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ABSTRACT

This paper presents a case study using zonal statistical analysis for archaeological
predictive modeling with open-access software and free geospatial datasets. The
method is applied to the rural landscapes of Zanzibar, Tanzania on the Swahili
Coast. This study used QGIS (version 3.28) to perform zonal statistical analyses of
environmental datasets weighted by settlement classes digitized from a 1907 historical
map, to create predictive models for settlement across the island. These models were
compared against the locations of major precolonial archaeological sites on the island
and site data from a random stratified archaeological survey in an environmentally
diverse region of northern Zanzibar. The results show strong correspondences
between larger permanent site locations and areas of high likelihood for site detection
in the predictive model. Additionally, there were correspondences between areas of
lower likelihood for site detection and smaller, ephemeral sites related to agricultural
production in swidden field plots. These results attest to Swahili rural complexity and
enable an understanding of the specific environmental affordances that structured
settlement and land use over the last millennium, in ways that shaped colonial
contact in rural areas and altered the sociopolitical development of Zanzibar and the
East African coast. The methods described here may be applicable for researchers and
heritage managers in Africa and the Global South, where funding for large-scale field
projects, expensive satellite imagery, or software licensing is limited.
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1. INTRODUCTION

The African continent is a key site for the expansion of
geospatial archaeological methods. Geospatial and
remote sensing approaches to archaeological research in
Africa have increased in visibility and importance in the
last decade, and this has coincided with calls to increase
the accessibility of these methods for researchers with
limited funding (Davis and Douglass 2020; Klehm and
Gokee 2020). One avenue for increased geospatial
accessibility has been the development free, low-cost,
and open-access tools for archaeological remote sensing
and geospatial research (Casana 2020; Cerasoni et al.
2022; Davis and Sanger 2021; Fisher et al. 2021; Khalaf
and Insoll 2019; Sadr 2016; Rayne et al. 2020). This paper
contributes by developing an archaeological predictive
model for Zanzibar, Tanzania, using free geospatial
datasets and open-access software. The model was
created by digitizing a historical map and performing
zonal statistical analyses of these features across
weighted environmental raster images in QGIS 3.28.
Summing these weighted zonal raster images produced
two predictive models showing zones of probability for
future site detection. These models were ground-truthed
with archaeological field survey data from an inland
region of Zanzibar, Tanzania, and were also compared
against the locations of known major precolonial sites.
Zanzibar is an island region in Tanzania that was
centrally important to the sociopolitical development
of the Swahili Coast and the western Indian Ocean
social system over the last two millennia (Crowther
et al. 2016; Fitton 2018). The island of Zanzibar is
environmentally diverse, with two major ecological
zones: an agriculturally fertile northwestern region with
deep soils and above-ground streams, and a rocky,
agriculturally marginal karstic limestone landscape in
the south and east, where water does not persist above
ground (Alders 2023). Archaeologists have increasingly
investigated ecological relationships between Swahili
people and their landscapes on Zanzibar (Faulkner et
al. 2022; Fitton et al. 2023; Kotarba-Morley et al. 2022;
Prendergast et al. 2017; Quintana Morales et al. 2022).
This study builds on this recent research, contributing
to an understanding of the environmental affordances
that structured long-term settlement and social change.
Modeling human-environment relationships may enable
future archaeological prospection on the island where
settlement patterns are poorly understood, especially
with regard to sites that do not possess standing stone
architecture (Alders 2023; Fitton 2018; Horton and
Clark 1985). In doing so, this research contributes to a
long-standing orientation toward uncovering “hidden
majorities” (Fleisher and LaViolette 1999) of Swahili
non-elites, who created complex and independent
rural societies beyond the boundaries of monumental
stone-built towns (Kusimba et al. 2013; LaViolette

and Fleisher 2018; LaViolette et al. 2023). Given its
dynamic precolonial and colonial history and diverse
environmental conditions, Zanzibar is a well-suited
context for investigating the relationships between
processes of urbanism, colonialism, and environmental
factors, and as a case study for testing the suitability of
an open-access method for predictive modeling.

1.1 PREDICTIVE MODELING, ZONAL
STATISTICS, AND ARCHAEOLOGICAL
PROSPECTION IN AFRICA AND BEYOND
Archaeological predictive modeling has continued to
develop in relevance and sophistication since its inception,
incorporating  post-processual  critiques related to
environmental determinism, agency, and the interplay
between data-driven and theory-laden approaches
(Castiello 2022; Magniniand Bettineschi 2021; Verhagen and
Whitley 2020). An assumption shared by all archaeological
predictive models is that archaeological features were
not randomly produced by humans in the past, but that a
confluence of social and environmental factors conditioned
their spatial location. Modeling the relationship between
known archaeological features and their material and
spatial environments can give insights into the locations
of presently unknown features, aiding in archaeological
prospection and survey and informing an understanding
of human-environment relationships. Recent studies have
evaluated the predictive power of different statistical
approaches and sampling strategies (e.g., Castiello and
Tonini 2021; Comer et al. 2023; Kelly et al. 2023; Yaworsky
et al. 2020) and developed techniques for raster imagery
analysis using machine learning and object-based imagery
analysis (e.g., Magnini and Bettineschi 2021).

In African archaeology, recent studies have used a
combination of remote sensing and spatial analysis for
site detection, predictive modeling, and for understanding
archaeological landscapes (Biagetti 2017; Davis and
Douglass 2021; Fitton et al. 2023 Harrower et al. 2020;
Klehm et al. 2019; Ochungo et al. 2022; Pawlowicz et al
2020; Reid 2016, 2020; Thabeng et al. 2020). Creating
models for site detection with multispectral imagery
is increasingly accessible, with resources like Landsat,
Planet, and Sentinel 2 imagery becoming available
at increasingly high spatial, spectral, and temporal
resolutions. While recognizing the utility of multispectral
remote sensing for site detection, one limitation in
rainy tropical regions like Zanzibar is the low availability
of consistently cloud-free imagery, and the academic
licensing required to access multispectral imagery.

To work around this problem, this paper presents a
case study for an alternative method: predictive modeling
through zonal statistical analyses of environmental raster
images in comparison to training data, which are used
to the weight a final summative model (see Fitton et
al. 2023 for another regional study integrating multiple
geospatial and legacy datasets on Zanzibar). This
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method is based around quantifying the most suitable
spatial zones for the occurrence of specific phenomena
by summing weighted raster datasets using raster
calculations (e.g., Behr et al. 2017; Kuria et al. 2011). It
is a predictive model that relies on environmental zonal
raster images (for instance, published or archived maps)
and factors for weighting these raster images; in this
case, the primary factor is known site location and site
sizes for a region of northern Zanzibar during the late
colonial period, digitized from a historical map.

Zonal statistical analysis of training features with
the Majority statistic is the method chosen to weight
environmental raster images, because it is a simple,
accessible, and powerful tool that is built into the
functionality of open-access geospatial software like
QGIS. In keeping with the theme of accessibility, zonal
statistical analysis can be carried out by researchers
with limited resources, lack of experience in computer
programming languages, and limited experience with
complex statistical modeling. An innovation of this paper
is the use of the coefficient of variation statistic to further
weight favored zones.

Sources used for zonal statistical analysis in this
paper include a digital elevation model derived from free
SRTM satellite imagery (D’Andrea 2008; Harrower 2010;
Harrower et al. 2012; Hritz 2010), spatial-environmental
datasets from published sources (Colbert et al. 1987,
Hardy et al. 2015; Khamis et al. 2017), and a historical map
of Zanzibar that was published in 1907. The historical map
was georeferenced using methods developed for 19t-
century Survey of India maps (Garcia et al. 2019; Green
et al. 2019; Petrie et al. 2019). It contains a wealth of
information about pre-modern rural Zanzibar, showcasing
landscapes and features that have disappeared due to
urban and agricultural development. This is the first time
this map has been considered in detail, and in addition

to the conclusions of this paper, it is hoped that the data
will be a valuable resource for archaeologists and heritage
managers in the future who are concerned with Zanzibar’s
colonial history. Heritage management and conservation
on Zanzibar is constrained by limited resources and many
archaeological sites may be in danger of destruction as
urban growth and agricultural development continues
(Mansab 2021, interview with Mariam Mansab, director of
Zanzibar’s Department of Museums and Antiquities). The
digitization of this map and the creation of archaeological
predictive models may aid in site conservation and
stewardship in areas where development is proceeding.

Workflows for historical map digitization, zonal
statistical analyses, and raster calculation are modeled in
QGIS 3.28, a free and open-source GIS. The archaeological
predictive model was ground-truthed using a random
stratified survey across an environmentally and socio-
politically diverse zone in rural northern Zanzibar (Alders
2023), and also compared to major known precolonial
sites on the island (Horton and Clark 1985; Fitton 2018).

This paper advances the development of open-source
geospatial applications for archaeological prospection,
especially in the tropical, forested environments of sub-
Saharan Africa. In line with other recent examples, it
draws on the availability of free geospatial datasets to
help understand archaeological landscapes. The sections
below outline the methods and results of this case study
in Zanzibar, Tanzania. Results inform a discussion of the
environmental affordances which structured Swahili
social development over the last millennium.

2. METHODS

Table 1 below presents the workflow for the methods
used in this paper, outlining basic steps for producing an

Prepare the Map and Raster Datasets: Assemble and normalize raster datasets, define Area of Interest (AOI), and set map
coordinate reference system.

Create Zonal Raster Images: Create raster images with unique values for each zone, which can be uniformly queried in relation to
training features.

Prepare the Training Features: Import or digitize training set datapoints, and buffer them as polygons to reflect their real-world area.

Calculate Zonal Statistics: Quantify the distribution of training features for each zone across each raster image.

Determine Zone Favorability: Find zones with the highest density of training points for each zonal raster. This will determine which
zone will be weighted as part of the predictive model for each zonal raster image.

Determine the (Un)Evenness of Training Feature Distribution: Find the coefficient of variation (CV) for training features across all
zones. This value will be used to weight zones.

Create and Assign Weight Classes: Determine coefficient of variation (CV) threshold values and assign these thresholds to weight
classes, which will be used to weight and add zonal raster images.

Create Weighted Zonal Raster Images: Create zonal raster images with a value for the most favored zone (weighted by CV class),
and a value of O for all other zones.

Sum Weighted Zonal Raster images into a Predictive Model: Create a raster image that reflects site detection probability for each
pixel, and reclassify it into a zonal raster image with categories for site detection probability.

