular value decomposition in deep learning 51
D.3 Eliminating singular values while preserving accuracy 52
D.4 MP fit criteria: Checking if the ESD of X fits a MP distribution 54

E Some of the proofs and numerics 55
E.1 Proof of Lemma 4.1 . 55
E.2 Effectiveness of MP-based pruning for different initialization methods . . . 57
E.3 A regression problem: MP-based pruning in regression 58
E.4 Numerical example used to calculate δX. 60
E.5 Hyperparameters for Section 3.2.1 . 61
E.6 Hyperparameters for Section 3.2.1 . 62
E.7 Hyperparamters for Section 3.2.2 . 62
E.8 CNN architecture description . 62

E.8.1 Pooling and regularization details . 63
E.9 The hyperparamters for Section 3.2.3 . 63

J. Mach. Learn., X(X):1-66 3

1 Introduction

Deep neural networks have become a dominant tool for tackling classification tasks, where
objects within a set S ⊂ Rn are categorized. DNNs are trained on labeled datasets T ⊂ Rn

by optimizing a loss function such as a cross-entropy loss function in (2.2) to maximize
classification accuracy. Through this training process, DNNs have achieved state-of-the-
art results on many real-world classification challenges, including handwriting recogni-
tion [31], image classification [30], speech recognition [25], and natural language process-
ing [56].

Overfitting is a common challenge for the training of DNNs, which occurs when the
model’s complexity results in memorization of the training data rather than generalization
to new data. Consequently, despite high training set accuracy, the model’s performance
on the test set deteriorates. To counteract overfitting, different regularization techniques
such as dropout [53], early stopping [47], and weight decay regularization [43] have been
developed.

Recently, random matrix theory (RMT) has been used in deep learning for addressing
overfitting [34, 37]. Similar works have used RMT to obtain RMT-based stopping criteria,
see [39], and regularization, see [60]. It has also been shown that RMT can be used to
predict DNN performance without access to the test set, see [36, 38], and in general to
study the spectrum of weight layers [57] and the input-output Jacobina matrix [45, 46].
RMT-based initializations were also studied in [50]. However, these RMT works in deep
learning focused on issues other than utilizing RMT-based pruning in DNNs, which is
the focus of our work. Specifically, we study the applications of RMT for pruning DNNs
during training. We present numerical simulations on simple DNN models trained on
the MNIST, Fashion MNIST, and CIFAR-10 datasets. Generally, these RMT techniques
can be extended to other DNN types and any fully connected or convolutional layer of
pre-trained DNNs to reduce layer parameters while preserving or enhancing accuracy.

We chose the MNIST, Fashion MNIST, and CIFAR-10 datasets because they balance
complexity and efficiency, allowing us to conduct numerous experiments on very large
DNNs, which is necessary for assessing the overall behavior of our algorithm within the
RMT framework. MNIST is the simplest of these datasets and is easy to train on, while
Fashion MNIST and CIFAR-10 are a little more complex. All of these datasets are com-
plex enough to demonstrate the effectiveness of our MP-based pruning method yet simple
enough to enable quick and extensive experimentation.

Our RMT pruning approach simplifies DNNs, enabling them to find deeper minima
on the loss landscape of the training set. As a result, DNNs can achieve higher accu-
racy directly on the training set. DNNs, during their training, navigate a complex, multi-
dimensional loss landscape in search of the global minimum – the optimal solution. How-
ever, the nature of these landscapes can often be rugged, filled with numerous sub-optimal
local minima that trap the learning process. By implementing RMT pruning, the landscape
becomes smoother, less prone to local minima, and more navigable for the learning algo-
rithm. This makes the optimization process more efficient and enables the DNN to find
deeper minima for the loss of the training set.

J. Mach. Learn., X(X):1-66 4

The works [3,11,61–63] utilized singular value decomposition (SVD) to eliminate small
singular values from DNN weight matrices. This pruning of singular values was used to
prune the parameters in the weight layer matrices of the DNNs, similar to our work. This
pruning was based on techniques such as energy ratio thresholds and monitoring the error
of a validation set. However, this energy threshold comes from empirical observations. In
contrast, the Marchenko-Pastur threshold used for pruning in our work is justified theoret-
ically by RMT and applied to fully connected networks and simple convolutional neural
network (CNNs) to establish an agreement between theory and numerics.

Other pruning methods can be found in [58], in which the authors categorize over 150
studies into three pruning categories: methods that use magnitude-based pruning, meth-
ods that utilize clustering to identify redundancy, and methods that use sensitivity analy-
sis to assess the effect of pruning. Our work is mostly related to the first method of prun-
ing; we use MP-based pruning to prune small singular values, together with sparsification
to prune all weights of the DNN bigger than some threshold (and set them to 0), see Sec-
tions 3.2.1-3.2.3. To the best of our knowledge, we are the first to use the MP distribution
as a threshold for pruning. Furthermore, the Pruning Theorem 4.1 provides mathematical
justification for the MP-based pruning approach, while Lemma 4.2 provides mathematical
justification for the sparsification approach. Other pruning methods, such as pruning at
initialization, have also been used, see [48].

In [54], the MP distribution was used to decrease the size of large singular values,
which allows for the extraction of the denoised matrix from the original (noisy) one. Then,
a validation set was used to determine the SVD pruning threshold for filtering noisy data
in DNN classification. However, there are important distinctions with our work. First,
we use an MP threshold for directly pruning weights without access to a validation set.
Second, the pruning in [54] is done after training, whereas pruning in our work is done
during training, corresponding to a different improvement mechanism of accuracy im-
provement via simplification of loss landscape during training. Third, the authors of [54]
focused on how pruning small singular values can improve the accuracy of DNNs trained
on noisy data. On the other hand, we study how the pruning of small singular values can
guide the pruning of weights of the DNN that are random due to initialization. Moreover,
our theoretical approach applies to both sources of randomness: initialization of weights
and noise in the data.

In contrast with the above numerical works, our work also provides rigorous theoret-
ical underpinning on the relation between RMT-based pruning of DNN weight matrices
and accuracy. To this end, we establish rigorous mathematical results (the Pruning Theo-
rem), which explain the effectiveness of our RMT-based algorithm. The theoretical results
will help elucidate the underlying mechanisms of the numerical algorithm, demonstrat-
ing why it successfully reduces the number of parameters in a DNN without reducing
accuracy. These theoretical results will allow for the development of RMT-based pruning
for state-of-the-art DNNs such as ResNets and VITs.

The remainder of this paper is organized as follows. In Section 2, we present an over-
view of DNN training. In Section 3, we present the numerical results of this paper. In
Section 4, we present the Pruning Theorem.

J. Mach. Learn., X(X):1-66 5

2 Background on deep learning

DNNs have become a widely-used method for addressing classification problems, in
which a collection of objects S ⊂ Rn is assigned to one of K classes. The objective is to
approximate an exact classifier ψ, which maps an element s ∈ S ⊂ Rn to a probability vec-
tor (p1(s), . . . , pK(s)). In this vector, pi(s) = 1 and pj = 0 for j ̸= i(s), where i(s) denotes
the correct class for s. The exact classifier ψ is known only for a training set T, and DNNs
are trained to approximate ψ by constructing a parameterized classifier φ(s, α) with the
aim of extending ψ from T to all of S via φ(s, α).

This is accomplished by finding parameters α that allow φ(s, α) to map s ∈ T to the
same class as ψ while maintaining the classifier’s ability to generalize to elements s ∈ S.
The parameters α are optimized by minimizing a loss function, aiming to enhance the
accuracy as the loss declines.

In this study, a DNN is represented as a composition of two functions: the softmax
function ρ and an intermediate function X(·, α). The function X(·, α) is defined as a com-
position of affine transformations and nonlinear activations, as follows:

• Ml(·, αl) is an affine function that maps RNl−1 to RNl , and depends on a parameter
matrix Wl of size Nl × Nl−1 and a bias vector βl .

• λ : Rm '→ Rm is a nonlinear activation function.

• X(·, α) = λ ◦ Mk · · · λ ◦ M1, where k is the number of layers in the DNN. Note that
each λ here might be different from the others, given that the domains of each differ.

Lastly, ρ is the softmax function, which normalizes the output of X(·, α) into probabili-
ties. The components of ρ are calculated as

ρi(s, α) =
exp

(

Xi(s, α)
)

∑
K
i=1 exp

(

Xi(s, α)
) . (2.1)

The DNN’s output, φ, is a vector representing the probabilities of an object s ∈ S be-
longing to a particular class i. φ = φ(s, α), where α ∈ Rν is the DNN’s parameter space
and ν ≫ 1 is the dimension of the parameter space. The goal is to train the DNN φ to
approximate the exact classifier by minimizing a loss function, such as the cross-entropy
loss function

L̄(α) = − 1

|T| ∑
s∈T

log
(

pi(s)(s, α)
)

. (2.2)

Training a DNN essentially involves traversing a high-dimensional, non-convex loss
landscape to locate the global minimum. But the complexity of these landscapes fre-
quently leads to local minima, saddle points, or flat regions, all of which trap the learning
process, impeding it from reaching an optimal solution [16]. These issues amplify as the
dimensionality (and thus the complexity) of the DNN increases [13]. In local minima, the
gradient of the loss function equals zero, but it is not the global minimum, thus, the al-
gorithm incorrectly assumes it has found the best possible solution. Saddle points, on the

J. Mach. Learn., X(X):1-66 6

other hand, are points where the gradient is zero, but they are neither a global nor a lo-
cal minimum. They are particularly problematic in high-dimensional spaces, a common
feature in deep learning.

To overcome these obstacles, various sophisticated optimization techniques are em-
ployed. For example, optimization algorithms such as Momentum, RMSProp, or Adam
are designed to prevent getting stuck by adding additional components to the update rule,
which can help in navigating the complex optimization landscape. These methods imbue
the optimization process with a form of “memory” of previous gradients, enabling it to
continue its search even in flat regions, hence helping to escape local minima and saddle
points.

DNNs, with their intricate and numerous parameters, offer formidable modeling capa-
bilities [23]. However, the same attribute that enables their power can also serve as a curse
during the training process. Theoretically, DNNs, due to their extensive parameteriza-
tion, should reach high levels of accuracy on their training sets [64]. But in practice, the
accuracy on the training set can often plateau, suggesting the DNN is getting stuck in a lo-
cal minimum or saddle point of the loss function [20]. This forms a critical impediment,
limiting the achievable accuracy on both the training and test sets [27].

Thus, despite the vast number of parameters, DNNs can often find themselves stranded
in areas of poor performance. This seemingly paradoxical occurrence is attributable to the
interplay between the DNN’s architecture, the data it is training on, and the optimization
process being employed [23]. Factors like poor initialization, inappropriate learning rates,
or the vanishing/exploding gradients problem can cause the DNN to settle in sub-optimal
regions of the loss landscape [21].

Techniques like gradient clipping [44] can aid in overcoming these issues. Regulariza-
tion techniques, which either penalize complex models or enforce sparsity in the weight
matrix, can also assist in avoiding local minima [23]. Nonetheless, these methods do not
alter the fundamental structure of the loss landscape, indicating that the problem of local
minima remains [20].

The potential of the RMT approach stands out in this context. We show that utilizing
RMT in pruning the DNN’s weight layers simplifies the loss landscape. This simplification
reduces the incidence of local minima and saddle points, aiding the optimization process
in its quest for a global minimum. In doing so, the DNN might attain higher levels of
accuracy on the training set directly without reaching a plateau. This results in an overall
enhancement in model performance, as higher training set accuracy generally translates
to improved performance on the test set, assuming overfitting does not occur.

3 Numerical algorithm and experiments

In this section, we focus on the training of two DNNs: The normal DNN, which keeps all
of its singular values, and a pruned DNN based on Algorithm 1, see Section 3.1.2. Each
DNN is trained for a predetermined number of epochs, with the number of epochs varying
per example. The DNNs are also trained for multiple seeds to ensure the reproducibility
of the simulations.

J. Mach. Learn., X(X):1-66 7

The performance of the DNNs is evaluated by plotting the average accuracy and vari-
ance of accuracy for the different seeds. This allows us to visually compare the perfor-
mance of both the normal and pruned DNNs. For more numerical results using a slightly
different RMT training approach, see [52].

3.1 Numerical algorithm

3.1.1 An overview of the Marchenko-Pastur (MP) distribution and its applications in
machine learning

We start with the MP distribution from RMT. This distribution is of fundamental impor-
tance in RMT and has numerous applications, such as signal processing, wireless com-
munications, and machine learning, as described in [14, 19, 51, 59]. The MP distribution
characterizes the limiting spectral density of large random matrices and conveys infor-
mation about the asymptotic distribution of eigenvalues in a random matrix, predicting
the behavior of random matrices under various conditions. Additionally, the MP distri-
bution is utilized in principal component analysis (PCA) and other dimension reduction
techniques, see [1, 10, 49].

To begin, we introduce the empirical spectral distribution (ESD) of an N × M matrix G
as follows.

Definition 3.1. The ESD of an N × M matrix G is given by

µGM
=

1

M

M

∑
i=1

δσi , (3.1)

where σi denotes the i-th non-zero singular values of G, and δ represents the Dirac measure.

Theorem 3.1 ([35]). Let W be an N × M random matrix with M ≤ N. The entries Wi,j are

independent and identically distributed random variables with mean 0 and variance σ2 < ∞.
Define X = W⊤W/N. Assuming that N → ∞ and M/N → c ∈ (0,+∞), the ESD of X,
denoted by µXM

, converges weakly in distribution to the Marchenko-Pastur probability distribution

1

2πσ2

√

(λ+ − x)(x − λ−)
cx

1[λ−,λ+]dx (3.2)

with
λ± = σ2(1 ±

√
c)2. (3.3)

This theorem asserts that the eigenvalue distribution of a random matrix converges
to the Marchenko-Pastur distribution as its dimensions increase. The MP distribution is
a deterministic distribution, dependent on two parameters: the variance of the random
variables in the initial matrix σ2, and the ratio of the number of columns to the number of
rows c.

J. Mach. Learn., X(X):1-66 8

3.1.2 Using MP for pruning DNN weights

As stated in Section 2, a DNN is a composition of affine functions Ml and non-linear ac-
tivation functions. The affine functions Ml can be thought of as a N × M matrix Wl of
parameters and a bias vector βl . In this work, we only focus on the matrix Wl of param-
eters. It has been shown that Wl can be studied using the spiked model approach in ran-
dom matrices, with the ESD of Xl = W⊤

l Wl/N having some eigenvalues which are bigger
than λ+ and some eigenvalues which are smaller than λ+, see [37, 54]. In this paper, we
focus on weight layer matrices Wl which were initialized in such a way that

√
NWl(0) sat-

isfy the assumptions of W given in Theorem 3.1. Then, we look at the ESD of Bl = W⊤
l Wl ,

without normalizing by 1/N. This setting is more applicable for the situation in which the
components of R are i.i.d. taken from N(0, 1/N).

Thus, we take Bl(t) = Wl(t)
⊤Wl(t) with Wl(t) a N × M weight of the l-th layer matrix

at time t of DNN training. We use RMT to study the deformed matrix Wl(t) = Rl(t) +
Sl(t) with Rl(t) random and Sl(t) a deterministic matrix. One can assume that during
training we go from Wl(0) = Rl (i.e. Wl is random) to Wl(tfinal) = Rl(tfinal) + Sl(tfinal)
with ∥Sl(tfinal)∥ ̸= 0 and tfinal the final training time. Meaning that as t → tfinal, ∥Sl(t)∥
grows and so Wl(t) becomes less random.

An important question is: Why does training reduce randomness in weight matrices?

• Suppose a DNN has only one weight layer matrix W. Before training starts, the ma-
trix W(0) is initialized with DNN weights. Entries of W arranged into a vector α(0)
are chosen randomly, meaning W(0) is fully random. A gradient descent step can be
written as

α(n + 1) = α(n)− τ∇L
(

α(n)
)

. (3.4)

The loss gradient ∇L(α(n)) is determined by the training data T, which is mostly de-
terministic. That is, when we take a step from n = 0 to n = 1, α(0), the random DNN
parameters are gradually replaced with deterministic parameters, and this process
continues throughout training.

• However, T is only mostly deterministic. Each object s ∈ T is sampled from a proba-
bility distribution and is a random variable, so T contains some randomness.

• In practice, the randomness of α(n) decreases as n → ∞ (∥S(n)∥ increases), but some
randomness due to the data remains.

We make the following observations based on the singular values of the weight layer
matrix Wl :

• Observation 1: Singular values σi of Wl that are smaller than a threshold
√

λ+ are
likely to be singular values of Rl , where λ+ is the upper bound of the MP distribution
of R⊤R. For more on this observation, see [54, 57].

• Observation 2: Rl does not enhance the accuracy of a DNN. In other words, the
random components of the weight layers do not contain any valuable information
and, therefore do not improve accuracy, see Lemma 4.2.

J. Mach. Learn., X(X):1-66 9

Based on these observations, the main idea is to remove some randomness from the
DNN by eliminating some singular values of Wl smaller than the threshold

√
λ+. Algo-

rithm 1 describes this procedure.

Algorithm 1 Optimized DNN Training and Pruning for Parameter Efficiency.

Require: ℓ, a predetermined number of epochs; τ, a threshold for the MP fit criteria in
Section D.4; f (epoch), a monotonically decreasing function from 1 to 0 (i.e. (3.5)) and
for each 1 ≤ l ≤ L and weight layer matrix Wl state splitl = f alse.

1: Initialize: Train the DNN for ℓ epochs. Take epoch := ℓ.
2: while a predefined training condition is met (i.e. epoch ≤ 100) do
3: for each l, if splitl = f alse then for weight matrix Wl in the DNN φ do

4: Perform SVD on Wl to obtain Wl = UlΣlV
⊤
l .

5: Calculate eigenvalues of W⊤
l Wl .

6: Apply BEMA algorithm (see Section D.1) to find the best fit MP distribution for
ESD of X = W⊤

l Wl and corresponding λ+.
7: Check if ESD of X fits the MP distribution using MP fit criteria from Section D.4

and threshold τ.
8: if ESD fits the MP distribution then
9: Eliminate the portion (1 − f (epoch)) of singular values smaller than

√
λ+

to obtain Σ′ and form W′
l = UlΣ

′
lV

⊤
l .

10: Use Σ′ to create W′
1,l = Ul

√

Σ′
l and W′

2,l =
√

Σ′
lV

⊤
l .

11: if W′
1,l and W′

2,l together have fewer parameters than W′
l then

12: Replace Wl in the DNN φ with W′
1,lW

′
2,l , change splitl = true.

13: else
14: Replace Wl in the DNN φ with W′

l .
15: end if
16: else
17: Do not replace Wl .
18: end if
19: end for
20: Train the DNN for ℓ epochs. Take epoch := epoch + ℓ.
21: for each l, if splitl = true do
22: if for Wl := W′

1,lW
′
2,l the ESD of Xl fits the MP distribution with thresholds τ

and λ+ and if, we (hypothetically) applied steps 4-12 to Wl , the number of parameters
in the DNN φ would decrease then

23: replace W′
1,lW

′
2,l with Wl and splitl = f alse.

