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ABSTRACT

This paper presents a case study using zonal statistical analysis for archaeological 

predictive modeling with open-access software and free geospatial datasets. The 

method is applied to the rural landscapes of Zanzibar, Tanzania on the Swahili 

Coast. This study used QGIS (version 3.28) to perform zonal statistical analyses of 

environmental datasets weighted by settlement classes digitized from a 1907 historical 

map, to create predictive models for settlement across the island. These models were 

compared against the locations of major precolonial archaeological sites on the island 

and site data from a random stratified archaeological survey in an environmentally 

diverse region of northern Zanzibar. The results show strong correspondences 

between larger permanent site locations and areas of high likelihood for site detection 

in the predictive model. Additionally, there were correspondences between areas of 

lower likelihood for site detection and smaller, ephemeral sites related to agricultural 

production in swidden field plots. These results attest to Swahili rural complexity and 

enable an understanding of the specific environmental affordances that structured 

settlement and land use over the last millennium, in ways that shaped colonial 

contact in rural areas and altered the sociopolitical development of Zanzibar and the 

East African coast. The methods described here may be applicable for researchers and 

heritage managers in Africa and the Global South, where funding for large-scale field 

projects, expensive satellite imagery, or software licensing is limited.
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1. INTRODUCTION

The African continent is a key site for the expansion of 

geospatial archaeological methods. Geospatial and 

remote sensing approaches to archaeological research in 

Africa have increased in visibility and importance in the 

last decade, and this has coincided with calls to increase 

the accessibility of these methods for researchers with 

limited funding (Davis and Douglass 2020; Klehm and 

Gokee 2020). One avenue for increased geospatial 

accessibility has been the development free, low-cost, 

and open-access tools for archaeological remote sensing 

and geospatial research (Casana 2020; Cerasoni et al. 

2022; Davis and Sanger 2021; Fisher et al. 2021; Khalaf 

and Insoll 2019; Sadr 2016; Rayne et al. 2020). This paper 

contributes by developing an archaeological predictive 

model for Zanzibar, Tanzania, using free geospatial 

datasets and open-access software. The model was 

created by digitizing a historical map and performing 

zonal statistical analyses of these features across 

weighted environmental raster images in QGIS 3.28. 

Summing these weighted zonal raster images produced 

two predictive models showing zones of probability for 

future site detection. These models were ground-truthed 

with archaeological field survey data from an inland 

region of Zanzibar, Tanzania, and were also compared 

against the locations of known major precolonial sites.

Zanzibar is an island region in Tanzania that was 

centrally important to the sociopolitical development 

of the Swahili Coast and the western Indian Ocean 

social system over the last two millennia (Crowther 

et al. 2016; Fitton 2018). The island of Zanzibar is 

environmentally diverse, with two major ecological 

zones: an agriculturally fertile northwestern region with 

deep soils and above-ground streams, and a rocky, 

agriculturally marginal karstic limestone landscape in 

the south and east, where water does not persist above 

ground (Alders 2023). Archaeologists have increasingly 

investigated ecological relationships between Swahili 

people and their landscapes on Zanzibar (Faulkner et 

al. 2022; Fitton et al. 2023; Kotarba-Morley et al. 2022; 

Prendergast et al. 2017; Quintana Morales et al. 2022). 

This study builds on this recent research, contributing 

to an understanding of the environmental affordances 

that structured long-term settlement and social change. 

Modeling human-environment relationships may enable 

future archaeological prospection on the island where 

settlement patterns are poorly understood, especially 

with regard to sites that do not possess standing stone 

architecture (Alders 2023; Fitton 2018; Horton and 

Clark 1985). In doing so, this research contributes to a 

long-standing orientation toward uncovering “hidden 

majorities” (Fleisher and LaViolette 1999) of Swahili 

non-elites, who created complex and independent 

rural societies beyond the boundaries of monumental 

stone-built towns (Kusimba et al. 2013; LaViolette 

and Fleisher 2018; LaViolette et al. 2023). Given its 

dynamic precolonial and colonial history and diverse 

environmental conditions, Zanzibar is a well-suited 

context for investigating the relationships between 

processes of urbanism, colonialism, and environmental 

factors, and as a case study for testing the suitability of 

an open-access method for predictive modeling.

1.1 PREDICTIVE MODELING, ZONAL 

STATISTICS, AND ARCHAEOLOGICAL 

PROSPECTION IN AFRICA AND BEYOND

Archaeological predictive modeling has continued to 

develop in relevance and sophistication since its inception, 

incorporating post-processual critiques related to 

environmental determinism, agency, and the interplay 

between data-driven and theory-laden approaches 

(Castiello 2022; Magnini and Bettineschi 2021; Verhagen and 

Whitley 2020). An assumption shared by all archaeological 

predictive models is that archaeological features were 

not randomly produced by humans in the past, but that a 

confluence of social and environmental factors conditioned 

their spatial location. Modeling the relationship between 

known archaeological features and their material and 

spatial environments can give insights into the locations 

of presently unknown features, aiding in archaeological 

prospection and survey and informing an understanding 

of human-environment relationships. Recent studies have 

evaluated the predictive power of different statistical 

approaches and sampling strategies (e.g., Castiello and 

Tonini 2021; Comer et al. 2023; Kelly et al. 2023; Yaworsky 

et al. 2020) and developed techniques for raster imagery 

analysis using machine learning and object-based imagery 

analysis (e.g., Magnini and Bettineschi 2021).

In African archaeology, recent studies have used a 

combination of remote sensing and spatial analysis for 

site detection, predictive modeling, and for understanding 

archaeological landscapes (Biagetti 2017; Davis and 

Douglass 2021; Fitton et al. 2023 Harrower et al. 2020; 

Klehm et al. 2019; Ochungo et al. 2022; Pawlowicz et al 

2020; Reid 2016, 2020; Thabeng et al. 2020). Creating 

models for site detection with multispectral imagery 

is increasingly accessible, with resources like Landsat, 

Planet, and Sentinel 2 imagery becoming available 

at increasingly high spatial, spectral, and temporal 

resolutions. While recognizing the utility of multispectral 

remote sensing for site detection, one limitation in 

rainy tropical regions like Zanzibar is the low availability 

of consistently cloud-free imagery, and the academic 

licensing required to access multispectral imagery.

To work around this problem, this paper presents a 

case study for an alternative method: predictive modeling 

through zonal statistical analyses of environmental raster 

images in comparison to training data, which are used 

to the weight a final summative model (see Fitton et 

al. 2023 for another regional study integrating multiple 

geospatial and legacy datasets on Zanzibar). This 
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method is based around quantifying the most suitable 

spatial zones for the occurrence of specific phenomena 

by summing weighted raster datasets using raster 

calculations (e.g., Behr et al. 2017; Kuria et al. 2011). It 

is a predictive model that relies on environmental zonal 

raster images (for instance, published or archived maps) 

and factors for weighting these raster images; in this 

case, the primary factor is known site location and site 

sizes for a region of northern Zanzibar during the late 

colonial period, digitized from a historical map.

Zonal statistical analysis of training features with 

the Majority statistic is the method chosen to weight 

environmental raster images, because it is a simple, 

accessible, and powerful tool that is built into the 

functionality of open-access geospatial software like 

QGIS. In keeping with the theme of accessibility, zonal 

statistical analysis can be carried out by researchers 

with limited resources, lack of experience in computer 

programming languages, and limited experience with 

complex statistical modeling. An innovation of this paper 

is the use of the coefficient of variation statistic to further 

weight favored zones.

Sources used for zonal statistical analysis in this 

paper include a digital elevation model derived from free 

SRTM satellite imagery (D’Andrea 2008; Harrower 2010; 

Harrower et al. 2012; Hritz 2010), spatial-environmental 

datasets from published sources (Colbert et al. 1987; 

Hardy et al. 2015; Khamis et al. 2017), and a historical map 

of Zanzibar that was published in 1907. The historical map 

was georeferenced using methods developed for 19th-

century Survey of India maps (Garcia et al. 2019; Green 

et al. 2019; Petrie et al. 2019). It contains a wealth of 

information about pre-modern rural Zanzibar, showcasing 

landscapes and features that have disappeared due to 

urban and agricultural development. This is the first time 

this map has been considered in detail, and in addition 

to the conclusions of this paper, it is hoped that the data 

will be a valuable resource for archaeologists and heritage 

managers in the future who are concerned with Zanzibar’s 

colonial history. Heritage management and conservation 

on Zanzibar is constrained by limited resources and many 

archaeological sites may be in danger of destruction as 

urban growth and agricultural development continues 

(Mansab 2021, interview with Mariam Mansab, director of 

Zanzibar’s Department of Museums and Antiquities). The 

digitization of this map and the creation of archaeological 

predictive models may aid in site conservation and 

stewardship in areas where development is proceeding.

Workflows for historical map digitization, zonal 

statistical analyses, and raster calculation are modeled in 

QGIS 3.28, a free and open-source GIS. The archaeological 

predictive model was ground-truthed using a random 

stratified survey across an environmentally and socio-

politically diverse zone in rural northern Zanzibar (Alders 

2023), and also compared to major known precolonial 

sites on the island (Horton and Clark 1985; Fitton 2018).

This paper advances the development of open-source 

geospatial applications for archaeological prospection, 

especially in the tropical, forested environments of sub-

Saharan Africa. In line with other recent examples, it 

draws on the availability of free geospatial datasets to 

help understand archaeological landscapes. The sections 

below outline the methods and results of this case study 

in Zanzibar, Tanzania. Results inform a discussion of the 

environmental affordances which structured Swahili 

social development over the last millennium.

2. METHODS

Table 1 below presents the workflow for the methods 

used in this paper, outlining basic steps for producing an 

1 Prepare the Map and Raster Datasets: Assemble and normalize raster datasets, define Area of Interest (AOI), and set map 

coordinate reference system.

2 Create Zonal Raster Images: Create raster images with unique values for each zone, which can be uniformly queried in relation to 

training features.

3 Prepare the Training Features: Import or digitize training set datapoints, and buffer them as polygons to reflect their real-world area.

4 Calculate Zonal Statistics: Quantify the distribution of training features for each zone across each raster image.

5 Determine Zone Favorability: Find zones with the highest density of training points for each zonal raster. This will determine which 

zone will be weighted as part of the predictive model for each zonal raster image.

6 Determine the (Un)Evenness of Training Feature Distribution: Find the coefficient of variation (CV) for training features across all 

zones. This value will be used to weight zones.

7 Create and Assign Weight Classes: Determine coefficient of variation (CV) threshold values and assign these thresholds to weight 

classes, which will be used to weight and add zonal raster images.