Table 1 Workflow of methods for this study.
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archaeological predictive model using zonal statistical
analysis. A more detailed version of this table with step-
by-step processing instructions for QGIS 3.28 is located
in Supplementary Materials. Sections 2.2 through 2.5
describe the application of these steps for the study area.

2.1 STEPS 1-2: PREPARING THE MAP AND
RASTER DATASETS AND CREATING ZONAL
RASTER IMAGES

Table 2 lists the geospatial datasets used for this study.
Converting these datasets into zonal raster images
required digitizing geospatial datasets through a two-step
process. The first step was to normalize the colors within
allzones in animage editing software and to remove text,
arrows, and boundary lines which would give different
values when attempting to classify zones. This process
decreases accuracy at boundaries to some extent but is
necessary for producing raster images with a single pixel
value per zone. Next, the maps were georeferenced and
clipped to an outline of Zanzibar in QGIS 3.28. Then, the
Reclassify by Table tool in QGIS 3.28 was used to turn
the digitized maps into zonal raster images with one
unique pixel value per zone. This study produced eight
zonal raster images from previously published geospatial
data and free SRTM imagery acquired from USGS. Figure
1 shows an example of a zonal raster image: soil type
zones on the island, derived from Khamis et al. (2017:
120). Maps of the rest of the zonal raster images can be
found in the Supplementary Materials section, as Figures
A through H.

Care must be taken to avoid choosing raster images
with zones that co-vary significantly because of
dependencies between them. Dependent environmental
factors summed together as raster images would over-
weight certain zones. For instance, two other zonal raster
images were considered for use in this model: a map
depicting areas inside and outside of the historical clove
plantation zone (Sheriff et al. 2016: 20), and a map of soil
infiltration zones (Hardy et al. 2015). These images were

discarded because they co-vary with elevation and soil
types in a dependent way, meaning that their inclusion
would bias the model more heavily toward specific
zones. Geology and soil type raster images co-vary to
some extent, but they were both included because they
describe different independent categories: the former
describes geological categories, while the latter map of
soil types refers to indigenous Swahili topsoil categories
that relate to organic composition, soil color, and soil
depth.

2.2 STEP 3: PREPARING THE TRAINING
FEATURES

Training features for the predictive model were derived
from settlement classes digitized from a historical map
of Zanzibar, since these settlement locations likely reflect
environmental affordances that may have conditioned
the spatial patterns of archaeological sites over the
last millennium in Zanzibar. Stanford’s Geographical
Establishment in London published a map of Zanzibar,
showing villages, landforms, and other features recorded
on the island during the 1890s (A Map of Zanzibar Island,
1907). Figure 2 shows this map, referred to from here on
as the 1907 Zanzibar map. The inset is shown in higher
resolution in Figure I in the Supplementary Materials
section.

The map is not an official British Survey of India
map, but the legend names the mapmaker as Imam
Sherif Khan Bahadur, a surveyor of the British Survey of
India. The survey that produced the map likely occurred
between 1892 and 1894, when Imam Sherif Khan
Bahadur was stationed in Zanzibar (National Archives
of India, 1894). However, this date is complicated by
some details on the map. Marahubi Palace (built by
Sultan Barghash in 1880) is listed on the map as a ruin,
suggesting that Imam Sherif Khan Bahadur or someone
else surveyed that region after Marahubi Palace was
destroyed by a fire in 1899 (Rhodes et al. 2015: 350).
Some other aspects of the map also suggest different

NAME DESCRIPTION SOURCE
Aspect Eight aspect (orientation) zones across the island Derived from a DEM from free 30 m SRTM imagery, from USGS
Elevation Elevation zones across the island Derived from a DEM from free 30 m SRTM imagery, from USGS
Geology Geological zones Colbert et al. 1987; Hardy et al. 2015
Rainfall Rainfall zones across the island Colbert et al. 1987
Reef Buffers Buffer zones showing distance intervals from offshore Khamis et al. 2017: 120
coral reefs
Soil Types Local soil types classified by Swahili categories Khamis et al. 2017: 120

Slope Degree Three slope degree zones across the island

Derived from a DEM from free 30 m SRTM imagery, from USGS

Stream Buffers
depicted on the 1907 map

Buffer zones showing distances intervals from streams

Digitized from the 1907 map of Zanzibar

Table 2 List of geospatial datasets used in this study.
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Soil Types

Kinamo: Sandy clay soils derived from clay parent
materials, deep

Maweni: Dark red/black/brown laterites with high
organic content, shallow over coralline limestone
bedrock

Mchanga: Sandy soil on recent, non-calcareous
alluvial sediment

Uwanda: Red laterites with moderate organic
content, shallow over coralline limestone bedrock
Kinongo: Red laterites, variable clay and organic
content, deep
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Figure 1 Example of a zonal raster image, a soil type map derived from Khamis et al. (2017: 120).

dates. Frazer's Sugar Mill and Frazer’'s House are not
listed as ruins, even though Fitzgerald (1898) described
them as such during his travels through Zanzibar in 1898.
Fitzgerald wrote then that the house and sugar mill were
active around 25 years prior, in 1873 (Fitzgerald 1898:
521-523). The depiction of Frazer’s sugar mill and house

would seemingly contradict the depiction of Marahubi as
aruin if the map were representative of a single snapshot
in time. Imam Sherif Khan Bahadur likely did not carry
out surveys prior to 1892, but these details show that this
map was made from a composite of surveys which were
only finished in 1899 at the earliest.
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Figure 2 1907 map of Zanzibar, with inset showing detail. The inset is shown in high resolution in the Supplementary Materials section in

Figure L.

The map was the main cartographic source for Zanzibar
prior to a more recent map created in 1984-85 (Horton,
pers. comm.). However, the map has been overlooked by
both historians and archaeologists of the colonial period
in Zanzibar, despite the wealth of information it contains
regarding settlement, land use, and geography on the
island during the late 19" and early 20%" centuries. Because

of the map’s status as a tool of British imperial dominion
in Zanzibar, it records invaluable data for understanding
the composition of rural areas on the island. Preserved in
the map is a settlement system that was surveyed while
the plantation system was still fully developed, around
the same time that slavery was being abolished, from
1896 to the early 1900s (Cooper 1977: 122). It contains
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detailed information regarding Zanzibar’s villages, wells,
hydrology, roads, and other features at the end of the 19t
century. As such, the map is a unique source of information
for understanding the spatial patterns of the 19t-century
plantation system, preserving many features that have
changed through urban and agricultural development in
the 20" and 21% centuries.

2.2.1 Georeferencing and Digitization

Petrie et al. (2019), Garcia et al. (2019) and Green et
al. (2019) developed methods for georeferencing and
interpreting 1 inch to 1 mile Survey of India maps to glean
data related to ancient settlement in northwest India,
in the form of anthropogenic mounds that surveyors in
the late 19" and early 20t centuries recorded. This study
draws on their methods since the map was made in the
style of British Survey of India maps. The first step was
to georeference the 1907 Zanzibar map to features on
a modern basemap of the island. This can be achieved
using the Georeferencer in QGIS, and by uploading base
maps from the QuickMapServices plugin.

No datum or coordinate system is specified on the
map itself, but it was likely created using the Everest 1830,
Clarke 1866, or Clarke 1880 datum (Mugnier 2021; Petrie
et al. 2019). The map has longitude and latitude graticules
with specified coordinate points, which were converted into
a point vector file. Though the unreferenced map aligns
nearly perfectly with these points when projected in the
Clarke 1880 datum, the features on the map canbe up toa
kilometer or more off from their actual locations when the
map is georeferenced in this way. This inaccuracy may be
due to mapmaker error, or changes to the map when it was
printed in 1907 or digitized in recent years. Other examples
of Survey of India maps have also been found to be
internally inconsistent in this way (Petrie et al. 2019). Given
this problem, the solution following Petrie et al. (2019) was
to georeference features on the map by hand using the WGS
1984 datum, and to allow the graticules to distort. Petrie
et al. (2019) suggest that the “Adjust” transformation in
ESRI ArcGIS may give the best possible results. 111 control
points were used to georeference this map with the Adjust
transformation in ArcGIS; this was done prior to conceiving
of an all-open-access study. However, georeferencing in
QGIS is equally advanced and while the Adjust transform is
not available in QGIS 3.28, the Thin Plate Spline transform
may give comparable results since it similarly allows for
rubber-sheeting with a large number of control points.
After georeferencing, map features were digitized by hand
by creating point, line, and polygon features. The following
sections describe these features.

2.2.2 Settlements and roads

The map depicts settlements and aroad network, digitized
in Figure 3. There are 489 settlements, with squares drawn
in varying numbers to represent village size. Imam Sherif
Khan Bahadur’s survey methodology is not apparent, but

from the map it is likely that two methods were used to
indicate settlement size and importance. The first method
was through the illustration of squares, which represent
settlement areas. Squares are not drawn to the scale of
a Zanzibari house—by the scale of the map, the average
square ranges from 600 to 1000 square meters. A house
this size would be a mansion. Rather than indicating the
actual sizes of houses, it is likely that overall settlement
size was estimated by a surveyor and then indicated by
the number of squares drawn. Officially, the legend of the
map depicts a scatter of squares and describes this as a
village, further suggesting that surveyors were drawing
settlement squares with the aim of capturing settlement
size, rather than individual households. The legend
also states: “N.B.—Very few of the Miji (settlements) in
Zanzibar Island are compact villages, the houses are
rather scattered over each district”. This is the case today
as well in many areas.

The second method for distinguishing settlement
types is typographical—there are Latin letters in italics
with capitalized first letters and additional lowercase
letters to name most settlements, as well as to indicate
place names. Bolded, non-italic letters are used to
name larger towns, also with capitalized first letters and
additional letters in lower-case. Finally, bolded, non-
italic, and all-capitalized letters are used for Zanzibar
Stone Town, the largest settlement on the map. The inset
in Figure 2 shows an example of all three types. Zanzibar
Stone Townis a city, Mtoni is a town, and Gulioni, Mianzini,
and Miwaleni are three of many villages.