24: else
25: Do not change anything.
26: end if
27: end for
28: end while

J. Mach. Learn., X(X):1-66 10

3.1.3 MP and Tracy-Widom distribution for DNN training

We use the bulk eigenvalue matching analysis (BEMA) algorithm (see Section D.1) to find
the MP distribution that best fits the ESD of Xl = W⊤

l Wl , with Wl a weight layer matrix.
We then use the Tracy Widom distribution (see [28]) to find a confidence interval for the λ+
of the ESD of Xl and then prune the small singular values of Wl based on the MP-based
threshold

√
λ+, see Section D.1 for more details on the Tracy-Widom distribution and the

BEMA algorithm. The steps of this procedure are shown in Algorithm 1.
In step 9 of Algorithm 1, we ensure not to eliminate all of the small singular values

(i.e. singular values whose corresponding eigenvalues fall within the MP distribution).
Striking a balance between removing the smaller singular values and retaining some is
found to be essential. Removing all of the smaller singular values might result in the
underfitting of the DNN, thereby inhibiting its learning capability. Conversely, retaining
some of the smaller singular values adds a degree of randomness in the weight layer
matrix Wl , which is found to impact the DNN’s performance positively.

Remark 3.1. Note that it is possible to continue splitting the matrices Wℓ, W′
ℓ
, and so on.

This also improves accuracy for fully connected layers. However, we found that recom-
bining and splitting the original matrix works better.

3.2 Numerical experiments

Numerical simulations presented in this paper show that MP-based pruning enhances the
accuracy of DNNs while reducing the number of DNN weights (parameters)1. The first set
of numerical simulations employs fully connected DNNs trained on the MNIST and Fash-
ion MNIST datasets, revealing that MP-based pruning during training improves accuracy
by 20-30% while reducing the parameter count by 30-50%. These findings are consistent
across various architectures and weight initializations, underscoring the consistency of the
MP-based pruning approach. Further, the combination of this approach and sparsification
(eliminating parameters below a certain threshold, see [58]) leads to even more significant
reductions in parameters (up to 99.8%) while increasing accuracy (by 20-30%). This reduc-
tion in parameters is greater than what is achievable through sparsification alone (99.5%),
see Section 3.2.1.

Unless stated otherwise, in all numerical simulations, the parameter matrices were ini-
tialized from N(0, 1/N), with N the number of input features, while the bias vectors were
initialized to 0. This initialization is closest to the theoretical work in this paper, which
is why we use it. The ReLU activation function was applied after every layer, includ-
ing the final layer. While it might be easier to train DNNs with other initializations and
architectures, we found that we obtained the highest accuracies when training with the af-
firmation structure while using MP-based pruning. For example, using a fully connected
DNN, we obtained a 91.27% accuracy on the Fashion MNIST test set, which is the highest
accuracy we observed on the data set using a fully connected DNN (see Section 3.2.1).
MP-based pruning also increases the accuracy of fully connected DNNs that do not have
an activation function on the final layer, for example, see Section E.3.

1Code can be found at https://github.com/yspennstate/RMT_pruning_2/blob/main/rmt_pruning_2.ipynb

https://github.com/yspennstate/RMT_pruning_2/blob/main/rmt_pruning_2.ipynb

J. Mach. Learn., X(X):1-66 11

For simplicity of presentation, we choose to demonstrate the MP-based pruning for
fully connected DNNs. In short, the idea is as follows. First, we observe that weight
layer matrices Wl have singular values of two types: those that contain information and
the ones that do not and, therefore, can be removed (pruned). This separation is done
via MP threshold

√
λ+. Furthermore, we demonstrate that pruning based on this MP

threshold preserves DNN accuracy. These numerical findings are supported by rigorous
mathematical results (Theorem 4.2). In fact, for the case of fully connected layers we show
numerically that MP-based pruning simplifies the loss landscape, leading to a significant
increase in DNN accuracy (by 20-30%). Finally, we show that a combination of MP-based
pruning with sparsification preserves or even increases accuracy while reducing parame-
ters by 99.8% vs. MP-based pruning alone, with a reduction of 30-50%, or sparsification
alone, with a reduction of 99.5%. Our theoretical results also explain why sparsification
does not reduce accuracy; see Lemma 4.2 and Remark 4.3.

Our numerics explores the application of MP-based pruning on DNNs that already
achieve relatively high accuracy on MNIST (Section 3.2.1), Fashion MNIST (Section 3.2.1),
and CIFAR10 datasets (Section 3.2.3), including those using convolutional neural net-
works and sparsification techniques (Sections 3.2.1-3.2.3). Our results show a substantial
reduction in parameters (over 95%) while preserving accuracy through a combination of
MP-based pruning during training and post-training sparsification, surpassing the effi-
ciency of using sparsification alone (80-90% reduction in parameters). These extensive
simulations for various architectures and initializations demonstrate the consistency and
wide applicability of MP-based pruning in optimizing DNN performance.

To see how MP-based pruning performed on a simple regression problem, see Sec-
tion E.3.

Training and testing procedure

The training and testing procedure for each network consists of the following steps:

1. We follow the standard partition for MNIST and Fashion MNIST, with 60, 000 images
for training and 10, 000 images for testing.

2. We train the network for a certain number of epochs.

3. We test the network after each epoch and store the accuracy for later comparison.

4. For the pruned DNN, we apply Algorithm 1 after a set number of epochs (defined
by the split frequency).

3.2.1 Training of fully connected DNNs on MNIST: Simplifying the loss landscape

The results of the simulations are presented in the examples below. These examples show
figures and tables which compare the average accuracy and variance of accuracy for both
the normally trained and pruned DNNs, as well as the average loss and number of pa-
rameters in both DNNs. Detailed discussion and analysis of these results are presented in
the examples.

J. Mach. Learn., X(X):1-66 12

Training hyperparameters:

• Split frequency (ℓ) (every how many epochs we split the pruned DNN and remove
small singular values): 7.

• Goodness of fit (GoF or τ) = 0.7.

See Section E.5 for the other hyperparameters in these simulations.

Remark 3.2. The algorithm for finding the GoF parameter is given in Section D.4. It is used
to determine if the assumption given in Theorem 4.1, that Wl = Rl + Sl, is reasonable
and that the weight layers can reasonably be modeled as a spiked model (that is Wl is
a deformed matrix).

Example 3.1. We conducted several numerical simulations to compare the performance of
the normal DNNs, trained using conventional methods, and pruned DNNs, trained using
our RMT approach.

In all simulations, the networks start with different initial topologies and are trained
over a course of 40 epochs. The portion of singular values smaller than

√
λ+ that we retain

(see step 3 in Algorithm 1) is given by the linear function

f (epoch) = max

(

0,− 1

30
· epoch + 1

)

. (3.5)

The topologies and the results of the simulations are summarized in Table 3.1 and
Fig. 3.1. The results indicate a consistent trend across different topologies: The pruned
DNNs outperform the normal DNNs in terms of accuracy on the test set while also dis-
playing smaller variance across multiple runs. Furthermore, the pruned DNNs consis-
tently achieve a significant reduction in parameters by the end of the training, see Re-
mark 3.4.

Remark 3.3. In these examples, the goodness of fit parameter can be very large (even 1)
and does not change the accuracy of the DNN. This is not always the case, especially for
state-of-the-art pre-trained DNNs, as we will show in future works. See also Section 3.2.2
for an example of when GoF must be smaller.

Remark 3.4. In Table 3.2, we observe the effect of our RMT training approach on the
number of parameters in our DNN with different topologies. Each topology started with

Table 3.1: Performance of normal and pruned DNNs for different initial topologies.

Initial topology Unpruned DNN accuracy Pruned DNN accuracy

[784, 3000, 3000, 2000, 500, 10] ∼85% ∼98.5%

[784, 1000, 1000, 1000, 500, 10] ∼70% ∼98.5%

[784, 2000, 2000, 1000, 500, 10] ∼70% ∼98.5%

[784, 1500, 3000, 1500, 500, 10] ∼70% ∼98.5%

[784, 1000, 1000, 1000, 500, 10] (GoF 1) ∼70% >98.5%

J. Mach. Learn., X(X):1-66 13

(a) (b) (c)

(d) (e)

Figure 3.1: Comparison of Normal DNN, trained normally, and pruned DNN, trained using the RMT approach on
the test set. The sub-figures correspond to the different initial topologies: (a) [784, 3000, 3000, 2000, 500, 10],
(b) [784, 1000, 1000, 1000, 500, 10], (c) [784, 2000, 2000, 1000, 500, 10], (d) [784, 1500, 3000, 1500, 500, 10], and
(e) [784, 1000, 1000, 1000, 500, 10] with a larger goodness of fit parameter of 1.

Table 3.2: DNN topology, initial and final parameters for the pruned DNNs, with percentage reductions.

Topology Initial parameters Final parameters Percentage reduction

[784, 3000, 3000, 2000, 500, 10] 18,365,510 10,471,510 42.98%

[784, 1000, 1000, 1000, 500, 10] 3,292,510 1,678,234 49.03%

[784, 2000, 2000, 1000, 500, 10] 8,078,510 4,619,376 42.82%

[784, 1500, 3000, 1500, 500, 10] 10,937,510 5,554,966 49.21%

a fixed number of parameters, and by the end of training, we see a significant reduction
in the number of parameters across all topologies for the pruned DNN. For each topology
and across all seeds, the reduction in the number of parameters was consistent, indicating
the robustness of our training process in pruning the network while maintaining perfor-
mance.

Simplification of loss landscape for more efficient training. As mentioned, a common
challenge with DNNs is the complex and high-dimensional loss landscape due to the large
number of parameters. This complexity often leads to local minima or saddle points that
hinder optimal training. However, by using this clever RMT pruning approach, we ef-
fectively eliminate redundant parameters, thereby simplifying the loss landscape. This

J. Mach. Learn., X(X):1-66 14

simplification allows us to avoid suboptimal local minima and converge more readily to
a global minimum.

This improved optimization efficiency is evident when comparing the loss and accu-
racy of the original and pruned DNNs on both training and test sets; see Table 3.3 and
Fig. 3.2. The pruned DNNs achieve lower loss and higher accuracy on the training set
directly, indicating that they are finding deeper minima in the loss landscape and avoid
suboptimal local minima.

Thus, the RMT pruning approach not only significantly reduces the complexity of
DNNs but also enhances their performance by improving their optimization efficiency.
Despite the reduction in parameters, the pruned DNNs still exhibit excellent performance
on both training and test sets (even higher accuracy than the normally trained DNNs),
demonstrating the effectiveness of this approach.

Simplifying the loss landscape for fully connected DNNs on Fashion MNIST. In this
section, we trained the normal and pruned DNNs on the data set Fashion MNIST and

Table 3.3: Comparison of training and test losses between normal and pruned DNNs for different topologies.

Topology Type Training loss Test loss

[784, 3000, 3000, 2000, 500, 10]
Normal 1.324090 150.541977

Pruned 0.015084 9.211179

[784, 1000, 1000, 1000, 500, 10]
Normal 0.938041 127.608980

Pruned 0.001350 14.543617

[784, 2000, 2000, 1000, 500, 10]
Normal 0.567025 70.037265

Pruned 0.019599 13.676276

[784, 1500, 3000, 1500, 500, 10]
Normal 1.037013 146.353504

Pruned 0.009206 9.519642

(a) (b)

Figure 3.2: Comparison of normal DNN, trained normally, and pruned DNN, trained using the RMT approach on
the training set. The sub-figures correspond to the different initial topologies: (a) [784, 2000, 2000, 1000, 500, 10],
(b) [784, 1500, 3000, 1500, 500, 10]. The other examples in Fig. 3.1 have similar-looking accuracies on their training
set.

J. Mach. Learn., X(X):1-66 15

we look at the performance of both DNNs on the training and test set. Again the pruned
DNN obtains higher accuracy and lower loss on both the training and test sets, evidence
that pruning the DNN using RMT simplifies the loss landscape and allows the DNN to
find a deeper global minimum.

Training hyperparameters:

• Split frequency (every how many epochs we split the modified DNN and remove
small singular values): 7.

• Goodness of fit = 0.7.

The other hyperparameters for the simulations in this subsection can be found in Sec-
tion E.6.

In all simulations, the networks start with different initial topologies, are trained over
a course of 70 epochs, and the portion of singular values smaller than

√
λ+ that we retain

is given by the linear function

f (epoch) = max

(

0,− 1

60
· epoch + 1

)

. (3.6)

Example 3.2. The topologies and the results of the simulations are summarized in Table 3.4
and Fig. 3.3.

As with MNIST, in the case of training on Fashion MNIST the results indicate a con-
sistent trend across different topologies: the pruned DNNs outperform the normal DNNs
in terms of accuracy on the test set while also displaying smaller variance across multi-
ple runs. Furthermore, the pruned DNNs consistently achieve a significant reduction in
parameters by the end of the training, see Table 3.5.

In Table 3.5, we observe the effect of our RMT training approach on the number of
parameters in our DNN with different topologies. Each topology started with a fixed
number of parameters, and by the end of training, we see a significant reduction in the
number of parameters across all topologies for the pruned DNN. For each topology and
across all seeds, the reduction in the number of parameters was consistent, indicating the
robustness of our training process in pruning the network while maintaining performance.

(a) (b) (c)

Figure 3.3: Comparison of normal DNN, trained normally, and pruned DNN, trained using the RMT approach
on the test set. The sub-figures correspond to the different initial topologies: (a) [784, 2000, 4000, 2000, 500, 10],
(b) [784, 2000, 2000, 2000, 2000, 1000, 500, 10], (c) [784, 3000, 4000, 3000, 500, 10].

J. Mach. Learn., X(X):1-66 16

Table 3.4: Performance of normal and pruned DNNs for different initial topologies.

Initial topology Unpruned DNN accuracy Pruned DNN accuracy

[784, 2000, 4000, 2000, 500, 10] ∼70% ∼89%

[784, 2000, 2000, 2000, 2000, 1000, 500, 10] ∼65% ∼89%

[784, 3000, 4000, 3000, 500, 10] ∼70% ∼89%

Table 3.5: DNN topology, initial and final parameters for the pruned DNNs, with percentage reductions.

Topology Initial parameters Final parameters % Reduction

[784, 2000, 4000, 2000, 500, 10] 18,581,510 10,471,510 43.65%

[784, 2000, 2000, 2000, 2000, 1000, 500, 10] 16,082,510 8,950,860 44.34%

[784, 3000, 4000, 3000, 500, 10] 27,867,510 15,599,740 44.02%

Remark 3.5. Again, we see that the RMT approach helps simplify the loss landscape so
that during gradient descent the pruned DNN finds a deeper global minimum than the
normal DNN. We can see this by looking at the accuracy of the DNNs on the training set,
see Fig. 3.4.

One can also see that the pruned DNN is obtaining a deeper global minimum by look-
ing at Table 3.6.

We present two graphs to analyze the impact of pruning on the performance of the
DNN with architecture [784, 2000, 4000, 2000, 500, 10], see Fig. 3.5. Fig. 3.5(a) shows the
training and testing accuracy of the DNN over epochs. The blue dashed lines indicate the
points at which pruning was applied. It is observed that the accuracy does not change
significantly after pruning, especially during the initial epochs when the DNN parame-
ters are still random. Fig. 3.5(b) specifically examines the impact of pruning on training
accuracy. Red dots represent the accuracy before pruning, and purple dots represent the
accuracy after pruning. The graph demonstrates that the training accuracy remains rela-
tively stable before and after pruning, reinforcing the observation that MP-based pruning
does not drastically affect performance, particularly in the early stages of training. Af-
ter the pruning, the training seems to be easier, and the DNN accuracy improves as the
training continues.

Table 3.6: Comparison of training and test losses between normal and modified DNNs for different topologies.

Topology Type Training loss Test loss

[784, 2000, 4000, 2000, 500, 10]
Normal 0.460549 95.516107

Pruned 0.144334 47.063285

[784, 3000, 4000, 3000, 500, 10]
Normal 0.880157 130.785274

Pruned 0.191681 49.781472

[784, 2000, 2000, 2000, 2000, 1000, 500, 10]
Normal 0.790270 127.023410

Pruned 0.270197 42.925396

J. Mach. Learn., X(X):1-66 17

(a) (b)

Figure 3.4: Comparison of normal DNN, trained normally, and pruned DNN, trained using the RMT approach on
the training set. The sub-figures correspond to the different initial topologies: (a) [784, 3000, 4000, 3000, 500, 10],
(b) [784, 2000, 2000, 2000, 2000, 1000, 500, 10].

(a) Accuracy vs. Epoch (b) Train Accuracy Before and After Pruning

Figure 3.5: Analysis of DNN training and pruning.

We applied the MP-based pruning approach for DNNs with other initializations, such
as the He and Xavier initializations, and obtained similar results in improvements of ac-
curacy, see Section E.2.

Also, for the DNN with architecture [784, 2000, 4000, 2000, 500, 10], we computed the
cost of training the DNN for 70 epochs on the Intel Xeon CPU with 2 vCPUs (virtual CPUs)
and 13GB of RAM chip, with MP-based pruning and a split frequency of 7. The total cost
was 12, 215.13 seconds, and we achieved an accuracy of ∼ 89.7%. Finally, we trained the
same DNN for the same amount of CPU time but without MP-based pruning, and the
DNN accuracy plateaued at ∼ 84% accuracy. This illustrates that the increase in accuracy
provided by MP-based pruning is not obtained because of increases in computational costs
alone.

We applied the MP-based pruning approach on a DNN without adding any regulariza-
tion while training with GD alone and with a fixed lr = 0.01. The DNN architecture was
[784, 3000, 3000, 3000, 3000, 500, 10] and we trained for 70 epochs with a split frequency

J. Mach. Learn., X(X):1-66 18

of 7. Without pruning, the accuracy plateaued at 44%, while with pruning, it reached
∼ 80%. This indicates that other strategies, such as regularization or rate decay, are use-
ful to take advantage of MP-based pruning. However, MP-based pruning improves the
accuracy of GD alone.

We trained a DNN with architecture [784, 3000, 3000, 3000, 500, 10] on Fashion MNIST
for 300 epoch, while adding both L1 and L2 regularization to the loss, see (E.7). The
hyperparameters for the regularization were 0.0000005 and 0.0000001, respectively; the
split frequency was 13 and the number of singular values kept was given by

f (epoch) = max

(

0,− 1

1000
· epoch + 1

)

.

All other hyperparameters were kept the same as in Example 3.3. The DNN achieved
a 100% accuracy on the training set and a 91.27% accuracy on the test set, showing that
the MP-based pruning algorithm attains higher accuracy when we combine it with regu-
larization. More on the relationship between regularization and MP-based pruning will
be discussed in another paper.

MP-based pruning with sparsification for fully connected DNNs on Fashion MNIST.
We train a fully connected DNN on Fashion MNIST to achieve ∼ 89% accuracy (on the
test set) with the same MP-based pruning approach as in Section 3.2.1 for a DNN with the
topology [784, 3000, 3000, 3000, 3000, 500, 10]. At the end of the training, we employ the
sparsification method by setting to zero weights in the DNN smaller than the sparsifica-
tion threshold ξ. Fig. 3.6 shows the accuracy of the DNN vs. the number of parameters
kept (determined by varying ξ). This additional sparsification leads to a large reduction
in parameters, by over 99.5%, without a significant drop in accuracy (∼ 0.5% drop). As-
suming that the weights of the DNN which are smaller than the threshold ξ are i.i.d. from
a distribution with zero mean and bounded variance, Lemma 4.2 provides an explanation

Figure 3.6: Accuracy vs. number of parameters kept. The percentage of parameters kept is also shown (above
each point on the graph).

