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Abstract— In this paper, we formulate a two-player zero-sum
game under dynamic constraints formulated in terms of a
hybrid inclusion. The game consists of a min-max problem
involving a cost functional associated to the actions and corre-
sponding (potentially nonunique) solutions to the system. We
present sufficient conditions given in terms of Hamilton-Jacobi-
Isaacs-like equations to establish a bound on the worst-case cost
under the optimal strategy and to exactly evaluate it. Under
additional conditions, we show that the proposed optimal state-
feedback laws render a set of interest pre-asymptotically stable
for the resulting hybrid closed-loop system. The results are
illustrated in a numerical example.

I. INTRODUCTION

Optimal control analysis tools are powerful for the study
of multi-agent systems operating in contested scenarios in
which each of the agents (or players) are dynamic and select
their control actions so as to optimize a cost functional. When
the constraints are given in terms of differential equations,
such problems are referred to as differential games [1]. The
presence of dynamic constraints involving both continuous
and discrete dynamics imposes challenges to computing opti-
mal feedback laws and to assesing the cost of solutions. Such
a combination of continuous and discrete constraints can be
efficiently captured by hybrid system models, giving rise to
hybrid dynamic constraints. Approaches based on Hamilton-
Jacobi-Bellman equations, e.g., [2], [3], [4], are limited to
continuous-time and discrete-time dynamics, and fall short
when employed to compute and evaluate the optimal cost
in scenarios with hybrid constraints, which we refer to as
hybrid games.

In this paper, following [5], [6], a hybrid dynamical
system is denoted H and is given by the hybrid inclusion

(z,uc1,uc2) € C
(z,up1,up2) € D

H - z € F(xauChuCQ)
’ xt S G(m,uDl,uDQ)

where x € R” is the state, (uc1,upi) € R™et x R™P1 s
the input chosen by player Py, (uc2, ups) € R™c2 x R™b2
is the input! chosen by player P, and (C, F, D,G) is the
data of H. Continuous evolution of H is allowed when the
state and the input are in the flow set C, and is governed by
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'Here, m¢ = mc1 + me2 and mp = mp1 + mpa.

the flow map F : R™ x R"™¢=3R"™, Discrete evolution (or a
jump) of H is allowed when the state and the input are in
the jump set D, and the new value of the state after a jump
is captured by the jump map G : R™ x R™>3R™.

For such type of systems and for the case of one player,
a cost functional has been proposed in [7] and optimality
is certified via Lyapunov-like conditions. The results in [8]
provide cost evaluation tools for the case in which the data is
given in terms of set-valued maps. The work in [9] provides
sufficient conditions to guarantee the existence of optimal
solutions. A receding-horizon algorithm for optimal control
of hybrid systems with single-valued flow and jumps that
extends the model predictive paradigm to such setting is
presented in [10]. Informally, a zero-sum two-player game
with hybrid conditions is given as

min max J(§,uc1,uce, up1,up2). (2

(uci,up1) (ucz2,up2)
where J is a cost functional associated to the solutions to
‘H from the initial condition £. The evolution of this hybrid
game is determined by the selection of the inputs which is
made by the players. The outcome of this selection can be
determined by computing 7.

In our previous work, cost evaluation results were es-
tablished to guarantee optimality and asymptotic stability of
a set of interest in a discrete-time setting [11]. A finite-
horizon hybrid game, where the dynamical constraints are
expressed in terms of hybrid systems, is studied in [12].
As an extension of our previous work in [13], we propose
a framework for the study of two-player zero-sum hybrid
games with set-valued flow and jump maps. Compared to
[13], we relax the assumption on uniqueness of solutions
to the hybrid system defining the constraints of the game.
Although, it might not be possible to construct a saddle-
point equilibrium as the solution to the game when the
dynamics admit nonunique solutions (due to the game being
ill-defined by the nouniqueness of costs associated to a given
input), a weak saddle-point equilibrium and an upper value
function are provided herein. Specifically, we optimize the
worst-case (due to nonuniqueness of solutions) value of the
cost functional J as in (2), which is conveniently defined to
penalize the evolution of the state and the input during flow,
at jumps and at their final value.

