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Accurate prediction of an insurer’s outstanding liabilities is crucial for
maintaining the financial health of the insurance sector. We aim to develop a
statistical model for insurers to dynamically forecast unpaid losses by lever-
aging the granular transaction data on individual claims. The liability cash
flow from a single insurance claim is determined by an event process that
describes the recurrences of payments, a payment process that generates a se-
quence of payment amounts, and a settlement process that terminates both the
event and payment processes. More importantly, the three components are de-
pendent on one another, which enables the dynamic prediction of an insurer’s
outstanding liability. We introduce a copula-based point process framework to
model the recurrent events of payment transactions from an insurance claim,
where the longitudinal payment amounts and the time-to-settlement outcome
are formulated as the marks and the terminal event of the counting process, re-
spectively. The dependencies among the three components are characterized
using the method of pair copula constructions. We further develop a stage-
wise strategy for parameter estimation and illustrate its desirable properties
with numerical experiments.

In the application we consider a portfolio of property insurance claims for
building and contents coverage obtained from a commercial property insur-
ance provider, where we find intriguing dependence patterns among the three
components. The superior dynamic prediction performance of the proposed
joint model enhances the insurer’s decision-making in claims reserving and
risk financing operations.

1. Introduction. Property and casualty (a.k.a. nonlife) insurance, which protects indi-
viduals and businesses against financial losses due to damage to their properties, plays a vital
role in modern economies. The U.S. nonlife insurance industry collected $655.5 billion in net
premiums and paid out $450.8 billion in property losses in 2020, according to the Insurance
Information Institute. Accurate prediction of an insurer’s outstanding liabilities is essential to
key insurance operations and thus the financial health of the insurance sector.

This paper focuses on the dynamic prediction of outstanding liabilities for nonlife insur-
ance companies. We adopt a micro-oriented view of an insurer’s liabilities and analyze the
cash flows associated with individual claims from the insurer’s book of business. Our goal is
to develop a statistical model for insurers to dynamically forecast unpaid losses by leveraging
the granular transaction data on individual claims.

A distinctive feature of nonlife insurance is that the settlement of a claim often involves
a sequence of payments that could take months or even years to complete. Figure 1 exhibits
the transactions associated with an insurance claim from the time it is reported to the insurer
to the time it is closed. At the present time (denoted by #. in the figure), the quantities of
interest to an insurer are the time-to-settlement (denoted by d in the figure) and the ultimate
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cost of the claim (i.e., y; + y2 + - - - + y»). The prediction is dynamic because the insurer
can continuously update the forecasts as the claim becomes more mature. As foreshadowed
by Figure 1, the liability cash flow from a single claim is determined by an event process
that describes the recurrences of payments, a payment process that generates a sequence
of payment amounts, and a settlement process that terminates both the event and payment
processes. More importantly, the three components are often dependent with one another,
which is essential for the dynamic prediction of an insurer’s outstanding liability.

We adopt the framework of marked point processes (see Cook and Lawless (2007)) for
the joint modeling of longitudinal and survival outcomes. The joint modeling framework is
critical to both inference and prediction. On the one hand, ignoring the association with the
settlement outcome might introduce selection bias for the analysis of both recurrent events
and longitudinal outcomes (Rizopoulos (2012)). On the other hand, the analysis of the time-
to-settlement is subject to estimation bias when the repeated data on the occurrence and size
of claim payments are considered as exogenous time-varying covariates (Prentice (1982)).
Under the joint modeling framework, the dependence among the three components allows
one to update the forecast of the claim settlement time with the most recent information on
paid losses, which further feeds back into the prediction of unpaid losses.

We introduce a copula-based point process framework to model the recurrent events of
payment transactions from an insurance claim, where the longitudinal payment amounts and
the time-to-settlement outcome are formulated as the marks and the terminal event of the
counting process, respectively. The dependencies among the three components are character-
ized using the method of pair copula constructions (Bedford and Cooke (2002)).

1.1. Literature on joint models. The proposed copula-based approach fits in the broad
literature on joint models for longitudinal and time-to-event data. Tackling the endogene-
ity of the longitudinal measurements and the informative drop-out of the subjects, the joint
modeling framework has received extensive attention since the pioneering work of Gruttola
and Tu (1994), Faucett and Thomas (1996), and Wulfsohn and Tsiatis (1997). The literature
initially focused on a single longitudinal outcome and a single survival outcome and later ex-
panded to multivariate settings (e.g., Brown, Ibrahim and DeGruttola (2005), Chi and Ibrahim
(2006), Lin, McCulloch and Mayne (2002), Rizopoulos, Verbeke and Lesaffre (2009), Tang
and Tang (2015), Zhu et al. (2012)). We refer readers to the comprehensive reviews of Tsiatis
and Davidian (2004) and Papageorgiou et al. (2019) as well as two book-long monographs of
Rizopoulos (2012) and Elashoff, Li et al. (2016).

The primary interest in the biostatistical literature is the survival outcome, and the most
common framework for joint models is the shared parameter formulation. Under this frame-
work the endogenous time-varying covariates in a survival model are typically modeled using
linear mixed effects models (Laird and Ware (1982)), and the subject-specific predictors for
the longitudinal outcome are also included in the relative risk model. The shared parameter



COPULA MODEL FOR MARKED POINT PROCESS 2681

model could be highly flexible in terms of nonlinear subject-specific profiles (for instance,
see Brown, Ibrahim and DeGruttola (2005), Ding and Wang (2008), and Rizopoulos and
Ghosh (2011)). However, parameter estimation is less straightforward as the dimension of
the variance-covariance matrix for the random effects increases. Strategies to reduce compu-
tational burden include factorization of random effects (Li et al. (2012)) and use of autocor-
relation structure (Proust-Lima, Dartigues and Jacqmin-Gadda (2016)).

1.2. The copula approach. The main difference between the copula and the shared pa-
rameter approach is the way dependence among the multivariate outcomes is induced. The
shared parameter models (e.g., Kim et al. (2012), Krdl et al. (2016), Liu and Huang (2009),
Liu, Huang and O’Quigley (2008)) use random effects to account for the association among
the recurrent events, the longitudinal measurements, and the survival outcome. The strategy
relies on a conditional independence assumption; that is, all outcomes are independent of
each other conditioning on the random effects. In contrast, the proposed copula approach
accommodates the dependence among the multiple outcomes of interest explicitly through
parametric copulas. We represent the joint distribution of the multivariate outcomes in terms
of a sequence of conditional bivariate distributions.

The proposed copula approach enjoys several advantages over models with random effects.
First, because a copula separates the modeling of dependence from marginals, one has a
wide range of strategies (for instance, linear vs. nonlinear and parametric vs. nonparametric)
readily available for modeling the marginal distributions of the recurrent events, longitudinal
measurements, and time-to-event data. Second, copulas are able to accommodate complex
dependence structures (e.g., asymmetric and tail dependence) among the three components.
Third, in absence of random effects, the proposed method is computationally efficient, which
is critical to applications of high dimensions and large data. Last, the copula approach focuses
on the predictive distribution of outcomes and thus provides a convenient analytical tool when
the research interest goes beyond point predictions.