8 Create Weighted Zonal Raster Images: Create zonal raster images with a value for the most favored zone (weighted by CV class), 

and a value of 0 for all other zones.

9 Sum Weighted Zonal Raster images into a Predictive Model: Create a raster image that reflects site detection probability for each 

pixel, and reclassify it into a zonal raster image with categories for site detection probability.

Table 1 Workflow of methods for this study.
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archaeological predictive model using zonal statistical 

analysis. A more detailed version of this table with step-

by-step processing instructions for QGIS 3.28 is located 

in Supplementary Materials. Sections 2.2 through 2.5 

describe the application of these steps for the study area.

2.1 STEPS 1–2: PREPARING THE MAP AND 

RASTER DATASETS AND CREATING ZONAL 

RASTER IMAGES

Table 2 lists the geospatial datasets used for this study. 

Converting these datasets into zonal raster images 

required digitizing geospatial datasets through a two-step 

process. The first step was to normalize the colors within 

all zones in an image editing software and to remove text, 

arrows, and boundary lines which would give different 

values when attempting to classify zones. This process 

decreases accuracy at boundaries to some extent but is 

necessary for producing raster images with a single pixel 

value per zone. Next, the maps were georeferenced and 

clipped to an outline of Zanzibar in QGIS 3.28. Then, the 

Reclassify by Table tool in QGIS 3.28 was used to turn 

the digitized maps into zonal raster images with one 

unique pixel value per zone. This study produced eight 

zonal raster images from previously published geospatial 

data and free SRTM imagery acquired from USGS. Figure 

1 shows an example of a zonal raster image: soil type 

zones on the island, derived from Khamis et al. (2017: 

120). Maps of the rest of the zonal raster images can be 

found in the Supplementary Materials section, as Figures 

A through H.

Care must be taken to avoid choosing raster images 

with zones that co-vary significantly because of 

dependencies between them. Dependent environmental 

factors summed together as raster images would over-

weight certain zones. For instance, two other zonal raster 

images were considered for use in this model: a map 

depicting areas inside and outside of the historical clove 

plantation zone (Sheriff et al. 2016: 20), and a map of soil 

infiltration zones (Hardy et al. 2015). These images were 

discarded because they co-vary with elevation and soil 

types in a dependent way, meaning that their inclusion 

would bias the model more heavily toward specific 

zones. Geology and soil type raster images co-vary to 

some extent, but they were both included because they 

describe different independent categories: the former 

describes geological categories, while the latter map of 

soil types refers to indigenous Swahili topsoil categories 

that relate to organic composition, soil color, and soil 

depth.

2.2 STEP 3: PREPARING THE TRAINING 

FEATURES

Training features for the predictive model were derived 

from settlement classes digitized from a historical map 

of Zanzibar, since these settlement locations likely reflect 

environmental affordances that may have conditioned 

the spatial patterns of archaeological sites over the 

last millennium in Zanzibar. Stanford’s Geographical 

Establishment in London published a map of Zanzibar, 

showing villages, landforms, and other features recorded 

on the island during the 1890s (A Map of Zanzibar Island, 

1907). Figure 2 shows this map, referred to from here on 

as the 1907 Zanzibar map. The inset is shown in higher 

resolution in Figure I in the Supplementary Materials 

section.

The map is not an official British Survey of India 

map, but the legend names the mapmaker as Imam 

Sherif Khan Bahadur, a surveyor of the British Survey of 

India. The survey that produced the map likely occurred 

between 1892 and 1894, when Imam Sherif Khan 

Bahadur was stationed in Zanzibar (National Archives 

of India, 1894). However, this date is complicated by 

some details on the map. Marahubi Palace (built by 

Sultan Barghash in 1880) is listed on the map as a ruin, 

suggesting that Imam Sherif Khan Bahadur or someone 

else surveyed that region after Marahubi Palace was 

destroyed by a fire in 1899 (Rhodes et al. 2015: 350). 

Some other aspects of the map also suggest different 

NAME DESCRIPTION SOURCE

Aspect Eight aspect (orientation) zones across the island Derived from a DEM from free 30 m SRTM imagery, from USGS

Elevation Elevation zones across the island Derived from a DEM from free 30 m SRTM imagery, from USGS

Geology Geological zones Colbert et al. 1987; Hardy et al. 2015

Rainfall Rainfall zones across the island Colbert et al. 1987

Reef Buffers Buffer zones showing distance intervals from offshore 

coral reefs

Khamis et al. 2017: 120

Soil Types Local soil types classified by Swahili categories Khamis et al. 2017: 120

Slope Degree Three slope degree zones across the island Derived from a DEM from free 30 m SRTM imagery, from USGS

Stream Buffers Buffer zones showing distances intervals from streams 

depicted on the 1907 map

Digitized from the 1907 map of Zanzibar

Table 2 List of geospatial datasets used in this study.
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dates. Frazer’s Sugar Mill and Frazer’s House are not 

listed as ruins, even though Fitzgerald (1898) described 

them as such during his travels through Zanzibar in 1898. 

Fitzgerald wrote then that the house and sugar mill were 

active around 25 years prior, in 1873 (Fitzgerald 1898: 

521–523). The depiction of Frazer’s sugar mill and house 

would seemingly contradict the depiction of Marahubi as 

a ruin if the map were representative of a single snapshot 

in time. Imam Sherif Khan Bahadur likely did not carry 

out surveys prior to 1892, but these details show that this 

map was made from a composite of surveys which were 

only finished in 1899 at the earliest.

Figure 1 Example of a zonal raster image, a soil type map derived from Khamis et al. (2017: 120).
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The map was the main cartographic source for Zanzibar 

prior to a more recent map created in 1984–85 (Horton, 

pers. comm.). However, the map has been overlooked by 

both historians and archaeologists of the colonial period 

in Zanzibar, despite the wealth of information it contains 

regarding settlement, land use, and geography on the 

island during the late 19th and early 20th centuries. Because 

of the map’s status as a tool of British imperial dominion 

in Zanzibar, it records invaluable data for understanding 

the composition of rural areas on the island. Preserved in 

the map is a settlement system that was surveyed while 

the plantation system was still fully developed, around 

the same time that slavery was being abolished, from 

1896 to the early 1900s (Cooper 1977: 122). It contains 

Figure 2 1907 map of Zanzibar, with inset showing detail. The inset is shown in high resolution in the Supplementary Materials section in 

Figure I.
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detailed information regarding Zanzibar’s villages, wells, 

hydrology, roads, and other features at the end of the 19th 

century. As such, the map is a unique source of information 

for understanding the spatial patterns of the 19th-century 

plantation system, preserving many features that have 

changed through urban and agricultural development in 

the 20th and 21st centuries.

2.2.1 Georeferencing and Digitization

Petrie et al. (2019), Garcia et al. (2019) and Green et 

al. (2019) developed methods for georeferencing and 

interpreting 1 inch to 1 mile Survey of India maps to glean 

data related to ancient settlement in northwest India, 

in the form of anthropogenic mounds that surveyors in 

the late 19th and early 20th centuries recorded. This study 

draws on their methods since the map was made in the 

style of British Survey of India maps. The first step was 

to georeference the 1907 Zanzibar map to features on 

a modern basemap of the island. This can be achieved 

using the Georeferencer in QGIS, and by uploading base 

maps from the QuickMapServices plugin.

No datum or coordinate system is specified on the 

map itself, but it was likely created using the Everest 1830, 

Clarke 1866, or Clarke 1880 datum (Mugnier 2021; Petrie 

et al. 2019). The map has longitude and latitude graticules 

with specified coordinate points, which were converted into 

a point vector file. Though the unreferenced map aligns 

nearly perfectly with these points when projected in the 

Clarke 1880 datum, the features on the map can be up to a 

kilometer or more off from their actual locations when the 

map is georeferenced in this way. This inaccuracy may be 

due to mapmaker error, or changes to the map when it was 

printed in 1907 or digitized in recent years. Other examples 

of Survey of India maps have also been found to be 

internally inconsistent in this way (Petrie et al. 2019). Given 

this problem, the solution following Petrie et al. (2019) was 

to georeference features on the map by hand using the WGS 

1984 datum, and to allow the graticules to distort. Petrie 

et al. (2019) suggest that the “Adjust” transformation in 

ESRI ArcGIS may give the best possible results. 111 control 

points were used to georeference this map with the Adjust 

transformation in ArcGIS; this was done prior to conceiving 

of an all-open-access study. However, georeferencing in 

QGIS is equally advanced and while the Adjust transform is 

not available in QGIS 3.28, the Thin Plate Spline transform 

may give comparable results since it similarly allows for 

rubber-sheeting with a large number of control points. 

After georeferencing, map features were digitized by hand 

by creating point, line, and polygon features. The following 

sections describe these features.

2.2.2 Settlements and roads

The map depicts settlements and a road network, digitized 

in Figure 3. There are 489 settlements, with squares drawn 

in varying numbers to represent village size. Imam Sherif 

Khan Bahadur’s survey methodology is not apparent, but 

from the map it is likely that two methods were used to 

indicate settlement size and importance. The first method 

was through the illustration of squares, which represent 

settlement areas. Squares are not drawn to the scale of 

a Zanzibari house—by the scale of the map, the average 

square ranges from 600 to 1000 square meters. A house 

this size would be a mansion. Rather than indicating the 

actual sizes of houses, it is likely that overall settlement 

size was estimated by a surveyor and then indicated by 

the number of squares drawn. Officially, the legend of the 

map depicts a scatter of squares and describes this as a 

village, further suggesting that surveyors were drawing 

settlement squares with the aim of capturing settlement 

size, rather than individual households. The legend 

also states: “N.B.—Very few of the Miji (settlements) in 

Zanzibar Island are compact villages, the houses are 

rather scattered over each district”. This is the case today 

as well in many areas.

The second method for distinguishing settlement 

types is typographical—there are Latin letters in italics 

with capitalized first letters and additional lowercase 

letters to name most settlements, as well as to indicate 

place names. Bolded, non-italic letters are used to 

name larger towns, also with capitalized first letters and 

additional letters in lower-case. Finally, bolded, non-

italic, and all-capitalized letters are used for Zanzibar 

Stone Town, the largest settlement on the map. The inset 

in Figure 2 shows an example of all three types. Zanzibar 

Stone Town is a city, Mtoni is a town, and Gulioni, Mianzini, 

and Miwaleni are three of many villages.

While the map legend describes the squares as 

representing villages, they can be interpreted to 

represent a settlement hierarchy from their placement 

and count in conjunction with typographical differences. 