While the map legend describes the squares as
representing villages, they can be interpreted to
represent a settlement hierarchy from their placement
and count in conjunction with typographical differences.
Square counts for each village appear to be significant
and relate to different sized settlements: 1) hamlets or
very small villages, 2) small villages, and 3) large villages.
Settlements were divided into these 5 size classes based
on their typography and number of settlement squares
depicted. A sample of each size class was measured in
areaq, to convert square counts into estimated average
settlement size, in hectares. Table 3 shows these
estimated size classes.

This method of distinguishing settlements by size is an
imposition for the sake of regional analysis. A contrasting
perspective is the view derived from mid-20" century
ethnographies of the Swahili, which divided permanent
settlements into “stone-towns” and “country-towns”,
irrespective of size. These towns, though differentiated
by the degree of political and economic specialization,
functioned similarly as places that were the basis of social
rights for their residents. They were also characterized
by different forms of production and trade, with stone-
towns emphasizing mercantile activity and country-
towns emphasizing agricultural production (Horton and
Middleton 2000: 55-58). Since the legend of the 1907
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Settlement Size Classes
Hamlets or very small villages (1-2 squares, < 1ha)
Small villages (3-11 squares, ~1-30 ha)
Large villages (12+ squares, ~30-60 ha)
Towns (12+ squares, block font, ~60-100 ha)
Zanzibar Stone Town (~240 ha)
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—— Footpaths and Tracks

0 900 2000 km
I I

Figure 3 Settlements and road network of the 1907 map.

SIZE CLASS NUMBER OF SQUARES FONT EXAMPLE ESTIMATED SIZE COUNT

Hamlet/Very Small Village 1-2 Kongeni <1 ha 42

Small Village 3-11 Gamba 1-30 ha 337

Large Village 12+ Maangani 30-60 ha 86

Town 12+ Mkokotoni 60-100 ha 23

City n/a ZANZIBAR ~240 ha 1
STONE TOWN

Table 3 Size classes for settlement in the 1907 Zanzibar map.

124
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map specifically refers to villages as miji, it is likely that
the surveyors had some familiarity with an idealized
Swahili system of land tenure. Nevertheless, the size-
based and typographical differences that are visible on
the map attest to the material differences in settlements
that the map makers encountered and adapted to as
they produced their survey.

In addition to the settlements, the map also depicts
a network of roads, paths, tracks, and other ambiguous
dotted lines on the map. The longest paved or “metalled”
road during this time ran from Zanzibar Stone Town to
Chwaka, connecting the east and west of the island.
This road was under construction in the early 1890s
(Owens 2007), and its presence on the map may indicate
that it was just finished when the map was completed.
Surveyors recorded two other paved roads on the map as

well. One went north from Stone Town to Bububu, and
the other went south to Stone Town to Mbweni.

Other roads are those which the legend calls “village
roads”; these are likely dirt paths for foot traffic, and
may have also been accessible to mules, camels, horses,
and carts. A third category is called “Other Roads and
Tracks”. In practice, these are likely not qualitatively
distinguishable from village roads in that they were
also dirt footpaths, though possibly smaller and less
frequently used.

2.2.3 Streams, Wells, and Other Miscellaneous
features

Figure 4 shows a map of streams, wells, and other
miscellaneous features on the 1907 map. Streams are
drawn as black linesonthe 1907 map and labeled initalic

5 8 Y e
RDafLRuing  (kindni MosHt Sugar Mill

=

Kuani H8use

Sugar MiII: O O

Nungwi Light House

L]
Mpapa Sugar Mill

> e e
.. Msa Shri
Lepex, Settlement gMwana .sa e
.

°  Wells

o Cave Wells

® Miscellaneous Features
—— Circular Features
—— Streams

0 900 2000 km
(. .

Figure 4 Streams, wells, and other miscellaneous features.
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letters by their Swahili names. This stream map likely
represents the oldest model of hydrology on Zanzibar,
existing prior to many landscape transformations which
occurred during the latter half of the 20™ century. The
map shows that major streams did not flow in the
south, east and far north of the island, where porous
limestone bedrock draws water underground. It also
shows that the courses of the larger streams of the early
20" century were slightly different than comparable
streams today. This may be due to variations in local
geology, urban development, or changes in landforms
that have altered the courses of streams since the early
20t century.

Wells are indicated on the map by circles. Their
preponderance in karstic limestone areas far from the
streams of the northwest region aligns inversely with the
stream network—the wells are most common in places
where streams are not shown above ground. The lack of
wells in places with above-ground streams suggests that
people in the early 20™ century relied considerably on
above-ground stream water for daily use where it could
be found, and dug wells in places where stream water
was not available. Six wells in the south are marked as
either “Cave Wells” or “C.W.”, which likely also stands for
cave well. One of these cave wells is Kuumbi Cave, a well-
known site from the late Pleistocene to late Holocene
(Shipton et al. 2016). The data showing other cave
wells contained in this map may point to other cave site
locations.

Other miscellaneous features on the 1907 Zanzibar
map include lighthouses, “poor houses”, a leper colony,
a sanatorium, ferries, sugar mills, ruins, and a depiction
of buildings with steepled roofs that may represent
mosques or large houses. Two other areas are places
called the Mwana Msa Shrine and the Kuani House.
Finally, dotted lines which form small circles are not
described in the legend but appear to correspond to some
labeled settlements in the south and east of the island.
It is unclear what these circles represent, but further
research might investigate whether they correspond
to abandoned settlements, as boundary markers or
raised areas. Comparisons of these circles with satellite
imagery are inconclusive. Some circles fall over modern
field plots or settlements, but others fall in areas that are
today covered in brush. Horton and Middleton (2000: 56)
describe historical areas of built-up soil in the south and
east where village communities repeatedly constructed
and demolished earth and thatch houses; it is possible
that these circular features could represent the mounds
created by this practice. Further research and ground-
truthing in the southern region of Zanzibar might clarify
this question. As is the case with Survey of India maps
in India (Green et al. 2019; Petrie et al. 2019), surveyors
may have unknowingly mapped archaeological sites by
recording mounds as landscape features.

Other archaeologically significant features are the
five places listed as ruins on the map. Two of these
locations are the known Portuguese-period sites of
Fukuchani and Mvuleni, which LaViolette and Norman
(2023) have recently investigated. The three others are
the Chimani Ruin, the Kizimbani Ruin, and the Marseilles
Ruin, all of which are located just northeast of Stone
Town near Mwera. The Marseilles Ruin may be the site
of the Marseilles plantation, the site of a battle where
Barghash bin Said surrendered to his brother the Sultan
Sayyid Majid in 1865 after an abortive attempt to
seize the throne of Zanzibar (Ruete 1888: 107). Further
investigation is needed to determine whether any of
these ruins still exist today.

2.3 STEPS 4-7: CONVERTING SETTLEMENT
CLASSES TO TRAINING FEATURES,
CALCULATING ZONAL STATISTICS, AND
DETERMINING WEIGHT CLASSES

The digitization process outlined above produced five
settlement classes from the 1907 map: 1) hamlets/
very small villages, 2) small villages, 3) large villages,
4) towns, and 5) the main urban center, Zanzibar Stone
Town. To analyze these settlements in relation to raster
data, they were converted into polygons that reflect
their area. Buffer polygons for each class were created,
encompassing the average area of each class. To simplify
analyses, these buffer polygons were then merged into
two settlement class groups: small settlements (n =
379) and large settlements (n = 110). Small settlements
were comprised of hamlets/very small villages and smaill
villages. Large settlements were comprised of large
villages, towns, and Zanzibar Stone Town. These two
polygon vector files constituted the training data for two
distinct models.

The Majority statistic was calculated across these
two training feature classes for each zonal raster
image in QGIS using the Zonal Statistics process. This
statistic reports which unique pixel value (reflecting
a zone) is most numerous within the space of a
settlement polygon; summarizing this statistic using
the Statistics by Categories process gives a count of
settlement polygons per zone for each raster image.
Table 4 through Table 11 display this data for each
raster image and include statistics that were used to
weight zones with the densest count of settlement
polygons.

Density was calculated by dividing the count of
settlement polygons per zone by the area of each
zone, to derive a count of settlement polygons per
square kilometer. The zone with the highest density
of settlements per raster image was selected for
weighting in the final predictive model. Calculating the
zone with the highest density of settlement polygons
is a better measure of zone favorability than a simple
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count of settlement polygons per zone, since each
zone within a raster image can vary significantly in
size. To compare the evenness or unevenness of the
distribution of settlements across zones, another
statistic calculated was the coefficient of variation (CV),
found by dividing the standard deviation of settlement
polygons per zone by the mean of settlement polygons
per zone.

The following sections show settlement class
distributions across the eight zonal raster images. Each
table is divided into two groups, showing the distribution
of small settlements (n = 379) and large settlement (n =
110) across each zonal raster image. Each table also lists
the zone with the highest density of settlements for each
settlement group, and the coefficient of variation for
each settlement group. Maps of each zonal raster image
are available as supplementary materials.

2.3.1 Zonal statistics across aspect zones

A zonal raster image for aspect derived from 30 m free
SRTM imagery from USGS shows hillslope orientation.
Table 4 shows settlement classes from the 1907 map
across these aspect zones. East and west-facing slopes
have the highest site density as well as the highest site
counts for both classes. No other patterns are apparent.
See Figure A in the Supplementary Materials section for a
map of this raster image.
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2.3.2 Zonal statistics across elevation zones

Table 5 shows the 2019 sites distributed across five
elevation zones, categorized using a Natural Breaks
(Jenks) algorithm on a digital elevation model from SRTM
30 mimagery. Higher elevation zones are favored. The 69-
135 m zone is most densely settled for small settlements,
while the 48-69 m zone was most densely settled for
large settlements. See Figure B in the Supplementary
Materials section for a map of this raster image.

2.3.3 Zonal statistics across geology zones

Seven geology zones exist on Zanzibar (Colbert et al. 1987,
also see Hardy et al. 2015). These are catenas of M3 sandy
clay marl, Q2 coralline limestone, M1 Miocene limestone,
a Q2/M1 mixture, Q1 recent deposits, a Q2/Q3/M1
mixture, and mangrove zones with no data. Table 6 shows
settlement classes from the 1907 map across these zones.
Settlements of both classes are most numerous and most
dense in areas of M3 Sandy Clay Marl. See Figure C in the
Supplementary Materials section for this raster image.