Copulas have previously been utilized to assist joint modeling of longitudinal and time-to-
event data. In particular, Rizopoulos et al. (2008) and Rizopoulos, Verbeke and Molenberghs
(2008) used a copula to specify the joint distribution of random effects in a shared param-
eter model. Ganjali and Baghfalaki (2015) employed a Gaussian copula to obtain the joint
distribution of the survival outcome and the longitudinal measurements at fixed time points.
More recently, Suresh, Taylor and Tsodikov (2021) proposed a bivariate copula model for
the cross-sectional distribution of the conditional survival outcome and the longitudinal mea-
surement at a given time while allowing this relationship to change smoothly over time. The
existing copula methods heavily rely on the Gaussian copulas, which limits the dependence
structure among outcomes. More importantly, they cannot be readily adapted to incorporate
the third outcome, recurrent events, into the joint model for longitudinal and survival out-
comes. Diao, Cook and Lee (2013) modeled the dependence between continuous marks and
the event process without terminal events, while Zeller and Scherer (2022) assumed inde-
pendence between the point process and its marks. In contrast to existing work, we propose
a novel approach that utilizes pair copula constructions in a dynamic context, which allows
for the joint modeling of the recurrent events, longitudinal measurements, and time-to-event
data.

1.3. Our contribution. The paper makes a dual contribution. First, we introduce a copula
approach for joint modeling of survival outcome and longitudinal data, specifically focusing
on cases with informative observational times. In addition, we develop an efficient strategy
for parameter estimation and dynamic prediction.

Second, we present an application of the proposed model in the domain of insurance opera-
tions, which stands out in two notable ways. First, it represents one of the pioneering attempts
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to apply joint models in business-focused areas, as far as our knowledge extends. Given the
substantial size and significance of the insurance sector within the modern economy, the im-
pact of our contribution is prominent. Second, our application underscores a distinct purpose
of utilizing joint models to probabilistically forecast both the longitudinal and survival out-
comes. This differs from the prevailing focus of dynamic prediction in the medical statistics
literature, which is solely on survival outcomes.

The rest of the paper is organized as follows. Section 2 introduces the copula-based joint
model. Section 3 discusses the strategies developed for stagewise parameter estimation and
dynamic prediction. We provide comprehensive simulation studies in Section 4 to demon-
strate the desirable properties of the proposed estimation strategies. Section 5 presents a
detailed case study that showcases the practical application of the proposed model, utiliz-
ing a portfolio of claims from the building and contents coverage in commercial property
insurance.

2. Joint models using copulas. We formulate the liability cash flow generated from an
insurance claim as a marked point process. Specifically, for a given claim, the recurrence of
payment transactions is characterized by a counting process, and the payment amounts and
the settlement of claim are treated as the marks and the terminal event of the point process,
respectively. We consider a portfolio of a large number of insurance claims from a pool
of policies, where each claim generates a marked point process and the portfolio generates
replications. The claims and thus the resulting marked point processes are assumed to be
independent of each other.

The reporting of a claim to the insurer, which initiates the counting process for the re-
current payment event, is referred to as time origin. For the ith insurance claim, let N;(¢)
be the number of payments made by the insurer over time interval [0, #] with convention
N;(0) = 0. The occurrences of payment transactions associated with the ith claim follow a
counting process denoted by {N;(¢), 0 < t}. Furthermore, we let t* and ¢~ denote the time
points that are infinitesimally larger and smaller than 7, respectively. The counting process is
right continuous, that is, N; () = N;(tT). Define AN;(t) = N;((t + At)™) — N;(¢t7) as the
number of payments in the interval [, + At), and denote d N; (t) = lima, o AN;(t). Hence,
dN;(t) =1 indicates a payment occurs at 7.

We denote the set of marks over time period [0, 7] by Y; () = {Y;1, ..., Yi N;¢)}, Where Y
is the amount of the jth payment for the ith claim. Let S; (¢) denote the cumulative amount of
payments by time . Let T;; be the occurrence time of the jth payment for the ith claim. We
define the waiting time between payments by W;; = T;; and W;; =T;; — T; j— for j > 1.
One has the following relationships:

Tj=Wi+--+ Wy, j=12....

Ni(t)=)_I(T;j <1),

j=1
N; (1) 00
Si(y=">_ Y= Yl (Tij <1),
j=1 j=1
where 1 (-) is the indicator function. Let X; (1) = (X;1(¢), ..., X;,(¢))" be the vector of ex-
ternal covariates, where X, (¢), for k =1, ..., p, is the measurement of the kth covariate

at time ¢ and can be either time-constant or time-varying. We denote the covariate pro-
cess by X l@ = {X;(t),0 <t} and the history of the marked point process at time ¢ by

H;(t) ={N;i(5s),Yi(s):0<s <1t XEOO)}. In our model we assume that covariates are ex-
ternal, and the entire path of the time-varying covariates is known.
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Now, we discuss the effects of the terminal event and denote the closing time of the ith
claim by D;. As the settlement terminates the payments for the claim, the counting process
and its marks will only be observed during [0, D;]. Let D;(t) = I (¢t < D;) indicate whether
the marked point process is under observation at time ¢. Define dN;(t) = D;(t)dN;(1),
and dN;(t) = 1 thereby indicates a payment occurs and is observed at time . Further-
more, we define N;(¢) = fé dN;(t) = fé D;(t)dN;(t) = ;?‘;1 1(T;; < min(z, D;)) to rep-
resent the observed number of the counting process for the ith claim over (0, ¢] and denote

Yi(t) ={Yi, ..., Y; §.y} as the corresponding observed payment amounts. The history of

the observable process is included in H; (1) = {N;(s), Y;(s), Di(s): 0 <s < 1; XI(OO)}.
The probability for the observed process of claim i can be expressed in product integral
notation as

[T Pr(Di(s)|Hi(o) {Pr{dN; (5)|Hi (s), Dy(s) = 1) 74N
(1) s€[0,00)

Y, 3 dN; i
x Pr(dNi(5), Y, 5. )| Hi(s), Dy (s) = 1)V O} P
For convenience, we denote N; = N;(D;) as the total observed number of payments for
claim i. Note that /; is an induced random variable that can be fully derived using W;;, j =
1,...,00,and D; in our formulation, that is, N; = Z?‘;l I(Ziz1 Wir < D;). Let Hig = XEOO)

and H[j ={(W;1,YiD), ..., (W,'j, Yij), Xl(oo)} for j € {1, ..., N;}. To jointly model the count-
ing process, its marks, and the terminal event, we represent (1) as

F(Ni(s),Yi(s): 0 <s < D;|Hjo)
N;
(2) =f(Di|Hio)Hf(Wij,YiﬂDi,Hi,j—l)
j=1
x {1 = Pr(W; n;+1 < D; — T; n;|Di, Hi n,)}-

We further make an assumption that conditional on D; and covariates H;q, the pairs observed
at different time points (W;1, Y;1), ..., (Wi n;+1, Yi n,+1) are independent of one another.
That is, the distribution function Fw;,; v,;p; 1, ;,(w, y) does not explicitly depend on the
history of (W;1, Yi1),..., (Wi j—1,Yi j—1). As aresult, (2) reduces to

N;
(3)  f(DilHjo) H f (Wi, Yij|Di, Hio) - {1 = Pr(W; n,41 < D;j — T; n;|Di, Hi n;)}-
j=1

Furthermore, under this assumption,
Pr(WiNi+1 < Di — Ti N | Dis Hin;) = Fw, g1 |D; Hyo(Di — Ti N;)-

That is, the history of (W;1, Y;1), ..., (Wi n,, Y; ;) impacts the probability of terminating via
the function argument. On the other hand, Fw;, , ,,|p;,H,,(w|d), which we derive in the next
section, does not depend on the history of waiting time.