Square counts for each village appear to be significant 

and relate to different sized settlements: 1) hamlets or 

very small villages, 2) small villages, and 3) large villages. 

Settlements were divided into these 5 size classes based 

on their typography and number of settlement squares 

depicted. A sample of each size class was measured in 

area, to convert square counts into estimated average 

settlement size, in hectares. Table 3 shows these 

estimated size classes.

This method of distinguishing settlements by size is an 

imposition for the sake of regional analysis. A contrasting 

perspective is the view derived from mid-20th century 

ethnographies of the Swahili, which divided permanent 

settlements into “stone-towns” and “country-towns”, 

irrespective of size. These towns, though differentiated 

by the degree of political and economic specialization, 

functioned similarly as places that were the basis of social 

rights for their residents. They were also characterized 

by different forms of production and trade, with stone-

towns emphasizing mercantile activity and country-

towns emphasizing agricultural production (Horton and 

Middleton 2000: 55–58). Since the legend of the 1907 
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Figure 3 Settlements and road network of the 1907 map.

SIZE CLASS NUMBER OF SQUARES FONT EXAMPLE ESTIMATED SIZE COUNT

Hamlet/Very Small Village 1–2 Kongeni ≤1 ha 42

Small Village 3–11 Gamba 1–30 ha 337

Large Village 12+ Maangani 30–60 ha 86

Town 12+ Mkokotoni 60–100 ha 23

City n/a ZANZIBAR 

STONE TOWN

~240 ha 1

Table 3 Size classes for settlement in the 1907 Zanzibar map.
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map specifically refers to villages as miji, it is likely that 

the surveyors had some familiarity with an idealized 

Swahili system of land tenure. Nevertheless, the size-

based and typographical differences that are visible on 

the map attest to the material differences in settlements 

that the map makers encountered and adapted to as 

they produced their survey.

In addition to the settlements, the map also depicts 

a network of roads, paths, tracks, and other ambiguous 

dotted lines on the map. The longest paved or “metalled” 

road during this time ran from Zanzibar Stone Town to 

Chwaka, connecting the east and west of the island. 

This road was under construction in the early 1890s 

(Owens 2007), and its presence on the map may indicate 

that it was just finished when the map was completed. 

Surveyors recorded two other paved roads on the map as 

well. One went north from Stone Town to Bububu, and 

the other went south to Stone Town to Mbweni.

Other roads are those which the legend calls “village 

roads”; these are likely dirt paths for foot traffic, and 

may have also been accessible to mules, camels, horses, 

and carts. A third category is called “Other Roads and 

Tracks”. In practice, these are likely not qualitatively 

distinguishable from village roads in that they were 

also dirt footpaths, though possibly smaller and less 

frequently used.

2.2.3 Streams, Wells, and Other Miscellaneous 

features

Figure 4 shows a map of streams, wells, and other 

miscellaneous features on the 1907 map. Streams are 

drawn as black lines on the 1907 map and labeled in italic 

Figure 4 Streams, wells, and other miscellaneous features.
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letters by their Swahili names. This stream map likely 

represents the oldest model of hydrology on Zanzibar, 

existing prior to many landscape transformations which 

occurred during the latter half of the 20th century. The 

map shows that major streams did not flow in the 

south, east and far north of the island, where porous 

limestone bedrock draws water underground. It also 

shows that the courses of the larger streams of the early 

20th century were slightly different than comparable 

streams today. This may be due to variations in local 

geology, urban development, or changes in landforms 

that have altered the courses of streams since the early 

20th century.

Wells are indicated on the map by circles. Their 

preponderance in karstic limestone areas far from the 

streams of the northwest region aligns inversely with the 

stream network—the wells are most common in places 

where streams are not shown above ground. The lack of 

wells in places with above-ground streams suggests that 

people in the early 20th century relied considerably on 

above-ground stream water for daily use where it could 

be found, and dug wells in places where stream water 

was not available. Six wells in the south are marked as 

either “Cave Wells” or “C.W.”, which likely also stands for 

cave well. One of these cave wells is Kuumbi Cave, a well-

known site from the late Pleistocene to late Holocene 

(Shipton et al. 2016). The data showing other cave 

wells contained in this map may point to other cave site 

locations.

Other miscellaneous features on the 1907 Zanzibar 

map include lighthouses, “poor houses”, a leper colony, 

a sanatorium, ferries, sugar mills, ruins, and a depiction 

of buildings with steepled roofs that may represent 

mosques or large houses. Two other areas are places 

called the Mwana Msa Shrine and the Kuani House. 

Finally, dotted lines which form small circles are not 

described in the legend but appear to correspond to some 

labeled settlements in the south and east of the island. 

It is unclear what these circles represent, but further 

research might investigate whether they correspond 

to abandoned settlements, as boundary markers or 

raised areas. Comparisons of these circles with satellite 

imagery are inconclusive. Some circles fall over modern 

field plots or settlements, but others fall in areas that are 

today covered in brush. Horton and Middleton (2000: 56) 

describe historical areas of built-up soil in the south and 

east where village communities repeatedly constructed 

and demolished earth and thatch houses; it is possible 

that these circular features could represent the mounds 

created by this practice. Further research and ground-

truthing in the southern region of Zanzibar might clarify 

this question. As is the case with Survey of India maps 

in India (Green et al. 2019; Petrie et al. 2019), surveyors 

may have unknowingly mapped archaeological sites by 

recording mounds as landscape features.

Other archaeologically significant features are the 

five places listed as ruins on the map. Two of these 

locations are the known Portuguese-period sites of 

Fukuchani and Mvuleni, which LaViolette and Norman 

(2023) have recently investigated. The three others are 

the Chimani Ruin, the Kizimbani Ruin, and the Marseilles 

Ruin, all of which are located just northeast of Stone 

Town near Mwera. The Marseilles Ruin may be the site 

of the Marseilles plantation, the site of a battle where 

Barghash bin Said surrendered to his brother the Sultan 

Sayyid Majid in 1865 after an abortive attempt to 

seize the throne of Zanzibar (Ruete 1888: 107). Further 

investigation is needed to determine whether any of 

these ruins still exist today.

2.3 STEPS 4–7: CONVERTING SETTLEMENT 

CLASSES TO TRAINING FEATURES, 

CALCULATING ZONAL STATISTICS, AND 

DETERMINING WEIGHT CLASSES

The digitization process outlined above produced five 

settlement classes from the 1907 map: 1) hamlets/

very small villages, 2) small villages, 3) large villages, 

4) towns, and 5) the main urban center, Zanzibar Stone 

Town. To analyze these settlements in relation to raster 

data, they were converted into polygons that reflect 

their area. Buffer polygons for each class were created, 

encompassing the average area of each class. To simplify 

analyses, these buffer polygons were then merged into 

two settlement class groups: small settlements (n = 

379) and large settlements (n = 110). Small settlements 

were comprised of hamlets/very small villages and small 

villages. Large settlements were comprised of large 

villages, towns, and Zanzibar Stone Town. These two 

polygon vector files constituted the training data for two 

distinct models.

The Majority statistic was calculated across these 

two training feature classes for each zonal raster 

image in QGIS using the Zonal Statistics process. This 

statistic reports which unique pixel value (reflecting 

a zone) is most numerous within the space of a 

settlement polygon; summarizing this statistic using 

the Statistics by Categories process gives a count of 

settlement polygons per zone for each raster image. 

Table 4 through Table 11 display this data for each 

raster image and include statistics that were used to 

weight zones with the densest count of settlement 

polygons.

Density was calculated by dividing the count of 

settlement polygons per zone by the area of each 

zone, to derive a count of settlement polygons per 

square kilometer. The zone with the highest density 

of settlements per raster image was selected for 

weighting in the final predictive model. Calculating the 

zone with the highest density of settlement polygons 

is a better measure of zone favorability than a simple 
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count of settlement polygons per zone, since each 

zone within a raster image can vary significantly in 

size. To compare the evenness or unevenness of the 

distribution of settlements across zones, another 

statistic calculated was the coefficient of variation (CV), 

found by dividing the standard deviation of settlement 

polygons per zone by the mean of settlement polygons 

per zone.

The following sections show settlement class 

distributions across the eight zonal raster images. Each 

table is divided into two groups, showing the distribution 

of small settlements (n = 379) and large settlement (n = 

110) across each zonal raster image. Each table also lists 

the zone with the highest density of settlements for each 

settlement group, and the coefficient of variation for 

each settlement group. Maps of each zonal raster image 

are available as supplementary materials.

2.3.1 Zonal statistics across aspect zones

A zonal raster image for aspect derived from 30 m free 

SRTM imagery from USGS shows hillslope orientation. 

Table 4 shows settlement classes from the 1907 map 

across these aspect zones. East and west-facing slopes 

have the highest site density as well as the highest site 

counts for both classes. No other patterns are apparent. 

See Figure A in the Supplementary Materials section for a 

map of this raster image.

2.3.2 Zonal statistics across elevation zones

Table 5 shows the 2019 sites distributed across five 

elevation zones, categorized using a Natural Breaks 

(Jenks) algorithm on a digital elevation model from SRTM 

30 m imagery. Higher elevation zones are favored. The 69–

135 m zone is most densely settled for small settlements, 

while the 48–69 m zone was most densely settled for 

large settlements. See Figure B in the Supplementary 

Materials section for a map of this raster image.

2.3.3 Zonal statistics across geology zones

Seven geology zones exist on Zanzibar (Colbert et al. 1987, 

also see Hardy et al. 2015). These are catenas of M3 sandy 

clay marl, Q2 coralline limestone, M1 Miocene limestone, 

a Q2/M1 mixture, Q1 recent deposits, a Q2/Q3/M1 

mixture, and mangrove zones with no data. Table 6 shows 

settlement classes from the 1907 map across these zones. 

Settlements of both classes are most numerous and most 

dense in areas of M3 Sandy Clay Marl. See Figure C in the 

Supplementary Materials section for this raster image.

2.3.4 Zonal statistics across rainfall zones

Rainfall zones on Zanzibar (Colbert et al. 1987) are 

divided into three zones: 1000–1500 mm, 1500–2000 

mm, and 2000–2500 mm of rainfall per year. Table 7 

shows the zonal statistics for settlement classes across 

these zones. Large settlements are most dense in the 

0–17 m 17–31 m 31–48 m 48–69 m 69–135 m TOTAL HIGHEST DENSITY CV

area (km2) 545 542 310 144 72 1613

Small Settlements (count) 93 90 103 59 34 379

Small Settlements (percent) 25% 24% 27% 16% 9% 100% 0.38

Small Settlements per km2 0.17 0.17 0.33 0.41 0.47 0.23 69–135 m

Large Settlements (count) 26 32 27 18 7 110

Large Settlements (percent) 24% 29% 25% 16% 6% 100% 0.44

Large Settlements per km2 0.05 0.06 0.09 0.13 0.10 0.07 48–69 m

Table 5 Zonal statistics for map settlement classes and elevation.