The main contributions of this paper are a formulation
of two-player zero-sum games with hybrid dynamic set-
valued constraints. In Section III, Theorem 3.7 provides
sufficient conditions to characterize the solution of the min-
max problem (2), bounds as well as an expression for the



exact value of the worst-case cost over the set of adversarial
strategies, and the characterization of the feedback law that
attains it. Connections between optimality and stability for
the studied type of games are established in Section IV, while
a numerical example is presented in Section V.

Notation. Given two vectors, x and y, we denote (z,y) =
[Ty T]". The symbol N denotes the set of natural numbers
including zero. The symbol R denotes the set of real numbers
and R denotes the set of nonnegative real numbers. Given
a vector = and a nonempty set .4, the distance of x to A is
defined as || 4 := infyc |z —y|

II. PRELIMINARIES
A. Hybrid Systems with Inputs

Since solutions to the dynamical system H as in (1)
can exhibit both continuous and discrete behavior, we use
ordinary time t to determine the amount of flow, and a
counter j € N that counts the number of jumps. Based on
this parametrization of time, the concepts of a hybrid time
domain, in which solutions are fully described, defined as in
[5], is employed here.

A hybrid signal is a function defined on a hybrid time
domain. Given a hybrid signal ¢ and j € N, we define I (;: =

{t:(t,j) € dom¢}.

Definition 2.1: (Hybrid arc) A hybrid signal ¢
dom ¢ — R™ is called a hybrid arc if for each j € N, the
function t — ¢(t, j) is locally absolutely continuous on the
interval I ; A hybrid arc ¢ is compact if dom ¢ is compact.

Let X be the set of hybrid arcs ¢ : dom ¢ — R" and U =
Uc x Up the set of hybrid inputs v = (uc,up) : dom u —
R™¢ x R™DP, where ug = (ucq, UCQ), mgc1 +mge2 = Mg,
up = (up1,up2), and mp; + mp2 = mp. A solution to
the hybrid system #H with input is defined as follows.

Definition 2.2: (Solution to H) A hybrid signal (¢, u)
defines a solution pair to (1) if p € X, u = (uc,up) € U,
dom ¢ = dom w, and

e (¢(0,0),uc(0,0)) € C or (¢(0,0),up(0,0)) € D,

e For each j € N such that Ig) has a nonempty interior
int] 55, we have, for all t € int] ;,

(o(t,7),uc(t,j)) € C
and, for almost all t € I;,

%¢(t,j) € F(o(t,j), uc(t, 5))

e Forall (t,j) € dom ¢ such that (t,j + 1) € dom ¢,
(¢(t7])7uD(t7])) €D
d)(tv] + 1) € G(¢(t7])7uD(t’]))

A solution pair (¢,u) is a compact solution pair if ¢ is a
compact hybrid arc.

A solution pair (¢, u) to H from £ € R™ is nontrivial
if dom(¢,u) contains at least two points. It is complete
if dom(¢,u) is unbounded. It is maximal if its domain
cannot be extended. We denote by Sy, (M) the set of solution
pairs (¢, u) to H as in (1) such that ¢(0,0) € M. The set
Sy (M) C Sy (M) denotes all maximal solution pairs from
M and the set Uy (M) denotes all input actions that yield
maximal solutions from M. For a given u € U, we denote
the set of maximal state trajectories to H from & for u by
R u) ={d: (¢,u) € Sy (&)}. We say u renders maximal
a trajectory ¢ to H from & if ¢ € R(&, ).

We define the projections of C' and D onto R, respec-
tively, as

II(C) ={{ e R" : Fug € R™C s.t. (§,uc) € C}
II(D)={¢ € R": Jup € R™? s.t. (§,up) € D}

We define sup,dome¢ := sup{t € Ryo : 3Jj €
Ns.t (t,j) € dom¢} and sup;dom¢ := sup{j € N :
Jt € R>gs.t. (t,7) € dom ¢}. See [5], [6] for more details.