2.1. Copula model formulation. We employ the method of pair copula constructions to
develop the joint model in (3). In pair copula constructions, one constructs a multivariate
distribution using bivariate copulas as building blocks. This method is flexible and applicable
to data of different scales (see, for instance, Aas et al. (2009) and Shi and Yang (2018)).

We first examine the conditional distribution of the pairs (W;;, D;) and (Y;;, D;),
given H;o. Define marginal distributions FWU (w) = Fw;; | Hp(w), Fyt_j () = Fy;j1Hio(0)s and
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Fp,(d) = Fp,|H,,(d). We express the distributions for the two pairs using

4) Fw,;.piHy(w, d) := Fiy_ 5, (w, d) = Caw,p)(F;, (W), Fp5,(d)),
(5) Fy; i (¥, d) '= Fy, p, (v, d) = C(Y,D)(Fﬁ.j (), Fp,(d)),

where C(w, p) and C(y, p) are the bivariate copulas associated with each pair. Using (4) and
(5), we then construct the joint distribution for the pair (W;;, Y;;) conditional on D; and H;o.
Define hw,py(u1,u2) = 0Cw,py(u1,u2)/ouy and hy.py(ui, uz) = 0Cy,py(u1, uz)/ous.
We express the conditional joint distribution as

Fw,. v 101 oW, Y1) = Fiy 5.5, (w, y|d) = Cw,v|p)(F7,; 5, 1), Fy,, 5, ¥1d)),
where
F,, 15, wld) = how; p)(Fi, (W), F,(d), )
Fy,15,v1d) = hy:p) (Fy,, (v), F,(d)),

and C(w,y|p) is the bivariate copula that joins the conditional distributions of W;; and Y;;,
given D; and Hjg.

Using above relations, we can express model (3) in terms of bivariate copulas. Specifically,
for j =1,..., N;, we express the components of (3) as

f(Wi;, Yi;|Di, Hio)
= fw, 15, Wij1Di) fy,,1 5, Yij 1 Didew.y 0y (Fiy,, 5, Wij | Di), Fy, b, (Yij | Di)
= fiw, Wip) fz, Xipeaw.py (i, (Wij), Fp, (Dd))eqy,py(Fy, (Yi)), F, (Dp)

x cw.y\p) (Fiy, 5, (Wij | Do), Fy 5, (Yij| D)),

(6)

where c(w, p), ¢(v,p), and c(w,y|p) are the corresponding copula densities for the three pairs.
In addition, we have the probability of terminating as

(7 Pr(Win+1 < Di — Ti N;|Di, Hio) = h(w: D) (FWLN,-H (Di — Ty N,), Fp, (Di)).

Combining the marginal model of D;, (6), and (7) yields model (3). Note that (6) features an
employment of pair copula constructions in a low-dimensional setting, where one could relax
the simplifying assumption. Specifically, one could allow the copula Cw, y|p)(u1, uz2|d) to
be dependent of d.

2.2. Copula model components. Recurrence of payments. The counting process for the
recurrent payments is characterized by the intensity function, defined by

Xi(t1H; (1)) = iitrfo Pr(AN; (I)AT 11H; (t))7

which assumes that at most one event can occur at any given time. We specify
(8) 2i (t1H; (1)) = hi (B(t)|Hio) = ho(B(1)) exp{n(X: (1))},

where B(t) =t — T; ;) is the recurrence time, that is, the time since the most recent
payment and A; is the hazard function for the waiting time. We consider a multiplicative
model where A is referred to as the baseline intensity and 7 (X; (¢)) is a function of covariates,
for instance, n(X;(r)) = X}(t)a. We use the Weibull hazard as baseline in the application,
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that is, ho(B(t)) = p(B(t))? —1 The intensity (8) implies the conditional distribution function
of the waiting time W;; as

Tij-1tw
F..(w) =Pr(W;; <w|Hjp)=1— CXP{—f
©) ) o

=1- exp{—‘/(;w ho(t) eXp{X,-(t + Ti,j—l)/“}dt}‘

M (r|Hio>dr}

One further derives fWi(w) = 3Fv~vj (w)/0w, which, along with (9), is required in (6) and
(). '

Amount of payments. The marks of the counting process, that is, the payment amounts,
are modeled using a parametric regression based on the generalized beta of the second kind
(GB2) distribution. Specifically, the density of Y;; is parameterized as

exp(k1w;j)
ylo|B(k1, k2)[1 + exp(w;j) <1+’

where w;j = (Iny — u;;)/o. The GB2 distribution is defined by four parameters: p;; is the
location parameter, o is the scale parameter, and «; and k7 are the shape parameters. With
four parameters the distribution offers substantial flexibility to accommodate the skewness
and heavy tails in the data. The GB2 distribution nests several well-known heavy-tailed
distributions as special cases, including the generalized gamma and Burr XII distributions
(McDonald and Xu (1995)), and it has been found useful particularly in modeling insurance
claims (Shi (2014)). The location parameter is further specified as a function of covariates
such that u;; = u(X;;) = ngﬂ, where X;; = X (T;;).

Settlement time. The time-to-settlement outcome D; is specified using a Cox model that
can be extended to accommodate nonproportional hazards (Aalen, Borgan and Gjessing
(2008)). The hazard function at time ¢ is specified as

7 (t|Hio) = 7o (¢) exp{X; (1) y },

where () is the baseline hazard and is left unspecified. The distribution function of settle-
ment time is then given by

Iy, (y) = 0Pr(Yij < y|Hj0)/dy =

d
F5.(d) =Pr(D; <d|Hjo)=1— exp{—/ mo(t) exp{ X (t)y }dt t,
i 0

which is required by the proposed copula model via (3), (6), and (7).

Associations. Bivariate copulas are employed to model the pairwise dependence between
payment occurrence, payment amount, and settlement time, that is, C(w, p), C(y,p), and
Cw,y\py for pairs (W;;, D;), (Y;;, D;), and (W;;|D;, Y;;|D;), respectively. We consider
Gaussian copulas as well as their finite mixture due to their simplicity (Masarotto and Varin
(2012)). Moreover, we assume that the associations for pairs (W;;, D;) and (Y;;, D;) are
constant and do not depend on predictors; while for the pair (W;;|D;, Y;;|D;), we relax the
simplifying assumption and allow the association to vary by the value of D;.