2.3.4 Zonal statistics across rainfall zones

Rainfall zones on Zanzibar (Colbert et al. 1987) are
divided into three zones: 1000-1500 mm, 1500-2000
mm, and 2000-2500 mm of rainfall per year. Table 7
shows the zonal statistics for settlement classes across
these zones. Large settlements are most dense in the

NORTH NE EAST SE SOUTH sSw WEST NW TOTAL  HDW cv
area (km?) 190 195 223 193 177 199 223 195 1595
Small Settlements (count) 35 46 71 31 28 38 72 58 379
Small Settlements (percent) 9% 12% 19% 8% 7% 10% 19% 15% 100% 0.37
Small Settlements per km? 0.18 0.24 0.32 0.16 0.16 0.19 0.32 0.30 0.24 West
Large Settlements (count) 9 7 27 7 7 15 22 16 110
Large Settlements (percent) 8% 6% 25% 6% 7% 13% 20% 15% 100% 0.56
Large Settlements per km? 0.05 0.04 0.12 0.04 0.05 0.07 0.10 0.08 0.07 East

Table 4 Zonal statistics for map settlement classes and aspect zones.

0-17m 17-31m 31-48m 48-69m 69-135m TOTAL HIGHEST DENSITY CV
area (km?) 545 542 310 144 72 1613
Small Settlements (count) 93 90 103 59 34 379
Small Settlements (percent)  25% 24% 27% 16% 9% 100% 0.38
Small Settlements per km? 0.17 0.17 0.33 0.41 0.47 0.23 69-135m
Large Settlements (count) 26 32 27 18 7 110
Large Settlements (percent)  24% 29% 25% 16% 6% 100% 0.44
Large Settlements per km? 0.05 0.06 0.09 0.13 0.10 0.07 48-69 m

Table 5 Zonal statistics for map settlement classes and elevation.
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M3 MANGROVE Q2 M1 Q2/M1 Q1 Q2/ TOTAL HIGHEST CV
SANDY (NO DATA) CORALLINE MIOCENE MIXTURE RECENT Q3/M1 DENSITY
CLAY LIMESTONE LIMESTONE DEPOSITS MIXTURE WITHIN
MARL
area (km?) 218 47 612 188 409 102 59 1635
Small Settlements 104 2 113 69 50 32 9 379
(count)
Small Settlements  27% 1% 30% 18% 13% 8% 2% 100% 0.81
(percent)
Small Settlements  0.48 0.04 0.18 0.37 0.12 0.31 0.15 0.23 M3 Sandy
per km? Clay Marl
Large Settlements 32 1 34 23 7 12 1 110
(count)
Large Settlements 29% 1% 31% 21% 6% 11% 1% 100% 0.89
(percent)
Large Settlements 0.15 0.02 0.06 0.12 0.02 0.12 0.02 0.07 M3 Sandy
per km? Clay Marl

Table 6 Zonal statistics for map settlement classes across the geology zones.

1000-1500 mm 1500-2000 mm 2000-2500 mm TOTAL HIGHEST DENSITY WITHIN CV
area (km?) 666 843 104 1613
Small Settlements (count) 94 224 61 379
Small Settlements (percent)  25% 59% 16% 100% 0.68
Small Settlements per km? 0.14 0.27 0.59 0.23 2000-2500 mm
Large Settlements (count) 15 86 9 110
Large Settlements (percent)  14% 78% 8% 100% 1.17
Large Settlements per km? 0.02 0.10 0.09 0.07 1500-2000 mm

Table 7 Zonal statistics for settlement classes across rainfall zones.

1500-2000 mm zone, while smaller settlements are
most dense in the 2000-2500 mm zone. See Figure D
in the Supplementary Materials section for a map of this
raster image.

2.3.5 Zonal statistics across reef distance buffer
zones

Reefs (Khamis et al. 2017: 120) were buffered by distance
to create a zonal raster image for the island. Table 8
shows the zonal statistics for settlement classes across
these zones. Small settlements were densest within 500
meters of reefs, while large settlements were densest
within 3 kilometers. See Figure E in the Supplementary
Materials section for a map this raster image.

2.3.6 Zonal statistics across slope degree zones
Slope degree zones, also derived from 30 m SRTMimagery
from USGS, fall into three categories: 0-3-degree slope,
3-10-degree slope, and areas with >10-degree slope.
Table 9 shows settlement classes across these zones.
No site is found on a slope of 10 degrees or more, and
both settlement classes are most dense in 0-3-degree
slope areas. See Figure F in the Supplementary Materials
section for a map this raster image.

2.3.7 Zonal statistics across soil type zones

Table 10 shows settlement distributions across soil type
zones, derived from Khamis et al. (2017: 120). Swahili
speakers distinguish five soil types on Zanzibar based
on color, organic composition, and depth: kinamo (deep
dark sandy clays), kinongo (deep red laterites of variable
clay and organic content), uwanda (shallow red laterites
with moderate organic content, over coralline limestone
bedrock), mchanga (deep sandy soil built on recent
alluvial sediments) and maweni (shallow dark laterites
with high organic content over coralline limestone
bedrock) (Khamis et al. 2017: 120). Small settlement
classes are associated with kinongo soils while large
settlement classes are associated with mchanga soils.
See Figure 1 above or Figure G in the Supplementary
Materials section for a map of this raster image.

2.3.8 Zonal statistics across stream buffer zones
Table 11 shows the settlement classes across a zonal
raster image of buffered distances from streams, which
were digitized from the 1907 map of Zanzibar. Both
settlement classes are densest within 500 meters of
streams. See Figure H in the Supplementary Materials
section for a map of sites across this raster image.



Alders Journal of Computer Applications in Archaeology DOI: 10.5334/jcaa.107 129
100 m 500 m 1 km 3 km 5 km 10 km 15km  TOTAL HDW CV
FROM FROM FROM FROM FROM FROM FROM
REEFS REEFS  REEFS  REEFS  REEFS  REEFS  REEFS
area (km?) 1 6 29 287 318 671 300 1612
Small Settlements (count) 0 6 11 61 66 167 68 379
Small Settlements (percent) 0% 2% 3% 16% 17% 44% 18% 100% 1.07
Small Settlements per km? 0.00 1.00 0.38 0.21 0.21 0.25 0.23 0.24 500 m
Large Settlements (count) 0 0 0 23 24 51 12 110
Large Settlements (percent) 0% 0% 0% 21% 22% 46% 11% 100% 1.20
Large Settlements per km? 0.00 0.00 0.00 0.08 0.08 0.08 0.04 0.07 3km
Table 8 Zonal statistics for settlement classes across reef distance buffer zones.
0-3-DEGREE  3-10-DEGREE >10-DEGREE  TOTAL HIGHEST cv
SLOPE SLOPE SLOPE DENSITY
area (km?) 1208 378 8 1594
Small Settlements (count) 313 66 0 379
Small Settlements (percent) 83% 17% 0% 100% 1.31
Small Settlements per km? 0.26 0.17 0.00 0.24 0-3-degree slope
Large Settlements (count) 100 10 0 110
Large Settlements (percent) 91% 9% 0% 100% 1.50
Large Settlements per km? 0.08 0.03 0.00 0.07 0-3-degree slope
Table 9 Zonal statistics for settlement classes across slope degree zones.
MCHANGA KINAMO KINONGO MAWENI UWANDA TOTAL HIGHEST cv
DENSITY
WITHIN
area (km2) 145 206 338 761 164 1614
Small Settlements (count) 49 67 139 96 28 379
Small Settlements (percent)  13% 18% 37% 25% 7% 100% 0.57
Small Settlements per km? 0.34 0.33 0.41 0.13 0.17 0.23 Kinongo
Large Settlements (count) 29 17 56 4 4 110
Large Settlements (percent)  26% 15% 51% 4% 4% 100% 0.98
Large Settlements per km? 0.20 0.08 0.17 0.01 0.02 0.07 Mchanga
Table 10 Zonal statistics for settlement classes and soil types.
WITHIN WITHIN WITHIN WITHIN BEYOND 3  TOTAL HIGHEST cv
100 m OF 500 m OF 1 km OF 3 km OF km FROM DENSITY
STREAMS STREAMS  STREAMS STREAMS STREAMS WITHIN
area (km2) 103 197 105 186 1021 1612
Small Settlements (count) 24 92 38 61 164 379
Small Settlements (percent) 6% 24% 10% 16% 43% 100% 0.73
Small Settlements per km? 0.23 0.47 0.36 0.33 0.16 0.24 Within 500 m
Large Settlements (count) 3 36 14 28 29 110
Large Settlements (percent) 3% 33% 13% 25% 26% 100% 0.60
Large Settlements per km? 0.03 0.18 0.13 0.15 0.03 0.07 Within 500 m

Table 11 Zonal statistics for settlement classes across the 1907 stream buffer raster image.
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2.3.9 Weighting Zonal Raster Images

The next step was to weight zonal raster images based
on the training features. Zones in which settlement class
training data is most dense were selected as factors,
and then weighted based on the coefficient of variation
(CV). For each settlement class, the standard of deviation
was calculated for the range of CV values, and then a
CV range was created by adding and subtracting the
standard of deviation from the mean CV. This range was
then divided up by equal intervals, and each interval
threshold was assigned a weight class. This created an
internally consistent range of weight class thresholds
for each training feature dataset. The CV for each zonal
raster image was assigned a score based on these weight
class thresholds.

One knowledge-based adjustment was made: the CV
for large settlements across aspect zones was reduced
from 3 to 2, for three reasons. First, the CV value is 0.56,
only 0.01 points into weight class 3, producing an edge
effect. Secondly, visual inspection of both settlement
classes across aspect zones confirms that the distribution
mostly reflects the fact that east and west facing slopes
are the most numerous slopes on the island, due to the
fact that Zanzibar’s hill system runs like a spine from
south to north. It was likely that settlement choices in
the past were not strongly influenced by aspect zones,
but rather fell in a relatively random distribution with
regard to hillslope orientation. This is because hill slopes
on Zanzibar are mild, and the equatorial sun means that
hill orientation is less of a factor for agricultural production
than in climates closer to the Earth’s poles. Third, the 30
m resolution of the aspect raster image means that nearly
all large settlement classes contain multiple aspect zones
within them, so the zonal statistics for each training feature
can vary considerably due to very slight adjustments in
settlement placement by the manual digitizer. This third
problem was not the case with any other class and was
less the case with the small class of training features since
the areas of these settlements tended to encompass far
fewer aspect zones. To compensate for these factors and
to minimize the impact of the aspect raster image on

weighting the large settlement zones, a knowledge-based
adjustment reduced the aspect weight class for large
settlements from 3 to 2, while still maintaining the most
favored zone chosen by the Majority statistic.