J. Mach. Learn., X(X):1-66 19

for why removing the small weights (sparsification) does not affect accuracy.
Alternatively, one can prune the weight layers during training by combining the MP-

based pruning approach together with sparsification (i.e. removing weights smaller than
the threshold ξ every couple of epochs). We performed this training on the above DNN,
with ξ depending on the epoch. In our case, we initially took ξ = 0.001 and set it to grow
linearly so by the end of training ξ = 0.02. We achieved a 88% accuracy, while the final
DNN had 71, 331 parameters (keeping ∼ 0.2% parameters).

Finally, we tried the sparsification pruning method during training without MP-based
pruning. Again, we initially took ξ = 0.001 and set it to grow linearly so that by the end
of training ξ = 0.02. Similar to our observations from Section 3.2.1, the DNN plateaued at
∼ 70% accuracy while having 128, 533 parameters at the end of training (keeping ∼ 0.4%
parameters). Thus, we see that a combination of MP-based pruning with sparsification is
useful for pruning while also increasing DNN accuracy for fully connected DNNs trained
on Fashion MNIST.

3.2.2 MP-based pruning of CNNs on MNIST and Fashion MNIST

In our further exploration, we perform numerical simulations on convolutional neural
networks using MNIST and Fashion MNIST. In this simulation, our primary objective is
to investigate the effect of pruning the small singular values of the convolutional layers.
The overall goal in this example is to reduce the number of parameters in the CNN while
at the same time preserving its accuracy.

Given the multidimensional nature of convolutional layers, the direct application of
singular value decomposition is not straightforward. To overcome this challenge, we first
transform each convolutional layer into a 2-dimensional matrix. Specifically, for a convo-
lutional layer with dimensions m × n × p × q (where m is the number of output channels,
n is the number of input channels, and p × q is the kernel size), we reshape it into a matrix
of size m × npq.

After this flattening process, we proceed with the pruning as before, employing SVD
to remove the smaller singular values. This step essentially compresses the convolutional
layer, reducing its complexity while hopefully maintaining its representational capability.

The hyperparameters for the simulations in the next example can be found in Sec-
tion E.7. The other parts of the CNN architecture (which is the same for all of the CNNs
in this paper) can be found in Section E.8.

The learning rate (lr) is also modified every epoch to be

lrn = lrn−1 ∗ 0.96, (3.7)

where lrk is the learning rate at epoch k. Thus it decays over the learning time, see [23] for
more information.

Example 3.3. In this first example, we trained a CNN on MNIST for 30 epochs with a split
frequency of 13. The convolutional layers are given by [1, 64, 128, 256, 512], and the model
starts with one input channel, and then each subsequent number represents the number
of filters in each subsequent convolutional layer. Therefore, the model has 4 convolutional

J. Mach. Learn., X(X):1-66 20

layers with filter sizes of 64, 128, 256, and 512, respectively. We apply a kernel for each
layer of size 3 × 3.

The fully connected layers are given by [41472, 20000, 10000, 5000, 3000, 1400, 10], we
see that the model has 6 fully connected layers. The GoF parameter for the fully connected
layers is 0.6 while the GoF parameter for the convolutional layers is 0.05.

In these numerical simulations, the portion of singular values smaller than
√

λ+ that
we retain is given by the linear function

f (epoch) = max

(

0,− 1

20
· epoch + 1

)

. (3.8)

The accuracy of this DNN on the training and test set is given in Fig. 3.7.

In Example 3.3, it was observed that the pruned CNN exhibited a slightly lower accu-
racy in comparison to the normally trained CNN. Remarkably, despite this marginal drop
in performance, the pruned CNN managed to maintain this level of accuracy with approx-
imately half of the parameters used by the normally trained CNN. While the normally
trained CNN has 1, 100, 323, 974 parameters (on account of how large the fully connected
layers are), the pruned CNN has 583, 670, 449 parameters.

In terms of performance on the training set, the normally trained CNN demonstrated
an accuracy of 100%, an indicator of its potential overfitting to the training data. This is in
contrast with the pruned CNN, which displayed a lower accuracy on the training set. The
narrower gap between the training set and test set accuracies for the pruned CNN could be
interpreted as a sign of reduced variance between the training and test set, suggesting less
overfitting in the pruned model. At the same time, the fact that the normal CNN archives
have high accuracy on the training set suggests that the loss function in this example is
simple- i.e. finding the global max of the loss function is simple. This might be why the
pruned CNN does not outperform the unpruned CNN.

In this example, the drop in test set accuracy for the pruned CNN is dependent on
the GoF parameter. As the GoF parameter becomes more restrictive, the drop in accuracy

(a) (b)

Figure 3.7: Comparison of normal DNN, trained normally, and pruned DNN, trained using the RMT approach on
the test and training sets.

J. Mach. Learn., X(X):1-66 21

becomes less pronounced. However, it is important to note that a more restrictive GoF
parameter also leads to a smaller reduction in parameters. These observations suggest
a delicate balance between the GoF parameter, model complexity (as indicated by the
number of parameters), and model performance.

Example 3.4. In this example, we trained a CNN on the fashion MNIST dataset for 70
epochs with a split frequency of 17. The convolutional layers are given by [1, 64, 128, 256,
512]; we again apply a kernel for each layer of size 3 × 3. The fully connected layers are
given by [41472, 10000, 5000, 5000, 10]. The GoF parameter for the fully connected layers is
0.7, while the GoF parameter for the convolutional layers is 0.15.

In this numerical simulation, the portion of singular values smaller than
√

λ+ that we
retain is given by the linear function

f (epoch) = max

(

0,− 1

60
· epoch + 1

)

. (3.9)

The accuracy of this DNN on the training and test set is given in Fig. 3.8.

In Example 3.4, the pruned CNN exhibited a slightly lower accuracy in comparison to
the conventionally trained CNN. Despite this marginal drop in performance, the pruned
CNN maintained this level of accuracy with approximately half of the parameters used
by the conventionally trained CNN. While the normally trained CNN had 491, 381, 774
parameters, the pruned CNN utilized only 261, 891, 332 parameters.

In terms of performance on the training set, the conventionally trained DNN demon-
strated an accuracy of approximately 99%, suggesting potential overfitting to the training
data. On the other hand, the pruned DNN displayed a lower accuracy on the training
set. The smaller variance between the training and test set accuracies for the pruned DNN
could again be interpreted as a sign of less overfitting.

MP-based pruning with sparsification for CNN trained on Fashion MNIST. We train
the CNN found in Example 3.4 to achieve ∼ 92% accuracy (on the Fashion MNIST test set)

(a) (b)

Figure 3.8: Comparison of Normal DNN, trained normally, and pruned DNN, trained using the RMT approach
on the Fashion MNIST test and training sets.

J. Mach. Learn., X(X):1-66 22

with the same MP-based pruning approach as in Section 3.2.2. At the end of the training,
we employ sparsification by setting to zero all weights in the DNN smaller than some
threshold ξ.

As shown in Fig. 3.9(a), this additional sparsification leads to a large reduction in pa-
rameters, by over 99.5%, without a significant drop in accuracy (∼ 0.1% drop). As men-
tioned, Lemma 4.2 provides an explanation for why removing the small weights does not
affect accuracy, as these weights appear to correspond to the noise in the weight layers,
and removing them should not change accuracy.

Finally, we applied the sparsification pruning method after training without MP-based
pruning (during training). Fig. 3.9(b) shows that the pruning threshold seems to affect
the accuracy of the DNN in a much more significant manner. That is, even when pruning
95% of the parameters, the accuracy drops by multiple percentage points. We see that
a combination of MP-based pruning with sparsification is useful for pruning while also
ensuring the DNN accuracy does not decrease much for CNNs trained on Fashion MNIST.

(a) Sparsification with MP-based pruning. The percentage of
parameters kept is shown above each point on the graph.

(b) Sparsification without MP-based pruning. The percentage of
parameters kept is shown above each point on the graph.

Figure 3.9: Accuracy vs. number of parameters kept for CNNs trained on Fashion MNIST with and without
MP-based pruning.

3.2.3 Numerics for training DNNs on CIFAR-10: Reducing parameters via MP-based
pruning

In this numerical simulation, we applied the RMT algorithm to prune a DNN trained on
the CIFAR-10 dataset. The CIFAR-10 dataset consists of 60, 000 color images spanning 10
different classes. The dataset is split into a training set and a test set. The training set
contains 50, 000 images, while the test set comprises 10, 000 images, which is standard.

Throughout the training process, we tracked the performance metrics of both the prun-
ed and normally trained DNNs on both the test and training sets. Our analysis showed
that the pruned network, despite having a reduced number of parameters, managed to
achieve performance metrics comparable to those of the normally trained network. Addi-
tionally, the pruning process significantly reduced the number of parameters in the pruned
DNN, resulting in a more efficient network with a lower computational footprint. The hy-
perparameters for the simulations in this subsection can be found in Section E.9.

J. Mach. Learn., X(X):1-66 23

The lr is also modified every epoch to be

lrn = lrn−1 ∗ 0.96, (3.10)

where lrk is the learning rate at epoch k.

Example 3.5. In this example, we trained a CNN on CIFAR10 for 350 epochs with a split
frequency of 40. The convolutional layers are given by [3, 32, 64, 128, 256, 512]. We again
apply a kernel for each layer of size 3 × 3.

The fully connected layers are given by [8192, 500, 10]. The GoF parameter for the fully
connected layers is 0.08, while the GoF parameter for the convolutional layers is 0.06.

In this simulation, the portion of singular values smaller than λ+ that we retain is given
by the linear function

f (epoch) = max

(

0,− 1

200
· epoch + 1

)

. (3.11)

The accuracy of this DNN on the training and test set is given in Fig. 3.10.

In Example 3.2.3, it was observed that the pruned DNN exhibited a slightly lower accu-
racy in comparison to the normally trained DNN. Again, despite this marginal drop in per-
formance, the pruned DNN managed to maintain this level of accuracy with much fewer
parameters than was used by the normally trained DNN. While the normally trained
DNN has 5, 673, 090 parameters, the pruned DNN has 3, 949, 078 parameters.

MP-based pruning with sparsification for CNN trained on CIFAR10. We train the CNN
found in Example 3.5 on CIFAR10 to achieve ∼ 82% accuracy (on the test set) with the
same MP-based pruning approach as in Section 3.2.3. At the end of training, we sparsify
the DNN by setting to zero weights in the DNN smaller than some threshold ξ.

As shown in Fig. 3.11(a), this additional sparsification leads to a large reduction in
parameters, by over 97%, without a significant drop in accuracy (∼ 0 drop). Finally, we

(a) (b)

Figure 3.10: Comparison of normal DNN, trained normally, and pruned DNN, trained using the RMT approach
on the test and training sets.

J. Mach. Learn., X(X):1-66 24

(a) Sparsification with MP-based pruning. The percentage of
parameters kept is shown above each point on the graph.

(b) Sparsification without MP-based pruning. The percentage of
parameters kept is shown above each point on the graph.

Figure 3.11: Accuracy vs. number of parameters kept for CNNs trained on CIFAR-10 with and without MP-based
pruning.

tried the sparsification pruning method after training without MP-based pruning (during
training). Fig. 3.11(b) shows that the threshold pruning seems to affect the accuracy of
the DNN in a much more significant manner. That is, even when pruning 80% of the
parameters, the accuracy drops by ∼ 2%. We see that a combination of MP-based pruning
with sparsification is useful for pruning while also ensuring the DNN accuracy does not
decrease much for CNNs trained on CIFAR-10.

4 Mathematical underpinning of numerical results

In this section, we introduce the Pruning Theorem, which provides the relationship be-
tween the accuracy of a DNN before and after being pruned. First, we introduce an im-
portant tool for this analysis, the classification confidence of a DNN.

4.1 The classification confidence

We now introduce the classification confidence, see [9]. Take X(s, α) to be the output of the
final layer in our DNN before softmax. The classification confidence is defined as follows:

δX(s, α) := Xi(s)(s, α)− max
j ̸=i(s)

Xj(s, α). (4.1)

In other words,

• δX(s, α(t)) > 0 ⇒ s is well-classified by φ.

• δX(s, α(t)) < 0 ⇒ s is misclassified by φ.

For T′ the test set we can now define the accuracy of the DNN on T′ using the classifi-
cation confidence,

accα(t) =
({s ∈ T′ : δX(s, α(t)) > 0})

#T′ . (4.2)

J. Mach. Learn., X(X):1-66 25

4.2 How pruning affects classification confidence (for deterministic weight
layer matrices)

Now, we state a theoretical result that shows how, at least for simple DNN models, prun-
ing the singular values of the weight layers of a DNN impacts the DNN accuracy. This
result is not based on RMT but will help in understanding the results which follow. In the
following lemma, we assume that we are given a threshold

√
λ+, which we use to prune

the singular values of the layers of the DNN. In general, this threshold is given by the MP
distribution and numerically can be found using the BEMA algorithm, see Section D.1.
For simplicity, for W a matrix and β a bias vector, we define (W + β)s := (Ws + β).

Lemma 4.1. Let W1, W2, · · · , WL and β1, β2, · · · , βL be the weight matrices and bias vectors of
a DNN with the absolute value activation function. Assume we prune a layer matrix Wb to obtain
W′

b by removing singular values of Wb smaller than
√

λ+. For any input s (either from the training
set T or the test set T′), denote the change in classification confidence due to pruning as

∆(δX) =
∣

∣δX(s, αWb
)− δX(s, αW′

b
)
∣

∣. (4.3)

Here X(s, αWb
) and X(s, αW′

b
) are the outputs of the final layer before softmax of the DNN with

weight layer matrices Wb and W′
b respectively. Then

∆(δX) ≤
√

2λ+
∥

∥λ ◦ (Wb−1 + βb−1) ◦ · · · ◦ λ ◦ (W1 + β1)s
∥

∥

2

× σmax(Wb+1) . . . σmax(WL), (4.4)

See Section E.1 for a proof of this lemma.

Remark 4.1. For the simplified case when the bias vectors are zero, this lemma says that
the change in classification confidence δX after pruning is bounded by

∆(δX) ≤
√

2λ+∥λ ◦ Wb−1 ◦ · · · ◦ λ ◦ W1s∥2σmax(Wb+1) . . . σmax(WL). (4.5)

This means that if elements were well classified before the pruning and
√

2λ+∥λ ◦Wb−1 ◦
· · · ◦ λ ◦W1s∥2σmax(Wb+1) . . . σmax(WL) is small relative to δX(s, αW), then after pruning s
will stay accurately classified.

A crucial observation from the lemma is the product of the maximum singular values,
denoted as σmax(Wb+1) . . . σmax(WL). These singular values can be considerably large,
implying that their product can amplify the magnitude of the bound (4.5), thereby making
it substantial.

At first glance, this might seem concerning as it suggests that pruning might lead to
a large drop in the network’s accuracy. However, this is not necessarily a grave issue.
Subsequent sections will introduce two more theoretical results based on RMT, which will
elucidate why, in practice, this potential drop in classification confidence due to pruning
does not occur.

Furthermore, it is crucial to note that the lemma provides a worst-case scenario. In
real-world scenarios, the actual impacts of pruning are expected to be much milder than
what the lemma indicates. This is a common theme in theoretical computer science and
machine learning: the worst case does not always reflect the average or common case.

J. Mach. Learn., X(X):1-66 26

Furthermore, the product σmax(Wb+1) . . . σmax(WL) is used as a naive bound on the
Lipschitz constant of the function WL ◦ λ ◦ · · · ◦ λ ◦ Wb+1. In practice, this value can be
substantially smaller. There exist other methodologies for estimating the Lipschitz con-
stant of this function which might yield a more conservative estimate. See [18] for more
on the numerical estimation of the Lipschitz constant in deep learning.

Another practical takeaway from this theorem is the preference to prune the final lay-
ers of the DNN rather than the earlier layers. The reasoning is simple: pruning the latter
stages has a lesser effect on the overall accuracy, making it a safer bet in terms of main-
taining the network’s performance. However, this also depends on ∥λ ◦ (Wb−1 + βb−1) ◦
· · · ◦ λ ◦ (W1 + β1)s∥2 which depends on the earlier layers in the network.

In essence, while the theorem paints a potentially alarming picture of pruning’s ef-
fects, practical simulations, and further theoretical results can assuage these concerns. The
nuanced understanding provided by the theorem can guide efficient pruning strategies,
ensuring minimal loss in accuracy.

Example 4.1. The following example shows the histogram of δX of a trained DNN for the
problem given in Section E.4. We train a DNN with one hidden layer. The weight layer
matrices W1, W2 were initialized with components taken from i.i.d., normally distribution
with zero mean and variance 1/Nl . We obtained a 98% accuracy on the training set, which
had 1000 objects. δX of the test set, after the 600th epoch of training, is given in Fig. 4.1.

For the most part, we have ∥s∥2 ≤
√

2 and if we were to prune the first layer of the
DNN, we would obtain

√
2λ+σmax(W2)∥s∥2 ≤ 6.5. However we see that for many objects

s, δX can be much larger than 6.5.
Next we would like to obtain a better result than Lemma 4.1 using the properties of

random matrices.

Figure 4.1: Histogram of δX of the test set for the final epoch of training. On the x-axis, we have the size of δX.

4.3 Assumptions on the random matrix R and the deterministic matrix S

We considered a class of admissible matrices W, where W = R + S and W, R and S satisfy
the following three assumptions. The first assumption is a condition on R.

J. Mach. Learn., X(X):1-66 27

Assumption 4.1. Assume R is a random N × M matrix with entries taken from i.i.d. with
zero mean and variance 1/N. Further, as N → ∞, we have that σmax(R) →

√
λ+ a.s.

We then assume the following for the deterministic matrix S.

Assumption 4.2. Assume S is a deterministic matrix with S = ∑
r
i=1 σiuiv

⊤
i = UΣV⊤,

with σi the singular values and ui, v⊤i column and row vectors of U and V. Thus, S has r
non-zero singular values corresponding to the diagonal entries of Σ, and all other singular
values of S are zero. We also assume that these r singular values of S have multiplicity 1.

Finally, we assume for W := R + S.

Assumption 4.3. Take σi to be the singular values of S, with corresponding left and right
singular vectors ui and v⊤i and σ′

i to be the singular values of W = R+ S, with correspond-

ing left and right singular vectors u′
i and v′⊤i . First, we assume that N/M → c ∈ (0,+∞)

as N → ∞. Second, assume also that we know explicit functions gσi,R, gvi,R and gui,R such
that as N → ∞:

σ′
i (W)

a.s.−→
{

gσi,R, σi > θ̄(λ+),√
λ+, σi < θ̄(λ+),

(4.6)

|⟨u′
i, ui⟩|2

a.s.−→
{

gui,R, σi > θ̄(λ+),

0, σi < θ̄(λ+),
(4.7)

|⟨v′i, vi⟩|2
a.s.−→

{

gvi,R, σi > θ̄(λ+),

0, σi < θ̄(λ+).
(4.8)

Third, also assume that for i ̸= j:

|⟨v′i, vj⟩|2
a.s.−→ 0, (4.9)

|⟨u′
i, uj⟩|2

a.s.−→ 0. (4.10)

Here we take θ̄(λ+) to be a known explicit function depending on λ+, for example
see (A.2). In the Pruning Theorem 4.1, we assume that a weight layer Wb of the DNN
satisfies Assumptions 4.1-4.3, that is Wb = Rb + Sb, with Rb a random matrix, Sb a low-
rank deterministic matrix, and that the non-zero singular values of Sb are bigger than some
threshold θ̄(λ+). Empirically, it has been observed that these assumptions are reasonable
for weight matrices of a DNN, see [54, 57]. There are various spiked models in which
Assumption 4.3 holds, for more on the subject see [2,4–6,8,12,15,17,17,32,41,42,65]. Also,
a number of works in RMT addressed the connection between a random matrix R and
the singular values and singular vectors of the deformed matrix W = R + S, see [7, 8].
For example, one can show that the following two simpler assumptions on the matrices R
and S are sufficient to ensure that R and S satisfy the above Assumptions 4.1-4.3. Recall
that a bi-unitary invariant random matrix R is a matrix with components taken from i.i.d.
such that for any two unitary matrices U and V⊤, the components of the matrix URV⊤

have the same distribution as the components of R. We then assume:

J. Mach. Learn., X(X):1-66 28

Assumption 4.4 (Statistical Isotropy). Assume R to be a bi-unitary invariant random
N × M matrix with components taken from i.i.d. with zero mean and variance 1/N.