3. Inference and prediction. Due to the parametric nature of the proposed copula-based
joint model in Section 2, we design a likelihood-based method for its estimation and infer-
ence. Let @y, 0y, 0 p denote the parameters in regression models for F Wi Fy”,, and F D
respectively, and let 0 , = (Owp, 0y p, O wy|p) denote the association parameters in the three
bivariate copulas C(w, p), C(v,p), and C(w,y|p), respectively. All model parameters are col-
lected into @ = (@w,0y,0p,0,). Section 3.1 discusses a stagewise sequential maximum
likelihood estimator for @, and Section 3.2 investigates dynamic prediction based on the fit-
ted model.
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3.1. Estimation. Consider a portfolio of m insurance claims. We use lowercase let-
ters to denote the realizations of the random variables defined in Section 2. For the ith
(i €{l,...,m}) claim, let d; denote the realization of D;, time-to-settlement from reporting,
and n; is the realization of N;. During the time period [0, d;], there are n; payments occurred
attimes {t;; : j=1,...,n;}. For j =1,...,n;, let y;; be the amount of payment at time #;;,
w;; be the waiting time between payments y; ;1 and y;;, and s;; be the cumulative amount of
payment at time #;;. Namely, w;; =t;; —t; j—1 and y;; = s;; — s; j—1. Denote the external co-
variates by xlgoo). Furthermore, define vectors w; = (wj1, ..., win,) and y; = (yi1, - -, Yin;) -
Given the observed data {w;, y;, d;, xlgoo)};":l R
as

the full log-likelihood function can be written

LO)=>1;@®) = log f(wi, y;, di|x\>),

i=1 i=1
where we denote the log likelihood for the ith claim by /; (0) = log f(w;, y;, d; |x§°°) ) and

n;
= fp,(di) l_[1 T, Wijldi) 13,1, b, Vil Wi, di)
j:

X {1 — h(W?D)(FWn,»H(di — tini)’ Fﬁi (dl))}

= fp,dd) [ T{fiw, wipeaw.p) (F, wip), F, ()}
j:l

X l_[ {fﬁj (}’ij)C(Y,D)(FYij (vij), Fp, (di))}
j=1

n;
x [T eow.vipy(how:p) (Fiy, (wij), Fp,(di), hy:p) (Fy, (3ij), Fp, (d))))
j=1

x {1 — h(W;D)(FWni+1 (di —tin;), Fp,(d))}.
In principle, one could estimate # by maximizing L (@) directly. However, the evaluation

of L(#) can be computationally expensive. To improve computational efficiency, we propose
a stagewise sequential estimation procedure as below:

(1) We estimate parameters # p in F D, using the marginal distribution of D; under a work-
ing independence assumption. Momentarily assuming all bivariate copulas are product cop-
ulas, the part of log-likelihood function involving 6 p reduces to L;(@p) = Lp(0p), where

Lp@p) = ;":1 log fﬁi (d;). The estimator can be obtained via 913 =argmax L1(0p).
(2) We estimate parameters @y in FWi,- and parameters @wp in Cw,p) using the dis-

tribution of W;;|D;, while fixing 6 p = ) p- The log-likelihood function to be maximized is
equivalent to Lo(@w,0wp) = LWlD(éDa Ow,0wp), where

m nj m n;
Lwip@p,0w,0wp) =D D log fiy, (wij) + Y _ Y logcaw,p) (Fiy, (wij), Fi, (d))
i=1j=1 i=1j=1

m
+ Zlog{l — h(W§D)(FWn,~+1 d; — fini), Fﬁi (dt))}
i=1

One computes (9W, 9WD) =argmax Lo(@w,0wp).
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(3) We then estimate parameters @y in the marginal of ¥ and the association parameters
Oyp, 0WY|D) using the distribution of Y,'j|(W,'j, D;), while fixing 0p = éD, Ow = éw, and
Owp = éW p. The log-likelihood function to be maximized equals to L3(0y,0yp, 0wy p) =
LYID(éD, Ow.0wp.0y.0yp) + LWYlD(éDa Ow.0wp,0y,0yp, Owy|p), where

Lyp@p,0w.0wp,0y,0yp)

m nj m N
=" log f5, i) + 3 Y logew, oy (Fy, i), Fp, (),

i=1 =1 i=1j=1
Lwy|p(0)

m n

=D > logew,vipy (how; by (Fi, (wij), Fi, (i), hev;py (Fy, (i), Fi, (dD))-
i=1j=1

The estimator can be obtained by (éy, éYD, éWY|D) =argmax L3(0y,0yp,0wy|D).

Furthermore, one can choose copulas based on our sequential procedure. Given the
marginal model, the copula c¢(w,py should be chosen such that the likelihood in the stage
(2), thatis, L>(@w, 0w p) is maximized. Similarly, the copulas c(y, py and c(w,y|p) should be
chosen simultaneously such that L3(@y, 0y p, @wy|p) in stage (3) is maximized.

It is worth stressing that the above stagewise estimation procedure differs from the in-
ference function for margins (IFM) (Joe (2005)), which is widely used for copula model
estimation. The IFM estimates the parameters in the marginals and copulas in two separate
steps. In contrast, our sequential method does not lead to complete separation between the
estimation of parameters in the marginals and the copulas. Due to the dependence between
the three processes, the IFM produces biased estimators for the parameters in the proposed
copula model. We highlight this observation along with the desired properties of the proposed
estimators in Section 4.

Under the regularity conditions in Newey and McFadden (1994), the stagewise estimator is
consistent and asymptotically normal. The asymptotic covariance of 0 admits a complicated
Godambe form (Godambe (1960)). Though the standard plug-in estimator can be constructed
for the asymptotic covariance of 9, it can be quite cumbersome to implement. A practical
solution to the estimation of the covariance is parametric bootstrap. The stagewise estimator
is statistically less efficient than the simultaneous maximum likelihood estimator due to the
working independence assumption. However, the gain in computational efficiency outweighs
the loss in statistical efficiency in particular for large-scale data.

3.2. Prediction. One is able to make predictions for newly reported claims based on the
fitted model. In practice, one could be interested in the timing and amount of individual pay-
ment transactions or, simply, the ultimate loss and the settlement time for a given claim. The
probabilistic forecasts for an outcome of interest are characterized by a predictive distribu-
tion. Due to the complex structure of the model in our application, the outcome of interest
might not have a predictive distribution of explicit form, for instance, the aggregate losses
from a portfolio of claims. One strategy to obtain the predictive distribution is simulation. We
summarize in Algorithm 1 the procedure for generating a random realization for a portfolio
of m claims {w;, y;, d;}/_,. Replicating the algorithm, one obtains the predictive distribution
for each individual claim as well as the portfolio.