NORTH NE EAST SE SOUTH SW WEST NW TOTAL HDW CV

area (km2) 190 195 223 193 177 199 223 195 1595

Small Settlements (count) 35 46 71 31 28 38 72 58 379

Small Settlements (percent) 9% 12% 19% 8% 7% 10% 19% 15% 100% 0.37

Small Settlements per km2 0.18 0.24 0.32 0.16 0.16 0.19 0.32 0.30 0.24 West

Large Settlements (count) 9 7 27 7 7 15 22 16 110

Large Settlements (percent) 8% 6% 25% 6% 7% 13% 20% 15% 100% 0.56

Large Settlements per km2 0.05 0.04 0.12 0.04 0.05 0.07 0.10 0.08 0.07 East

Table 4 Zonal statistics for map settlement classes and aspect zones.
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1500–2000 mm zone, while smaller settlements are 

most dense in the 2000–2500 mm zone. See Figure D 

in the Supplementary Materials section for a map of this 

raster image.

2.3.5 Zonal statistics across reef distance buffer 

zones

Reefs (Khamis et al. 2017: 120) were buffered by distance 

to create a zonal raster image for the island. Table 8 

shows the zonal statistics for settlement classes across 

these zones. Small settlements were densest within 500 

meters of reefs, while large settlements were densest 

within 3 kilometers. See Figure E in the Supplementary 

Materials section for a map this raster image.

2.3.6 Zonal statistics across slope degree zones

Slope degree zones, also derived from 30 m SRTM imagery 

from USGS, fall into three categories: 0-3-degree slope, 

3-10-degree slope, and areas with >10-degree slope. 

Table 9 shows settlement classes across these zones. 

No site is found on a slope of 10 degrees or more, and 

both settlement classes are most dense in 0-3-degree 

slope areas. See Figure F in the Supplementary Materials 

section for a map this raster image.

2.3.7 Zonal statistics across soil type zones

Table 10 shows settlement distributions across soil type 

zones, derived from Khamis et al. (2017: 120). Swahili 

speakers distinguish five soil types on Zanzibar based 

on color, organic composition, and depth: kinamo (deep 

dark sandy clays), kinongo (deep red laterites of variable 

clay and organic content), uwanda (shallow red laterites 

with moderate organic content, over coralline limestone 

bedrock), mchanga (deep sandy soil built on recent 

alluvial sediments) and maweni (shallow dark laterites 

with high organic content over coralline limestone 

bedrock) (Khamis et al. 2017: 120). Small settlement 

classes are associated with kinongo soils while large 

settlement classes are associated with mchanga soils. 

See Figure 1 above or Figure G in the Supplementary 

Materials section for a map of this raster image.

2.3.8 Zonal statistics across stream buffer zones

Table 11 shows the settlement classes across a zonal 

raster image of buffered distances from streams, which 

were digitized from the 1907 map of Zanzibar. Both 

settlement classes are densest within 500 meters of 

streams. See Figure H in the Supplementary Materials 

section for a map of sites across this raster image.

M3 

SANDY 

CLAY 

MARL

MANGROVE 

(NO DATA)

Q2 

CORALLINE 

LIMESTONE

M1 

MIOCENE 

LIMESTONE

Q2/M1 

MIXTURE

Q1 

RECENT 

DEPOSITS

Q2/

Q3/M1 

MIXTURE

TOTAL HIGHEST 

DENSITY 

WITHIN

CV

area (km2) 218 47 612 188 409 102 59 1635

Small Settlements 

(count)

104 2 113 69 50 32 9 379

Small Settlements 

(percent)

27% 1% 30% 18% 13% 8% 2% 100% 0.81

Small Settlements 

per km2

0.48 0.04 0.18 0.37 0.12 0.31 0.15 0.23 M3 Sandy 

Clay Marl

Large Settlements 

(count)
32 1 34 23 7 12 1 110

Large Settlements 

(percent)

29% 1% 31% 21% 6% 11% 1% 100% 0.89

Large Settlements 

per km2

0.15 0.02 0.06 0.12 0.02 0.12 0.02 0.07 M3 Sandy 

Clay Marl

Table 6 Zonal statistics for map settlement classes across the geology zones.

1000–1500 mm 1500–2000 mm 2000–2500 mm TOTAL HIGHEST DENSITY WITHIN CV

area (km2) 666 843 104 1613

Small Settlements (count) 94 224 61 379

Small Settlements (percent) 25% 59% 16% 100% 0.68

Small Settlements per km2 0.14 0.27 0.59 0.23 2000–2500 mm

Large Settlements (count) 15 86 9 110

Large Settlements (percent) 14% 78% 8% 100% 1.17

Large Settlements per km2 0.02 0.10 0.09 0.07 1500–2000 mm

Table 7 Zonal statistics for settlement classes across rainfall zones.
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100 m 

FROM 

REEFS

500 m 

FROM 

REEFS

1 km 

FROM 

REEFS

3 km 

FROM 

REEFS

5 km 

FROM 

REEFS

10 km 

FROM 

REEFS

15 km 

FROM 

REEFS

TOTAL HDW CV

area (km2) 1 6 29 287 318 671 300 1612

Small Settlements (count) 0 6 11 61 66 167 68 379

Small Settlements (percent) 0% 2% 3% 16% 17% 44% 18% 100% 1.07

Small Settlements per km2 0.00 1.00 0.38 0.21 0.21 0.25 0.23 0.24 500 m

Large Settlements (count) 0 0 0 23 24 51 12 110

Large Settlements (percent) 0% 0% 0% 21% 22% 46% 11% 100% 1.20

Large Settlements per km2 0.00 0.00 0.00 0.08 0.08 0.08 0.04 0.07 3 km

Table 8 Zonal statistics for settlement classes across reef distance buffer zones.

0–3-DEGREE 

SLOPE

3–10-DEGREE 

SLOPE

>10–DEGREE 

SLOPE

TOTAL HIGHEST 

DENSITY

CV

area (km2) 1208 378 8 1594

Small Settlements (count) 313 66 0 379

Small Settlements (percent) 83% 17% 0% 100% 1.31

Small Settlements per km2 0.26 0.17 0.00 0.24 0–3-degree slope

Large Settlements (count) 100 10 0 110

Large Settlements (percent) 91% 9% 0% 100% 1.50

Large Settlements per km2 0.08 0.03 0.00 0.07 0–3-degree slope

Table 9 Zonal statistics for settlement classes across slope degree zones.

MCHANGA KINAMO KINONGO MAWENI UWANDA TOTAL HIGHEST 

DENSITY 

WITHIN

CV

area (km2) 145 206 338 761 164 1614

Small Settlements (count) 49 67 139 96 28 379

Small Settlements (percent) 13% 18% 37% 25% 7% 100% 0.57

Small Settlements per km2 0.34 0.33 0.41 0.13 0.17 0.23 Kinongo

Large Settlements (count) 29 17 56 4 4 110

Large Settlements (percent) 26% 15% 51% 4% 4% 100% 0.98

Large Settlements per km2 0.20 0.08 0.17 0.01 0.02 0.07 Mchanga

Table 10 Zonal statistics for settlement classes and soil types.

WITHIN 

100 m OF 

STREAMS

WITHIN 

500 m OF 

STREAMS

WITHIN 

1 km OF 

STREAMS

WITHIN 

3 km OF 

STREAMS

BEYOND 3 

km FROM 

STREAMS

TOTAL HIGHEST 

DENSITY 

WITHIN

CV

area (km2) 103 197 105 186 1021 1612

Small Settlements (count) 24 92 38 61 164 379

Small Settlements (percent) 6% 24% 10% 16% 43% 100% 0.73

Small Settlements per km2 0.23 0.47 0.36 0.33 0.16 0.24 Within 500 m

Large Settlements (count) 3 36 14 28 29 110

Large Settlements (percent) 3% 33% 13% 25% 26% 100% 0.60

Large Settlements per km2 0.03 0.18 0.13 0.15 0.03 0.07 Within 500 m

Table 11 Zonal statistics for settlement classes across the 1907 stream buffer raster image.
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2.3.9 Weighting Zonal Raster Images

The next step was to weight zonal raster images based 

on the training features. Zones in which settlement class 

training data is most dense were selected as factors, 

and then weighted based on the coefficient of variation 

(CV). For each settlement class, the standard of deviation 

was calculated for the range of CV values, and then a 

CV range was created by adding and subtracting the 

standard of deviation from the mean CV. This range was 

then divided up by equal intervals, and each interval 

threshold was assigned a weight class. This created an 

internally consistent range of weight class thresholds 

for each training feature dataset. The CV for each zonal 

raster image was assigned a score based on these weight 

class thresholds.

One knowledge-based adjustment was made: the CV 

for large settlements across aspect zones was reduced 

from 3 to 2, for three reasons. First, the CV value is 0.56, 

only 0.01 points into weight class 3, producing an edge 

effect. Secondly, visual inspection of both settlement 

classes across aspect zones confirms that the distribution 

mostly reflects the fact that east and west facing slopes 

are the most numerous slopes on the island, due to the 

fact that Zanzibar’s hill system runs like a spine from 

south to north. It was likely that settlement choices in 

the past were not strongly influenced by aspect zones, 

but rather fell in a relatively random distribution with 

regard to hillslope orientation. This is because hill slopes 

on Zanzibar are mild, and the equatorial sun means that 

hill orientation is less of a factor for agricultural production 

than in climates closer to the Earth’s poles. Third, the 30 

m resolution of the aspect raster image means that nearly 

all large settlement classes contain multiple aspect zones 

within them, so the zonal statistics for each training feature 

can vary considerably due to very slight adjustments in 

settlement placement by the manual digitizer. This third 

problem was not the case with any other class and was 

less the case with the small class of training features since 

the areas of these settlements tended to encompass far 

fewer aspect zones. To compensate for these factors and 

to minimize the impact of the aspect raster image on 

weighting the large settlement zones, a knowledge-based 

adjustment reduced the aspect weight class for large 

settlements from 3 to 2, while still maintaining the most 

favored zone chosen by the Majority statistic.

Tables 12 and 13 depict the weight class thresholds 

for each model. Tables 14 and 15 depict the weighted 

scores for each zonal raster image for both settlement 

classes, based on the zonal statistics above. This table 

also summarizes the most favored zones for both 

settlement classes across all zonal raster images. For 

small settlement classes, this produced Model A; for 

large settlement classes, this produced Model B.