We then assume the following for the deterministic matrix S:

Assumption 4.5 (Low Rank of Deterministic Matrix). Assume S is a deterministic matrix
with S = ∑

r
i=1 σiuiv

⊤
i = UΣV⊤, with σi the singular values and ui, v⊤i column and row

vectors of U and V. Thus, S has r non-zero singular values contained on the diagonal
entries of Σ, and all other singular values are zero. We also assume that these r singular
values of S have multiplicity 1. Finally, we assume that N/M → c ∈ (0,+∞) as N → ∞.

An explicit relationship between Assumptions 4.4-4.5 and Assumptions 4.1-4.3 can be
found in [8]. The Assumption 4.4 is indeed strong, as it implies that the random matrix R
is random in every direction. In other words, for any unitary matrices U and V⊤, the
matrix URV⊤ has the same distribution as R. Random matrices with complex Gaussian
entries, also known as Ginibre matrices, are a class of random matrices that are bi-unitary
invariant [29].

Assumptions 4.2 and 4.5 are related to the low-rank property of the deterministic ma-
trix, see [54, 57] for how this assumption is related to DNNs. We consider the case where
we initialize the weight layer of a DNN using a Gaussian random matrix (see Exam-
ple A.1) and, after training, we obtain that Wl = Rl + Sl with Rl still a Gaussian random
matrix and Sl having low rank. The Pruning Theorem 4.1 can be then employed to deter-
mine that removing the small singular values of Wl will not affect much the accuracy of
the DNN. This is because the deformed model Wl = Rl + Sl satisfies Assumptions 4.1-4.3,
see Example A.1. This insight can be used to reduce the number of parameters in the DNN
without sacrificing its performance, as will be further discussed in Section D.3.

We now formulate theoretical results that provide a rigorous relationship between
pruning and accuracy. Note that these results are applicable to DNNs with the follow-
ing architecture: Consider a DNN, denoted by φ, with weight layer matrices W1, · · · , Wn

and the absolute values activation function. We assume the layer maps of the DNN are
compositions of linear maps and activation functions; however, the results can also be
adapted to the case when the DNN is a composition of affine maps composed with activa-
tion functions, that is when we add basis. The central idea in these results can be described
as follows. Suppose a weight layer Wl of the DNN satisfies the above Assumptions 4.1-
4.3. Then, the removal of small singular values of Wl , smaller than the MP-based thresh-
old

√
λ+, does not change the classification confidence of an object s ∈ Rn by a “large

amount” (see (4.14) and (4.18)). That is, the classification confidence before pruning and
after pruning are essentially the same for sufficiently large matrix Wl .

In essence, these results suggest that it is possible to maintain the performance of the
DNN while reducing the number of parameters by eliminating the small singular val-
ues, which are considered less influential in terms of the network’s overall accuracy. This
insight can be used to create more efficient DNN architectures, leading to reduced com-
putational complexity and memory requirements without sacrificing model performance,
see Appendix C.

J. Mach. Learn., X(X):1-66 29

4.4 Key technical lemma: Removing random weights for DNN with arbitrary
many layers does not affect classification confidence

First, we introduce a result based on the assumption that we can directly know what parts
of the weight layer matrices are deterministic and what parts are random. For a DNN φ
with weight layer matrices W1, · · · , WL we start by defining,

gφ(s, b) := ∥λ ◦Wb−1 ◦ · · · ◦ λ ◦W1s∥2σmax(Wb+1) . . . σmax(WL), (4.11)

hφ(s, b) := ∥λ ◦ Wb−1 ◦ · · · ◦ λ ◦ W1s∥1∥Wb+1∥1 . . . ∥WL∥1, (4.12)

where s is an element of the test or training set. The ℓ1 norm of a matrix W, denoted as
∥W∥1, is defined as the maximum absolute column sum of the matrix. Formally, if W is an
m × n matrix with entries wij, then

∥W∥1 = max
1≤j≤n

m

∑
i=1

|wij|.

Recall that σmax(Wb+1) . . . σmax(WL) is a theoretical bound on the Lipschitz constant
of Wb+1 · · · WL, but numerically one might be able to obtain a better bound, see e.g. [18].
Here, we call the Lipschitz constant of a matrix A the Lipschitz constant of the linear map
corresponding to that matrix, and this definition extends to the product of matrices.

The following lemma describes how the classification confidence changes when the
weight layer matrix Wb = Rb + Sb is changed with the weight layer matrix Sb – the ulti-
mate pruning.

Lemma 4.2. Take φ to be a DNN with weight layer matrices W1, · · · , WL and absolute value
activation function and fix object s from the test set T′. Assume for some b that Wb = Rb + Sb,
with Rb a N × M random matrix satisfying Assumption 4.1 and matrix Sb a deterministic matrix
satisfying Assumption 4.2.

Suppose we replace the weight layer matrix Wb with the deterministic matrix Sb. Then we
have that there exists D(N), a(N), b(N) such that for the classification confidence threshold of the
non-pruned DNN

E := a(N)hφ(s, b) + b(N), (4.13)

we have the conditional probability

P
(

δX(s, αSb
) ≥ 0 | δX(s, αWb

) ≥ E
)

≥ 1 − D(N) (4.14)

with D(N), a(N), b(N) → 0 as N → ∞ and hφ(s, b) coming from (4.12). Here, αSb
are the

parameters of the DNN, which has the weight matrix Sb and αWb
are the parameters of the DNN

with the weight layer matrix Wb.

Here, when Rb has components i.i.d. from N(0, 1/N) then

a(N) =
2

N1.5/4
+

√

2 log N2

N
, b(N) = 0,

J. Mach. Learn., X(X):1-66 30

and we have that

D(N) = 2 exp

(

− N1/4

2

)

.

The proof for this lemma can be found in Section C.1.

Remark 4.2. Here, we take s from the test set T′; however, the result also holds if we take s
from the training set T. Furthermore, using a proof similar to the one given in Section C.1,
one can show a more general result. That is, taking

∆(δX) := |δX(s, αSb
)− δX(s, αWb

)|, (4.15)

we have that
P
(

∆(δX) ≤ E
)

≥ 1 − D(N). (4.16)

Remark 4.3. Lemma 4.2 addresses the removal of parameters while preserving accuracy in
a more general context than MP-based pruning. In particular, it also explains the numerics
of parameter removal via sparsification (see Section 3). Indeed, in Lemma 4.2, the random
matrix Rb has entries taken from i.i.d. with zero mean and variance 1/N. Therefore, as
N → ∞ the entries of Rb are small with respect to sparsification threshold ξ(N). If, in
addition, we assume that the entries of Sb are large (c.f. assumption in Theorem 4.1),
then large entries of Wb = Rb + Sb are entries of Sb with high probability. Therefore,
sparsifying Wb by removing the entries smaller than the ξ(N) amounts to replacing the
weight layer matrix Wb with the deterministic matrix Sb. Therefore, Lemma 4.2 implies
that sparsification preserves accuracy in the sense of (4.14).

Remark 4.4. Imagine you are trying to predict the weather. Initially, your prediction is
based on both the randomized patterns you have observed over time (noise in input layer)
and your initial random weights of the DNN (matrix R) and the deterministic factors you
are sure of (matrix S). Now, if you decide to base your prediction just on the deterministic
factors (that is, totally remove the random part of the weight layer matrix). Then how
much would your confidence in the prediction change? This lemma provides a bound on
that change.

The lemma states that there exists a function D(N) → 0 as N → ∞ (the size of the
matrix) increases. The magnitude of this change in classification confidence (how much
our “confidence” drops when we remove the random part) is given by E, which is related
to the combined effects of all layers up to b and the maximum scaling factors (or singular
values) of layers after b.

Most importantly, the conditional probability states that if our initial confidence (with
the random matrix) was bounded away by E > 0, then after removing the randomness,
our confidence would most likely be at least 0. And as the size N of the matrix increases,
the probability that our classification confidence would be bigger than 0 becomes closer
to 1.

In essence, even if we remove the randomness from our prediction model (in this case,
the DNN), we can still be quite confident about our predictions, especially as our layer
widths grow.

J. Mach. Learn., X(X):1-66 31

Remark 4.5. We want to understand what happens to the classification confidence thresh-
old E in (4.14) as N → ∞. Assuming that

hφ(s, b) ≤ C (4.17)

for all N, then E → 0 as N → ∞. This is because

a(N) =
2

N1.5/4
+

√

2 log N2

N
,

goes to zero as N increases. Consequently, the contribution from a(N) becomes negligible,
implying that the effect of dropping the random matrix and only keeping the deterministic
matrix becomes inconsequential.

4.5 Pruning Theorem for DNN with arbitrary many layers: How pruning
random weights using PM distribution affects the classification confidence

Theorem 4.1 (The Pruning Theorem for a Single Object). Take φ to be a DNN with weight
layer matrices W1, · · · , Wn and absolute value activation functions and take some s ∈ T′, with T′

the test set. Assume for some b that Wb = Rb + Sb, with Rb a N × M random matrix satisfying
Assumption 4.1, matrix Sb a deterministic matrix satisfying Assumption 4.2, and Rb + Sb satis-
fying Assumption 4.3. Further, assume that all the non-zero singular values of S are bigger than
θ̄(λ+) with λ+ given by the MP distribution of the ESD of R⊤

b Rb as N → ∞ and θ̄(λ+) given in
(4.6).

Construct the truncated matrix W ′
b by pruning the singular values of Wb smaller than

√
λ+ + ϵ

for any ϵ. Then we have that there exists an explicit function fWb
> 0 such that for any ϵ, there

exists Cϵ(N) so that for the classification confidence threshold of the non-pruned DNN

E′ := (1 + ϵ)
(√

2(1 + ϵ)min
{

fWb
,
√

λ+
}

gφ(s, b) + a(N)hφ(s, b) + b(N)
)

, (4.18)

we have the conditional probability

P

(

δX(s, αW′
b
) ≥ 0 | δX(s, αWb

) ≥ E′
)

≥ 1 − Cϵ(N) (4.19)

with Cϵ(N), a(N), b(N) → 0 as N → ∞, gφ(s, b) coming from (4.11) and hφ(s, b) coming from
(4.12). fWb

is given in Lemma B.2. Also, αWb
are the parameters of the DNN that has the weight

matrix Wb and αW′
b

are the parameters of the DNN with the weight layer matrix W ′
b.

See Section C.1 for a proof of this theorem.

Remark 4.6. Here we take s from the test set T′; however, the result also holds if we take
s from the training set T. Furthermore, using the proof given in Section C.1, one can show
a more general result. That is, taking

∆(δX) :=
∣

∣δX(s, αW′
b
)− δX(s, αWb

)
∣

∣, (4.20)

we have that
P
(

∆(δX) ≤ E′) ≥ 1 − Cϵ(N). (4.21)

J. Mach. Learn., X(X):1-66 32

Remark 4.7. The truncation of the matrix Wb is done by pruning the singular values
smaller than

√
λ+ + ϵ. This choice is made because, as N → ∞, the largest singular value

σmax(Rb) of the random matrix Rb converges to
√

λ+ a.s. However, for finite N, there can
be fluctuations around λ+ due to the inherent randomness of the matrix. These fluctu-
ations are described by the Tracy-Widom distribution. To account for these fluctuations
and ensure robustness in the pruning process, we add a small positive ϵ to

√
λ+.

In the numerical part of the paper, the value of λ+ was determined using the BEMA
algorithm (see Section D.1.) This algorithm approximates λ+ by incorporating the Tracy-
Widom distribution to account for the finite-size effects and the fluctuations of the largest
eigenvalue of R⊤

b Rb. By using this algorithm, we obtain a more accurate estimation of λ+
for practical, finite-dimensional settings, which is crucial for effectively applying the prun-
ing theorem in real-world scenarios.

Pruning Theorem 4.1 shows that if we replace the matrix Wb with a truncated ma-
trix W′

b, then for any given object s ∈ T′, we have that if the classification confidence
δX(s, α) is positive enough for matrix Wb, it stays positive for the truncated matrix W′

b with
high probability. In other words, almost all well-classified objects remain well-classified
after replacing Wb with W′

b. We also show numerically that it is easier to prevent over-
fitting using matrix W′

b instead of the larger matrix Wb. We verified that removing small
singular values based on the MP-based threshold

√
λ+ for the case when the weight ma-

trices Wb were initialized with N(0, 1/N) does not reduce the accuracy of the DNN, see
Example D.3. Here, fW = ∥W′ − S∥ and for a large class of RMT matrix models (see As-
sumptions 4.1-4.3), for the case N → ∞, we obtain fW based on the singular values of W
only.

Remark 4.8. The assumptions made in Theorem 4.1 are quite natural and hold for a wide
range of DNN architectures. Assumption 4.1 focuses on the random matrix R. This as-
sumption ensures that the random matrix R captures the essential randomness in the
weight layer while also satisfying the requirements given in Theorem 3.1.

Assumption 4.2 pertains to the deterministic matrix S, which is assumed to have a spe-
cific structure, with r non-zero singular values and all other singular values being zero.
Moreover, these r singular values have multiplicity 1, which is a reasonable expectation
for a deterministic matrix that contributes to the information content in the layer Wb. As-
sumption 4.3 holds for many spiked models and has been studied in much detail.

The assumption that the singular values of the deterministic matrix S are larger than
some θ̄(λ+) is also quite natural, see [54,57]. This is because the deterministic matrix S rep-
resents the information contained in the weight layer, and its singular values are expected
to be large, reflecting the importance of these components in the overall performance of
the DNN. On the other hand, the random matrix R captures the inherent randomness in
the weight layer, and with high probability depending on N, its singular values should be
smaller than the MP-based threshold. This means that there is a clear boundary between
the information and noise in the layer Wb , which is also natural, see [54].

This distinction between the singular values of S and R highlights the separation be-
tween the information and noise in the weight layer, allowing us to effectively remove the
small singular values without impacting the accuracy of the DNN. The assumption thus

J. Mach. Learn., X(X):1-66 33

provides a solid basis for studying the behavior of DNNs with weight layers modeled
as spiked models. It contributes to our understanding of the effects of removing small
singular values based on the random matrix theory MP-based threshold

√
λ+.

Remark 4.9. In our work, we leverage the Marchenko-Pastur distribution to select signif-
icant singular values for the low-rank approximation of our weight layers Wl . Other low-
rank approximation techniques, such as the bootstrapping technique proposed in [40],
could potentially be integrated with the Marchenko-Pastur distribution to further refine
the low-rank approximation of Wl .

4.6 Simple example of DNN with one hidden layer

The following is a simple example of the Pruning Theorem:

Example 4.2. Take φ to be a DNN with three weight layer matrices W1, W2, W3 and the
absolute value activation function and take s ∈ T′. This is

φ(s, α) = ρ ◦ λ ◦W3 ◦ λ ◦ W2 ◦ λ ◦ W1s, s ∈ R
n. (4.22)

Assume W2 = S2 + R2 satisfies Assumptions 4.1-4.3 and W1, W3 are arbitrary. More
specifically, assume R2 to be a random matrix with i.d.ds taken from the distribution
N(0, 1/N) and S2 to be a N × N deterministic matrix with non-zero singular values bigger
than 1.

Take W′ to be the same as W but with all the singular values of W smaller than 2 + ϵ,
for any ϵ, set to zero. Then for fW the positive function given in (4.24) we have that for
any ϵ > 0,

P

(

δX(s, αW′) ≥ 0 | δX(s, αW) ≥ (1 + ϵ)
√

2

×
(

a(N)∥W1s∥1∥W3∥1+ fW2
∥W1s∥2σmax(W3)+b(N)

)

)

≥ 1 − Cϵ(N) (4.23)

with Cϵ(N), a(N), b(N) → 0 as N → ∞.
Here we have that for σr the smallest non-zero singular value of S2

fW = max
1≤i≤r

⎧

⎨

⎩

√

√

√

√

(

σ2
i +

(

1 + σ2
i

σi

)2(

1 − 1

σ2
i

)

)

− 2(1 + σ2
i)

(

1 − 1

σ2
i

)

⎫

⎬

⎭

. (4.24)

Note that as σr → ∞ we have fW → 1. In fact, we show numerically that already for
σr ≥ 5 we have | fW − 1| ≤ .03, see Fig. 4.2.

Note that this estimate is given in terms of the singular values of S (which are σi).
However, the singular values of S might not be known. Nevertheless, by Theorem A.1,
we have that as N → ∞ the singular values of S can be obtained directly from the singular
values of W via σ′

i = (1 + σ2
i)/σ1. Thus, as N → ∞ this estimate can be obtained in

terms of singular values of W only, which is why we use the notation fW and not fS. For
simplicity, we keep using the current notation.

J. Mach. Learn., X(X):1-66 34

Figure 4.2: Graph of fW. On the x-axis, we have σi.

We numerically checked that for R a 3000 × 3000 random matrix initialized with the
above Gaussian distribution, and for S a diagonal matrix with 5 non-zero singular values
given by 30, 40, 50, 60, 70, we have ∥S −W′∥2 ≈ fW ≈ 1, see Fig. 4.3. Thus, in this example
fW <

√
λ+, given that

√
λ+ = 2, and so in (C.22) we would have min{ fWb

,
√

λ+} ≈ 1.
Thus, Theorem 4.1 provides a better result than Lemma 4.1. For more on this example, see
Section B.1.

It is an important question: Under what conditions of R and S would we have that
fW = c such that c <

√
λ+.

Example 4.3. Consider R to be an n × n symmetric (or Hermitian) matrix with indepen-
dent, zero mean, normally distributed entries. The variance of the entries is σ2/n on the
diagonal and σ2/(2n) on the off-diagonal.

Figure 4.3: The norm ∥S − W ′∥2 is shown for 10 random matrices with elements i.i.d. taken from N(0, 1/N)
and S a diagonal matrix with elements on the diagonal given by 30, 40, 50, 60, 70. We see that the norm is very
close to fW ≈ 1.