One appealing feature of the proposed model is the dynamic prediction. That is, one is
able to update the forecasts over time as new information arrives. Consider insurance claim
i, and suppose there are n;. = N;(f.) payments made by an observation time 7.. We denote
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Algorithm 1 Data Simulating from the Joint Model
Fori e{l,...,m}:
1. Generate covariates X; (t) = (X;1(¢), ..., Xip(t))’ forr > 0.
2. Generate a uniform variable R; and then the settlement time using D; = F 5{1 (R;).
3.For j=1:

3.1 Generate a bivariate uniform variable (U;;, V;;) from copula C(w,y|p).
3.2 Generate the waiting time and the corresponding payment amount using

Wij = Fg (g™ Wi, k).
Yij= F};ijl(g(Y;D)(Vij, Ry)),

where g(W;D) (11, u2) is the inverse function of hw. p)(u1, uz) with respect to the first
argument, and g()f;D ) is defined similarly.
3.3 Stopif T;; = Z,’czl Wix > D;. Otherwise set j < j + 1, and go to Step 3.1.

the corresponding waiting times and payment amounts by w;. = (w;1, ..., W; ;) and y;. =
Vi1, -+ Yin;.), respectively. The (dynamic) predictive distribution for the settlement time is
defined by

(10)  Fp,(d|Hi(te), D; > 1;) = Pr(D; <d|Di > te, Wics Yior Wil > e — lipsr X°0),

l
for d > t.. The predictive distribution can be evaluated using
[ pi(s|H;(t:))ds
Jy. pi(s|Hi(te)ds”

Here p;(s|H;(t.)) is the conditional density of D; and is proportional to the density of the
joint distribution of D;, wic, y;., and W; , 41 > tc —ti p;.,

Fp,(d|H;(te), Di > t) =1 —

Pi (S|Hi (tc)) X f(S, Wic, Yics Wi,l’lic+1 >l — ti,nip|x§00))

o fp, ({1 — h(W;D)(FvT/niCH (te = tin)s Fp.(5))}

x [ THeaw. oy (Fig,, i), Fps, )} [ THew. o) (Fy, 5i)s Fp, ()]}
j=1 j=1
Ric

X ]_[ C(W,Y|D)(h(W;D)(FWij (wij), Fp,(5)), h(Y;D)(FYij i) Fp,(5)))-
j=1

Note that certain terms in p;(s|H;(¢.)), such as [] i
evaluation of (10), which simplifies the computation.
Algorithm 2 exhibits steps for generating random samples for {w;, y;, d;}, given the his-
tory of the marked point process H;(t.) at time z.. The algorithm allows one to perform
dynamic prediction and obtain predictive distributions for the outcomes of interest, be it
either the settlement time or the outstanding payments, for individual claims as well as
the portfolio of claims. In the simulation we generate D; from (10), using the empirical
supremum rejection sampling algorithm (Caffo, Booth and Davison (2002)) in which the
normalizing constant C is chosen empirically (see, for instance, Peng (2018)). We use the
conditional distribution of D;, given D; > t., denoted by f 5i(-|D,~ > t.), as the candidate

1 fWij(wij)f;ij (yij), cancel out in the
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Algorithm 2 Data Simulating from the Dynamic Prediction
Fori e {1,...,m},if D; <t., stop. Otherwise:
1. Generate covariates X; () = (X;1(2); ...; Xip () fort >t..
2. Generate the settlement time D; using rejection sampling. For k = 1:

2.1 Initialize Cy
2.2 Draw Uy ~ Uniform(0, 1).
2.3 Draw Dy ~ IB, C1Di > 1c).

pi (D} H; (t))

R T
2.4 Set D; = D if Uy < ékff)l. DIDi~) and stop.

pi (DE|Hj (tc))

Otherwise, update Cy < max{Cy, F5 (DFDi~1)
D’ k i ¢

}and k <— k + 1, and go to Step 2.1.

3. Generate (W; »; . +1, ..., Win) and (Y; ;. +1, ..., Yin;) using Algorithm 1. For j =n;.+
1, go to Step 3.1-Step 3.3 in Algorithm 1. One can ensure W; . 11 > . — t; »;. by using
the conditional distribution to generate

Winier1 =F5' &Y [Uiner1(1 = how;py (Fig,, (e = tin,.), Fi, (D))

Wi,nic+1
+ hw.p) (Fy,; (te = tine, Fp, (Di)]}
in 3.2 of Algorithm 1.

distribution. The starting value of the constant in the algorithm is chosen to be the ratio
pi(di|H; (lc))/fﬁi (di|D; > t.) for a randomly generated d; ~ f5i :|D; > t.).

Dynamic prediction for the survival outcome has been the center of interest in the current
literature on the joint models for longitudinal and survival data. In contrast, the focus of
dynamic prediction in our application is not only the settlement time but also, and often
more importantly, the longitudinal payments. In Section 4 we provide additional numerical
experiments to demonstrate the application of dynamic prediction and emphasize the effect
of dependence misspecification on prediction.

4. Numerical experiments. We perform two sets of numerical experiments to explore
the operating characteristics of the proposed methodology. The first set is to explore the finite
sample performance of the stagewise estimation for the copula-based joint model, and the
second set is to highlight the dynamic prediction using the proposed joint model.

4.1. Settings. This section describes the data-generating process for the numerical ex-
periments. We set X; (1) = (X;1(t), X;2(t))’, where X;1(¢) is assumed to be time constant
and X;,(¢) time-varying. Denote X;{(¢) =: X;1, and let X;; ~ N(0, 1). For X;>(¢), we con-
sider a piecewise constant covariate process. Specifically, let X;> (1) = X;2(T;;) =: X2, for
T j—1 <t <T;;,and assume X;5 ; ~ N (0, 0.5%) independently. In our model we assume that
the entire path of the covariates is known.

For the occurrence of payments, we use a Weibull baseline intensity function, namely,
ho(t) = ptP~" with p =2. For t € (T;j_1, Ty;], the intensity is A; (¢[X\™) = pB()?~! x
exp{ap + a1 X1 +a2X;2,;}, and we let (g, @1, a2) = (—1, 1, 1). The conditional cumulative
distribution of the waiting time W;; has the form

Fg, (w) =1 —exp{—exp{og + o1 Xi1 + a2 Xin j}w”}.

For the marginal model of payment amount Y;;, we use a gamma regression model, which
is a special case of the GB2 distribution. Its mean parameter is w;; = exp{Bo + B1X;1 +
B2Xi2,j}, and we let (Bo, B1, B2) = (1, 1, 1). The dispersion parameter ¢ is set to be 2.
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TABLE 1
Summary statistics for simulation

Low dependence High dependence
D N w Y D N w Y
Mean 10.120 5.942 1.531 6.455 10.120 6.049 1.502 5.982
SD 6.486 2.540 1.338 18.596 6.486 2.054 1.366 16.746

For the time-to-settlement outcome, we set the baseline hazard function to be piecewise
constant. Denote the cutoff points by ag =0 < a; <az <az = o0 and use a; =5, a» = 10.
The baseline rate function takes the form

mo(t) =mil(ap <t <ay) +ml(a; <t <ax)+mn3l(t > az).

The distribution function of settlement time D; is
2
Fp (d) =1—expi —exp{Xi1y1} ) (7x+1 max{0, min(ag41 — ax, d — ap)})
k=0
We set the parameters to be y; =1, m; =0.01, 7, =0.1, 73 =0.8.