The eight zonal raster images were reclassified to reflect 

weight classes, using the Reclassify by Table process. 

Favored zones were classified with a unique pixel value of 

each weight, and all other pixels were assigned a value of 

zero. This was done twice, once for each model.

WEIGHT 

CLASSES

CV THRESHOLDS FOR SMALL SETTLEMENT 

CLASSES (MEAN CV = 0.74 + OR – STDDEV OF 0.32)

1 0–0.09

2 0.09–0.41

3 0.41–0.74

4 0.74–1.06

5 1.06–1.38

Table 12 CV thresholds and associated weight class values, 

based on mean CV and CV std. dev. for small settlement classes.

WEIGHT 

CLASSES

CV THRESHOLDS FOR LARGE SETTLEMENT 

CLASSES (MEAN CV = 0.92 + OR – STDDEV OF 0.37)

1 0–0.18

2 0.18–0.55

3 0.55–0.92

4 0.92–1.29

5 1.29–1.65

Table 13 CV thresholds and associated weight class values, 

based on mean CV and CV std. dev. for large settlement classes.

RASTER IMAGES MODEL A: MOST FAVORED CLASS 

FOR SMALL SETTLEMENTS

CV ZONE WEIGHT

Aspect West 0.37 2

Elevation 69–135 m 0.38 2

Geology M3 Sandy Clay Marl 0.81 4

Stream Buffer Within 500 m 0.73 3

Rainfall 2000–2500 mm 0.68 3

Reefs 500 m from reefs 1.07 5

Soil Types Kinongo 0.57 3

Slope Degree 0–3-degree slope 1.31 5

Table 14 Model A, favored zones, CVs, and weight classes for small settlement class training features across eight zonal raster images.
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2.4 STEPS 8–9: PRODUCING THE PREDICTIVE 

MODEL

The two sets of weighted raster images from these 

models were summed using the Raster Calculator process 

in QGIS to produce two archaeological predictive models, 

Model A (Figure 5) and Model B (Figure 6). The summed 

raster images contained values from 1–22 in the case of 

the small settlement model and 1–25 in the case of the 

large settlement model, but both were reclassified into 

five zones of site detection probability using a Natural 

Breaks (Jenks) algorithm: Very Low, Low, Medium, High, 

and Very High (see Diwan 2020: 152). Since QGIS 3.28 

does not yet support this reclassification algorithm for 

raster images, a workaround was to convert the raster 

images into polygons, re-symbolize the polygon files with 

graduated symbols using Natural Breaks (Jenks), and 

then manually reclassify the original raster images using 

the Reclassify by Table tool, with the values generated 

from the polygon symbology.

3. RESULTS

Summing weighted zonal raster images from two different 

settlement classes produced two raster images that 

reflect site detection probability zones, Model A (Figure 5, 

from small settlement classes) and Model B (Figure 6, from 

large settlement classes). The models predict site locations 

based on the density of training features within specific 

environmental zones. Both training feature classes were 

strongly associated with flat, level ground (0-3-degree 

slope), areas within 500 meters of above ground streams, 

and M3 Sandy Clay Marl geology zones. Both were also 

associated with east and west aspect zones, but as 

discussed in the prior section, this was likely not a strong 

factor influencing settlement location. However, smaller 

settlement classes were more strongly associated with 

zones related to agricultural production and subsistence: 

higher elevation zones (preferential for clove plantations, 

see Sheriff et al. 2016), high rainfall areas (2000–2500 

mm), kinongo soils (deep soils favorable for subsistence 

agriculture and earth and thatch house construction), 

and areas within 500 meters of offshore reefs. In contrast, 

larger settlement classes were associated with lower 

rainfall areas, lower elevation zones, sandy mchanga soils, 

and areas further from offshore reefs. The comparison 

between reef distance is noteworthy—Swahili people in 

small rural settlements may have preferred to live near 

reefs because they provided opportunities for subsistence 

fishing, while people in larger settlements may have 

preferred open seas without reefs. Reefs would have 

impeded the movement of larger ships and boats that 

brought trade to port towns like Mkokotoni, Tumbatu 

and Zanzibar Stone Town, with their deep-water ports 

and good anchorage (Fitton 2018). The lack of easily 

accessible reefs for small-scale fishing around Mkokotoni, 

Tumbatu and Zanzibar Stone Town may have not only 

facilitated the arrival of larger boats bringing trade, but 

also may have stimulated communities in these places 

to develop larger-scale fishing operations, necessitating 

greater social cooperation and coordination.

Having considered the environmental factors that 

structure Models A and B, the next section ground truths 

the models by comparing them to the locations of 

major precolonial sites of the late first and early second 

millennium on Zanzibar (Fitton 2018; Horton and Clark 

1985), and to a dataset of sites recovered during a 

systematic survey across multiple environmental zones 

in northern Zanzibar in 2019 (Alders 2023). These latter 

surveys identified and recorded 44 new archaeological 

sites, with 31 found in the course of a systematic random 

stratified sample in a region of 32 km2.

RASTER 

IMAGES

MODEL B: MOST FAVORED CLASS 

FOR LARGE SETTLEMENTS

CV ZONE WEIGHT

Aspect East 0.56 2 (knowledge-based adjustment, down from 3)

Elevation 48–69 m 0.44 2

Geology M3 Sandy Clay Marl 0.89 3

Stream Buffer Within 500 m 0.60 3

Rainfall 1500–2000 mm 1.17 4

Reefs 3 km from reefs 1.20 4

Soil Types Mchanga 0.98 4

Slope Degree 0-3-degree slope 1.50 5

Table 15 Model B, favored zones, CVs, and weight classes for large settlement class training features across eight zonal raster images.
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3.1 COMPARING THE MODELS TO MAJOR 

KNOWN PRECOLONIAL SWAHILI SITES

Tables 16 and 17 show zonal statistics for known major 

precolonial sites in relation to the site detection probability 

zones of the two predictive models, and Figures 7 and 8 

show the spatial distribution of these sites in relation to 

the two models.

Six out of eight precolonial sites fall within the High 

or Very High site detection probability zones from Model 

B. The fact that Model B predicts these precolonial site 

locations well attests to similarities in environmental 

favorability between precolonial site locations and the 

larger settlements which persisted and grew during the 

19th century on Zanzibar, which became the training 

data for this model. The two outliers are Kuumbi Cave 

and Tumbatu, which lie in Low and Medium probability 

zones respectively. Kuumbi Cave is a famous precolonial 

site on the island, but it was not significantly inhabited by 

Swahili people. Rather, it is most well-known as one of a 

handful of late Pleistocene hunter-gatherer settlements 

on the East African coast (Shipton et al. 2016). Occupied 

by hunter-gatherers, agricultural suitability was not a 

concern, and the site was likely favored for the naturally 

occurring shelter that the cave provided. Similarly, the 

11th–15th century town of Tumbatu was not founded as an 

agricultural center but was rather established by nascent 

Figure 5 Model A. Site detection probability zones derived from small settlements on the 1907 map, in relation to environmental datasets.
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Figure 6 Model B. Site detection probability zones derived from large settlements on the 1907 map, in relation to environmental datasets.

VERY LOW LOW MEDIUM HIGH VERY HIGH TOTAL HIGHEST DENSITY WITHIN CV

area (km2) 104 924 308 189 87 1612

Known Sites (count) 1 3 1 2 1 8

Known Sites (percent) 13% 38% 13% 25% 13% 100% 0.56

Known Sites per km2 0.0096 0.0032 0.0032 0.0106 0.0115 0.0050 Very High

Table 16 Known precolonial sites in relation to Model A, based on small settlement classes from the 1907 map.
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Figure 7 Known major precolonial sites on Zanzibar in relation to Model A, which is based on small settlement size classes in the 1907 map.

VERY LOW LOW MEDIUM HIGH VERY HIGH TOTAL HIGHEST DENSITY WITHIN CV

area (km2) 48 438 682 292 152 1612

Known Sites (count) 0 1 1 3 3 8

Known Sites (percent) 0% 13% 13% 38% 38% 100% 0.84

Known Sites per km2 0.0000 0.0023 0.0015 0.0103 0.0197 0.0050 Very High

Table 17 Known precolonial sites in relation to Model B, based on large settlement classes from the 1907 map.



135Alders Journal of Computer Applications in Archaeology DOI: 10.5334/jcaa.107

Swahili elites around the 11th century, who may have 

sought seclusion, security, and access to shipping routes 

rather than agricultural suitability. The town’s residents 

relied on support from the residents of Mkokotoni across 

the channel, who may have continually ferried over 

food and water to the site (Rødland 2021: 254). Given 

this interdependence, Rødland (2021) has argued that 

Tumbatu and Mkokotoni formed a single urban landscape. 

That Model B does not predict Tumbatu’s site location well 

was to be expected, given the specific history of the town.

Model A does not predict the locations of major 

precolonial as well, with four sites falling into Very Low 

or Low zones; however, the Very High zone still has 

the highest density of sites because the zone is the 

smallest relative to others. The poorer performance 

of Model A attests to the fact that in comparison to 

major precolonial sites, slightly different environmental 

affordances structured the small-scale settlements 

during the 19th century that were used as training data 

for this model.

Figure 8 Known major precolonial sites on Zanzibar in relation to Model B, which is based on large settlement size classes in the 1907 map.
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3.2 COMPARING THE MODELS TO 2019 FIELD 

SURVEY DATA

Tables 18 and 19 show zonal statistics for the sites 

recorded during field surveys (see Alders 2022; 2023) 

in relation to the two predictive models. The tables are 

stratified by site type, considering artifact scatters in 

fields in the top rows and permanent, village-sized sites 

in the bottom rows. Figures 9 and 10 show the spatial 

distribution of these sites across both models.

Model A predicted the site locations of larger, 

permanently occupied sites in rural inland Zanzibar, with 

seven out of nine sites falling within High and Very High 

site detection probability zones. This reflects similarities 

between environmental affordances which structured 

the small settlement classes on the 1907 map of 

Zanzibar, and the larger, village-sized sites recovered 

archaeologically during survey. For 19th-century sites 

recovered this was expected; however, the model’s 

ability to predict the location of a precolonial village site 

also suggests that the model reflects environmental 

factors that conditioned small-scale settlement for 

many centuries in rural Zanzibar.

Model A failed to predict the site locations of smaller 

artifact scatters in fields. These smaller sites represent 

ephemeral camps or field houses that were occupied 

during seasonal agricultural labor (see also Walshaw 

2015), especially in the eastern region where stony 

landscapes and a lack of fresh water on the surface 

prohibit larger settlements in many areas. In these regions, 

farmers today bring food and water to swidden field plots 

and camp for several days during clearing and planting. 