B. Closed-loop Hybrid Systems

Given a hybrid system # and a function x := (k¢, kp)
with k : R™ — R™¢ x R™?, the autonomous hybrid system
resulting from assigning u = k(z), namely, the hybrid
closed-loop system, is given by

& € F(z,ke(z))

M {x+ € G(x, ng(:v))

where C, := {z € R" : (z,kc(x)) € C} and Dy, := {z €
R™: (z,kp(x)) € D}.

r e Cy

€ D, @)

III. TWO-PLAYER ZERO-SUM HYBRID GAMES

A. Game Formulation

Following the formulation in [14], for each ¢ € {1,2},
consider the i-th player P; with dynamics described by H;
as in (1) with data (C;, F;, D;,G;), state z; € R™, and
input w; = (uci,up;) € R™Ci x R™Pi where C; C
R™ x R™mc, F; : R®™ x Rmc=R™, D, C R"® x R™P
and G; : R" x R™P=R™ with x; + x5 = x for « €
{n,mc,mp}. We denote by U; = Uc; X Up, the set of
hybrid inputs for H;; see Definition 2.3.

Definition 3.1: (Elements of a two-player zero-sum hy-
brid game) A two-player zero-sum hybrid game is composed

by

1) The state z = (x1,x2) € R™, where, foreachi € {1, 2},
x; € R™ is the state of player P;.

2) The set of joint input actions U = Uy X Uz with
elements v = (uy,us), where, for each i € {1,2},
u; = (ugi,up;) is a hybrid input. For eachi € {1,2},
P; selects u; independently from Ps_;, who selects us_;,
namely, the joint input action u has components u; that
are independently chosen by each player.



3) The dynamics of the game, described as in (1) and
denoted by H, with data (C, F, D, G) given by

C = Cl QCQ
F(z,uc) = (Fi(z,uc), Fo(z,uc))
D := Dy UDs

G(x,up) := {Gi(x,up) : (z,up) € Dy,i € {1,2}}

where Gy (x,up) = (Gi(x,up),In,), Golx,up) =
(In,,G2(z,up)), uc = (uci,uc2), and up =
(uDhuDz)-

4) For each i € {1,2}, a strategy space K; of P; defined
as a collection of mappings k; : R® — R™% x R™Pi,
The strategy space of the game, namely K = K1 x Ka, is
the collection of mappings with elements k = (K1, K2),
where k; € K; foreachi € {1,2}. Each k; € K; is said
to be a permissible pure® strategy for P;.

5) A scalar-valued functional’ (&,u) — J;(&,u) defined
for each i € {1,2}, and called the cost associated to
P;. For each v € U, we refer to J = J1 = —J>
as the worst-case cost of solutions to H from the initial
condition & for the hybrid input u.

In this type of game, for each i € {1,2}, the player P; aims
to minimize the cost J;, which, thanks to the definition of
J, allows to define a min-max problem in terms of 7 alone.

B. Equilibrium Solution Concept

Given the formulation of a zero-sum hybrid game in
Definition 3.1, its solution is defined as follows.

Definition 3.2: (Saddle-point equilibrium) Consider a
two-player zero-sum game, with dynamics H as in (1) with
J=J,J> = —J, fora given cost functional 7 : R" xU —
R. We say that a strategy « = (K1, k2) € K is a saddle-point
equilibrium if for each ¢ € TI(C U D), every* solution pair
(o, u*) = (¢*, (u7,ud)) € Sy(§) attaining the worst-case
cost and input components defined, for each i € {1,2}, as
dom ¢* 3 (t,7) — ul(t,j) = Kki(Q*(t,5)), satisfies

T (i, u2)) < T (€ u") < T, (ur,u3)) )

for all hybrid inputs uy and ug such that R(&, (u1,u3)) and
R(E, (uf,usz)) are nonempty, respectively.

Definition 3.2 is a generalization of the classical pure strategy
Nash equilibrium [14, (6.3)] to the case where the players
exhibit dynamics expressed in terms of hybrid inclusions and
opposite optimization goals.