We use bivariate Gaussian copulas in the simulation. Specifically, the copulas C(w, p),
C(v,p), and C(w,y|p) are set to be Gaussian with association parameters 0w p, Oy p, Owy|D,
respectively. We consider three levels of dependence, varying from low (Bwp = 0yp =
9WY|D = 0.2), medium (QWD = 9YD = 9WY|D = 0.5), to high (QWD = GYD = 9WY|D = 0.8).
For illustration we assume constant association parameters in the copulas in the simulation
study. Nonetheless, our model can easily accommodate more flexible dependence structures
such as time-varying dependence and conditional dependence. Table 1 includes the summary
statistics of the response variables in one of the replicates, under the low and high depen-
dence.

4.2. Finite sample performance. In the experiment we let the number of claims m be
500 and 1000 and the association parameters be low, medium, and high. For each scenario
we replicate our simulation 1000 times. The estimation results from the proposed stagewise
procedure are summarized in Tables 2 and 3. We display the relative bias and standard de-
viation across the 1000 replicates. We also report the coverage rate of the 95% bootstrap
confidence interval. We observe that, first, across all the scenarios with different sample sizes
and dependence levels, our estimation procedure has excellent performance with a negligi-
ble bias, a small standard deviation, and a correct coverage level. Second, as the sample size
increases, the bias and standard deviation reduce, as expected.

We further highlight that ignoring dependence can lead to biased estimators in our settings.
Table 4 shows the estimation results of the IFM method. We can see from Table 4 that pa-
rameter estimates from this procedure are biased, in particular, the parameters in the marginal
model of Y, as discussed in Section 3.1. The issue with IFM is also evidently reflected in the
undesirable coverage rates of the bootstrap confidence intervals.

4.3. Robustness against copula misspecification. In this section we evaluate the robust-
ness of the proposed method in situations where the copula family is misspecified. We simu-
late data with a Gumbel copula, which is featured with upper tail dependence, and a Clayton
copula, which entails lower tail dependence. However, the data are mistakenly fit with Gaus-
sian copulas. To ensure comparability, we set the parameters of different copulas such that
the Kendall’s tau is 0.5. Tables 5 and 6 present the results. Here we omit the results for the
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TABLE 2
Stagewise estimation results

Settlement time D Waiting time W

Dependence m y T b9 3 o o o) p
True Low 1 0.01 0.1 0.8 -1 1 1 2
Relative bias 500 0.001 0.003 0.002 0.004 0.001 0.001 0.001 0.001
SD 0.052  0.002 0.008 0.054 0.031 0.025 0.038 0.030
Coverage 0.956 0.948 0.948 0.942 0.938 0.938 0.947 0.940
Relative bias 1000  0.000 0.005 —0.000 0.004 0.000 —0.000 0.000 0.001
SD 0.037  0.001 0.005 0.037 0.021 0.017 0.027 0.021
Coverage 0.946 0.946 0.963 0.949 0.953 0.946 0.947 0.943
True Medium 1 0.01 0.1 0.8 —1 1 1 2
Relative bias 500 0.001 0.003 0.002 0.004 0.001 0.001  0.001 0.001
SD 0.052 0.002 0.008 0.054 0.040 0.030 0.036 0.034
Coverage 0.952  0.950 0.949 0.942 0.941 0.941 0943 0.944
Relative bias 1000  0.000 0.005 —0.000 0.004 0.000 0.000  0.000 0.000
SD 0.037 0.001 0.005 0.037 0.027 0.021 0.026 0.024
Coverage 0.946 0.945 0.961 0.948 0.955 0.947 0938 0.953
True High 1 0.01 0.1 0.8 —1 1 1 2
Relative bias 500 0.001 0.003 0.002 0.004 0.000 0.001 0.001 0.001
SD 0.052  0.002 0.008 0.054 0.053 0.041 0.033 0.047
Coverage 0.954 0.950 0.948 0.941 0.949 0.956 0.941 0.940
Relative bias 1000 0.000 0.005 —0.000 0.004 —0.000 0.000 0.001 0.001
SD 0.037 0.001 0.005 0.037 0.036 0.029 0.023 0.033
Coverage 0.948 0.943 0.962 0.950 0.951 0.949 0.947 0.940

TABLE 3
Stagewise estimation results (continued)
Payment amount Y Dependence

Dependence m Bo B1 B2 ¢ Ow D 0yp  Owyp
True Low 1 1 1 2 0.2 0.2 0.2
Relative bias 500 —0.001 -—-0.001 -0.002 —0.001 0.002 —0.003 —0.003
SD 0.028 0.027 0.050 0.044 0.020 0.020 0.018
Coverage 0.946 0.942 0.951 0.958 0.953 0.945 0.943
Relative bias 1000 —0.001 0.001 —0.001 0.000 —0.000 0.000 —0.001
SD 0.019 0.020 0.036 0.032 0.014 0.014 0.013
Coverage 0.954 0.946 0.940 0.955 0.947 0.942 0.948
True Medium 1 1 1 2 0.5 0.5 0.5
Relative bias 500 —-0.001 -—-0.002 —-0.002 —-0.001 -0.001 —0.001 —0.001
SD 0.037 0.036 0.045 0.053 0.018 0.017 0.014
Coverage 0.945 0.946 0.959 0.947 0.943 0.950 0.950
Relative bias 1000  —0.002 0.000 —0.000 —-0.000 —0.002 —0.000 —0.001
SD 0.024 0.025 0.033 0.036 0.012 0.012 0.010
Coverage 0.961 0.942 0.940 0.955 0.954 0.958 0.951
True High 1 1 1 2 0.8 0.8 0.8

Relative bias
SD
Coverage
Relative bias
SD
Coverage

500 —0.001 0.000 —0.000 0.000 —0.001 —0.001 —0.000
0.053 0.051 0.033 0.070 0.010 0.010 0.006
0.936 0.953 0.950 0.946 0.948 0.943 0.953
1000 —0.002 0.001 —-0.000 —-0.000 —0.001 —0.001 0.000
0.036 0.037 0.024 0.048 0.007 0.007 0.005
0.955 0.944 0.939 0.946 0.946 0.942 0.949
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TABLE 4
IFM estimation results

Occurrence of payment W Payments Y Dependence
oo o o) P Bo Bi B2 ¢ Owp byp  OwyD
True —1 1 1 2 1 1 1 2 0.800  0.800  0.800
Relative bias  0.016 0.013 0.044 0.028 —0.117 0.028 0.025 —0.014 —0.008 —0.009 -0.015
SD 0.054 0.046 0.044 0.050 0.053 0.052 0.053 0.073 0.010 0.010 0.007

Coverage 0.924 0929 0.802 0.749 0333 0904 0916 0911 0.850 0.859 0.604

survival outcome, as they are not impacted by the dependence structure. Our estimator be-
haves similarly to the maximum likelihood estimators of misspecified models (White (1982)).
We can see that, first, the parameters in the marginal models are still reasonably estimated,
as evidenced by the small bias, small standard deviation, and correct coverage, despite the
misspecification in the copula family. This stands in contrast to the results of IFM in Table 4.
Second, the copula maintains the strength of dependence, even under misspecification. In the
last three columns of Tables 5 and 6, we convert Kendall’s tau into the dependence parame-
ters in the corresponding Gaussian copulas. It is important to note that the value of 0.707 is
not the true underlying dependence parameters, since the data are not generated from Gaus-
sian copulas. Nevertheless, we can see that our method identifies the strength of dependence
with a small bias. The low coverage rate of the dependence parameter is expected due to the
misspecification.