J. Mach. Learn., X(X):1-66 35

In the setting where S = ∑
r
i=1 σiuiu

⊤
i , let u′

i be the unit eigenvectors of W = R + S
associated with its r largest eigenvalues. Assuming that for all 1 ≤ i ≤ r we have σi > σ,
then

fW = max
1≤i≤r

√

√

√

√

(

σ2
i +

(

1 − σ2

σ2
i

)(

σi +
σ2

σi

)2
)

− 2σi

(

(

σi +
σ2

σi

)(

1 − σ2

σ2
i

)

)

. (4.25)

In this example,
√

λ+ = 2σ. Thus, in Fig. 4.4 we compare fW vs 2σ. As mentioned,
it would be interesting to try and find a probability distribution which, if R is initialized
with would result in a very small fW for reasonable assumptions on the singular values
of S.

See Section B.2 for more information.

Figure 4.4: A graphical comparison between fW and 2σ as functions of σ. The x-axis represents the variable σ
ranging from -25 to 25. The y-axis provides the computed values for both fW and 2σ. We see that fW ≈ |σ|,
which is smaller than 2σ for positive σ. Note, to obtain this numerical result, we must ensure that σr ≥ σ.

4.7 Pruning Theorem for accuracy: How pruning affects accuracy

In this subsection, we present a version of the Pruning Theorem for accuracy, which de-
scribes how the accuracy of a DNN is affected by pruning. We present this theorem for
DNNs with one hidden layer. However, it can be generalized for DNNs with more layers.

We first recall the notion of the good set of a DNN, introduced in [9]. The good set is
a subset of the test set T′ defined as follows: For η ≥ 0, the good set of margin η at time t is

Gη(t),α :=
{

s ∈ T′ : δX
(

s, α(t)
)

> η
}

. (4.26)

Basically, the good set consists of positively classified objects whose classification con-
fidence is bounded below by η. Next, we formulate the Pruning Theorem for accuracy.

J. Mach. Learn., X(X):1-66 36

Loosely speaking, it says that for some threshold Eacc (see (4.29)), we have that the accu-
racy of the DNN after pruning is bounded from below by the number

|GEacc,α|
|T′| , (4.27)

where for a finite set A, we have |A|, which is the number of elements in that set.

Theorem 4.2 (Pruning Theorem for Accuracy). Let φ be a DNN with weight layer matrices
W1, W2, W3, and λ the absolute value activation function

φ(s, α) = λ ◦ W3 ◦ λ ◦ W2 ◦ λ ◦ W1s, s ∈ R
n. (4.28)

Assume W2 = S2 + R2 satisfies Assumptions 4.1-4.3, and W1, W3 are arbitrary matrices.
Construct the truncated matrix W ′

2 by pruning singular values of W2 smaller than
√

λ+ + ϵ,
for any ϵ. For every ϵ, introduce the classification confidence threshold for the non-pruned DNN
as the smallest number Eacc ≥ 0 for which we satisfy

Eacc = (1 + ϵ)
(√

2
(

fW2
σmax(W3) + a(N)∥W3∥1

)

)

× max
s∈GEacc,α

∥W1s∥1 + b(N) (positive) (4.29)

with fW2
> 0 an explicit rational function of W2. Then we have for any ϵ,

P

(

accα′(t) ≥
|GEacc,α|
|T′|

)

≥
(

1 − Cϵ(N)
)|GEaccα| (4.30)

with Cϵ(N), a(N), b(N) → 0 as N → ∞. Here α, α′ are the parameters of the non-pruned and
pruned DNNs, respectively and accα′(t) is given in (4.2).

See Section C.2 for a proof of this theorem.

Remark 4.10. Theorem 4.2 applies to the entire training and test set. It is important to note
that if the sizes of the training and test sets depend on the matrix dimension N, then the
properties of the good set, which is derived from these sets, will inherently depend on N
as well. The specifics of this dependency remain undefined within the current scope of
our analysis.

Remark 4.11. One can always find a Eacc ≥ 0 which satisfies (4.29). This is because

0 ≤ (1 + ϵ)
(√

2
(

fW2
σmax(W3) + a(N)∥W3∥1

)

)

max
s∈G0,α

∥W1s∥1.

Finally, for large enough η, we have

(1 + ϵ)
(√

2
(

fW2
σmax(W3) + a(N)∥W3∥1

)

)

max
s∈Gη,α

∥W1s∥1 = 0.

J. Mach. Learn., X(X):1-66 37

Appendix A Some known results on perturbation of matrices

Matrix perturbation theory is concerned with understanding how small changes in a ma-
trix can affect its properties, such as eigenvalues, eigenvectors, and singular values. In this
section, we state a couple of known results from matrix perturbation theory.

A.1 Asymptotics of singular values and singular vectors of deformation matrix

The results in this subsection are taken from [8]. Given the Assumptions 4.4-4.5 on R
and S described in Section 4.3, the authors were able to show that the largest eigenval-
ues and corresponding eigenvectors of W = S + R are well approximated by the largest
eigenvalues and eigenvectors of S.

We start by defining the following function:

DµR(z) =

[

∫

z

z2 − t2
dµR(t)

]

×
[

c
∫

z

z2 − t2
dµR(t) +

1 − c

z

]

(A.1)

for z >
√

λ+, with λ+ given by the MP distribution of R⊤R. Take D−1
µR

(·) to be its func-
tional inverse. Set

θ̄ = DµR(
√

λ+)
− 1

2 . (A.2)

Theorem A.1 (Theorem for Large Singular Values, [8]). Take W = R + S, with W, R and S
all N × M matrices satisfying Assumptions 4.4-4.5. The r largest singular values of W, denoted
as σ′

i (W) for 1 ≤ i ≤ r, exhibit the following behaviour as N → ∞:

σ′
i (W)

a.s.−→

⎧

⎨

⎩

D−1
µR

(

1

(σi)2

)

, σi > θ̄,
√

λ+, σi < θ̄.
(A.3)

Theorem A.2 (Norm of Projection of Largest Singular Vectors, [8]). Take indices i0∈{1, . . . , r}
such that σi0 > θ̄. Take σ′

i0
= σ′

i0
(W) and let u′, v′ be left and right unit singular vectors of W

associated with the singular value σ′
i0

and u, v be the corresponding singular vectors of S. Then we
have, as N → ∞

∣

∣

〈

u′, Span{ui s.t. σi = σi0}
〉∣

∣

2 a.s.−→
−2φµR(ρ)

σ2
i0

D′
µR
(ρ)

, (A.4)

∣

∣

〈

v′, Span{vi s.t. σi = σi0}
〉∣

∣

2 a.s.−→
−2φµR(ρ)

σ2
i0

D′
µ̃R
(ρ)

. (A.5)

Here

ρ = D−1
µR

(

1

(σi0)
2

)

, µ̃R = cµR + (1 + c)δ0.

Further,
∣

∣

〈

u′, Span{ui s.t. σi ̸= σi0}
〉∣

∣

2 a.s.−→ 0, (A.6)
∣

∣

〈

v′, Span{vi s.t. σi ̸= σi0}
〉∣

∣

2 a.s.−→ 0. (A.7)

J. Mach. Learn., X(X):1-66 38

Example A.1. Take S = ∑
r
i=1 σiuiv

⊤
i to be a N × N deterministic matrix, with σi the sin-

gular values and vi and ui the singular vectors of S. Take R to be a N × N random matrix
with real i.i.d. components taken from the normal distribution N(0, 1/N). For W = R + S
we have

Theorem A.3 (Theorem for Large Singular Values for Example A.1). The r largest singular
values of W, denoted σ′

i (W) for 1 ≤ i ≤ r, exhibit the following behaviour as N → ∞:

σ′
i (W)

a.s.−→

⎧

⎨

⎩

1 + σ2
i

σi
, σi > 1,

2, σi < 1.

Theorem A.4 (Theorem for Large Singular Vectors for Example A.1). Assuming that the r
largest singular values of W have multiplicity 1, then the right and left singular vectors u′

i, v′i
of W corresponding with the r largest singular values σ′

i (W) exhibits the following behaviour as
N → ∞:

|⟨vi, v′i⟩|
2, |⟨ui, u′

i⟩|
2 a.s.−→

⎧

⎪

⎨

⎪

⎩

(

1 − 1

σ2
i

)

, σi > 1,

0, σi < 1.

Remark A.1. We say that Xn → X in probability if for any ϵ, P(|Xn − X| > ϵ) → 0
as n → ∞. One can show that Xn → X a.s. implies that Xn → X in law. Thus for
Theorems A.1 and A.2 we have that if the r large singular values of S are bigger than 1
and have multiplicity 1 then there exists some constant BN(ϵ) with BN(ϵ) → 0 as N → ∞
such that for the r largest singular values of W and their corresponding singular vectors
and for any ϵ we have

P

(∣

∣

∣

∣

σ′
i (W)−

1 + σ2
i

σi

∣

∣

∣

∣

> ϵ

)

< BN(ϵ), (A.8)

P

(∣

∣

∣

∣

|⟨vi, v′i⟩|
2 −

(

1 − 1

σ2
i

)∣

∣

∣

∣

> ϵ

)

< BN(ϵ), (A.9)

P

(∣

∣

∣

∣

|⟨ui, u′
i⟩|

2 −
(

1 − 1

σ2
i

)∣

∣

∣

∣

> ϵ

)

< BN(ϵ). (A.10)

Finally, we also have that

P(|⟨ui, u′
j⟩| > ϵ) < BN(ϵ), (A.11)

P(|⟨vi, v′j⟩| > ϵ) < BN(ϵ) (A.12)

for i ̸= j.

A.2 Gershgorin’s circle theorem

Finally, we state Gershgorin’s circle theorem.

J. Mach. Learn., X(X):1-66 39

Theorem A.5 (Gershgorin’s Circle Theorem). Let B = [bij] be an n×n complex matrix. Define
the Gershgorin discs Di for 1 ≤ i ≤ n as

Di =

{

z ∈ C : |z − bii| ≤ ∑
j ̸=i

|bij|
}

. (A.13)

Then, every eigenvalue λ of the matrix B lies within at least one of the Gershgorin discs Di.

Remark A.2. We apply Theorem A.5 for almost diagonal matrices when (A.13) estimates
how close the eigenvalues are to the diagonal elements. This closeness is estimated in
terms of the magnitude of the non-diagonal elements.

Appendix B An approximation lemma – pruned matrix W ′ ap-
proximates the deterministic matrix S

Assume we are given a deterministic matrix S and we add to it a random matrix R, for
the R and S given in Example A.1. Suppose we take W = S + R, it is well known that one
can find a rank k approximation of W. This is done by taking the SVD of W = UΣV⊤ and
setting all but the top k singular values in Σ to zero. The following is a known theorem of
this result:

Theorem B.1. Given the singular value decomposition (SVD) of W = UΣV⊤, where U and V
are unitary matrices and Σ is a diagonal matrix containing the singular values of W, the rank k
approximation of W is given by

W̃k = UkΣkV⊤
k , (B.1)

where Uk and Vk are the matrices obtained by retaining only the first k columns of U and V,
respectively, and Σk is the matrix obtained by retaining only the first k diagonal entries of Σ. Here
we use W̃k to distinguish it from the weight layer matrix Wk. This approximation represents the
best rank k approximation to W in the following sense:

W̃k = minrank(X)=k ∥W − X∥F, (B.2)

where X is an arbitrary matrix of rank k and ∥ · ∥F is the Frobenius norm.

See [22] for more on this result. In this section, we wish to obtain slightly different re-
sults in a similar direction. We wish to show that for the R and S given in Example A.1, W̃r

is a good approximation of S (recall S has r non-zero singular values). That means that Wr

is a good approximation of the deterministic part of W. We, therefore, state a lemma that
shows that

∥(W̃r − S)z∥ < fW∥z∥. (B.3)

Rather than state this lemma in terms of W̃r , we state them in terms of W′, which is
defined as follows.

J. Mach. Learn., X(X):1-66 40

Definition B.1. Take W = R+ S, with R and S given in Assumptions 4.1-4.3. Take W = UΣV⊤

to be the SVD of W and take, for any ϵ,

Σ′
i,j =

{

Σi,j, Σi,j >
√

λ+ + ϵ,

0, Σi,j ≤
√

λ+ + ϵ.
(B.4)

Then we obtain the truncated matrix W′ by taking W′ = UΣ′V⊤.

Next, we define a padded unitary matrix, which is helpful when proving the approxi-
mation theorem.

Definition B.2 (Padded Unitary Matrix). A padded-unitary matrix Q of size (n+m)×(n+m)
is defined as a matrix where the first n× n submatrix is a unitary matrix, and the remaining entries
are zeros. Formally, if U is an n × n unitary matrix, then Q is constructed as

Q =

(

U 0
0 0

)

,

where 0 represents the appropriate-sized matrix with all zero entries.

Next, we present an approximation lemma that gives a bound for ∥(W′−S)z∥2, where z
is any vector. This lemma describes how well S is being approximated by W′.

Approximation Lemma B.2. Assume that W = R + S, with R a N × M random matrix and
S a deterministic matrix satisfying Assumptions 4.1-4.3. Assume that the singular values of S are
bigger than θ̄, given in Assumption 4.3, and all singular values have multiplicity one. Take z to be
any vector in Rn. Then for W′ given in Definition B.1 we have that there exists fW > 0 and exists
B∗

N(ϵ) such that for any ϵ > 0,

P
(

∥(W′ − S)z∥2 ≥ (1 + ϵ) fW∥z∥2
)

< B∗
N(ϵ) (B.5)

with B∗
N(ϵ) → 0 as N → ∞.

Moreover, assuming that σr is the smallest singular values of S, we have

fW = max
1≤i≤r

√

(

gvi g
2
σi
+ σ2

i

)

− 2gσiσi
√

gvi

√
gui (B.6)

with gσi , gui and gvi given in Assumption 4.3.

Remark B.1. Here fW depends on the distribution of the eigenvalues of R and on the
eigenvalues of S.

Example B.1. Assume that W is the matrix given in Example A.1. Then

fW = max
1≤i≤r

⎧

⎨

⎩

√

√

√

√

(

σ2
i +

(

1 + σ2
i

σi

)2(

1 − 1

σ2
i

)

)

− 2
(

1 + σ2
i

)

(

1 − 1

σ2
i

)

⎫

⎬

⎭

. (B.7)

J. Mach. Learn., X(X):1-66 41

Example B.2. Assume that W = R + S, with R a N × M random matrix satisfying As-
sumption 4.4 and S a deterministic matrix satisfying Assumption 4.5. Assume that the
singular values of S are bigger than θ̄, given in (A.2), and all singular values have multi-
plicity one. Then for W′ given in Definition B.1 we have that

fW = max
1≤i≤r

√

√

√

√

(

−2φµR(ρ)

σ2
r D′

µ̃R
(ρ)

D−1
µR

(

1

(σi)2

)2

+σ2
i

)

−2σiD
−1
µR

(

1

(σi)2

)

√

−2φµR(ρ)

σ2
r D′

µ̃R
(ρ)

√

−2φµR(ρ)

σ2
r D′

µR
(ρ)

.

Proof. We prove this for the simple case when S = ∑
r
i=1 σiuiv

⊤
i and for the Example A.1,

when W, R and S are N × N matrices. The proof for the more general case is the same.
Take W′ = UWΣ′

WV⊤
W and S = USΣ′

SV⊤
S to be the SVD of W′ and S, with Σ′

S a N × N
matrix with r non-zero singular values σi on its diagonal and all other elements zero, and
assume the smallest singular value of S, which is σr , is bigger than 1. Furthermore, take
UW , VW to be N × N unitary matrices, and US, VS to be N × N padded unitary matrices, as
defined in Definition B.2, with the “singular vectors” corresponding to the zero singular
values σi being the zero vector. If we look at the SVD in terms of its summation repre-
sentation, changing the singular vectors corresponding to the zero singular values to zero
vectors (which are not unit vectors) will not change the reconstructed components of the
matrix S. Let us clarify this:

The SVD of a matrix S can be written as

S =
r

∑
i=1

σiuiv
⊤
i ,

where σi are the singular values, ui are the left singular vectors, and vi are the right singular
vectors, with r being the rank of S. This sum runs over all singular values, including the
zero singular values.

In this sum, each term σiuiv
⊤
i contributes to the matrix S. However, for terms where

σi = 0, the entire term σiuiv
⊤
i becomes a zero matrix, regardless of what ui and vi are. This

is because multiplying by zero annihilates any contribution from these vectors.
Therefore, if you change the singular vectors corresponding to the zero singular val-

ues (let us say, replacing them with zero vectors), these terms in the sum still contribute
nothing to S because they are multiplied by zero. The non-zero singular values and their
corresponding vectors still determine the matrix S, and the contributions from the terms
with zero singular values remain zero.

In the adapted form of the SVD of S being considered, the matrices U and V do not
strictly adhere to the traditional definition of unitary matrices. Instead, they can be de-
scribed as padded unitary matrices. For the purposes of the proof in question, this “al-
most” unitary nature of U and V is sufficient.

Then we have

∥(W′ − S)z∥2 =
∥

∥

(

UWΣ′
WV⊤

W − USΣ′
SV⊤

S

)

z
∥

∥

≤
√

λmax
((

UWΣ′
WV⊤

W − USΣ′
SV⊤

S

)⊤(
UWΣ′

WV⊤
W − USΣ′

SV⊤
S

))

∥z∥2 (B.8)

J. Mach. Learn., X(X):1-66 42

with λmax(A) the largest eigenvalue of A. Thus we obtain

∥(W′ − S)z∥2 (B.9)

≤
√

λmax
((

VWΣ′2
WV⊤

W + VSΣ′2
S V⊤

S − VWΣ′
WU⊤

WUSΣ′
SV⊤

S − VSΣ′
SU⊤

S UWΣ′
WV⊤

W

))

∥z∥2.

We can multiply the right and left of the matrix
(

VWΣ′2
WV⊤

W + VSΣ′2
S V⊤

S − VWΣ′
WU⊤

WUSΣ′
SV⊤

S − VSΣ′
SU⊤

S UWΣ′
WV⊤

W

)

by the unitary matrices VW and V⊤
W respectively, without increasing the absolute value of

the max eigenvalue, to obtain

∥(W′ − S)z∥2 (B.10)

≤
√

λmax
(

Σ′2
W + V⊤

W VSΣ′2
S V⊤

S VW − Σ′
WU⊤

WUSΣ′
SV⊤

S VW − V⊤
W VSΣ′

SU⊤
S UWΣ′

W

)

∥z∥2.

By (A.12), (A.11) and Theorem A.5, since the sum of the off diagonal elements of

G :=
(

Σ′2
W + V⊤

W VSΣ′2
S V⊤

S VW − Σ′
WU⊤

WUSΣ′
SV⊤

S VW − V⊤
W VSΣ′

SU⊤
S UWΣ′

W

)

(B.11)

can be made arbitrarily small with high probability as N → ∞, there exists B∗
N(ϵ) so that

for large enough N we have

P

(

∣

∣λmax(G)− λmax
((

Σ′2
W + D2

2Σ′2
S

)

− 2Σ′
WΣ′

S

(

(D2)D1
))∣

∣ > ϵ
)

< B∗
N(ϵ), (B.12)

where D1 is the diagonal matrix containing ⟨ui, ũi⟩ on its diagonal and all other elements
zero and D2 the diagonal matrix containing ⟨vi, ṽi⟩ on its diagonal and all other elements
zero. In fact, because S only has r non-zero singular values, we obtain less than r × r
non-zero off-diagonal elements for the matrices U⊤

WUS, U⊤
S UW , V⊤

W VS, and V⊤
S VW . Thus,

because r is fixed we have by Theorems A.3, A.4 and Remark A.1, that there exists B∗
N(ϵ)

such that for large enough N

P

⎛

⎝∥ (W′ − S)z ∥2 ≥ (1 + ϵ)

× max
1≤i≤r

⎧

⎨

⎩

√

√

√

√

(

σ2
i +

(

1+σ2
i

σi

)2(

1− 1

σ2
i

)

)

−2
(

1+σ2
i

)

(

1− 1

σ2
i

)

∥z∥2

⎫

⎬

⎭

⎞

⎠

≤ B∗
N(ϵ). (B.13)

In fact, using the above argument, we can show that as N → ∞

∥(W′ − S)∥ a.s.−→ max
1≤i≤r

⎧

⎨

⎩

√

√

√

√

(

σ2
i +

(

1 + σ2
i

σi

)2(

1− 1

σ2
i

)

)

−2
(

1+σ2
i

)

(

1− 1

σ2
i

)

⎫

⎬

⎭

. (B.14)

This completes the proof.