Tables 12 and 13 depict the weight class thresholds
for each model. Tables 14 and 15 depict the weighted
scores for each zonal raster image for both settlement
classes, based on the zonal statistics above. This table
also summarizes the most favored zones for both
settlement classes across all zonal raster images. For
small settlement classes, this produced Model A; for
large settlement classes, this produced Model B.

The eight zonal raster images were reclassified to reflect
weight classes, using the Reclassify by Table process.
Favored zones were classified with a unique pixel value of
each weight, and all other pixels were assigned a value of
zero. This was done twice, once for each model.

WEIGHT CV THRESHOLDS FOR SMALL SETTLEMENT
CLASSES  CLASSES (MEAN CV = 0.74 + OR - STDDEV OF 0.32)
1 0-0.09

2 0.09-0.41

3 0.41-0.74

4 0.74-1.06

5 1.06-1.38

Table 12 CV thresholds and associated weight class values,
based on mean CV and CV std. dev. for small settlement classes.

WEIGHT  CV THRESHOLDS FOR LARGE SETTLEMENT
CLASSES  CLASSES (MEAN CV = 0.92 + OR - STDDEV OF 0.37)
1 0-0.18

2 0.18-0.55

3 0.55-0.92

4 0.92-1.29

5 1.29-1.65

Table 13 CV thresholds and associated weight class values,
based on mean CV and CV std. dev. for large settlement classes.

RASTER IMAGES  MODEL A: MOST FAVORED CLASS cv ZONE WEIGHT
FOR SMALL SETTLEMENTS
Aspect West 037 2
Elevation 69-135m 038 2
Geology M3 Sandy Clay Marl 081 4
Stream Buffer Within 500 m 073 3
Rainfall 2000-2500 mm 068 3
Reefs 500 m from reefs 1.07 5
Soil Types Kinongo 057 3
Slope Degree 0-3-degree slope 131 5

Table 14 Model A, favored zones, CVs, and weight classes for small settlement class training features across eight zonal raster images.
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RASTER MODEL B: MOST FAVORED CLASS CV ZONE WEIGHT

IMAGES FOR LARGE SETTLEMENTS

Aspect East 0.56 2 (knowledge-based adjustment, down from 3)
Elevation 48-69m 0.44 2

Geology M3 Sandy Clay Marl 0.89 3

Stream Buffer Within 500 m 0.60 3

Rainfall 1500-2000 mm 1.17 4

Reefs 3 km from reefs 1.20 4

Soil Types Mchanga 0.98 4

Slope Degree 0-3-degree slope 1.50 5

131

Table 15 Model B, favored zones, CVs, and weight classes for large settlement class training features across eight zonal raster images.

2.4 STEPS 8-9: PRODUCING THE PREDICTIVE
MODEL

The two sets of weighted raster images from these
models were summed using the Raster Calculator process
in QGIS to produce two archaeological predictive models,
Model A (Figure 5) and Model B (Figure 6). The summed
raster images contained values from 1-22 in the case of
the small settlement model and 1-25 in the case of the
large settlement model, but both were reclassified into
five zones of site detection probability using a Natural
Breaks (Jenks) algorithm: Very Low, Low, Medium, High,
and Very High (see Diwan 2020: 152). Since QGIS 3.28
does not yet support this reclassification algorithm for
raster images, a workaround was to convert the raster
images into polygons, re-symbolize the polygon files with
graduated symbols using Natural Breaks (Jenks), and
then manually reclassify the original raster images using
the Reclassify by Table tool, with the values generated
from the polygon symbology.

3. RESULTS

Summing weighted zonal raster images from two different
settlement classes produced two raster images that
reflect site detection probability zones, Model A (Figure 5,
from small settlement classes) and Model B (Figure 6, from
large settlement classes). The models predict site locations
based on the density of training features within specific
environmental zones. Both training feature classes were
strongly associated with flat, level ground (0-3-degree
slope), areas within 500 meters of above ground streams,
and M3 Sandy Clay Marl geology zones. Both were also
associated with east and west aspect zones, but as
discussed in the prior section, this was likely not a strong
factor influencing settlement location. However, smaller

settlement classes were more strongly associated with
zones related to agricultural production and subsistence:
higher elevation zones (preferential for clove plantations,
see Sheriff et al. 2016), high rainfall areas (2000-2500
mm), kinongo soils (deep soils favorable for subsistence
agriculture and earth and thatch house construction),
and areas within 500 meters of offshore reefs. In contrast,
larger settlement classes were associated with lower
rainfall areas, lower elevation zones, sandy mchanga soils,
and areas further from offshore reefs. The comparison
between reef distance is noteworthy—Swahili people in
small rural settlements may have preferred to live near
reefs because they provided opportunities for subsistence
fishing, while people in larger settlements may have
preferred open seas without reefs. Reefs would have
impeded the movement of larger ships and boats that
brought trade to port towns like Mkokotoni, Tumbatu
and Zanzibar Stone Town, with their deep-water ports
and good anchorage (Fitton 2018). The lack of easily
accessible reefs for small-scale fishing around Mkokotoni,
Tumbatu and Zanzibar Stone Town may have not only
facilitated the arrival of larger boats bringing trade, but
also may have stimulated communities in these places
to develop larger-scale fishing operations, necessitating
greater social cooperation and coordination.

Having considered the environmental factors that
structure Models A and B, the next section ground truths
the models by comparing them to the locations of
major precolonial sites of the late first and early second
millennium on Zanzibar (Fitton 2018; Horton and Clark
1985), and to a dataset of sites recovered during a
systematic survey across multiple environmental zones
in northern Zanzibar in 2019 (Alders 2023). These latter
surveys identified and recorded 44 new archaeological
sites, with 31 found in the course of a systematic random
stratified sample in a region of 32 km2.
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Figure 5 Model A. Site detection probability zones derived from small settlements on the 1907 map, in relation to environmental datasets.

3.1 COMPARING THE MODELS TO MAJOR
KNOWN PRECOLONIAL SWAHILI SITES

Tables 16 and 17 show zonal statistics for known major
precolonial sitesinrelation to the site detection probability
zones of the two predictive models, and Figures 7 and 8
show the spatial distribution of these sites in relation to
the two models.

Six out of eight precolonial sites fall within the High
or Very High site detection probability zones from Model
B. The fact that Model B predicts these precolonial site
locations well attests to similarities in environmental
favorability between precolonial site locations and the
larger settlements which persisted and grew during the

19™ century on Zanzibar, which became the training
data for this model. The two outliers are Kuumbi Cave
and Tumbatu, which lie in Low and Medium probability
zones respectively. Kuumbi Cave is a famous precolonial
site on the island, but it was not significantly inhabited by
Swahili people. Rather, it is most well-known as one of a
handful of late Pleistocene hunter-gatherer settlements
on the East African coast (Shipton et al. 2016). Occupied
by hunter-gatherers, agricultural suitability was not a
concern, and the site was likely favored for the naturally
occurring shelter that the cave provided. Similarly, the
11%-15% century town of Tumbatu was not founded as an
agricultural center but was rather established by nascent
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Site Detection Probability Zones
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Figure 6 Model B. Site detection probability zones derived from large settlements on the 1907 map, in relation to environmental datasets.

VERY LOW LOW MEDIUM  HIGH VERY HIGH TOTAL  HIGHEST DENSITY WITHIN CV

area (km?) 104 924 308 189 87 1612

Known Sites (count) 1 3 1 2 1 8

Known Sites (percent)  13% 38% 13% 25% 13% 100% 0.56
Known Sites per km? 0.0096 0.0032  0.0032 0.0106  0.0115 0.0050  Very High

Table 16 Known precolonial sites in relation to Model A, based on small settlement classes from the 1907 map.
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VERY LOW LOW MEDIUM  HIGH VERY HIGH TOTAL  HIGHEST DENSITY WITHIN CV

area (km?) 48 438 682 292 152 1612

Known Sites (count) 0 1 1 3 3 8

Known Sites (percent) 0% 13% 13% 38% 38% 100% 0.84
Known Sites per km? 0.0000 0.0023  0.0015 0.0103  0.0197 0.0050  Very High

Table 17 Known precolonial sites in relation to Model B, based on large settlement classes from the 1907 map.

Site Detection Probability Zones
Very Low - 0.001-2

Low - 2.001-6

.| Medium - 6.001-9

High - 9.001-13

Very High - 13.001-22

Major Precolonial Sites

Figure 7 Known major precolonial sites on Zanzibar in relation to Model A, which is based on small settlement size classes in the 1907 map.
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Figure 8 Known major precolonial sites on Zanzibar in relation to Model B, which is based on large settlement size classes in the 1907 map.

Swahili elites around the 11* century, who may have
sought seclusion, security, and access to shipping routes
rather than agricultural suitability. The town’s residents
relied on support from the residents of Mkokotoni across
the channel, who may have continually ferried over
food and water to the site (Redland 2021: 254). Given
this interdependence, Radland (2021) has argued that
Tumbatu and Mkokotoni formed a single urban landscape.
That Model B does not predict Tumbatu’s site location well
was to be expected, given the specific history of the town.

Model A does not predict the locations of major
precolonial as well, with four sites falling into Very Low
or Low zones; however, the Very High zone still has
the highest density of sites because the zone is the
smallest relative to others. The poorer performance
of Model A attests to the fact that in comparison to
major precolonial sites, slightly different environmental
affordances structured the small-scale settlements
during the 19* century that were used as training data
for this model.
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3.2 COMPARING THE MODELS TO 2019 FIELD
SURVEY DATA

Tables 18 and 19 show zonal statistics for the sites
recorded during field surveys (see Alders 2022; 2023)
in relation to the two predictive models. The tables are
stratified by site type, considering artifact scatters in
fields in the top rows and permanent, village-sized sites
in the bottom rows. Figures 9 and 10 show the spatial
distribution of these sites across both models.

Model A predicted the site locations of larger,
permanently occupied sites in rural inland Zanzibar, with
seven out of nine sites falling within High and Very High
site detection probability zones. This reflects similarities
between environmental affordances which structured
the small settlement classes on the 1907 map of
Zanzibar, and the larger, village-sized sites recovered
archaeologically during survey. For 19%-century sites
recovered this was expected; however, the model’s
ability to predict the location of a precolonial village site
also suggests that the model reflects environmental
factors that conditioned small-scale settlement for
many centuries in rural Zanzibar.