2This is in contrast to when /C; is defined as a probability distribution,
in which case k; € K; is referred to as a mixed strategy.

3Given that we do not insist on having unique solutions to 7, the cost
J measures the worst-case cost among that of each solution to H from £
for a given hybrid input w. Thus, its second argument is given by hybrid
inputs rather than solution pairs.

4Notice that a given strategy « can lead to multiple input actions due to
C' N D being nonempty.

C. Problem Statement

We formulate an optimization problem to solve the two-
player zero-sum hybrid game and provide sufficient condi-
tions to characterize its solution. Following Definition 3.1,
consider a two-player zero-sum hybrid game with dynamics
H as in (1). Given £ € C U D, a joint input action u =
(uc,up) € U, the stage cost for flows Lo : R™ x R™¢ —
R0, the stage cost for jumps Lp : R® x R™P — R, and
the terminal cost ¢ : R™ — R, we define the cost associated
to the solutions to H from the initial condition £ and for the
hybrid input u, as

J(Eu):= sup J(¢,u) (5)

PER(§,u)

where’

B sup; dom ¢
T(pu):= Y
j=0

sup; dom ¢—1

DS

=0

/t " Lot ), uc t ) dt

Lp(o(tjs1,7),up(tjs1,7)) (6)

+ limsup q(9(t,7)),

(t,j)—sup dom ¢
(t,5)€dom ¢

sup,; dom ¢ . . .
{titi=d is a nondecreasing sequence associated to the

definition of the hybrid time domain of (¢, u) and R(&, u)
is the set of maximal state trajectories to H from the
initial condition ¢ and for the hybrid input wu, as defined
in Section II-A. The cost 7 is defined as the worst-case cost
over all solutions from &.

A solution to the two-player zero-sum hybrid game can
be obtained by solving the following problem.

Problem (¢): Given £ € R™, solve

minimize maximize J(&,u) (7
uq U2

u=(u1,u2)EU (§)
where Uy, is the set of joint input actions yielding maximal
solutions to H, as defined in Section II.A.

Definition 3.3: (Value function) Given ¢ € II(C U D),
the value function at £, when it exists, is given by

J(€) = minmax J(&u)
u=(u1,uz) €Uz (§)
=  maxmin J(&u) ®

U2 Ul
u=(u1,uz)€Us (§)

D. Weak Saddle-point Equilibrium Solution

In general, the cost evaluation tools employed in ap-
proaches based on dynamic programming fall short to char-
acterize strategies to attain a saddle-point equilibrium solu-
tion for a two-player zero-sum game with dynamics given

SNotice that J depends on the initial condition £ and input w, while j
depends on the solution pair (¢, u) with ¢(0,0) = &.



by hybrid inclusions. The classical conditions involved in
dynamic programming do not guarantee the existence of a
lower bound for the cost of solutions to H from a given initial
condition and for an input action. Nevertheless, conditions
can still be established to characterize the worst-case cost
(due to the set-valued dynamics) associated to it. Thus, in this
section, we provide sufficient conditions to solve Problem (¢)
via finding a control strategy that minimizes the worst-case
cost under the maximizing adversarial action. This leads to
a solution of a min-max problem with potentially nonunique
solutions, due to F' or G being possibly set valued, or
C N D being nonempty. In addition, the provided sufficient
conditions allow to evaluate the value function without
computing solutions. First, we provide pointwise conditions
that allow to upper bound the cost for a initial condition and
input action.

Proposition 3.4: (Upper bound for a given input) Given
a hybrid system M as in (1) with data (C, F, D, G), stage costs
Lo :R" x R™¢ — Rxp and Lp : R" x R™P — R, and
terminal cost q : R™ — R, suppose there exists a function V' :
R™ — R that is continuously differentiable on a neighborhood
of II(C') such that

Le(zuc)+  swp (VV(@),f) <0 V(zuc) € C,
fEF(z,uc)

©))

Lp(z,up)+ sup V(g)—V(z)<0 V(z,up) e D.
g€G(z,up)

(10

Let (¢, u) be a solution to H from & € II(C U D). Then,

J($,u) < V()
where ._7 is defined in (6).