J. Mach. Learn., X(X):1-66 43

B.1 Numerics for Example 4.2

In the following subsection, we provide a figure of the dot products of the 5 left and right
singular values for the matrices W = R + S and S described in Example 4.2, see Fig. B.1.
As mentioned earlier, the 5 singular values of S were 30, 40, 50, 60, 70. We see that the
dot product of the left and right singular vectors of W and S can be approximated almost

perfectly by the equation
√

1 − 1/σ2
i , see (A.8). That is, for σ5 = 30, we have

√

1 − 1/σ2
i ≈

0.99944 and indeed ⟨u5, u′
5⟩ ≈ 0.99943 and similarly for the other dot products.

Figure B.1: Left: Dot product of the left singular vectors. Right: Dot product of the right singular vectors.

B.2 Details for Example 4.3

The details provided in the subsection were taken from [7]. Under the setting given in
Example 4.3, let u′

i be a unit-norm eigenvector of R + S associated with its r largest eigen-
values. We have for 1 ≤ i ≤ r,

λi(R + S)
a.s.−→

⎧

⎨

⎩

σi +
σ2

σi
, if σi > σ,

2σ, otherwise,

as n → ∞. We also have

|⟨u, u′⟩|2 a.s.−→

⎧

⎪

⎨

⎪

⎩

1 − σ2

σ2
i

, if σi > σ,

0, otherwise.

Appendix C Proof for Pruning Theorem

The proof of the Pruning Theorem 4.1 consists of two steps. First, we show how classifi-
cation confidence changes when the weight matrix Wb is replaced with its deterministic

J. Mach. Learn., X(X):1-66 44

part Sb. Second, we approximate the deterministic matrix Sb with the pruned matrix W′
b,

keeping track of the corresponding change in the classification confidence. The key idea
in the second step is to use asymptotics of the spectrum of deformed matrices W = R + S
with a finite number of singular values of S, see [8], in combination with GCT.

C.1 Proof for key technical Lemma 4.2

Proof. We first provide a proof for the case when our DNN has only one layer matrix W.
We proceed by showing that if ∥s∥2 is independent of N then as N → ∞,

δX(s, αW)− δX(s, αS) = 0

in probability, with αW the parameters of the DNN with weight layer W and αS the pa-
rameters of the same DNN but with weight layer S. This means that the random matrix R
does not improve the accuracy of the DNN as N → ∞.

More generally, we also show that

P

(

δX(s, αS) ≥ 0 | δX(s, αW) ≥ a(N)∥s∥2

)

≥ 1 − 1

N1/4
(C.1)

with a(N) = 2/N1.5/4.
We start by approximating the components of Rs and showing that they are small and

go to 0 as N → ∞. When R is a random matrix with components taken from i.i.d. with
mean 0 variance 1/N, we have that (Rs)m is a random variable taken from a distribution
with mean 0 and variance

σ2
(Rs)m

=
M

∑
i=1

s2
i

1

N
= ∥s∥2

2
1

N
.

Thus, (Rs)m is also a random variable with 0 mean and variance ∥s∥2
2/N.

Then, using Chebyshev’s inequality (see Theorem C.1) and taking k = N0.5/4 we obtain

Pr

(

|(Rs)m| ≥
1

N1.5/4
∥s∥2

)

≤ 1

N1/4
. (C.2)

Thus, given that

δX(s, αW)− δX(s, αS) =
∣

∣(R + S)si(s)

∣

∣−
∣

∣

∣
max
j ̸=i(s)

(

(S + R)s
)

j

∣

∣

∣
−
∣

∣(S)si(s)

∣

∣+
∣

∣

∣
max
j ̸=i(s)

(Ss)j

∣

∣

∣

≤
∣

∣(R)si(s)

∣

∣−
∣

∣

∣
max
j ̸=i(s)

(

(S + R)s
)

j

∣

∣

∣
+
∣

∣

∣
max
j ̸=i(s)

(Ss)j

∣

∣

∣
. (C.3)

By (C.2), we have

P

(

(

δX(s, αW)− δX(s, αS)
)

≤ 1

N1.5/4
∥s∥2 −

∣

∣

∣
max
j ̸=i(s)

((S + R)s)j

∣

∣

∣
+
∣

∣

∣
max
j ̸=i(s)

(Ss)j

∣

∣

∣

)

≥ 1 − 1

N1/4
. (C.4)

J. Mach. Learn., X(X):1-66 45

Suppose |maxj ̸=i(s)(Ss)j| is satisfied for the component k∗(N), meaning that

∣

∣

∣ max
j ̸=i(s)

(Ss)j

∣

∣

∣ =
∣

∣(Ss)k∗(N)

∣

∣. (C.5)

Then, again by (C.2) we have

P

(

∣

∣

∣

∣

∣

(

(S + R)s
)

k∗
∣

∣− |(Ss)k∗ |
∣

∣

∣ ≤
1

N1.5/4
∥s∥2

)

≥ 1 − 1

N1/4
, (C.6)

given that S and R are independent from each other and S is deterministic. Given that

max
j ̸=i(s)

(R + S)sj ≥ (R + S)sk∗ ,

from (C.4) we obtain

P

(

(

δX(s, αW)− δX(s, αS)
)

≤ 1

N1.5/4
∥s∥2 −

∣

∣

(

(S+ R)s
)

k∗
∣

∣+ |(Ss)k∗ |
)

≥ 1− 1

N1/4
. (C.7)

Final result from (C.6):

P

(

δX(s, αW)− δX(s, αS) ≤
2

N1.5/4
∥s∥2

)

≥ 1 − 1

N1/4
(C.8)

with a(N) = 2/N1.5/4.
When the DNN has more than one layer, we continue this proof as follows:

Z = P
(

∥λ ◦ W4 ◦ λ ◦ W3 ◦ λ ◦ (R + S) ◦ λ ◦ W1s

− λ ◦W4 ◦ λ ◦ W3 ◦ λ ◦ S ◦ λ ◦W1s∥1 > t
)

. (C.9)

By the triangle inequality, we have

Z ≤ P
(

∥W4 ◦ λ ◦W3 ◦ λ ◦ (R + S) ◦ λ ◦W1s −W4 ◦ λ ◦W3 ◦ λ ◦ S ◦ λ ◦W1s∥1 > t
)

. (C.10)

We factor out the common term W4 and use the inequality ∥Av∥1 ≤ ∥A∥1∥v∥1 to obtain

Z ≤ P
(

∥W4∥1 · ∥W3 ◦ λ ◦ (R + S) ◦ λ ◦ W1s − W3 ◦ λ ◦ S ◦ λ ◦ W1s∥1 > t
)

. (C.11)

Next, we apply the inequality ∥Av∥1 ≤ ∥A∥1∥v∥1 on W3 and λ ◦ (R + S) ◦ λ ◦ W1s −
λ ◦ S ◦ λ ◦ W1s together with the triangle inequality, we get

Z ≤ P
(

∥W4∥1 · (∥W3∥1 · ∥RW1s∥1) > t
)

, (C.12)

given that
∥λ ◦ (R + S)− λ ◦ S∥ ≤ ∥R∥.

Thus we have,

Z ≤ P

(

∥W4∥1 ·
(

∥W3∥1 · max
i,j

|Ri,j| ∥W1s∥1

)

> t
)

. (C.13)

J. Mach. Learn., X(X):1-66 46

If R is a random matrix with i.i.d. entries taken from the normal distribution N(0, 1/N),
then using the concentration inequality in Theorem C.2, we get: If we choose

t = ∥W4∥1∥W3∥1∥W1s∥1

(

1

N1.5/4
+

√

2 log N2

N

)

,

then

Z ≤ P

(

max
i,j

|Ri,j| >
1

N1.5/4
+

√

2 log N2

N

)

≤ 2 exp

(

− N1/4

2

)

.

Thus, we have

P

(

δX(s, αS2
) ≥ 0 | δX(s, αW2

) > ∥W4∥1∥W3∥1∥W1s∥1

(

1

N1.5/4
+

√

2 log N2

N

))

≤ 2 exp

(

−N1/4

2

)

. (C.14)

For a DNN with more layers and a different R, the steps in this proof would be the
same and would use similar concentration inequalities to bound maxi,j |Ri,j|.

Proof of the Pruning Theorem 4.1. We first provide a proof for the case when our DNN has
only one layer matrix W.

By Lemma 4.2 we have that there exists D(N) such that for

E := a(N)hφ(s, b) + b(N), (C.15)

we have the conditional probability

P
(

δX(s, αS) ≥ 0 | δX(s, αW) ≥ E
)

≥ 1 − D(N) (C.16)

with D(N), a(N), b(N) → 0 as N → ∞ and hφ(s, b) coming from (4.11). Again, αS are the
parameters of the DNN with the weight matrix S and αW are the parameters of the DNN
with the weight layer matrix W.

We then use Approximation Lemma B.2 to obtain that there exists fW , and exists B∗
N(ϵ)

such that for any ϵ,

P
(

∥(W′ − S)z∥2 > (1 + ϵ) fW∥z∥2
)

< B∗
N(ϵ) (C.17)

with B∗
N(ϵ) → 0 as N → ∞.

We then follow an argument similar to that given for Lemma E.1. That is, the change
in classification confidence due to pruning is

∆(δX) = |δX(s, αS)− δX(s, αW′)|.

For a particular component i, the change ∆Xi due to pruning is given by

∆Xi = |Xi(s, αS)− Xi(s, αW′)|.

J. Mach. Learn., X(X):1-66 47

We have that X(s, αS) = λ ◦ (W)s and X(s, αW′) = λ ◦ (W′)s.
Given that λ is the absolute value activation function, for any scalar values x and y, we

have
|λ(x)− λ(y)| ≤ |x − y|. (C.18)

Thus, from (C.17) we have

∥X(s, αS)− X(s, αW′)∥ ≤ ∥(S − W′)s∥ ≤ (1 + ϵ) fW∥s∥2

with probability 1 − B∗
N(ϵ). Furthermore,

∆Xmax + ∆Xmax−1 ≤
√

2(1 + ϵ) fW∥s∥2 (C.19)

with probability 1− B∗
N(ϵ). Here ∆Xmax−1 is the change in the component of X which has

the second to biggest change, and ∆Xmax is the change in the change in the component of
X which had the biggest change.

Then, using the same steps given in Lemma E.1, we obtain

∆(δX) ≤ ∆Xmax + ∆Xmax −1 ≤
√

2(1 + ϵ) fW∥s∥2 (C.20)

with probability 1 − B∗
N(ϵ). Thus, given that

P
(

δX(s, αS) ≥ 0 | δX(s, αW) ≥ E
)

≥ 1 − D(N), (C.21)

we have that there exists an explicit function fW > 0 such that for any ϵ > 0 there exists
Cϵ(N) such that for

E′ := (1 + ϵ)
(
√

2(1 + ϵ)min{ fW ,
√

λ+}gφ(s, b) + a(N)hφ(s, b) + b(N)
)

, (C.22)

we have the conditional probability

P
(

δX(s, αW′) ≥ 0 | δX(s, αW) ≥ E′) ≥ 1 − Cϵ(N) (C.23)

with Cϵ(N), a(N), b(N) → 0 as N → ∞ and gφ(s, b) coming from (4.11). fW is given in
Lemma B.2. When the DNN has more than one layer, we continue this proof with the
same steps found in Section E.1.

Theorem C.1 (Chebyshev’s Inequality). Let X be a random variable with mean µ and finite
non-zero variance σ2. Then for any real number k > 0,

Pr(|X − µ| ≥ kσ) ≤ 1

k2 . (C.24)

Borell-TIS inequality for i.i.d. Gaussian variables

Theorem C.2 (Borell-TIS Inequality). Let X1, X2, . . . , Xn be i.i.d. centered Gaussian random
variables with Xi ∼ N(0, σ2). Set

s2
X := max

i=1,...,n
E
(

X2
i

)

= σ2.

J. Mach. Learn., X(X):1-66 48

Then for each t > 0

P

(

max
i=1,...,n

|Xi|− E

[

max
i=1,...,n

Xi

]

> t

)

≤ exp

(

− t2

2s2
X

)

.

For the absolute value bound

P

(

∣

∣

∣ max
i=1,...,n

|Xi|− E

[

max
i=1,...,n

Xi

]∣

∣

∣ > t

)

≤ 2 exp

(

− t2

2s2
X

)

.

In particular, if Xi ∼ N(0, 1/N),

s2
X =

1

N
,

and for any t > 0,

P

(

max
i=1,...,n

|Xi| >
√

2 log n

N
+ t

)

≤ 2 exp

(

−Nt2

2

)

.

C.2 Proof of Pruning Theorem for accuracy

This theorem follows from the Pruning Theorem 4.1. Under the assumptions of this the-
orem and from the Pruning Theorem, and assuming that R2 is i.i.d. from N(0, 1/N) we
have that for any ϵ > 0, for any s ∈ T′,

P

(

δX(s, αW′) ≥ 0 | δX(s, αW) ≥ (1 + ϵ)
(
√

2
(

fW2
σmax(W3) + 2N− 1.5

4 ∥W3∥1
))

× max
s∈GEacc,α

∥W1s∥1 + b(N)
)

≥ 1 − Cϵ(N) (C.25)

with Cϵ(N), b(N) → 0 as N → ∞ and fW2
given by the Approximation Lemma B.2. In this

case, E′ from the Pruning Theorem given in (4.18) is equal to (1 + ϵ)(
√

2(fW2
σmax(W3) +

2N−1.5/4∥W3∥1))maxs∈GEacc,α
∥W1s∥1 + b(N). By taking

Eacc = (1 + ϵ)
(√

2
(

fW2
σmax(W3) + 2N− 1.5

4 ∥W3∥1
)

)

max
s∈GEacc,α

∥W1s∥1 + b(N), (C.26)

we make the classification confidence threshold of the non-pruned DNN independent
on s. We then obtain, from (C.25), that for all s,

P
(

δX(s, αW′) ≥ 0 | δX(s, αW) ≥ Eacc
)

≥ 1 − Cϵ(N). (C.27)

Given that this is independent on s, we obtain the final result

P
(

GEacc,α ⊂ G0,α′
)

≥
(

1 − Cϵ(N)
)|GEacc,α|. (C.28)

The theorem then follows from the fact that accα′(t) = |G0,α′ |/|T′|.

J. Mach. Learn., X(X):1-66 49

Appendix D Other algorithms required for implementing RMT-
SVD based pruning of DNN

D.1 BEMA algorithm for finding λ+

The following is the BEMA algorithm for finding the best fit λ+ of R⊤R/N based on the
ESD of X = R + S. It is used in the analysis of matrices with the information plus noise
structure (i.e. deformed matrices), where one wants to determine the rightmost edge of
the compact support of the MP distribution. In this context, the Tracy-Widom distribution
provides the limiting distribution of the largest eigenvalue λ+ of large random matrices,
allowing us to compute a confidence interval for λ+ in the presence of the Marčenko-
Pastur distribution, see [28]. The BEMA algorithm is computationally efficient and has
been shown to provide accurate results for matrices with the information plus noise struc-
ture. More details on the algorithm and its relationship with the MP and Tracy-Widom
distributions can be found in [28]. Here, we present a simplified version of the algorithm
for R a N × N matrix.

Algorithm 2 Computation of λ+ Using MP and Tracy-Widom Distributions.

1: Choose parameters α ∈ (0, 1/2), β ∈ (0, 1).

2: for each αN ≤ k ≤ (1 − α)N do

3: Obtain qk, the (k/N) upper-quantile of the MP distribution

with σ2 = 1 and c = 1. ◃ Each qk is a solution to
∫ qk

0

1

2π

√

(4 − λ)λ
λ

= k/N.

4: end for

5: Compute σ̂2 =
∑αN≤k≤(1−α)N qkλk

∑αN≤k≤(1−α)N q2
k

. ◃ where λk is the k-th smallest eigenvalue of X.

6: Obtain t1−β, the (1 − β) quantile of Tracy-Widom distribution.

7: Return λ+ = σ̂2[4 + 24/3t1−β · N−2/3].

Remark D.1. The algorithm depends on parameters α ∈ (0, 1/2), β ∈ (0, 1). We show this
by varying α and β for the case found in Example D.1. See Fig. D.1(a) and D.1(b). The
red line is λ+ = 4, which is the correct λ+ of R⊤R/N. In this example, while dependence
on α is insignificant for sufficiently large values, dependence on β allows us to control the
confidence that the eigenvalues of the random matrix R will be smaller than the estimator
for λ+ of the MP distribution. In all the numerical simulations given in Section 3, we took
α = 0.1 and β = 0.1. It would be interesting to try and see what happens when we take
a larger β, as it would prevent the algorithm from pruning too many parameters but might
lead to even higher accuracy.

In the numeric portion of the paper, we always divide R⊤R by 1/N when obtaining
the ESD of X regardless of the original distribution of the initial random matrix R(0). If

J. Mach. Learn., X(X):1-66 50

(a) Dependence of algorithm the choice of α, β = 0.5. In this
example, the rank of the deterministic matrix S is fairly low.

(b) Dependence of algorithm on the choice of β, α = 0.25.

Figure D.1: How λ+ depends on α and β.

R(o) is distributed using N(0, 1/N), dividing R⊤R by N does not seem to change the fact
that the ESD of X is given by the MP distribution.

Example D.1. In this example, we create a random N × N matrix R with components
taken from i.i.d. using the normal distribution of zero mean and unit variance (σ2 = 1).
We take S to be a N × N deterministic matrix with components given by

S[i, j] = tan

(

π

2
+

1

j + 1

)

+ cos(i) · log(i + j + 1) + sin(j) · cos

(

i

j

)

, (D.1)

W = R + S and X = W⊤W/N. The BEMA algorithm is used to find the λ+ of the
ESD of X, as described in Section D.1. R is a random matrix satisfying the conditions of
Theorem 3.1, and so the ESD of 1/NR⊤R converges to the Marchenko-Pastur distribution
as N → ∞ and has a λ+ that determines the rightmost edge of its compact support. We can
imagine a situation in which R is not directly known, and the goal is to find an estimator
of λ+ from the ESD of X. See Fig. D.2 for the result of the ESD of X with the Marchenko-
Pastur distribution that best fits the ESD shown in red.

The bulk of the eigenvalues are well-fit by the MP distribution, but some eigenvalues
bleed out to the right of λ+. These eigenvalues correspond to the singular values of S. The
direct calculation of the λ+ of the MP distribution corresponding to R⊤R/N gives

λ+ = σ2 · (1 + 1)2 = 4,

and the λ+ obtained to fit the bulk of the ESD of X and the λ+ of R⊤R/N are approxi-
mately the same.