Ceramic scatters and shell piles in these same fields dating 

to the 11th century at the earliest likely attest to similar 

land use patterns in the past (Alders 2022: 118–126). In 

contrast, larger sites in other parts of the survey region 

likely reflect more permanent occupations, ranging from 

small hamlets to plantation estates to the large, dispersed 

village or town of Chaani, which spanned at least 60 

hectares by the 19th century (Alders 2023). The failure of 

this model to predict these smaller ephemeral camp sites 

reflects the fact the model was trained with permanent 

settlement classes, the smallest of which (Hamlets/Very 

Small Villages on the 1907 map) was still larger than the 

ephemeral camp sites that surveys recorded.

Model B was less successful at predicting the locations 

of small-scale sites recovered through field survey, 

with Low and Medium site detection zones having the 

highest density of sites for small artifact scatters and 

larger permanent sites, respectively. This result suggests 

that Model B, which was trained using large settlement 

classes from the 1907 map, reflects slightly different 

environmental affordances that did not apply to small-

scale settlement in rural inland Zanzibar. Environmental 

conditions that influenced the locations of larger 

settlements were less constraining to small-scale 

communities in rural areas.

VERY LOW LOW MEDIUM HIGH VERY HIGH TOTAL HIGHEST DENSITY 

WITHIN

CV

area (km2) 1 7 13 8 3 32

Artifact Scatters in Fields (count) 1 9 7 3 2 22

Artifact Scatters in Fields (percent) 5% 41% 32% 14% 9% 100% 0.78

Artifact Scatters in Fields per km2 1.0000 1.2857 0.5385 0.3750 0.6667 0.6875 Low

Permanent Sites (count) 0 0 5 3 1 9

Permanent Sites (percent) 0% 0% 56% 33% 11% 100% 1.20

Permanent Sites per km2 0.0000 0.0000 0.3846 0.3750 0.3333 0.2813 Medium

Table 19 2019 field survey sites in relation to Model B, which is based on large settlement classes from the 1907 map.

VERY LOW LOW MEDIUM HIGH VERY HIGH TOTAL HIGHEST 

DENSITY WITHIN

CV

area (km2) 1 9 5 7 10 32

Artifact Scatters in Fields (count) 0 14 1 4 3 22

Artifact Scatters in Fields (percent) 0% 64% 5% 18% 14% 100% 1.27

Artifact Scatters in Fields per km2 0.0000 1.5556 0.2000 0.5714 0.3000 0.6875 Low

Permanent Sites (count) 0 1 1 3 4 9

Permanent Sites (percent) 0% 11% 11% 33% 44% 100% 0.91

Permanent Sites per km2 0.0000 0.1111 0.2000 0.4286 0.4000 0.2813 High

Table 18 2019 field survey sites in relation to Model A, which is based on small settlement classes from the 1907 map.
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Figure 9 Sites from systematic survey in 2019 in relation to Model A, which is based on small settlement size classes in the 1907 map.

Figure 10 Sites from systematic survey in 2019 in relation to Model B, which is based on large settlement size classes in the 1907 map.
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3.3 ASSESSING FALSE POSITIVES

A consideration for both models is the extent to which 

zones of High and Very High probability for site detection 

return false positives. For known major precolonial sites 

this was not possible to assess, since these site locations 

come from disparate sources and were not the result of a 

survey sample. For the 2019 field survey sites, Figures 9 and 

10 show survey transects across and within site detection 

zones for Model A and B, which give an indication of false 

positive results for each model. Though Model A’s Very 

High site zone was a better predictor of permanent sites 

recovered during survey than Model B, it also created High 

and Very High site detection zones across three transects 

which did not produce any permanent sites, one of which 

did not produce any sites at all. Model B’s High and Very High 

site detection zones were less successful at predicting all 

site locations, but the model also has fewer false positives 

in Very High site detection zones. Model B’s Very High site 

detection zone was smaller, but still included the precolonial 

village site, and the largest site in the survey region, the ~60 

ha dispersed village of Chaani. The false positives in Model A 

especially show the limitations of this model at the scale of 

transect survey, but do not detract from the larger regional 

implications of the study.

4. DISCUSSION

Model A was successful at predicting the locations of 

smaller, permanent village sites in rural inland Zanzibar, 

while Model B was more successful at predicting the 

locations of major precolonial Swahili sites, especially in 

coastal areas. This section considers the utility of these 

models for future site detection and reflects on the 

environmental affordances that might have conditioned 

Swahili settlement over time at different scales.

Model A can be used to predict other permanent 

precolonial and colonial period village sites in rural inland 

areas. Another precolonial village site, Mwanakombo, was 

also discovered in 2019 during field surveys but was not 

included in this analysis because it was not recorded during 

systematic surveys (Alders 2023); nevertheless, this site also 

falls within the High and Very High site detection zones of 

Model A. Precolonial village sites like these took advantage 

of kinongo soils for farming and making earth and thatch 

houses, proximity to streams, and high rainfall. On the other 

hand, the small ephemeral sites outside of the predictive 

zones in Model A attest to the creative forms of land use 

that Swahili communities have employed for centuries 

in environmentally marginal landscapes. Though Swahili 

people did not settlement permanently in these zones they 

nevertheless transformed and occupied these landscapes 

through seasonal incremental processes, digging in 

coralline limestone bedrock to plant and crafting field walls 

out of limestone cobbles (Alders 2022: 123–125). Although 

Swahili communities favored specific environmental zones 

for permanent settlement, they were not constrained 

from using and moving through less favorable zones on 

the island. Ecological affordances structured, but did not 

determine, long-term land use in rural inland areas.

Model B is a better fit than A for the data for known 

locations of major precolonial sites. In addition to 

predicting the locations of Stone Town, Mkokotoni, 

Shangani and Fukuchani in the northwest, the model 

identifies small strips of coastline in the south of the 

island as areas of High and Very High probability for site 

detection, and these locations line up well with the large 

precolonial port of Unguja Ukuu and the precolonial town 

of Kizimkazi, which hosts the oldest mosque in East Africa 

(Kleppe 2001). Further surveys in the High and Very High 

zones of Model B would likely reveal other important 

precolonial sites on the island. Areas for future surveys 

might include the southeastern coast near Paje, the 

southwest coast across the bay from Unguja Ukuu, the 

western peninsula south of Zanzibar Stone Town, the 

northwest coast, and many inland areas north of Zanzibar 

Stone Town. The inland region north of this urban center 

in particular likely contains a number of precolonial village 

sites that would help clarify urban-rural interactions. 

These sites may be under threat of destruction from 

growing agricultural and urban development.

The predictive models produced here are useful tools 

for archaeological prospection, but they also inform a 

long-term understanding of urban and rural settlement 

development on the East African Swahili Coast over the last 

millennium. Research on the Swahili Coast has definitively 

revealed the scale, complexity, and interconnectedness 

of non-elite, rural settlement (Kusimba et al. 2013; 

LaViolette and Fleisher 2018). Increasingly, archaeologists 

have sought to investigate the environmental dynamics 

of Swahili settlement landscapes (Faulkner et al. 

2022; Fitton et al. 2023; Kotarba-Morley et al. 2022; 

Pawlowicz et al. 2014; Prendergast et al. 2017; Quintana 

Morales et al. 2022; Walshaw and Stoetzel 2018). This 

paper contributes to this growing body of research by 

modeling and testing the environmental affordances 

that influenced regional settlement trends. The fact that, 

out of the large area of southern Zanzibar, Unguja Ukuu 

and Kizimkazi developed in small regions identified by 

Model B attests to how local environmental conditions 

were significant factors for the development of Swahili 

settlements. The settlement locations of even the largest 

and wealthiest Swahili towns on Zanzibar developed in 

places where early Swahili communities capitalized on 

environmentally suitable zones for farming, fishing, house 

building, and procuring water. These zones continued to 

influence settlement trends into the colonial era when 

Omani planters settled rural inland landscapes with 

enslaved retinues and sought to produce cloves and other 

products for international markets.

Environmental factors were important, but Swahili 

people on Zanzibar were not constrained by them. In the 

case of Tumbatu, they settled on a rocky, agriculturally 

marginal offshore island with little water, and may 



139Alders Journal of Computer Applications in Archaeology DOI: 10.5334/jcaa.107

have relied on social networks to provision the town 

from the more agriculturally suitable territories around 

Mkokotoni. Also, as demonstrated by field surveys, 

small-scale Swahili communities farmed and camped 

in environmentally marginal zones in the rocky eastern 

region, though they did not settle there permanently. 

Nevertheless, ecological factors certainly influenced 

Swahili settlement trends over time, and the predictive 

models produced here help contextualize the material 

affordances that Swahili people dealt with, mobilized, 

and capitalized on over the last millennium.

5. CONCLUSION

A comparison with ground-truthed archaeological sites 

shows the effectiveness of archaeological predictive 

modeling through zonal statistics on Zanzibar, Tanzania. 

The results may help plan future surveys and inform 

emergent understandings of human-environment 

dynamics on the Swahili Coast. The development of this 

methodology using open-access software increases 

geospatial accessibility and affordability, a consideration 

that will be especially impactful for researchers in the Global 

South where funding and licensing is limited. Like recent 

studies that emphasize low-cost open-access remote 

sensing methods for archaeological prospection in Africa, 

this method takes advantage of a growing suite of freely 

available geospatial datasets. The methodology described 

here can be applied across a wide variety of contexts in 

Africa and globally. This method does not rely on having 

high-resolution multispectral imagery, LiDAR, or paywalled 

software. The only prerequisite is having a representative 

and theoretically-justified way to weight zonal raster 

images—in this case, settlement classes from a digitized 

historical map were the basis for weighting. The quality 

and representativeness of training features across all zones 

under consideration is an important factor for producing a 

model that is useful for archaeological prospection and for 

understanding regional environmental and spatial factors.