(an

In the following result we study a special hybrid system,
whose solutions are a subset of the solutions to H as in
(1) and attain the worst-case cost due to nonuniqueness of
solutions to H. Following [15], we provide conditions to
exactly evaluate such a cost and show how it is an upper
bound for the cost of any other solution to H.

Proposition 3.5: (Maximal System) Consider a hybrid
system H as in (1) with data (C, F, D, G), where F and G
are compact for each (z,uc) € C and each (x,up) € D,
respectively, stage costs L : R® x R™¢ — R and Lp :
R™ x R™P — R, terminal cost ¢ : R™ — R, and suppose
that there exists a continuous function V : domV — R,
domV D I(C) UII(D) U G(D), that is continuously dif-
ferentiable on a neighborhood of TI(C'). Given ¢ € T1(C' U D)

and a solution® (¢*, u) to

& € argmax (VV(x),f) (z,uc)e€C
H . JeF(zuc)
"X Yt e argmax V(g) (x,up) € D
geG(z,up)
(12)

from & withu = (uc,up), if

0=Le(@,uc)+ sup (VV,f) V(z,uc)€C, (13)
fEF(z,uc)
0= LD(xqu) + sup V(g) v(zqu) € Da (14)
geG(z,up)
and
limsup ~ V(¢*(¢,7)) =  limsup  q(¢7(¢, 7)),
(t,j)—sup dom ¢* (t,j)—rsup dom ¢*
(t,j)Edom ¢* (t,j)Edom ¢*
(15)
then ~
T u) =T (4", u) (16)
and
V() =T (& u). a7

A solution to (12) attains the worst-case cost among the
potential nonunique solutions to (1). Furthermore, the worst-
case cost associated to the input that satisfies (13) and (14)
can be evaluated without computing solutions as it is equal

to V().

Corollary 3.6: (Change of Signs) If the conditions in
Proposition 3.5 hold with inequality, namely, if in (13) and
(14) “="is replaced with “<” (or “>"), then (17) holds with
“<” (or “>7, respectively).

Based on Proposition 3.4, which provides an upper bound on
the cost 7, and the exact cost evaluation in Proposition 3.5,
we introduce sufficient conditions in terms of Hamilton-
Jacobi-Isaacs-like equations to characterize the saddle-point
equilibrium strategy and evaluate the value function without
computing solutions.

Theorem 3.7: (Sufficient conditions to solve Problem
(¢)) Given a hybrid system H as in (1) with data (C, F, D, G),
stage costs Lo : R® x R™¢ — Ry and Lp : R™" x R™P —
R>0, and terminal cost g : R™ — R, suppose the following
hold:

1) There exists a continuous function V : domV — R,
domV D II(C) UII(D) U G(D), that is continuously
differentiable on a neighborhood of TI(C') and a feedback
law k := (ko, kp)= ((kc1, ko2), (kp1, £p2)) : R™ —
R™c x R™P such that F(z,kc(x)) and G(z, kp(z))
are compact for every x such that (z,kc(x)) € C and
(z,kp(x)) € D, respectively, and such that the func-

tions Lo(x,uc) := Lo(xz,uc)+ sup  (VV(x), f),
fer(z,uc)

and Lp(z,up) := Lp(z,up)+ sup V(g) satisfy
9€G(z,up)

6Solutions to the “maximal system” in (12) exist under compactness of
the set-valued maps, regularity of V', and a proper selection of the initial
condition.