The BEMA algorithm will be employed to estimate λ+ from the ESD of Xl(t). As
the DNN training progresses, it is expected that the majority of the eigenvalues of Xl(t)
will conform to the MP distribution. Nonetheless, some eigenvalues may extend beyond
the bulk of the MP distribution and be associated with the singular values of Sl(t). The
purpose of the BEMA algorithm is to identify the furthest edge of the MP distribution,

J. Mach. Learn., X(X):1-66 51

Figure D.2: In blue, we have the ESD of X; in red, the Marchenko-Pastur distribution, which best fits the ESD
based on the BEMA algorithm.

which helps determine the value of λ+. Understanding λ+ is crucial as it offers insights
into the DNN’s behavior during training and its capacity to generalize to new data.

In combination with the SVD, the BEMA algorithm can be applied to decide which sin-
gular values of the DNN’s weight matrices Wl should be eliminated during training. The
SVD breaks down the weight matrix into its singular values and singular vectors, allowing
for an RMT-based analysis of their distribution. Utilizing the BEMA algorithm, one can
pinpoint the eigenvalues associated with the singular values of Sl and differentiate them
from the eigenvalues related to the singular values of Rl. By removing the eigenvalues
corresponding to Rl, the DNN’s training process can be made more effective and efficient.

D.2 The role of singular value decomposition in deep learning

Consider a N × M matrix A. A singular value decomposition of A consists of a factoriza-
tion A = UΣV⊤, where

• U is an N × N orthogonal matrix.

• V is an M × M orthogonal matrix.

• Σ is an N × M matrix with the ith diagonal entry equal to the ith singular value σi
and all other entries of Σ being zero.

For λi, the eigenvalues of a matrix X = W⊤W, the singular values of W are given by
σi =

√
λi. Consequently, singular values are connected to eigenvalues of the symmetriza-

tion of a matrix W.
For a DNN’s Wl , it has been demonstrated that discarding small singular values of Wl

through its SVD during the DNN’s training can decrease the number of parameters while
improving accuracy, as shown in [3,11,62,63]. In the remainder of this work, we illustrate
how RMT can aid in identifying the singular values to be removed from a DNN layer
without compromising the DNN’s accuracy.

J. Mach. Learn., X(X):1-66 52

In particular, the BEMA algorithm can be combined with the SVD of Wl to ascertain
which singular values should be removed during the DNN’s training. To achieve this,
one first computes the SVD of Wl and then calculates the eigenvalues of the symmetrized
matrix Xl = W⊤

l Wl/N. The eigenvalues derived from the symmetrization can be linked to
the singular values of Wl through Nλi = σ2

i . Employing the BEMA algorithm to estimate
the value of λ+ allows for the determination of a threshold for the singular values of
Wl . Singular values below the threshold can be removed without impacting the DNN’s
accuracy, as they are likely less crucial for the DNN’s performance. This process can be
carried out iteratively during the DNN’s training since the threshold can be updated as
training advances.

D.3 Eliminating singular values while preserving accuracy

In this subsection, we demonstrate how SVD can be employed to remove the random com-
ponents of Wl without compromising accuracy. This could potentially lead to a significant
reduction in the number of parameters in the DNN, resulting in faster training.

Algorithm 3 Pruning a Weight Matrix from a Trained DNN.

1: Acquire a weight matrix Wl from a trained DNN.

2: Perform SVD on Wl : Wl = UΣV⊤.

3: Calculate the eigenvalues λi of the square matrix W⊤
l Wl/N.

4: Apply the BEMA algorithm from Section D.1 to find the best fit MP distribution for
the ESD of X = W⊤

l Wl/N and its corresponding λ+. ◃ See Fig. D.3.

5: Determine whether the ESD of X fits the MP distribution
using the algorithm in Section D.4. ◃ Ensures Wl = R + S assumption is valid.

6: Replace a portion, e.g. 0.1, of the singular values less than
√

λ+N with zeros to form
a new diagonal matrix Σ′ and the truncated matrix W′

l .

7: Use Σ′ to obtain W′
1,l = U

√
Σ′ and W′

2,l =
√

Σ′V⊤.

Example D.2. Consider an original DNN with two hidden layers, each consisting of 10
nodes. The total number of parameters in this case would be 100. By employing SVD and
removing 8 small singular values in the weight layer matrix of this DNN, we can split the
hidden layer into two, resulting in a new DNN with three hidden layers. The first layer
will have 10 nodes, the second layer will have 2 nodes, and the third layer will have 10
nodes. By keeping only two singular values in the SVD, we now have only 20 parameters,
see Fig. D.4. In practice, we do not actually split the layer.

Example D.3. We used the above approach for a DNN trained on MNIST. In this example,
the DNN has two layers, the first with a 784× 1000 matrix W1 and the second with a 1000×
10 matrix W2. The activation function was ReLU. We trained the DNN for 10 epocs and
achieved a 98% accuracy on the test set.

J. Mach. Learn., X(X):1-66 53

(a) Full Empirical Density (b) Zoomed Density

Figure D.3: The ESD of Xl and its best fit MP distribution.

Tw
o

h
id

d
en

la
y

er
s

fo
rm

o
ri

g
in

al
D

N
N

T
h

re
e

h
id

d
en

la
y

er
s

in
p

ru
n

ed
D

N
N

Figure D.4: Two hidden layers from the original, in the left figure, have 10 nodes (total 100 parameters). Layers
are transformed into three hidden layers, in the right figure, in pruned DNN. The first layer has 10 nodes, the
second layer has 2 nodes (keeping only two singular values in the SVD), and the third layer has 10 nodes, resulting
in a total of 20 parameters.

We perform an SVD on W1, in this case Σ is a 784 × 1000 matrix. Even if we only
keep the biggest 60 σi of W1 and transform the first layer into two layers W1,1 and W2,1
the accuracy is still 98%. W1 had 784, 000 parameters, while W1,1 and W2,1 have 784(60) +
1, 000(60) = 107, 040 parameters (not including the bias vector parameters). This is a re-
duction of over 85%. In Fig. D.5 we show how the accuracy of the DNN depends on the
number of singular values that we keep. The red line corresponds to the threshold given
by the MP distribution (via λ+) for how many of the large singular values should be kept.
As the figure shows, this threshold is highly accurate. This example also numerically con-
firms Theorem 4.1 and shows that the threshold given in the theorems (for which singular
values to keep) is highly useful and accurate.

J. Mach. Learn., X(X):1-66 54

Figure D.5: Number of eigenvalues kept is shown on the x-axis while the accuracy is shown on the y-axis.

D.4 MP fit criteria: Checking if the ESD of X fits a MP distribution

This subsection details a procedure to evaluate whether the ESD of a square matrix X
is possibly drawn from a specific MP distribution (with a possibility of spiked eigenval-
ues). The initial step of this procedure relies on the BEMA method to identify the most
fitting MP distribution. This optimal fitting distribution provides a theoretical cumulative
distribution function (CDF), while the empirical cumulative spectral distribution related
to X can be computed. A comparison of these two distributions allows us to dismiss the
hypothesis that X follows the suggested MP distribution if the difference between the
distributions is substantial. Let us formalize these concepts, starting with the concept of
an empirical cumulative spectral distribution.

Definition D.1. Assume G is an N × M matrix and its ESD µGM
is defined as in Definition 3.1.

The empirical cumulative spectral distribution of G, symbolized as FG : R → R, is defined as

FG(a) = µGm

(

(−∞, a]
)

. (D.2)

Interestingly, the cumulative distribution functions for the MP distribution are known
and can be expressed in a closed form. With these equations, we can comprehensively de-
scribe our procedure. We set a tuning parameter γ ∈ (0, 1) corresponding to the sensitivity
of our test.

This procedure computes the maximum difference between the expected and empirical
cumulative distribution functions by sampling at each point in the empirical distribution.
Since this is intended for the unique case of testing for spiked MP distributions, we can
utilize this information to enhance our test over simply calculating the L∞ difference be-
tween the expected and empirical distributions.

This enhancement is reflected in the step which calculates ilow and ihigh. As BEMA only
uses data in the quantile between (α, 1 − α) to find the best fit, it is logical to only examine
for fit within the same range. In this context, we would expect a spiked MP distribution to
be poorly approximated by its generative MP distribution around the highest eigenvalues
(i.e. the spiked values), and hence it makes sense to only test the bulk values for goodness
of fit.

J. Mach. Learn., X(X):1-66 55

Algorithm 4 Assessing Conformance to the MP Distribution.

1: Accept X = W⊤W/N as input, where W is an N × M matrix.

2: Calculate the spectrum of X = {σ1, . . . , σM}.

3: Compute the empirical cumulative spectral distribution of X, denoted FX .

4: Execute the BEMA method with parameters α and β to determine σ̂2, the anticipated
variance of each coordinate of W.

5: Calculate 0 ≤ ilow < ihigh ≤ M such that ilow is the smallest integer with ilow/M ≥ α
and ihigh is the largest integer with ihigh/M ≤ 1 − α.

6: Define F′
X as the theoretical cumulative distribution function for the MP distribution

with parameters σ̂2 and λ = N/M.

7: Evaluate s = maxi∈[ilow,ihigh]
|FX(i)− F′

X(i)|.
8: if s > γ then
9: Dismiss the hypothesis that X follows the proposed distribution.

10: else
11: Do not reject this hypothesis.
12: end if

Appendix E Some of the proofs and numerics

E.1 Proof of Lemma 4.1

Proof. The classification confidence before pruning is

δX(s, αWb
) = Xi(s)(s, αWb

)− max
j ̸=i(s)

Xj(s, αWb
).

After pruning, it is

δX
(

s, αW′
b

)

= Xi(s)

(

s, αW′
b

)

− max
j ̸=i(s)

Xj
(

s, αW′
b

)

.

For simplicity, we will start by proving the theorem for the case of a DNN with only one
layer matrix W and a bias vector β. Thus, we take X(s, αWb

) = X(s, αW) and X(s, αW′
b
) =

X(s, αW′).
Then, the change in classification confidence due to pruning is

∆(δX) = |δX(s, αW)− δX(s, αW′)|.

For a particular component i, the change ∆Xi due to pruning is given by

∆Xi = |Xi(s, αW)− Xi(s, αW′)|.

We have that X(s, αW) = λ ◦ (W + β)s and X(s, αW′) = λ ◦ (W′ + β)s.
Given that λ is the absolute value activation function, for any scalar values x and y, we

have
|λ(x)− λ(y)| ≤ |x − y|. (E.1)

J. Mach. Learn., X(X):1-66 56

Thus
∥X(s, αW)− X(s, αW′)∥ ≤ ∥(W − W′)s∥ ≤

√

λ+∥s∥2.

If the change in the norm of the entire output vector due to pruning is at most
√

λ+∥s∥2,
then the maximum change in any individual component must also be bounded by that
amount. That is

∆Xmax ≤
√

λ+∥s∥2.

Furthermore,
∆Xmax + ∆Xmax-1 ≤

√

2λ+∥s∥2 (E.2)

with ∆Xmax-1 the change in the component of X which has the second to biggest change
and ∆Xmax the change component of X which had the biggest change.

Now assume
max
j ̸=i(s)

Xj(s, αW′) ≤ max
j ̸=i(s)

Xj(s, αW),

then given that

|Xi(s)(s, αW)− Xi(s)(s, αW′)| ≤
√

λ+∥s∥2,

we must have

δX(s, αW′) = Xi(s)(s, αW′)− max
j ̸=i(s)

Xj(s, αW′) ≤
√

λ+∥s∥2.

Next, assume
max
j ̸=i(s)

Xj(s, αW′) ≥ max
j ̸=i(s)

Xj(s, αW).

Let us expand the change in δX due to pruning

∆(δX) =
∣

∣

∣

(

Xi(s)(s, αW)− max
j ̸=i(s)

Xj(s, αW)
)

−
(

Xi(s)(s, αW′)− max
j ̸=i(s)

Xj(s, αW′)
)∣

∣

∣

≤ |Xi(s)(s, αW)− Xi(s)(s, αW′)|+
∣

∣

∣
max
j ̸=i(s)

Xj(s, αW)− max
j ̸=i(s)

Xj(s, αW′)
∣

∣

∣
.

Take k∗ to be an integer such that

max
j ̸=i(s)

Xj(s, αW′) = Xk∗(s, αW′),

we have, given that
max
j ̸=i(s)

Xj(s, αW′) ≥ max
j ̸=i(s)

Xj(s, αW),

that

|Xi(s)(s, αW)− Xi(s)(s, αW′)|+
∣

∣

∣ max
j ̸=i(s)

Xj(s, αW)− max
j ̸=i(s)

Xj(s, αW′)
∣

∣

∣

≤ |Xi(s)(s, αW)− Xi(s)(s, αW′)|+ |Xk∗(s, αW′)− Xk∗(s, αW)|. (E.3)

J. Mach. Learn., X(X):1-66 57

Consider the worst-case scenario where the change is maximally concentrated in the
components i(s) and k∗. Thus, given (E.2) we have

∆(δX) ≤ ∆Xmax + ∆Xmax-1 ≤
√

2λ+∥s∥2. (E.4)

Next, we consider the case where the DNN has multiple layers given by the matrices
W1, · · · , WL, and bias vectors β1, · · · , βL and we prune the last matrix layer of the DNN,
i.e. we prune layer matrix WL to obtain W′

L. In this case, we can reduce this problem to that
of a DNN with a single layer matrix WL and a single bias vector βL and an input vector

z = λ ◦WL−1 ◦ · · · ◦ λ ◦ W1s.

Then, by the above argument, we have

∆(δX) ≤
√

2λ+∥λ ◦ (WL−1 + βL−1) ◦ · · · ◦ λ ◦ (W1 + β1)s∥2. (E.5)

Finally, we assume that we prune a layer Wb to obtain W′
b. By a similar argument to

what we have above, we see that the max change of a component of the output vector
X(s, αWb

) after pruning is

∆Xmax ≤
√

λ+∥λ ◦ (Wb−1 + βb−1) ◦ · · · ◦ λ ◦ (W1 + β1)s∥2σmax(Wb+1) . . . σmax(WL),

given that
∥λ ◦ (Az + β)− λ ◦ (Az′ + β)∥2 ≤ σmax(A)∥z′ − z∥2.

Again, we obtain,

∆Xmax + ∆Xmax-1 ≤
√

2λ+∥λ ◦ (Wb−1 + βb−1) ◦ · · · ◦ λ ◦ (W1 + β1)s∥2

× σmax(Wb+1) . . . σmax(WL). (E.6)

Thus, this completes the proof of the lemma.

E.2 Effectiveness of MP-based pruning for different initialization methods

In this subsection, we investigated the performance of various initialization methods, in-
cluding He [24] and Xavier [21] initialization. It is important to note that both the He and
Xavier initializations align with the principles of the MP theorem given in Theorem 3.1.
That is, the weight layer components are i.i.d. with mean zero and bounded variance.
In practice, for the weight layer matrices W initialized based on those distributions, we
have that the ESD of W⊤W fits the MP distribution well (with an error, see Section D.4, of
∼ 0.001 for both). Thus, the Pruning Theorem 4.1 would hold for both of these initializa-
tions.

The DNNs were fully connected, and their architecture was given by [784, 3000, 3000,
3000, 3000, 500, 10]. When pruning with MP-based pruning, both initializations achieved
test accuracies above 90%, which was comparable to the performance of networks ini-
tialized with a normal distribution (which was 90.74%), see Fig. E.1. Without MP-based
pruning, the DNNs achieved accuracy on the test set of ∼ 89%. All the DNNs were trained

J. Mach. Learn., X(X):1-66 58

(a) Training Set Accuracy vs Epoch for He and Xavier Initializations (b) Test Set Accuracy vs Epoch for He and Xavier Initializations

Figure E.1: Accuracy vs Epoch for He and Xavier Initializations.

using a combination of L2 and L1 regularization (see (E.7)), which is why the DNNs
achieved an accuracy above 90%. The using of both L1 and L2 regularization together
with MP-pruning is a critical factor in achieving these high accuracies, consistently above
90%. The interplay between MP-based pruning and regularization, which contributes to
this performance, will be discussed in detail in another paper. We used the hyperparame-
ters µ1 = 0.0000005 and µ2 = 0.0000001. The other hyperparameters are the same as those
given in the numerical simulations from Section 3.2.1.

L
(

α(a)
)

= − 1

|T| ∑
s∈T

log
(

φi(s)

(

s, α(a)
)

)

+ µ1

L

∑
i=1

∥Wi(a)∥1 + µ2

L

∑
i=1

∥Wi(a)∥2
F. (E.7)

Additionally, we conducted a similar simulation where the initial weights were drawn
from a normal distribution N(0, 1/N), but 90% of the parameters were randomly initially
sparsified afterward and set to zero (though we still used them during training). The
resulting DNN’s test accuracy plateaued at ∼ 80% and failed to improve beyond this
point, even when using MP-based pruning. It is important to note that the MP theorem
does not hold for weight layers initialized in such a manner. Similar results were found
when we used He and Xavier initializations but initially sparsified them so that 90% of the
parameters started out as zero (but were used during training).

Finally, we also ran the numerical simulations for the above DNN architecture and
hyperparameters, but setting µ1 = 0 (that is only using L2 regularization, which is what
was also done in Section 3.2.1). For the He and Xavier initialization, the DNNs, with MP-
based pruning, obtained an accuracy of ∼ 90%, comparable to the simulations found in
Section 3.2.1, while for the sparse initialization, their accuracy never appreciated higher
than 80% even when using MP-based pruning. Without MP-based pruning, the He and
Xavier initialization accuracies were ∼ 88%.

E.3 A regression problem: MP-based pruning in regression

We consider the task of finding a DNN that approximates a function best fitting the given
data in terms of Mean Squared Error (MSE), see Fig. E.2.

J. Mach. Learn., X(X):1-66 59

Figure E.2: Illustration of the regression problem.

Training data. The training data consists of 2000 equally spaced points between 0 and 2

xtrain =

{

xi

∣

∣

∣ xi =
2i

1999
, i = 0, 1, 2, . . . , 1999

}

.

Noise is added to the training labels. The noise is uniformly distributed between −1
and 1 with a scaling factor of σ = 0.5,

noisetrain = {ϵi | ϵi ∼ U (−1, 1)}.

The training labels are generated using the following function:

ytrain = 0.5 cos(20xtrain) + 2 cos(5xtrain) + 0.5 sin(10xtrain) + σ · noisetrain.

Testing data. The testing data consists of 500 equally spaced points between 0 and 2

xtest =

{

xi

∣

∣

∣
xi =

2i

499
, i = 0, 1, 2, . . . , 499

}

.

The testing labels are generated using the following function without noise:

ytest = 0.5 cos(20xtest) + 2 cos(5xtest) + 0.5 sin(10xtest).

Defining output and target. The DNN used for this 2D regression has a simple structure:

• The first and last layers each consist of a single neuron.

• The network outputs a single value and is trained using MSE together with L2 regu-
larization as the loss function.

DNN topology. We use a fully connected DNN for the regression problem given in
Fig. E.2, that is, to find the curve that best fits the data. The fully connected DNN used
in this regression problem has the following topology: [1, 1000, 1000, 1000, 1000, 1], which
represents the number of nodes in each layer. We do not use an activation function after
the final layer of the DNN.