Model A failed to predict the site locations of smaller
artifact scatters in fields. These smaller sites represent
ephemeral camps or field houses that were occupied
during seasonal agricultural labor (see also Walshaw
2015), especially in the eastern region where stony
landscapes and a lack of fresh water on the surface

prohibit larger settlements in many areas. In these regions,
farmers today bring food and water to swidden field plots
and camp for several days during clearing and planting.
Ceramic scatters and shell piles in these same fields dating
to the 11 century at the earliest likely attest to similar
land use patterns in the past (Alders 2022: 118-126). In
contrast, larger sites in other parts of the survey region
likely reflect more permanent occupations, ranging from
small hamlets to plantation estates to the large, dispersed
village or town of Chaani, which spanned at least 60
hectares by the 19t century (Alders 2023). The failure of
this model to predict these smaller ephemeral camp sites
reflects the fact the model was trained with permanent
settlement classes, the smallest of which (Hamlets/Very
Small Villages on the 1907 map) was still larger than the
ephemeral camp sites that surveys recorded.

Model B was less successful at predicting the locations
of small-scale sites recovered through field survey,
with Low and Medium site detection zones having the
highest density of sites for small artifact scatters and
larger permanent sites, respectively. This result suggests
that Model B, which was trained using large settlement
classes from the 1907 map, reflects slightly different
environmental affordances that did not apply to small-
scale settlement in rural inland Zanzibar. Environmental
conditions that influenced the locations of larger
settlements were less constraining to small-scale
communities in rural areas.

VERY LOW LOW MEDIUM  HIGH VERY HIGH TOTAL  HIGHEST cv
DENSITY WITHIN
area (km?) 1 9 5 7 10 32
Artifact Scatters in Fields (count) 0 14 1 4 3 22
Artifact Scatters in Fields (percent) 0% 64% 5% 18% 14% 100% 1.27
Artifact Scatters in Fields per km? 0.0000 1.5556  0.2000 0.5714  0.3000 0.6875  Low
Permanent Sites (count) 0 1 1 3 4 9
Permanent Sites (percent) 0% 11% 11% 33% 44% 100% 0.91
Permanent Sites per km? 0.0000 0.1111  0.2000 0.4286  0.4000 0.2813  High

Table 18 2019 field survey sites in relation to Model A, which is based on small settlement classes from the 1907 map.

VERY LOW LOW MEDIUM  HIGH VERY HIGH TOTAL HIGHEST DENSITY CV

WITHIN

area (km?) 1 7 13 8 3 32

Artifact Scatters in Fields (count) 1 9 7 3 2 22

Artifact Scatters in Fields (percent) 5% 41% 32% 14% 9% 100% 0.78

Artifact Scatters in Fields per km? 1.0000 1.2857  0.5385 0.3750 0.6667 0.6875  Low

Permanent Sites (count) 0 0 5 3 1 9

Permanent Sites (percent) 0% 0% 56% 33% 11% 100% 1.20

Permanent Sites per km? 0.0000 0.0000 0.3846 0.3750 0.3333 0.2813  Medium

Table 19 2019 field survey sites in relation to Model B, which is based on large settlement classes from the 1907 map.
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Medium - 6.001-9

High - 9.001-13

Very High - 13.001-22
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Site Detection Probability Zones

Very Low - 0.001-6

Low - 6.001-10

Medium - 10.001-13

High - 13.001-17

Very High - 17.001-25

Precolonial Villages > 1 ha

Colonial Sites > 1 ha

Country Towns

Artifact Scatters in Fields, < 1ha, multiple dates
Systematic Survey Region b
Transects

Figure 10 Sites from systematic survey in 2019 in relation to Model B, which is based on large settlement size classes in the 1907 map.
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3.3 ASSESSING FALSE POSITIVES

A consideration for both models is the extent to which
zones of High and Very High probability for site detection
return false positives. For known major precolonial sites
this was not possible to assess, since these site locations
come from disparate sources and were not the result of a
survey sample. For the 2019 field survey sites, Figures 9 and
10 show survey transects across and within site detection
zones for Model A and B, which give an indication of false
positive results for each model. Though Model A’s Very
High site zone was a better predictor of permanent sites
recovered during survey than Model B, it also created High
and Very High site detection zones across three transects
which did not produce any permanent sites, one of which
did not produce any sites at all. Model B’s High and Very High
site detection zones were less successful at predicting all
site locations, but the model also has fewer false positives
in Very High site detection zones. Model B’s Very High site
detection zone was smaller, but still included the precolonial
village site, and the largest site in the survey region, the ~60
ha dispersed village of Chaani. The false positives in Model A
especially show the limitations of this model at the scale of
transect survey, but do not detract from the larger regional
implications of the study.

4. DISCUSSION

Model A was successful at predicting the locations of
smaller, permanent village sites in rural inland Zanzibar,
while Model B was more successful at predicting the
locations of major precolonial Swahili sites, especially in
coastal areas. This section considers the utility of these
models for future site detection and reflects on the
environmental affordances that might have conditioned
Swahili settlement over time at different scales.

Model A can be used to predict other permanent
precolonial and colonial period village sites in rural inland
areas. Another precolonial village site, Mwanakombo, was
also discovered in 2019 during field surveys but was not
included in this analysis because it was not recorded during
systematic surveys (Alders 2023); nevertheless, this site also
falls within the High and Very High site detection zones of
Model A. Precolonial village sites like these took advantage
of kinongo soils for farming and making earth and thatch
houses, proximity to streams, and high rainfall. On the other
hand, the small ephemeral sites outside of the predictive
zones in Model A attest to the creative forms of land use
that Swahili communities have employed for centuries
in environmentally marginal landscapes. Though Swahili
people did not settlement permanently in these zones they
nevertheless transformed and occupied these landscapes
through seasonal incremental processes, digging in
coralline limestone bedrock to plant and crafting field walls
out of limestone cobbles (Alders 2022: 123-125). Although
Swahili communities favored specific environmental zones
for permanent settlement, they were not constrained

from using and moving through less favorable zones on
the island. Ecological affordances structured, but did not
determine, long-term land use in rural inland areas.

Model B is a better fit than A for the data for known
locations of major precolonial sites. In addition to
predicting the locations of Stone Town, Mkokotoni,
Shangani and Fukuchani in the northwest, the model
identifies small strips of coastline in the south of the
island as areas of High and Very High probability for site
detection, and these locations line up well with the large
precolonial port of Unguja Ukuu and the precolonial town
of Kizimkazi, which hosts the oldest mosque in East Africa
(Kleppe 2001). Further surveys in the High and Very High
zones of Model B would likely reveal other important
precolonial sites on the island. Areas for future surveys
might include the southeastern coast near Paje, the
southwest coast across the bay from Unguja Ukuu, the
western peninsula south of Zanzibar Stone Town, the
northwest coast, and many inland areas north of Zanzibar
Stone Town. The inland region north of this urban center
in particular likely contains a number of precolonial village
sites that would help clarify urban-rural interactions.
These sites may be under threat of destruction from
growing agricultural and urban development.

The predictive models produced here are useful tools
for archaeological prospection, but they also inform a
long-term understanding of urban and rural settlement
development on the East African Swahili Coast over the last
millennium. Research on the Swahili Coast has definitively
revealed the scale, complexity, and interconnectedness
of non-elite, rural settlement (Kusimba et al. 2013;
LaViolette and Fleisher 2018). Increasingly, archaeologists
have sought to investigate the environmental dynamics
of Swahili settlement landscapes (Faulkner et al
2022; Fitton et al. 2023; Kotarba-Morley et al. 2022;
Pawlowicz et al. 2014; Prendergast et al. 2017; Quintana
Morales et al. 2022; Walshaw and Stoetzel 2018). This
paper contributes to this growing body of research by
modeling and testing the environmental affordances
that influenced regional settlement trends. The fact that,
out of the large area of southern Zanzibar, Unguja Ukuu
and Kizimkazi developed in small regions identified by
Model B attests to how local environmental conditions
were significant factors for the development of Swahili
settlements. The settlement locations of even the largest
and wealthiest Swahili towns on Zanzibar developed in
places where early Swahili communities capitalized on
environmentally suitable zones for farming, fishing, house
building, and procuring water. These zones continued to
influence settlement trends into the colonial era when
Omani planters settled rural inland landscapes with
enslaved retinues and sought to produce cloves and other
products for international markets.

Environmental factors were important, but Swahili
people on Zanzibar were not constrained by them. In the
case of Tumbatu, they settled on a rocky, agriculturally
marginal offshore island with little water, and may
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have relied on social networks to provision the town
from the more agriculturally suitable territories around
Mkokotoni. Also, as demonstrated by field surveys,
small-scale Swahili communities farmed and camped
in environmentally marginal zones in the rocky eastern
region, though they did not settle there permanently.
Nevertheless, ecological factors certainly influenced
Swahili settlement trends over time, and the predictive
models produced here help contextualize the material
affordances that Swabhili people dealt with, mobilized,
and capitalized on over the last millennium.

5. CONCLUSION

A comparison with ground-truthed archaeological sites
shows the effectiveness of archaeological predictive
modeling through zonal statistics on Zanzibar, Tanzania.
The results may help plan future surveys and inform
emergent understandings of  human-environment
dynamics on the Swahili Coast. The development of this
methodology using open-access software increases
geospatial accessibility and affordability, a consideration
that will be especially impactful for researchers in the Global
South where funding and licensing is limited. Like recent
studies that emphasize low-cost open-access remote
sensing methods for archaeological prospection in Africa,
this method takes advantage of a growing suite of freely
available geospatial datasets. The methodology described
here can be applied across a wide variety of contexts in
Africa and globally. This method does not rely on having
high-resolution multispectral imagery, LiDAR, or paywalled
software. The only prerequisite is having a representative
and theoretically-justified way to weight zonal raster
images—in this case, settlement classes from a digitized
historical map were the basis for weighting. The quality
and representativeness of training features across all zones
under consideration is an important factor for producing a
model that is useful for archaeological prospection and for
understanding regional environmental and spatial factors.