0= Lc(z,ke(x)) Vo : (z,ke(x)) € C;, (18)
0 < Lo(z, (uet, ko2(x)))

Y(z,uct) : (z, (uct, ko2 (x))) € C, (19)
0> Lo(z, (ke1(x),ucse)) 20)

V(z,uce) : (z, (ke1(x), uce)) € C,
V(z)=Lp(z,kp(x)) Vax:(x,kp(z)) €D, (21)

V(z) < Lp(x, (up1, kp2()))

Y(z,up1) : (z, (up1,kp2(x)))) € D, @2)
V(z) = Lp(z, (kp1(x), up2))

V(.’L’,UDQ) : ($7 (KDl(w),UDQ)) S D, (23)

2) Foreach& € TI(C' U D), each ¢ € Sy, (€) satisfies

limsup  V(4(t,j)) = limsup q(¢(t,7)), (24)
(t,j)—sup dom ¢ (t,j)—sup dom ¢
(t,j)€dom ¢ (t,j)€dom ¢
Then B
J&) =V VveEell(CuD). (25)

Remark 3.8: (Weak optimality of the saddle-point equi-
librium) When both players play the saddle-point equilibrium
strategy, due to nonuniqueness of solutions, there is no reason
to expect that the worst cost is attained, implying that such
a strategy is not necessarily optimal in the min-max sense.
Nevertheless, by playing the saddle-point equilibrium, the
worst-case cost is minimized under the adversarial action that
aims to maximize it. See the example in Section V.

IV. ASYMPTOTIC STABILITY FOR HYBRID GAMES

We present a result that connects optimality and asymp-
totic stability for two-player zero-sum hybrid games. First,
we introduce a class of positive definite functions.

Definition 4.1: (Positive definite functions) A function
p: R"xR™ — R is said to be positive definite with respect
to the set A C R™, in composition with k : R™ — R™, also
written as p € PD,(A), if p(x, k(x)) > 0 forallx € R™\ A
and p(A, k(A)) = {0}.

Theorem 4.2: (Saddle-point equilibrium under the exis-
tence of a Lyapunov function) Consider a two-player zero-
sum hybrid game with closed-loop dynamics H., as in (3) with
data (C,F,D,G), and k := (K¢, kp) : R — R™¢ x R™P
such that C,, = II(C) and D, = II(D). Given a closed
set A C R", continuous functions Lc : C' — Rx>( and
Lp : D — Ry defining the stage costs for flows and
jumps, respectively, and ¢ : R" — R defining the terminal
cost, suppose there exists a function V' : R™ — R that
is continuously differentiable on an open set containing C,,
satisfying (18)-(23), and such that, for each ¢ € C, U D,,
each ¢ € Sy, () satisfies (24). Furthermore, suppose that

there exist a1, ay € Ko such that

a1(|zla) < Vi(z) < as(|z|a) Vz € C,, UD.UG(D,)
(26)

and one of the following conditions’ holds:
1) L¢c € 'P’DKC (.A) and Lp € PDKD (.A),

2) Lp € PD,,(A) and there exists a continuous function
1 € PD such that Lo (z, ke (x)) > n(|x|.a) forall z €
Cri

3) Le € PD,.(A) and there exists a continuous function
n € PD such that Lp(z, kp(x)) > n(|z|a) forall z €
D,.

Then
T&) =V(E) VE € C,U D,

Moreover, the feedback law k is the saddle-point equilibrium
(see Definition 3.2) and it renders A uniformly globally pre-
asymptotically stable for H,, as in [5, Definition 3.6].

27

V. EXAMPLE: SCALAR SET-VALUED HYBRID GAME

The following example characterizes both the saddle-
point equilibrium and the value function in a two-player
zero-sum game with a scalar state associated to player P;.
Thus, n; = 1,n9 = 0, and the role of player P, reduces to
select the action ucs. Specifically, consider a hybrid system
H with state # € R, input ug = (ucy,uc2) € R?, and
dynamics

e F(x,uc):=[a,alz+ Buc =z €[0,5|U u,0]
zt e G(z):=|o,0] T=p

(28)
where® a <@ < 0,B=[byby]and 6 > pu>57 > g > 0.
Consider the cost functions Lo (7, uc) = 22Qc+ul Rouc,
Lp(z) := P(x®> — ?), and terminal cost g(z) := Pux?,
defining J as in (6), with Rc := ["§* 0 1. Q¢ Req,
—Reo, P € Ry, such that

Qc +2Pa— P?(biR;] + b3Rgy) = 0. (29)