ADDITIONAL FILE

The additional file for this article can be found as follows:

•	 Supplementary Materials. Supplementary files contain 

all zonal raster images used in the analysis, a digitized 

close-up of the 1907 map, and a detailed workflow in 

QGIS. DOI: https://doi.org/10.5334/jcaa.107.s1
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	Training features for the predictive model were derived from settlement classes digitized from a historical map of Zanzibar, since these settlement locations likely reflect environmental affordances that may have conditioned the spatial patterns of archaeological sites over the last millennium in Zanzibar. Stanford’s Geographical Establishment in London published a map of Zanzibar, showing villages, landforms, and other features recorded on the island during the 1890s ().  shows this map, referred to from h
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	The map is not an official British Survey of India map, but the legend names the mapmaker as Imam Sherif Khan Bahadur, a surveyor of the British Survey of India. The survey that produced the map likely occurred between 1892 and 1894, when Imam Sherif Khan Bahadur was stationed in Zanzibar (). However, this date is complicated by some details on the map. Marahubi Palace (built by Sultan Barghash in 1880) is listed on the map as a ruin, suggesting that Imam Sherif Khan Bahadur or someone else surveyed that re
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	The map was the main cartographic source for Zanzibar prior to a more recent map created in 1984–85 (Horton, pers. comm.). However, the map has been overlooked by both historians and archaeologists of the colonial period in Zanzibar, despite the wealth of information it contains regarding settlement, land use, and geography on the island during the late 19and early 20 centuries. Because of the map’s status as a tool of British imperial dominion in Zanzibar, it records invaluable data for understanding the c
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	2.2.1 Georeferencing and Digitization
	Petrie et al. (), Garcia et al. () and Green et al. () developed methods for georeferencing and interpreting 1 inch to 1 mile Survey of India maps to glean data related to ancient settlement in northwest India, in the form of anthropogenic mounds that surveyors in the late 19 and early 20 centuries recorded. This study draws on their methods since the map was made in the style of British Survey of India maps. The first step was to georeference the 1907 Zanzibar map to features on a modern basemap of the isl
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	No datum or coordinate system is specified on the map itself, but it was likely created using the Everest 1830, Clarke 1866, or Clarke 1880 datum (; ). The map has longitude and latitude graticules with specified coordinate points, which were converted into a point vector file. Though the unreferenced map aligns nearly perfectly with these points when projected in the Clarke 1880 datum, the features on the map can be up to a kilometer or more off from their actual locations when the map is georeferenced in 
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	2.2.2 Settlements and roads
	The map depicts settlements and a road network, digitized in . There are 489 settlements, with squares drawn in varying numbers to represent village size. Imam Sherif Khan Bahadur’s survey methodology is not apparent, but from the map it is likely that two methods were used to indicate settlement size and importance. The first method was through the illustration of squares, which represent settlement areas. Squares are not drawn to the scale of a Zanzibari house—by the scale of the map, the average square r
	Figure 3

	The second method for distinguishing settlement types is typographical—there are Latin letters in italics with capitalized first letters and additional lowercase letters to name most settlements, as well as to indicate place names. Bolded, non-italic letters are used to name larger towns, also with capitalized first letters and additional letters in lower-case. Finally, bolded, non-italic, and all-capitalized letters are used for Zanzibar Stone Town, the largest settlement on the map. The inset in  shows an
	Figure 2

	While the map legend describes the squares as representing villages, they can be interpreted to represent a settlement hierarchy from their placement and count in conjunction with typographical differences. Square counts for each village appear to be significant and relate to different sized settlements: 1) hamlets or very small villages, 2) small villages, and 3) large villages. Settlements were divided into these 5 size classes based on their typography and number of settlement squares depicted. A sample 
	Table 3

	This method of distinguishing settlements by size is an imposition for the sake of regional analysis. A contrasting perspective is the view derived from mid-20 century ethnographies of the Swahili, which divided permanent settlements into “stone-towns” and “country-towns”, irrespective of size. These towns, though differentiated by the degree of political and economic specialization, functioned similarly as places that were the basis of social rights for their residents. They were also characterized by diff
	th
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	In addition to the settlements, the map also depicts a network of roads, paths, tracks, and other ambiguous dotted lines on the map. The longest paved or “metalled” road during this time ran from Zanzibar Stone Town to Chwaka, connecting the east and west of the island. This road was under construction in the early 1890s (), and its presence on the map may indicate that it was just finished when the map was completed. Surveyors recorded two other paved roads on the map as well. One went north from Stone Tow
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	Other roads are those which the legend calls “village roads”; these are likely dirt paths for foot traffic, and may have also been accessible to mules, camels, horses, and carts. A third category is called “Other Roads and Tracks”. In practice, these are likely not qualitatively distinguishable from village roads in that they were also dirt footpaths, though possibly smaller and less frequently used.
	2.2.3 Streams, Wells, and Other Miscellaneous features
	 shows a map of streams, wells, and other miscellaneous features on the 1907 map. Streams are drawn as black lines on the 1907 map and labeled in italic letters by their Swahili names. This stream map likely represents the oldest model of hydrology on Zanzibar, existing prior to many landscape transformations which occurred during the latter half of the 20 century. The map shows that major streams did not flow in the south, east and far north of the island, where porous limestone bedrock draws water undergr
	Figure 4
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	Wells are indicated on the map by circles. Their preponderance in karstic limestone areas far from the streams of the northwest region aligns inversely with the stream network—the wells are most common in places where streams are not shown above ground. The lack of wells in places with above-ground streams suggests that people in the early 20 century relied considerably on above-ground stream water for daily use where it could be found, and dug wells in places where stream water was not available. Six wells
	th
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	Other miscellaneous features on the 1907 Zanzibar map include lighthouses, “poor houses”, a leper colony, a sanatorium, ferries, sugar mills, ruins, and a depiction of buildings with steepled roofs that may represent mosques or large houses. Two other areas are places called the Mwana Msa Shrine and the Kuani House. Finally, dotted lines which form small circles are not described in the legend but appear to correspond to some labeled settlements in the south and east of the island. It is unclear what these 
	2000: 56
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	Other archaeologically significant features are the five places listed as ruins on the map. Two of these locations are the known Portuguese-period sites of Fukuchani and Mvuleni, which LaViolette and Norman () have recently investigated. The three others are the Chimani Ruin, the Kizimbani Ruin, and the Marseilles Ruin, all of which are located just northeast of Stone Town near Mwera. The Marseilles Ruin may be the site of the Marseilles plantation, the site of a battle where Barghash bin Said surrendered t
	2023
	Ruete 1888: 107

	2.3 STEPS 4–7: CONVERTING SETTLEMENT CLASSES TO TRAINING FEATURES, CALCULATING ZONAL STATISTICS, AND DETERMINING WEIGHT CLASSES
	The digitization process outlined above produced five settlement classes from the 1907 map: 1) hamlets/very small villages, 2) small villages, 3) large villages, 4) towns, and 5) the main urban center, Zanzibar Stone Town. To analyze these settlements in relation to raster data, they were converted into polygons that reflect their area. Buffer polygons for each class were created, encompassing the average area of each class. To simplify analyses, these buffer polygons were then merged into two settlement cl
	The Majority statistic was calculated across these two training feature classes for each zonal raster image in QGIS using the Zonal Statistics process. This statistic reports which unique pixel value (reflecting a zone) is most numerous within the space of a settlement polygon; summarizing this statistic using the Statistics by Categories process gives a count of settlement polygons per zone for each raster image.  through  display this data for each raster image and include statistics that were used to wei
	Table 4
	Table 11

	Density was calculated by dividing the count of settlement polygons per zone by the area of each zone, to derive a count of settlement polygons per square kilometer. The zone with the highest density of settlements per raster image was selected for weighting in the final predictive model. Calculating the zone with the highest density of settlement polygons is a better measure of zone favorability than a simple count of settlement polygons per zone, since each zone within a raster image can vary significantl
	The following sections show settlement class distributions across the eight zonal raster images. Each table is divided into two groups, showing the distribution of small settlements (n = 379) and large settlement (n = 110) across each zonal raster image. Each table also lists the zone with the highest density of settlements for each settlement group, and the coefficient of variation for each settlement group. Maps of each zonal raster image are available as supplementary materials.
	2.3.1 Zonal statistics across aspect zones
	A zonal raster image for aspect derived from 30 m free SRTM imagery from USGS shows hillslope orientation.  shows settlement classes from the 1907 map across these aspect zones. East and west-facing slopes have the highest site density as well as the highest site counts for both classes. No other patterns are apparent. See Figure A in the Supplementary Materials section for a map of this raster image.
	Table 4

	2.3.2 Zonal statistics across elevation zones
	 shows the 2019 sites distributed across five elevation zones, categorized using a Natural Breaks (Jenks) algorithm on a digital elevation model from SRTM 30 m imagery. Higher elevation zones are favored. The 69–135 m zone is most densely settled for small settlements, while the 48–69 m zone was most densely settled for large settlements. See Figure B in the Supplementary Materials section for a map of this raster image.
	Table 5

	2.3.3 Zonal statistics across geology zones
	Seven geology zones exist on Zanzibar (, also see ). These are catenas of M3 sandy clay marl, Q2 coralline limestone, M1 Miocene limestone, a Q2/M1 mixture, Q1 recent deposits, a Q2/Q3/M1 mixture, and mangrove zones with no data.  shows settlement classes from the 1907 map across these zones. Settlements of both classes are most numerous and most dense in areas of M3 Sandy Clay Marl. See Figure C in the Supplementary Materials section for this raster image.
	Colbert et al. 1987
	Hardy et al. 2015
	Table 6

	2.3.4 Zonal statistics across rainfall zones
	Rainfall zones on Zanzibar () are divided into three zones: 1000–1500 mm, 1500–2000 mm, and 2000–2500 mm of rainfall per year.  shows the zonal statistics for settlement classes across these zones. Large settlements are most dense in the 1500–2000 mm zone, while smaller settlements are most dense in the 2000–2500 mm zone. See Figure D in the Supplementary Materials section for a map of this raster image.
	Colbert et al. 1987
	Table 7

	2.3.5 Zonal statistics across reef distance buffer zones
	Reefs () were buffered by distance to create a zonal raster image for the island.  shows the zonal statistics for settlement classes across these zones. Small settlements were densest within 500 meters of reefs, while large settlements were densest within 3 kilometers. See Figure E in the Supplementary Materials section for a map this raster image.
	Khamis et al. 2017: 120
	Table 8

	2.3.6 Zonal statistics across slope degree zones
	Slope degree zones, also derived from 30 m SRTM imagery from USGS, fall into three categories: 0-3-degree slope, 3-10-degree slope, and areas with >10-degree slope.  shows settlement classes across these zones. No site is found on a slope of 10 degrees or more, and both settlement classes are most dense in 0-3-degree slope areas. See Figure F in the Supplementary Materials section for a map this raster image.
	Table 9

	2.3.7 Zonal statistics across soil type zones
	 shows settlement distributions across soil type zones, derived from Khamis et al. (). Swahili speakers distinguish five soil types on Zanzibar based on color, organic composition, and depth: kinamo (deep dark sandy clays), kinongo (deep red laterites of variable clay and organic content), uwanda (shallow red laterites with moderate organic content, over coralline limestone bedrock), mchanga (deep sandy soil built on recent alluvial sediments) and maweni (shallow dark laterites with high organic content ove
	Table 10
	2017: 120
	Khamis et al. 2017: 120
	Figure 1