4.4. Predictive accuracy. In this section we investigate prediction based on the proposed
model. There are two quantities of particular interest to analysts in our application, the settle-
ment time and the ultimate loss amount for individual claims. Specifically, for the ith claim,
we are to forecast the settlement time D; and total payment for the claim S; = 27’: 1 Yij,
given the history up to time #.. We consider a portfolio of 500 insurance claims that follow
the data-generating configuration outlined in Section 4.1. For each claim we obtain point
forecasts and predictive distributions of the two outcomes using the simulation method in
Algorithm 2. To demonstrate the dynamic prediction, we let ¢, vary to be 5 and 8. Below
we present the results in the high dependence scenario, that is, Owp = 0yp = Owy|p = 0.8,
based on 500 replicates.

The point predictions for the settlement time and total payments for a claim are calcu-
lated using the means of the corresponding predictive distributions. To evaluate the overall
accuracy, we employ the mean absolute prediction error (MAPE) and the mean squared pre-
diction error (MSPE) to measure the closeness between the actual and the predicted values.
The out-of-sample statistics are reported in Table 7. Comparing the first and third rows, we
can see that as 7. increases, implying that we have more information at hand, the prediction

TABLE 5
Results of a Gumbel copula misspecified with a Gaussian copula

Occurrence of payment W Payments Y Dependence

a0 o] o P Bo B1 B2 é bwp  Oyp Owry|D
True -1 1 1 2 1 1 1 2 0.707 0.707 0.707
Relative bias —0.013 0.008 0.002 0.001 —0.036 —0.009 0.001 —0.0004 —0.004 0.0004 —0.043
SD 0.046 0.039 0.031 0.040 0.053 0.050 0.034 0.063 0.014 0.015 0.011

Coverage 0.944 0.945 0.962 0.957 0.874 0942 0956 0.943 0.948 0.954 0.227
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TABLE 6
Results of a Clayton copula misspecified with a Gaussian copula

Occurrence of payment W Payments Y Dependence
) o] (0%) P Bo B1 B2 ¢ bwp  Oyp Owy|D
True -1 1 1 2 1 1 1 2 0.707  0.707  0.707
Relative bias —0.017 —0.020 —0.006 —0.004 0.019 0.021 0.001 0.016 —0.033 —0.041 —0.035
SD 0.051 0.034 0.038 0.049 0.038 0.039 0.047 0.075 0.018 0.018 0.012
Coverage 0.937 0916 0960 0938 0.920 0917 0956 0932 0.746 0.619 0.466

accuracy improves in both settlement time and total payment. For comparison we also make
predictions for the portfolio of claims assuming independence between waiting time, pay-
ment amount, and the settlement of claim. The MAPE and MSPE under the independence
model are shown in the second and fourth rows of Table 7. The prediction error of the in-
dependence model is significantly higher than the dependence model in all cases, indicating
that ignoring dependence could lead to suboptimal prediction.

Our copula-based method provides not only point forecasts but also, more importantly,
the entire predictive distributions for the outcomes of interest. We obtain the predictive dis-
tributions for the settlement time and total payment for each claim in the portfolio, and we
assess the prediction accuracy using a uniform test. Specifically, we first obtain the predic-
tive distribution of D;, denoted as F p; :|H;(t.), D; > t.), using Algorithm 2. Using the ac-
tual values of d; for which d; > 7., we then construct a sequence of probability integral
transforms F p; (di|H;(t.), D; > t.). If the predictive distribution is precise, we expect that
F p,(di|H;(t.), D; > t.),fori =1,...,m and d; > 1., closely follow a uniform distribution
on [0,1]. The same procedure is applied to S;, whose probability integral transforms are de-
noted as ﬁSf.tc (s;). The uniform tests are performed for 7. =5 and 7, = 8, and the resulting
QQ plots are displayed in Figure 2. To facilitate visualization, we conduct an inverse normal
transformation, that is, ® ! (ﬁ p; (di|H;(t:), D; > t.)) and o1 (I:” s..t.(8i)), and normality is
thereby the null pattern. All the plots in Figure 2 are reasonably close to the diagonal, imply-
ing our predictive distributions are accurate for both settlement time and total payment.

Finally, we look into the predictive distributions at the portfolio level. For illustration, we
consider the distribution of the total losses » ;_; .4~ Si and the maximum settlement
time max;—1,. . m.q4 > Di of the portfolio. Figure 3 displays their distributions obtained un-
der both independence and dependence models, where the actual values of outcomes are
indicated by vertical lines. We observe that the dependence among component processes in
the development of an insurance claim significantly impacts the predictive distributions of
both quantities of interest. In the left panel for the maximum settlement time, both distri-
butions under independence and dependence assumptions reasonably predict the outcome,

TABLE 7
Accuracy measures of out-of-sample point predictions

Settlement time (D) Total payment (.S)
te MAPE MSPE MAPE MSPE
6=0.8 5 1.241 9.117 6.227 221.344
Independent 5 2.486 16.565 23.667 2262.034
6=0.8 8 0.971 4.795 3.916 145.489
Independent 8 2.110 17.765 18.214 1533.587
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FI1G. 2. QQ plots of the uniform tests for out-of-sample validation. The left and right columns report for settle-
ment time and total payment, respectively; The top and bottom rows report for t. =5 and t. = 8, respectively.

reflected by the fact that the realized value is covered by the prediction intervals. However,
the dependence model leads to a sharper distribution with more concentration relative to the
true observation than the independence model. In the right panel for the total losses, the actual
observation lies in the middle of the predictive curve for which dependence is correctly char-
acterized. In contrast, ignoring dependence leads to substantial underestimation of the total
losses for the portfolio. This is particularly detrimental in claim management applications, as
such prediction likely results in under reserving and hence causes insolvency of the insurer.

5. Application. This section demonstrates the application of the proposed method in in-
surance claims management. We show that the joint model leads to a dynamic prediction
strategy that enhances the insurer’s decision making in claims management operations. Sec-
tion 5.1 summarizes the key data characteristics that motivate the joint model. Section 5.2
reports data analysis and estimation results. Section 5.3 summarizes the out-of-sample per-
formance, emphasizing the implications of dependence in the proposed modeling framework.

5.1. Data characteristics. In the application we consider a portfolio of property insur-
ance claims obtained from the Local Government Property Insurance Fund of Wisconsin.
The property fund is viewed as a commercial property insurance provider that provides cov-
erage for business, as opposed to homeowners. Our analysis focuses on the building and
contents coverage for local government entities, including cities, counties, towns, villages,
school districts, fire stations, and miscellaneous entities.