ADDITIONAL FILE

The additional file for this article can be found as follows:

* Supplementary Materials. Supplementary files contain
all zonal raster images used in the analysis, a digitized
close-up of the 1907 map, and a detailed workflow in
QGIS. DOLI: https://doi.org/10.5334/jcaa.107.s1
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	2. METHODS
	 below presents the workflow for the methods used in this paper, outlining basic steps for producing an archaeological predictive model using zonal statistical analysis. A more detailed version of this table with step-by-step processing instructions for QGIS 3.28 is located in Supplementary Materials. Sections 2.2 through 2.5 describe the application of these steps for the study area.
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	2.1 STEPS 1–2: PREPARING THE MAP AND RASTER DATASETS AND CREATING ZONAL RASTER IMAGES
	 lists the geospatial datasets used for this study. Converting these datasets into zonal raster images required digitizing geospatial datasets through a two-step process. The first step was to normalize the colors within all zones in an image editing software and to remove text, arrows, and boundary lines which would give different values when attempting to classify zones. This process decreases accuracy at boundaries to some extent but is necessary for producing raster images with a single pixel value per 
	Table 2
	Figure 
	1
	2017: 
	120

	Care must be taken to avoid choosing raster images with zones that co-vary significantly because of dependencies between them. Dependent environmental factors summed together as raster images would over-weight certain zones. For instance, two other zonal raster images were considered for use in this model: a map depicting areas inside and outside of the historical clove plantation zone (), and a map of soil infiltration zones (). These images were discarded because they co-vary with elevation and soil types
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	2.2 STEP 3: PREPARING THE TRAINING FEATURES
	Training features for the predictive model were derived from settlement classes digitized from a historical map of Zanzibar, since these settlement locations likely reflect environmental affordances that may have conditioned the spatial patterns of archaeological sites over the last millennium in Zanzibar. Stanford’s Geographical Establishment in London published a map of Zanzibar, showing villages, landforms, and other features recorded on the island during the 1890s ().  shows this map, referred to from h
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	The map is not an official British Survey of India map, but the legend names the mapmaker as Imam Sherif Khan Bahadur, a surveyor of the British Survey of India. The survey that produced the map likely occurred between 1892 and 1894, when Imam Sherif Khan Bahadur was stationed in Zanzibar (). However, this date is complicated by some details on the map. Marahubi Palace (built by Sultan Barghash in 1880) is listed on the map as a ruin, suggesting that Imam Sherif Khan Bahadur or someone else surveyed that re
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	The map was the main cartographic source for Zanzibar prior to a more recent map created in 1984–85 (Horton, pers. comm.). However, the map has been overlooked by both historians and archaeologists of the colonial period in Zanzibar, despite the wealth of information it contains regarding settlement, land use, and geography on the island during the late 19and early 20 centuries. Because of the map’s status as a tool of British imperial dominion in Zanzibar, it records invaluable data for understanding the c
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	2.2.1 Georeferencing and Digitization
	Petrie et al. (), Garcia et al. () and Green et al. () developed methods for georeferencing and interpreting 1 inch to 1 mile Survey of India maps to glean data related to ancient settlement in northwest India, in the form of anthropogenic mounds that surveyors in the late 19 and early 20 centuries recorded. This study draws on their methods since the map was made in the style of British Survey of India maps. The first step was to georeference the 1907 Zanzibar map to features on a modern basemap of the isl
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	No datum or coordinate system is specified on the map itself, but it was likely created using the Everest 1830, Clarke 1866, or Clarke 1880 datum (; ). The map has longitude and latitude graticules with specified coordinate points, which were converted into a point vector file. Though the unreferenced map aligns nearly perfectly with these points when projected in the Clarke 1880 datum, the features on the map can be up to a kilometer or more off from their actual locations when the map is georeferenced in 
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	2.2.2 Settlements and roads
	The map depicts settlements and a road network, digitized in . There are 489 settlements, with squares drawn in varying numbers to represent village size. Imam Sherif Khan Bahadur’s survey methodology is not apparent, but from the map it is likely that two methods were used to indicate settlement size and importance. The first method was through the illustration of squares, which represent settlement areas. Squares are not drawn to the scale of a Zanzibari house—by the scale of the map, the average square r
	Figure 3

	The second method for distinguishing settlement types is typographical—there are Latin letters in italics with capitalized first letters and additional lowercase letters to name most settlements, as well as to indicate place names. Bolded, non-italic letters are used to name larger towns, also with capitalized first letters and additional letters in lower-case. Finally, bolded, non-italic, and all-capitalized letters are used for Zanzibar Stone Town, the largest settlement on the map. The inset in  shows an
	Figure 2

	While the map legend describes the squares as representing villages, they can be interpreted to represent a settlement hierarchy from their placement and count in conjunction with typographical differences. Square counts for each village appear to be significant and relate to different sized settlements: 1) hamlets or very small villages, 2) small villages, and 3) large villages. Settlements were divided into these 5 size classes based on their typography and number of settlement squares depicted. A sample 
	Table 3

	This method of distinguishing settlements by size is an imposition for the sake of regional analysis. A contrasting perspective is the view derived from mid-20 century ethnographies of the Swahili, which divided permanent settlements into “stone-towns” and “country-towns”, irrespective of size. These towns, though differentiated by the degree of political and economic specialization, functioned similarly as places that were the basis of social rights for their residents. They were also characterized by diff
	th
	Horton and 
	Middleton 2000: 55–58

	In addition to the settlements, the map also depicts a network of roads, paths, tracks, and other ambiguous dotted lines on the map. The longest paved or “metalled” road during this time ran from Zanzibar Stone Town to Chwaka, connecting the east and west of the island. This road was under construction in the early 1890s (), and its presence on the map may indicate that it was just finished when the map was completed. Surveyors recorded two other paved roads on the map as well. One went north from Stone Tow
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	Other roads are those which the legend calls “village roads”; these are likely dirt paths for foot traffic, and may have also been accessible to mules, camels, horses, and carts. A third category is called “Other Roads and Tracks”. In practice, these are likely not qualitatively distinguishable from village roads in that they were also dirt footpaths, though possibly smaller and less frequently used.
	2.2.3 Streams, Wells, and Other Miscellaneous features
	 shows a map of streams, wells, and other miscellaneous features on the 1907 map. Streams are drawn as black lines on the 1907 map and labeled in italic letters by their Swahili names. This stream map likely represents the oldest model of hydrology on Zanzibar, existing prior to many landscape transformations which occurred during the latter half of the 20 century. The map shows that major streams did not flow in the south, east and far north of the island, where porous limestone bedrock draws water undergr
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	Wells are indicated on the map by circles. Their preponderance in karstic limestone areas far from the streams of the northwest region aligns inversely with the stream network—the wells are most common in places where streams are not shown above ground. The lack of wells in places with above-ground streams suggests that people in the early 20 century relied considerably on above-ground stream water for daily use where it could be found, and dug wells in places where stream water was not available. Six wells
	th
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	Other miscellaneous features on the 1907 Zanzibar map include lighthouses, “poor houses”, a leper colony, a sanatorium, ferries, sugar mills, ruins, and a depiction of buildings with steepled roofs that may represent mosques or large houses. Two other areas are places called the Mwana Msa Shrine and the Kuani House. Finally, dotted lines which form small circles are not described in the legend but appear to correspond to some labeled settlements in the south and east of the island. It is unclear what these 
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	Other archaeologically significant features are the five places listed as ruins on the map. Two of these locations are the known Portuguese-period sites of Fukuchani and Mvuleni, which LaViolette and Norman () have recently investigated. The three others are the Chimani Ruin, the Kizimbani Ruin, and the Marseilles Ruin, all of which are located just northeast of Stone Town near Mwera. The Marseilles Ruin may be the site of the Marseilles plantation, the site of a battle where Barghash bin Said surrendered t
	2023
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	2.3 STEPS 4–7: CONVERTING SETTLEMENT CLASSES TO TRAINING FEATURES, CALCULATING ZONAL STATISTICS, AND DETERMINING WEIGHT CLASSES
	The digitization process outlined above produced five settlement classes from the 1907 map: 1) hamlets/very small villages, 2) small villages, 3) large villages, 4) towns, and 5) the main urban center, Zanzibar Stone Town. To analyze these settlements in relation to raster data, they were converted into polygons that reflect their area. Buffer polygons for each class were created, encompassing the average area of each class. To simplify analyses, these buffer polygons were then merged into two settlement cl
	The Majority statistic was calculated across these two training feature classes for each zonal raster image in QGIS using the Zonal Statistics process. This statistic reports which unique pixel value (reflecting a zone) is most numerous within the space of a settlement polygon; summarizing this statistic using the Statistics by Categories process gives a count of settlement polygons per zone for each raster image.  through  display this data for each raster image and include statistics that were used to wei
	Table 4
	Table 11

	Density was calculated by dividing the count of settlement polygons per zone by the area of each zone, to derive a count of settlement polygons per square kilometer. The zone with the highest density of settlements per raster image was selected for weighting in the final predictive model. Calculating the zone with the highest density of settlement polygons is a better measure of zone favorability than a simple count of settlement polygons per zone, since each zone within a raster image can vary significantl
	The following sections show settlement class distributions across the eight zonal raster images. Each table is divided into two groups, showing the distribution of small settlements (n = 379) and large settlement (n = 110) across each zonal raster image. Each table also lists the zone with the highest density of settlements for each settlement group, and the coefficient of variation for each settlement group. Maps of each zonal raster image are available as supplementary materials.
	2.3.1 Zonal statistics across aspect zones
	A zonal raster image for aspect derived from 30 m free SRTM imagery from USGS shows hillslope orientation.  shows settlement classes from the 1907 map across these aspect zones. East and west-facing slopes have the highest site density as well as the highest site counts for both classes. No other patterns are apparent. See Figure A in the Supplementary Materials section for a map of this raster image.
	Table 4

	2.3.2 Zonal statistics across elevation zones
	 shows the 2019 sites distributed across five elevation zones, categorized using a Natural Breaks (Jenks) algorithm on a digital elevation model from SRTM 30 m imagery. Higher elevation zones are favored. The 69–135 m zone is most densely settled for small settlements, while the 48–69 m zone was most densely settled for large settlements. See Figure B in the Supplementary Materials section for a map of this raster image.
	Table 5