	2.3.8 Zonal statistics across stream buffer zones
	 shows the settlement classes across a zonal raster image of buffered distances from streams, which were digitized from the 1907 map of Zanzibar. Both settlement classes are densest within 500 meters of streams. See Figure H in the Supplementary Materials section for a map of sites across this raster image.
	Table 11

	2.3.9 Weighting Zonal Raster Images
	The next step was to weight zonal raster images based on the training features. Zones in which settlement class training data is most dense were selected as factors, and then weighted based on the coefficient of variation (CV). For each settlement class, the standard of deviation was calculated for the range of CV values, and then a CV range was created by adding and subtracting the standard of deviation from the mean CV. This range was then divided up by equal intervals, and each interval threshold was ass
	One knowledge-based adjustment was made: the CV for large settlements across aspect zones was reduced from 3 to 2, for three reasons. First, the CV value is 0.56, only 0.01 points into weight class 3, producing an edge effect. Secondly, visual inspection of both settlement classes across aspect zones confirms that the distribution mostly reflects the fact that east and west facing slopes are the most numerous slopes on the island, due to the fact that Zanzibar’s hill system runs like a spine from south to n
	 and  depict the weight class thresholds for each model.  and  depict the weighted scores for each zonal raster image for both settlement classes, based on the zonal statistics above. This table also summarizes the most favored zones for both settlement classes across all zonal raster images. For small settlement classes, this produced Model A; for large settlement classes, this produced Model B.
	Tables 12
	13
	Tables 14
	15

	The eight zonal raster images were reclassified to reflect weight classes, using the Reclassify by Table process. Favored zones were classified with a unique pixel value of each weight, and all other pixels were assigned a value of zero. This was done twice, once for each model.
	2.4 STEPS 8–9: PRODUCING THE PREDICTIVE MODEL
	The two sets of weighted raster images from these models were summed using the Raster Calculator process in QGIS to produce two archaeological predictive models, Model A () and Model B (). The summed raster images contained values from 1–22 in the case of the small settlement model and 1–25 in the case of the large settlement model, but both were reclassified into five zones of site detection probability using a Natural Breaks (Jenks) algorithm: Very Low, Low, Medium, High, and Very High (see ). Since QGIS 
	Figure 5
	Figure 6
	Diwan 2020: 152

	3. RESULTS
	Summing weighted zonal raster images from two different settlement classes produced two raster images that reflect site detection probability zones, Model A (, from small settlement classes) and Model B (, from large settlement classes). The models predict site locations based on the density of training features within specific environmental zones. Both training feature classes were strongly associated with flat, level ground (0-3-degree slope), areas within 500 meters of above ground streams, and M3 Sandy 
	Figure 5
	Figure 6
	Sheriff et al. 2016
	Fitton 2018

	Having considered the environmental factors that structure Models A and B, the next section ground truths the models by comparing them to the locations of major precolonial sites of the late first and early second millennium on Zanzibar (; ), and to a dataset of sites recovered during a systematic survey across multiple environmental zones in northern Zanzibar in 2019 (). These latter surveys identified and recorded 44 new archaeological sites, with 31 found in the course of a systematic random stratified s
	Fitton 2018
	Horton and Clark 
	1985
	Alders 2023
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	3.1 COMPARING THE MODELS TO MAJOR KNOWN PRECOLONIAL SWAHILI SITES
	 and  show zonal statistics for known major precolonial sites in relation to the site detection probability zones of the two predictive models, and  and  show the spatial distribution of these sites in relation to the two models.
	Tables 16
	17
	Figures 7
	8

	Six out of eight precolonial sites fall within the High or Very High site detection probability zones from Model B. The fact that Model B predicts these precolonial site locations well attests to similarities in environmental favorability between precolonial site locations and the larger settlements which persisted and grew during the 19 century on Zanzibar, which became the training data for this model. The two outliers are Kuumbi Cave and Tumbatu, which lie in Low and Medium probability zones respectively
	th
	Shipton et al. 2016
	th
	th
	th
	Rødland 2021: 254
	2021

	Model A does not predict the locations of major precolonial as well, with four sites falling into Very Low or Low zones; however, the Very High zone still has the highest density of sites because the zone is the smallest relative to others. The poorer performance of Model A attests to the fact that in comparison to major precolonial sites, slightly different environmental affordances structured the small-scale settlements during the 19 century that were used as training data for this model.
	th

	3.2 COMPARING THE MODELS TO 2019 FIELD SURVEY DATA
	 and  show zonal statistics for the sites recorded during field surveys (see ; ) in relation to the two predictive models. The tables are stratified by site type, considering artifact scatters in fields in the top rows and permanent, village-sized sites in the bottom rows.  and  show the spatial distribution of these sites across both models.
	Tables 18
	19
	Alders 2022
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	Figures 9
	10

	Model A predicted the site locations of larger, permanently occupied sites in rural inland Zanzibar, with seven out of nine sites falling within High and Very High site detection probability zones. This reflects similarities between environmental affordances which structured the small settlement classes on the 1907 map of Zanzibar, and the larger, village-sized sites recovered archaeologically during survey. For 19-century sites recovered this was expected; however, the model’s ability to predict the locati
	th

	Model A failed to predict the site locations of smaller artifact scatters in fields. These smaller sites represent ephemeral camps or field houses that were occupied during seasonal agricultural labor (see also ), especially in the eastern region where stony landscapes and a lack of fresh water on the surface prohibit larger settlements in many areas. In these regions, farmers today bring food and water to swidden field plots and camp for several days during clearing and planting. Ceramic scatters and shell
	Walshaw 
	2015
	th
	Alders 2022: 118–126
	th
	Alders 2023

	Model B was less successful at predicting the locations of small-scale sites recovered through field survey, with Low and Medium site detection zones having the highest density of sites for small artifact scatters and larger permanent sites, respectively. This result suggests that Model B, which was trained using large settlement classes from the 1907 map, reflects slightly different environmental affordances that did not apply to small-scale settlement in rural inland Zanzibar. Environmental conditions tha
	3.3 ASSESSING FALSE POSITIVES
	A consideration for both models is the extent to which zones of High and Very High probability for site detection return false positives. For known major precolonial sites this was not possible to assess, since these site locations come from disparate sources and were not the result of a survey sample. For the 2019 field survey sites,  and  show survey transects across and within site detection zones for Model A and B, which give an indication of false positive results for each model. Though Model A’s Very 
	Figures 9
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	4. DISCUSSION
	Model A was successful at predicting the locations of smaller, permanent village sites in rural inland Zanzibar, while Model B was more successful at predicting the locations of major precolonial Swahili sites, especially in coastal areas. This section considers the utility of these models for future site detection and reflects on the environmental affordances that might have conditioned Swahili settlement over time at different scales.
	Model A can be used to predict other permanent precolonial and colonial period village sites in rural inland areas. Another precolonial village site, Mwanakombo, was also discovered in 2019 during field surveys but was not included in this analysis because it was not recorded during systematic surveys (); nevertheless, this site also falls within the High and Very High site detection zones of Model A. Precolonial village sites like these took advantage of kinongo soils for farming and making earth and thatc
	Alders 2023
	Alders 2022: 123–125

	Model B is a better fit than A for the data for known locations of major precolonial sites. In addition to predicting the locations of Stone Town, Mkokotoni, Shangani and Fukuchani in the northwest, the model identifies small strips of coastline in the south of the island as areas of High and Very High probability for site detection, and these locations line up well with the large precolonial port of Unguja Ukuu and the precolonial town of Kizimkazi, which hosts the oldest mosque in East Africa (). Further 
	Kleppe 2001

	The predictive models produced here are useful tools for archaeological prospection, but they also inform a long-term understanding of urban and rural settlement development on the East African Swahili Coast over the last millennium. Research on the Swahili Coast has definitively revealed the scale, complexity, and interconnectedness of non-elite, rural settlement (; ). Increasingly, archaeologists have sought to investigate the environmental dynamics of Swahili settlement landscapes (; ; ; ; ; ; ). This pa
	Kusimba et al. 2013
	LaViolette and Fleisher 2018
	Faulkner et al. 
	2022
	Fitton et al. 2023
	Kotarba-Morley et al. 2022
	Pawlowicz et al. 2014
	Prendergast et al. 2017
	Quintana 
	Morales et al. 2022
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	Environmental factors were important, but Swahili people on Zanzibar were not constrained by them. In the case of Tumbatu, they settled on a rocky, agriculturally marginal offshore island with little water, and may have relied on social networks to provision the town from the more agriculturally suitable territories around Mkokotoni. Also, as demonstrated by field surveys, small-scale Swahili communities farmed and camped in environmentally marginal zones in the rocky eastern region, though they did not set
	5. CONCLUSION
	A comparison with ground-truthed archaeological sites shows the effectiveness of archaeological predictive modeling through zonal statistics on Zanzibar, Tanzania. The results may help plan future surveys and inform emergent understandings of human-environment dynamics on the Swahili Coast. The development of this methodology using open-access software increases geospatial accessibility and affordability, a consideration that will be especially impactful for researchers in the Global South where funding and
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	NAME
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	DESCRIPTION
	DESCRIPTION

	SOURCE
	SOURCE

	Aspect
	Aspect
	Aspect

	Eight aspect (orientation) zones across the island
	Eight aspect (orientation) zones across the island

	Derived from a DEM from free 30 m SRTM imagery, from USGS
	Derived from a DEM from free 30 m SRTM imagery, from USGS

	Elevation
	Elevation
	Elevation

	Elevation zones across the island
	Elevation zones across the island

	Derived from a DEM from free 30 m SRTM imagery, from USGS
	Derived from a DEM from free 30 m SRTM imagery, from USGS

	Geology
	Geology
	Geology

	Geological zones
	Geological zones

	; 
	; 
	Colbert et al. 1987
	Hardy et al. 2015

	Rainfall
	Rainfall
	Rainfall
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	Colbert et al. 1987
	Colbert et al. 1987
	Colbert et al. 1987
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	Khamis et al. 2017: 120
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	Soil Types
	Soil Types
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	Local soil types classified by Swahili categories
	Local soil types classified by Swahili categories

	Khamis et al. 2017: 120
	Khamis et al. 2017: 120
	Khamis et al. 2017: 120

	Slope Degree
	Slope Degree
	Slope Degree

	Three slope degree zones across the island
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