Here, uc is designed by player P;, which aims to minimize
a cost functional 7, while player P, seeks to maximize it by
means of uce. This is formulated as a two-player zero-sum
hybrid game, for which we solve Problem (¢) in Section
II-C. The function V(z) := Pax? satisfies the sufficient
condition for (18)-(20) in Theorem 3.7 given as

min max {Lc(x,uc) + sup  (VV, f>} =0
uci1 uce2 feF (z,uc)
uwo=(uc1,uc2)ER?
(30)

which holds for all = € [0,5] U [u, ¢]. In fact, the min-max
in (30) is attained by rc(z) = (—Rgb1 Pr, —Rg3ba Px).
In particular, thanks to (29), we have —Lc¢(z,kc(x)) =

"The subindexes in the sets of positive definite functions PD, denote
the feedback law that they are composed with, as in Definition 4.1.
8Given that 1 > &, flow from p is not possible.



sup  (VV(z), f).
fEF(z ()

to (18)-(20). In addition, the function V satisfies the sufficient
condition for (21)-(23) in Theorem 3.7 given as

Lp(x)+ sup V(g(z)) =Px?
geG(x)

Then, V(z) = Px? is a solution

€19

at x = p, which makes V(z) = Pz? a solution to (21)-
(23) with saddle-point equilibrium xc. Given that V' is
continuously differentiable on R, and that (18)-(23) hold
thanks to (30) and (31), from Theorem 3.7 we have that the
value function is J* (&) := P&2 for any & € [0,7] U [, d].

To study in detail the nonunique solutions yielded by
the feedback law k¢, notice that, given that ¢ < @ < 0,
solutions from x = § flow and then jump at x = p to
any value o € [o,7]. Consider a solution ¢, with domain
dom ¢, = ([0,"] x {0}) U ([t",00) x {1}), and given by
¢n(t,0) = dexp((as— Roibi P—Rgybae P)t),  én(t,1) =
osexp((as — Rgib1 P — Ry P)(t — ")) with ay € [a, @)
In simple words, ¢;, flows from § to y in ¢" units of time,
then it jumps to o4, and flows converging (exponentially
fast) to zero. Notice that k¢ as defined above also yields
a solution ¢,, with domain dom¢, = ([0,t"] x {0}) U
([t*,00) x {1}), and given by ¢,(¢,0) = dexp((@ —
RoabiP = RpbsP)t), — 0(t,1) = 7 exp((a— Roybi P —
R:5b2P)(t — t*)) attaining the worst-case cost. Figure 1
illustrates the similar behavior of the solutions ¢; and ¢,
yielded by k¢, with the cost of the latter equating P32
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Fig. 1.

Nonnunique solutions due to set-valued dynamics for a = —2,a =
—1,bp =bs =1, =& =2,p=1,0 = 03,75 = 05,Qc = 1,
Rc1 = 1.304, Rco = —4, and P = 0.4481. Worst-case cost solution
(green and pruple). Arbitrary solution (blue and red).

This shows that the weak saddle-point equilibrium x¢ is not
necessarily optimal in the min-max sense. Nevertheless, by
playing k¢, player P, minimizes the worst-case cost under
the maximizing adversarial action.

VI. CONCLUSION AND FUTURE WORK

In this paper, we formulate a two-player zero-sum game
under dynamic constraints given in terms of hybrid dynami-

cal systems, as in [5]. Scenarios in which the control action
is selected by a player P; to accomplish an objective and
countereffect the damage of an adversarial player P, are
studied. By encoding the objectives of the players in the
optimization of a cost functional, sufficient conditions are
provided to bound and exactly evaluate it. The main result
characterizes the strategy of P; that minimizes the worst-
case cost under the maximizing adversarial action. Additional
conditions are proposed to allow the saddle-point strategy to
render a set of interest asymptotically stable by letting the
value function take the role of a Lyapunov function.

Future work includes studying conditions to guarantee the
existence of a solution to Problem (¢) based on smoothness
and regularity of the data of the system, as in [9].
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