J. Mach. Learn., X(X):1-66 60

Training process. Both an unpruned DNN and a DNN using RMT pruning were trained
to minimize MSE loss. The hyperparameters for training can be found in Table E.1. We
decreased the lr by 0.997 every epoch.

Table E.1: Training hyperparameters for the DNN.

Hyperparameter Value

Number of epochs 1198

Number of seeds 5

Learning rate (lr) 0.025

Momentum 0.95

Batch size 128

L2 regularization on loss 0.001

Comparison of unpruned vs pruned DNN. The pruned DNN shows a significantly
smaller loss on both training and test sets, with a 50% reduction in the number of pa-
rameters, see Figs. E.3 and E.4. It is important to note that a smaller DNN might perform
better on this task when MP-based pruning is not employed. However, for larger fully
connected DNNs it is clear that MP-based pruning helps the DNN achieve much lower
loss for this task.

Figure E.3: Training loss comparison between normal
and pruned DNN.

Figure E.4: Test loss comparison between normal and
pruned DNN.

E.4 Numerical example used to calculate δX.

In this demonstration, we have a set of two-dimensional data points, and our objective
is to identify the boundary that divides them into two categories. The dataset originates
from a randomly constructed polynomial function of a designated degree. We then sam-
ple data points uniformly across a spectrum of x-values. For every x-value, the poly-

J. Mach. Learn., X(X):1-66 61

nomial function gives a y-value. These points are then slightly offset either upwards or
downwards, forming two distinguishable point clusters labeled as red and blue. Points
positioned above the polynomial curve get a blue label, and those below are tagged red.
We also add Gaussian noise to slightly modify the y-values, causing a few red data points
to appear below the boundary and some blue ones above. This scenario is depicted in
Fig. E.5.

The goal is to harness a DNN to capture the decision boundary demarcating the two
clusters. This DNN is designed to process a two-dimensional data point, producing a bi-
nary output indicating whether the point is red or blue. Given that the dataset is artificially
curated, the actual decision boundary is known, allowing us to gauge the efficacy of our
DNN.

For this task, our neural network model had one hidden layer with 500 neurons. We
also used the ReLU activation function. Training is executed using the cross-entropy loss
complemented by the SGD optimizer and momentum.

Figure E.5: Illustration of a decision boundary for a binary classification challenge created using a random
polynomial function, supplemented with noise. The distinct blue and red points signify the two classes.

E.5 Hyperparameters for Section 3.2.1

• Number of epochs: 40.

• Number of seeds: 10.

• Learning rate (lr): 0.02.

• Momentum: 0.9.

• Batch size: 128.

• L2 regularization on loss: 0.0005. (The regularization term is applied for both DNNs,
the normal and pruned versions).

See [26,33,55] for information on learning rate, momentum, batch size, and regulariza-
tion, respectively.

J. Mach. Learn., X(X):1-66 62

E.6 Hyperparameters for Section 3.2.1

• Number of epochs: 70.

• Number of seeds: 10.

• Learning rate (lr): 0.02.

• Momentum: 0.9.

• Batch size: 128.

• L2 regularization on loss: 0.0005.

E.7 Hyperparamters for Section 3.2.2

Training hyperparameters:

• Number of epochs: Depends on the example.

• Number of seeds: 5.

• Learning rate (lr): 0.02.

• Momentum: 0.9.

• Batch size: 128.

• Split frequency: Depends on the example.

• L2 regularization on loss: 0.001.

• Goodness of fit: Changes for every simulation.

E.8 CNN architecture description

The CNN model in this study consists of multiple convolutional and fully connected lay-
ers, incorporating batch normalization and dropout for regularization. The architecture is
designed as follows:

Convolutional layers:

• The network contains several convolutional layers with kernels of size 3. Each con-
volutional layer is followed by batch normalization.

• Activation functions (ReLU) are applied conditionally based on predefined configu-
rations.

• Max-pooling layers are introduced after every second convolutional layer, except the
first one. Specifically, max-pooling with a pool size of 2 is used to reduce the spatial
dimensions of the feature maps.

• Dropout is applied after each convolutional layer to prevent overfitting, with a drop-
out rate of 0.35.

J. Mach. Learn., X(X):1-66 63

Fully connected layers:

• After the convolutional layers, the output is flattened and passed through a series of
fully connected layers.

• Each fully connected layer is followed by batch normalization and, conditionally, by
a ReLU activation function based on the configuration.

• Dropout is also applied to the output of the first fully connected layer to further
prevent overfitting.

Output layer:

• The final layer applies a log-softmax function to produce the output probabilities for
classification.

E.8.1 Pooling and regularization details

Pooling layers: Max-pooling layers are strategically placed to downsample the feature
maps, specifically after every second convolutional layer. This pooling strategy helps in
reducing the computational complexity and in extracting invariant features.

Batch normalization: Batch normalization is applied after each convolutional and fully
connected layer to stabilize and accelerate the training process by normalizing the input
to each layer.

Dropout: Dropout is utilized after each convolutional layer and the first fully connected
layer with rates of 0.35 and variable values, respectively, to reduce overfitting by randomly
setting a fraction of activations to zero during training.

E.9 The hyperparamters for Section 3.2.3

Training hyperparameters:

• Number of epochs: 300.

• Number of seeds: 5.

• Learning rate (lr): 0.001.

• Momentum: 0.9.

• Batch size: 128.

• Split frequency (every how many epochs we split the pruned DNN and remove small
singular values): 40.

• L2 regularization on loss: 0.001.

• goodness of fit: 0.08 for fully connected layers, 0.06 for convolutional layers.

J. Mach. Learn., X(X):1-66 64

Acknowledgments

The authors thank J. Tanner for bringing several relevant publications to our attention.
The work of L. Berlyand was partially supported by the NSF (Grant Nos. DMS-2005262

and IMPRESS-U 2401227). L. Berlyand and E. Sandier are grateful to the Labex Bézout
Foundation for supporting the stay of LB while visiting Université Paris-Est, which helped
facilitate the collaboration between E. Sandier, L. Berlyand, and Y. Shmalo on this work.

References

[1] H. Abdi and L. J. Williams, Principal component analysis, Wiley Interdiscip. Rev. Comput. Stat., 2(4):433–
459, 2010.

[2] J. Agterberg, Z. Lubberts, and C. E. Priebe, Entrywise estimation of singular vectors of low-rank matrices
with heteroskedasticity and dependence, IEEE Trans. Inf. Theory, 68(7):4618–4650, 2022.

[3] X. Anhao, Z. Pengyuan, P. Jielin, and Y. Yonghong, SVD-based DNN pruning and retraining, Tsinghua.
Sci. Technol., 56(7):772–776, 2016.

[4] J. Baik, G. Ben Arous, and S. Péché, Phase transition of the largest eigenvalue for nonnull complex
sample covariance matrices, Ann. Probab., 33(5):1643–1697, 2005.

[5] Z. Bao, X. Ding, and K. Wang, Singular vector and singular subspace distribution for the matrix denois-
ing model, Ann. Statist., 49(1):370–392, 2021.

[6] Z. Bao and D. Wang, Eigenvector distribution in the critical regime of BBP transition, Probab. Theory
Related Fields, 182(1-2):399–479, 2022.

[7] F. Benaych-Georges and R. R. Nadakuditi, The eigenvalues and eigenvectors of finite, low rank pertur-
bations of large random matrices, Adv. Math., 227(1):494–521, 2011.

[8] F. Benaych-Georges and R. R. Nadakuditi, The singular values and vectors of low rank perturbations of
large rectangular random matrices, J. Multivariate Anal., 111:120–135, 2012.

[9] L. Berlyand, P.-E. Jabin, and C. A. Safsten, Stability for the training of deep neural networks and other
classifiers, Math. Models Methods Appl. Sci., 31(11):2345–2390, 2021.

[10] R. Bro and A. K. Smilde, Principal component analysis, Anal. methods, 6(9):2812–2831, 2014.
[11] C. Cai, D. Ke, Y. Xu, and K. Su, Fast learning of deep neural networks via singular value decomposition,

in: Pacific Rim International Conference on Artificial Intelligence, Springer, 820–826, 2014.
[12] Y. Chen, C. Cheng, and J. Fan, Asymmetry helps: Eigenvalue and eigenvector analyses of asymmetri-

cally perturbed low-rank matrices, Ann. Statist., 49(1):435, 2021.
[13] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun, The loss surfaces of multilayer

networks, in: Artificial Intelligence and Statistics, PMLR, 192–204, 2015.
[14] R. Couillet and M. Debbah, Random Matrix Methods for Wireless Communications, Cambridge University

Press, 2011.
[15] R. Couillet and Z. Liao, Random Matrix Methods for Machine Learning, Cambridge University Press, 2022.
[16] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio, Identifying and attacking

the saddle point problem in high-dimensional non-convex optimization, Adv. Neural Inf. Process. Syst.,
4:2933–2941, 2014.

[17] P. Dharmawansa, P. Dissanayake, and Y. Chen, The eigenvectors of single-spiked complex wishart ma-
trices: Finite and asymptotic analyses, IEEE Trans. Inf. Theory, 68(12):8092–8120, 2022.

[18] M. Fazlyab, A. Robey, H. Hassani, M. Morari, and G. Pappas, Efficient and accurate estimation of Lips-
chitz constants for deep neural networks, Adv. Neural Inf. Process. Syst., Vol. 32, 2019.

[19] J. Ge, Y.-C. Liang, Z. Bai, and G. Pan, Large-dimensional random matrix theory and its applications in
deep learning and wireless communications, Random Matrices: Theory and Applications, 10(04):2230001,
2021.

[20] R. Ge, F. Huang, C. Jin, and Y. Yuan, Escaping from saddle points – online stochastic gradient for tensor
decomposition, in: Conference on Learning Theory, PMLR, 797–842, 2015.

J. Mach. Learn., X(X):1-66 65

[21] X. Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in:
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, JMLR Workshop
and Conference Proceedings, 249–256, 2010.

[22] G. H. Golub and C. F. van Loan, Matrix computations, SIAM Review, 28(2):252–255, 1986.
[23] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, 2016.
[24] K. He, X. Zhang, S. Ren, and J. Sun, Delving deep into rectifiers: Surpassing human-level performance

on imagenet classification, in: 2015 IEEE International Conference on Computer Vision, IEEE, 1026–1034,
2015.

[25] G. Hinton et al., Deep neural networks for acoustic modeling in speech recognition: The shared views
of four research groups, IEEE Signal. Process Mag., 29(6):82–97, 2012.

[26] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, Improving neural
networks by preventing co-adaptation of feature detectors, arXiv:1207.0580, 2012.

[27] S. Hochreiter and J. Schmidhuber, Flat minima, Neural Comput., 9(1):1–42, 1997.
[28] Z. T. Ke, Y. Ma, and X. Lin, Estimation of the number of spiked eigenvalues in a covariance matrix by

bulk eigenvalue matching analysis, J. Am. Stat. Assoc., 118:374–392, 2021.
[29] H. Kösters and A. Tikhomirov, Limiting spectral distributions of sums of products of non-Hermitian

random matrices, arXiv:1506.04436, 2015.
[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural

networks, Commun. ACM, 60(6):84–90, 2017.
[31] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel, Handwritten digit

recognition with a back-propagation network, Adv. Neural Inf. Process. Syst., Vol. 2, 1989.
[32] W. E. Leeb, Matrix denoising for weighted loss functions and heterogeneous signals, SIAM J. Math. Data

Sci., 3(3):987–1012, 2021.
[33] A. Lewkowycz, Y. Bahri, E. Dyer, J. Sohl-Dickstein, and G. Gur-Ari, The large learning rate phase of deep

learning: The catapult mechanism, arXiv:2003.02218, 2020.
[34] M. W. Mahoney and C. H. Martin, Traditional and heavy tailed self regularization in neural network

models, in: International Conference on Machine Learning, PMLR, 4284–4293, 2019.
[35] V. A. Marchenko and L. A. Pastur, Distribution of eigenvalues for some sets of random matrices, Sb.

Math., 114(4):507–536, 1967.
[36] C. H. Martin and M. W. Mahoney, Heavy-tailed universality predicts trends in test accuracies for very

large pre-trained deep neural networks, in: Proceedings of the 2020 SIAM International Conference on Data
Mining, SIAM, 505–513, 2020.

[37] C. H. Martin and M. W. Mahoney, Implicit self-regularization in deep neural networks: Evidence from
random matrix theory and implications for learning, J. Mach. Learn., 22(1):7479–7551, 2021.

[38] C. H. Martin, T. Peng, and M. W. Mahoney, Predicting trends in the quality of state-of-the-art neural
networks without access to training or testing data, Nat. Commun., 12(1):4122, 2021.

[39] X. Meng and J. Yao, Impact of classification difficulty on the weight matrices spectra in deep learning
and application to early-stopping, J. Mach. Learn., 24:1–40, 2023.

[40] A. Naumov, V. Spokoiny, and V. Ulyanov, Bootstrap confidence sets for spectral projectors of sample
covariance, Probab. Theory Related Fields, 174(3):1091–1132, 2019.

[41] S. O’rourke, V. Van, and K. Wang, Matrices with Gaussian noise: Optimal estimates for singular subspace
perturbation, arXiv:1803.00679, 2018.

[42] S. O’Rourke, V. Vu, and K. Wang, Random perturbation of low rank matrices: Improving classical
bounds, Linear Algebra Appl., 540:26–59, 2018.

[43] J. Park, I. Pelakh, and S. Wojtowytsch, Minimum norm interpolation by perceptra: Explicit regularization
and implicit bias, Adv. Neural Inf. Process. Syst., Vol. 36, 2023.

[44] R. Pascanu, T. Mikolov, and Y. Bengio, On the difficulty of training recurrent neural networks, in: Inter-
national Conference on Machine Learning, PMLR, 1310–1318, 2013.

[45] L. Pastur, On random matrices arising in deep neural networks. Gaussian case, arXiv:2001.06188, 2020.
[46] L. Pastur and V. Slavin, On random matrices arising in deep neural networks: General I.I.D. case, Random

Matrices: Theory and Applications, 12(01):2250046, 2023.
[47] L. Prechelt, Early stopping – but when? in: Neural Networks: Tricks of the Trade. Lecture Notes in Computer

J. Mach. Learn., X(X):1-66 66

Science, 53–67, 2012.
[48] I. Price and J. Tanner, Dense for the price of sparse: Improved performance of sparsely initialized net-

works via a subspace offset, In International Conference on Machine Learning, PMLR, 8620–8629, 2021.
[49] M. Ringnér, What is principal component analysis? Nat. Biotechnol., 26(3):303–304, 2008.
[50] T. N. Saada and J. Tanner, On the initialisation of wide low-rank feedforward neural networks,

arXiv:2301.13710, 2023.
[51] V. I. Serdobolskii, Multivariate Statistical Analysis: A High-Dimensional Approach, Springer Science & Busi-

ness Media, 2000.
[52] Y. Shmalo, J. Jenkins, and O. Krupchytskyi, Deep learning weight pruning with RMT-SVD: Increasing

accuracy and reducing overfitting, arXiv:2303.08986, 2023.
[53] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, Dropout: A simple way to

prevent neural networks from overfitting, J. Mach. Learn. Res., 15(1):1929–1958, 2014.
[54] M. Staats, M. Thamm, and B. Rosenow, Boundary between noise and information applied to filtering

neural network weight matrices, arXiv:2206.03927, 2022.
[55] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, On the importance of initialization and momentum in

deep learning, in: International Conference on Machine Learning, PMLR, 1139–1147, 2013.
[56] I. Sutskever, O. Vinyals, and Q. V. Le, Sequence to sequence learning with neural networks, Adv. Neural

Inf. Process., Vol. 27, 2014.
[57] M. Thamm, M. Staats, and B. Rosenow, Random matrix analysis of deep neural network weight matrices,

Phys. Rev. E, 106(5):054124, 2022.
[58] S. Vadera and S. Ameen, Methods for pruning deep neural networks, IEEE Access, 10:63280–63300, 2022.
[59] R. Vershynin, High-Dimensional Probability, Cambridge University Press, 2018.
[60] X. Xiao, Z. Li, C. Xie, and F. Zhou, Heavy-tailed regularization of weight matrices in deep neural net-

works, arXiv:2304.02911, 2023.
[61] Y. Xu, Y. Li, S. Zhang, W. Wen, B. Wang, W. Dai, Y. Qi, Y. Chen, W. Lin, and H. Xiong, Trained rank

pruning for efficient deep neural networks, in: 2019 Fifth Workshop on Energy Efficient Machine Learning
and Cognitive Computing-NeurIPS Edition (EMC2-NIPS), IEEE, 14–17, 2019.

[62] J. Xue, J. Li, and Y. Gong, Restructuring of deep neural network acoustic models with singular value
decomposition, Proc. Interspeech, 2365–2369, 2013.

[63] H. Yang, M. Tang, W. Wen, F. Yan, D. Hu, A. Li, H. Li, and Y. Chen, Learning low-rank deep neural net-
works via singular vector orthogonality regularization and singular value sparsification, in: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, IEEE, 678–679, 2020.

[64] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, Understanding deep learning (still) requires
rethinking generalization, Commun. ACM, 64(3):107–115, 2021.

[65] Z. Zhang and G. Pan, Tracy-Widom law for the extreme eigenvalues of large signal-plus-noise matrices,
arXiv:2009.12031, 2020.

	Introduction
	Background on deep learning
	Numerical algorithm and experiments
	Numerical algorithm
	An overview of the Marchenko-Pastur (MP) distribution and its applications in machine learning
	Using MP for pruning DNN weights
	MP and Tracy-Widom distribution for DNN training

	Numerical experiments
	Training of fully connected DNNs on MNIST: Simplifying the loss landscape
	MP-based pruning of CNNs on MNIST and Fashion MNIST
	Numerics for training DNNs on CIFAR-10: Reducing parameters via MP-based pruning

	Mathematical underpinning of numerical results
	The classification confidence
	How pruning affects classification confidence (for deterministic weight layer matrices)
	Assumptions on the random matrix R and the deterministic matrix S
	Key technical lemma: Removing random weights for DNN with arbitrary many layers does not affect classification confidence
	Pruning Theorem for DNN with arbitrary many layers: How pruning random weights using PM distribution affects the classification confidence
	Simple example of DNN with one hidden layer
	Pruning Theorem for accuracy: How pruning affects accuracy

	Some known results on perturbation of matrices
	Asymptotics of singular values and singular vectors of deformation matrix
	Gershgorin's circle theorem

	An approximation lemma – pruned matrix W' approximates the deterministic matrix S
	Numerics for Example 4.2
	Details for Example 4.3

	Proof for Pruning Theorem
	Proof for key technical Lemma 4.2
	Proof of Pruning Theorem for accuracy

	Other algorithms required for implementing RMT-SVD based pruning of DNN
	BEMA algorithm for finding +
	The role of singular value decomposition in deep learning
	Eliminating singular values while preserving accuracy
	MP fit criteria: Checking if the ESD of X fits a MP distribution

	Some of the proofs and numerics
	Proof of Lemma 4.1
	Effectiveness of MP-based pruning for different initialization methods
	A regression problem: MP-based pruning in regression
	Numerical example used to calculate X.
	Hyperparameters for Section 3.2.1
	Hyperparameters for Section 3.2.1
	Hyperparamters for Section 3.2.2
	CNN architecture description
	Pooling and regularization details

	The hyperparamters for Section 3.2.3