	2.3.3 Zonal statistics across geology zones
	Seven geology zones exist on Zanzibar (, also see ). These are catenas of M3 sandy clay marl, Q2 coralline limestone, M1 Miocene limestone, a Q2/M1 mixture, Q1 recent deposits, a Q2/Q3/M1 mixture, and mangrove zones with no data.  shows settlement classes from the 1907 map across these zones. Settlements of both classes are most numerous and most dense in areas of M3 Sandy Clay Marl. See Figure C in the Supplementary Materials section for this raster image.
	Colbert et al. 1987
	Hardy et al. 2015
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	2.3.4 Zonal statistics across rainfall zones
	Rainfall zones on Zanzibar () are divided into three zones: 1000–1500 mm, 1500–2000 mm, and 2000–2500 mm of rainfall per year.  shows the zonal statistics for settlement classes across these zones. Large settlements are most dense in the 1500–2000 mm zone, while smaller settlements are most dense in the 2000–2500 mm zone. See Figure D in the Supplementary Materials section for a map of this raster image.
	Colbert et al. 1987
	Table 7

	2.3.5 Zonal statistics across reef distance buffer zones
	Reefs () were buffered by distance to create a zonal raster image for the island.  shows the zonal statistics for settlement classes across these zones. Small settlements were densest within 500 meters of reefs, while large settlements were densest within 3 kilometers. See Figure E in the Supplementary Materials section for a map this raster image.
	Khamis et al. 2017: 120
	Table 8

	2.3.6 Zonal statistics across slope degree zones
	Slope degree zones, also derived from 30 m SRTM imagery from USGS, fall into three categories: 0-3-degree slope, 3-10-degree slope, and areas with >10-degree slope.  shows settlement classes across these zones. No site is found on a slope of 10 degrees or more, and both settlement classes are most dense in 0-3-degree slope areas. See Figure F in the Supplementary Materials section for a map this raster image.
	Table 9

	2.3.7 Zonal statistics across soil type zones
	 shows settlement distributions across soil type zones, derived from Khamis et al. (). Swahili speakers distinguish five soil types on Zanzibar based on color, organic composition, and depth: kinamo (deep dark sandy clays), kinongo (deep red laterites of variable clay and organic content), uwanda (shallow red laterites with moderate organic content, over coralline limestone bedrock), mchanga (deep sandy soil built on recent alluvial sediments) and maweni (shallow dark laterites with high organic content ove
	Table 10
	2017: 120
	Khamis et al. 2017: 120
	Figure 1

	2.3.8 Zonal statistics across stream buffer zones
	 shows the settlement classes across a zonal raster image of buffered distances from streams, which were digitized from the 1907 map of Zanzibar. Both settlement classes are densest within 500 meters of streams. See Figure H in the Supplementary Materials section for a map of sites across this raster image.
	Table 11

	2.3.9 Weighting Zonal Raster Images
	The next step was to weight zonal raster images based on the training features. Zones in which settlement class training data is most dense were selected as factors, and then weighted based on the coefficient of variation (CV). For each settlement class, the standard of deviation was calculated for the range of CV values, and then a CV range was created by adding and subtracting the standard of deviation from the mean CV. This range was then divided up by equal intervals, and each interval threshold was ass
	One knowledge-based adjustment was made: the CV for large settlements across aspect zones was reduced from 3 to 2, for three reasons. First, the CV value is 0.56, only 0.01 points into weight class 3, producing an edge effect. Secondly, visual inspection of both settlement classes across aspect zones confirms that the distribution mostly reflects the fact that east and west facing slopes are the most numerous slopes on the island, due to the fact that Zanzibar’s hill system runs like a spine from south to n
	 and  depict the weight class thresholds for each model.  and  depict the weighted scores for each zonal raster image for both settlement classes, based on the zonal statistics above. This table also summarizes the most favored zones for both settlement classes across all zonal raster images. For small settlement classes, this produced Model A; for large settlement classes, this produced Model B.
	Tables 12
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	The eight zonal raster images were reclassified to reflect weight classes, using the Reclassify by Table process. Favored zones were classified with a unique pixel value of each weight, and all other pixels were assigned a value of zero. This was done twice, once for each model.
	2.4 STEPS 8–9: PRODUCING THE PREDICTIVE MODEL
	The two sets of weighted raster images from these models were summed using the Raster Calculator process in QGIS to produce two archaeological predictive models, Model A () and Model B (). The summed raster images contained values from 1–22 in the case of the small settlement model and 1–25 in the case of the large settlement model, but both were reclassified into five zones of site detection probability using a Natural Breaks (Jenks) algorithm: Very Low, Low, Medium, High, and Very High (see ). Since QGIS 
	Figure 5
	Figure 6
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	3. RESULTS
	Summing weighted zonal raster images from two different settlement classes produced two raster images that reflect site detection probability zones, Model A (, from small settlement classes) and Model B (, from large settlement classes). The models predict site locations based on the density of training features within specific environmental zones. Both training feature classes were strongly associated with flat, level ground (0-3-degree slope), areas within 500 meters of above ground streams, and M3 Sandy 
	Figure 5
	Figure 6
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	Having considered the environmental factors that structure Models A and B, the next section ground truths the models by comparing them to the locations of major precolonial sites of the late first and early second millennium on Zanzibar (; ), and to a dataset of sites recovered during a systematic survey across multiple environmental zones in northern Zanzibar in 2019 (). These latter surveys identified and recorded 44 new archaeological sites, with 31 found in the course of a systematic random stratified s
	Fitton 2018
	Horton and Clark 
	1985
	Alders 2023
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	3.1 COMPARING THE MODELS TO MAJOR KNOWN PRECOLONIAL SWAHILI SITES
	 and  show zonal statistics for known major precolonial sites in relation to the site detection probability zones of the two predictive models, and  and  show the spatial distribution of these sites in relation to the two models.
	Tables 16
	17
	Figures 7
	8

	Six out of eight precolonial sites fall within the High or Very High site detection probability zones from Model B. The fact that Model B predicts these precolonial site locations well attests to similarities in environmental favorability between precolonial site locations and the larger settlements which persisted and grew during the 19 century on Zanzibar, which became the training data for this model. The two outliers are Kuumbi Cave and Tumbatu, which lie in Low and Medium probability zones respectively
	th
	Shipton et al. 2016
	th
	th
	th
	Rødland 2021: 254
	2021

	Model A does not predict the locations of major precolonial as well, with four sites falling into Very Low or Low zones; however, the Very High zone still has the highest density of sites because the zone is the smallest relative to others. The poorer performance of Model A attests to the fact that in comparison to major precolonial sites, slightly different environmental affordances structured the small-scale settlements during the 19 century that were used as training data for this model.
	th

	3.2 COMPARING THE MODELS TO 2019 FIELD SURVEY DATA
	 and  show zonal statistics for the sites recorded during field surveys (see ; ) in relation to the two predictive models. The tables are stratified by site type, considering artifact scatters in fields in the top rows and permanent, village-sized sites in the bottom rows.  and  show the spatial distribution of these sites across both models.
	Tables 18
	19
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	Model A predicted the site locations of larger, permanently occupied sites in rural inland Zanzibar, with seven out of nine sites falling within High and Very High site detection probability zones. This reflects similarities between environmental affordances which structured the small settlement classes on the 1907 map of Zanzibar, and the larger, village-sized sites recovered archaeologically during survey. For 19-century sites recovered this was expected; however, the model’s ability to predict the locati
	th

	Model A failed to predict the site locations of smaller artifact scatters in fields. These smaller sites represent ephemeral camps or field houses that were occupied during seasonal agricultural labor (see also ), especially in the eastern region where stony landscapes and a lack of fresh water on the surface prohibit larger settlements in many areas. In these regions, farmers today bring food and water to swidden field plots and camp for several days during clearing and planting. Ceramic scatters and shell
	Walshaw 
	2015
	th
	Alders 2022: 118–126
	th
	Alders 2023

	Model B was less successful at predicting the locations of small-scale sites recovered through field survey, with Low and Medium site detection zones having the highest density of sites for small artifact scatters and larger permanent sites, respectively. This result suggests that Model B, which was trained using large settlement classes from the 1907 map, reflects slightly different environmental affordances that did not apply to small-scale settlement in rural inland Zanzibar. Environmental conditions tha
	3.3 ASSESSING FALSE POSITIVES
	A consideration for both models is the extent to which zones of High and Very High probability for site detection return false positives. For known major precolonial sites this was not possible to assess, since these site locations come from disparate sources and were not the result of a survey sample. For the 2019 field survey sites,  and  show survey transects across and within site detection zones for Model A and B, which give an indication of false positive results for each model. Though Model A’s Very 
	Figures 9
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	4. DISCUSSION
	Model A was successful at predicting the locations of smaller, permanent village sites in rural inland Zanzibar, while Model B was more successful at predicting the locations of major precolonial Swahili sites, especially in coastal areas. This section considers the utility of these models for future site detection and reflects on the environmental affordances that might have conditioned Swahili settlement over time at different scales.
	Model A can be used to predict other permanent precolonial and colonial period village sites in rural inland areas. Another precolonial village site, Mwanakombo, was also discovered in 2019 during field surveys but was not included in this analysis because it was not recorded during systematic surveys (); nevertheless, this site also falls within the High and Very High site detection zones of Model A. Precolonial village sites like these took advantage of kinongo soils for farming and making earth and thatc
	Alders 2023
	Alders 2022: 123–125

	Model B is a better fit than A for the data for known locations of major precolonial sites. In addition to predicting the locations of Stone Town, Mkokotoni, Shangani and Fukuchani in the northwest, the model identifies small strips of coastline in the south of the island as areas of High and Very High probability for site detection, and these locations line up well with the large precolonial port of Unguja Ukuu and the precolonial town of Kizimkazi, which hosts the oldest mosque in East Africa (). Further 
	Kleppe 2001

	The predictive models produced here are useful tools for archaeological prospection, but they also inform a long-term understanding of urban and rural settlement development on the East African Swahili Coast over the last millennium. Research on the Swahili Coast has definitively revealed the scale, complexity, and interconnectedness of non-elite, rural settlement (; ). Increasingly, archaeologists have sought to investigate the environmental dynamics of Swahili settlement landscapes (; ; ; ; ; ; ). This pa
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	Figure 2 1907 map of Zanzibar, with inset showing detail. The inset is shown in high resolution in the Supplementary Materials section in Figure I.
	Figure 2 1907 map of Zanzibar, with inset showing detail. The inset is shown in high resolution in the Supplementary Materials section in Figure I.

	Figure


	Figure 3 Settlements and road network of the 1907 map.
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