The portfolio consists of 8790 claims occurred between 2005 and 2014. For each claim
we observe the time when it is reported to the insurer and the subsequent transactions since
reporting. In particular, the data contain information on the settlement time of the claim as
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F1G. 3. Predictive distributions of the maximum settlement time (left) and the total losses (right) for the portfolio
of claims.

well as the timestamps and amounts of payment transactions throughout the settlement. For
illustration we exhibit in Figure 4 the payment and settlement transactions for two repre-
sentative claims. In the first scenario, the claim is closed without any payments. This could
happen when the coverage is denied (e.g., because of fraud) or when the loss is below the
deductible amount. Zero-payment claims account for about 20% of our data. In the second
scenario, the claim is settled with at least one payment, and the settlement occurs days af-
ter the last payment. The examples foreshadow several important features of the settlement
process. First, a larger claim tends to be associated with more payment transactions and a
longer settlement lag. Second, there is substantial variation in the lapse of time between the
last payment and the closing of a claim. In our data, some claims are closed right after the
last payment, whereas some take up to 510 days since the last payment.

Table 8 presents the descriptive statistics for the three outcome variables, the payment
amount, Y (in dollars), the waiting time between successive payments, W (in days), and the
settlement time of the claim, D (in days). We group the data by the payment frequency (zero
or not). On average, the settlement times for zero-payment and positive-payment claims are
comparable. Nevertheless, the latter shows more variation and skewness than the former. In
addition, the waiting time and payment amount for claims with positive payments are skewed

and heavy-tailed.
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FI1G. 4. Payment and settlement transactions of two representative claims.
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TABLE 8
Descriptive statistics of outcomes of interests

Percentiles
Variable Mean SD 10th 25th 50th 75th 90th
Zero-payment Claims (n = 1723)
Settlement time (D) 85.35 58.48 16.00 53.00 82.00 106.00 143.00
Positive-payment Claims (n = 7067)
Settlement time (D) 82.60 95.82 9.00 19.00 57.00 106.00 186.00
Waiting time (W) 71.33 75.26 10.00 19.00 51.00 95.00 155.00

Payment amount (Y)  13,815.41  46,404.10 493.87 1049.00 2923.70 8168.02  25,700.00

Table 9 summarizes the set of predictors that are available in the data. We group the pre-
dictors into two categories, policy level and claim level. Policy level predictors describe the
contractual features (such as deductible and amount of coverage) and policyholder charac-
teristics (such as entity type). Claim level predictors are variables that are claim specific,
including the cause of loss and the reporting delay. An average policy provides a coverage of
$332 million with a deductible of $11,000. The average reporting delay is about one and half
months, and vandalism is found to be the most frequent peril for the losses. We also notice a
substantial amount of variation in both contractual features and claim-specific characteristics.

Lastly, we perform an exploratory analysis of the association among the outcomes. Fig-
ure 5 exhibits the box plots of the waiting time and payment amount, grouped by the value
of settlement time. The plots suggest that a larger settlement time of a claim tends to be
associated with both longer waiting times and larger incremental payment amounts. Fig-
ure 6 presents the scatter plot of average waiting time and average payment amount, with the
data grouped by the range of settlement time, that is, < 6 months, 6 — 12 months, and > 12
months. The data are clustered by unique values of settlement time, and each data point corre-
sponds to the average waiting time and average payment amount from claims with the same
settlement time. The size of the data point is proportional to the number of claims in each

TABLE 9
Description and summary statistics of covariates

Variable Description Mean SD
Policy-level characteristics

Deductible per-occurrence deductible in thousand dollars 11.053 16.446
Coverage amount of coverage in million dollars 332.715 574.996
City = 1 if the policyholder is a city entity, = 0 otherwise 0.268

County = 1 if the policyholder is a county entity, = 0 otherwise 0.241

School = 1 if the policyholder is a school district, = 0 otherwise 0.332

Town = 1 if the policyholder is a town entity, = 0 otherwise 0.020

Village = 1 if the policyholder is a village entity, = 0 otherwise 0.116

Miscellaneous = 1 if other local government entities, = O otherwise 0.023

Claim-level characteristics

ReportDelay time lapsed from loss occurrence to reporting in days 44.279 79.170
FireLightning =1 if loss is caused by fire and lightning, = O otherwise 0.188

Vandalism =1 if loss is caused by vandalism, = 0 otherwise 0.292

Vehicle =1 if loss is caused by vehicle, = 0 otherwise 0.199

Water =1 if loss is caused by water damage, = 0 otherwise 0.136

Weather =1 if loss is caused by weather related perils, = O otherwise 0.087

Other =1 if loss is caused by other perils, = 0 otherwise 0.098
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FI1G. 5. Box plots of waiting time (left panel) and incremental payment amount (right panel) by settlement time.

cluster. The plot shows that the relationship between the two outcomes interestingly varies
by the settlement time. The correlation coefficients are 0.16, —0.13, and —0.15, respectively,
for the three cases. It suggests that the settlement time affects both the sign and the magnitude
of the dependence between waiting time and payment amount.

5.2. Empirical results. 'We employ the proposed copula-based joint model to analyze the
portfolio of property insurance claims described in Section 5.1. We follow an iterative process
between model estimation and selection for model specification. In the final formulation, we
use a Cox proportional hazard model for the settlement time of claims, a Weibull regression
for the intensity of payment recurrences, and a GB2 regression for the amount of incremental
payments. We follow the parsimony principle in model specification, balancing flexibility and
interpretability. For instance, we find parametric models are sufficient for the waiting time and
payment amount. In contrast, the Cox model with a nonparametric baseline demonstrates a
satisfactory fit. Gaussian copulas are employed for the dependence. To provide flexibility, we
consider variations, such as a mixture of copulas and conditional copulas, in the joint model.
The parameters in the joint model are estimated using the stagewise procedure introduced in
Section 3.1.

In marginal models, numerical predictors (deductible, coverage, and reporting delay) are
used on a log scale to enhance stability. In the dependence model, we use a two-component
Gaussian copula mixture for the dependence between W and D. The copula function is
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FI1G. 6. Scatter plot of average waiting time and average payment amount with data grouped by the range of
settlement time.
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Cw,py =qC1 + (1 —q)C2, where C; and C; are both Gaussian copulas with association
parameters 9&% and 91(4%)D’ respectively, and ¢ is the weight on the first component Cy. The
formulation is motivated by the fact that the waiting time and time-to-report could be highly
correlated when a claim is closed with a single payment. The mixture specification accommo-
dates this possibility by treating it as a latent class. Motivated by our observations of Figure 6,
we employ a conditional copula approach for the dependence between Y and W given D, that
is, to allow the association, denoted by Oy w/p, to vary with the value of D. Specifically, we

consider
(1) Oywip—d = Oy pl (d < 183) + 653, p 1 (183 < d <365) + 65y, 1 (d > 365).

For comparison we also fit the model based on the simplifying assumption treating fyw p as
a constant. Estimated model parameters, using both the simplifying assumption and the con-
ditional copula approach, are reported in Table 10. The dependence model between Y and
D uses a Gaussian copula with association parameter 6y p. Recall that the copulas Cy, p)
and C(w,y|p) are estimated simultaneously in the last step of the stagewise estimation, as
discussed in Section 3.1. Hence, the estimation of 8y p is influenced by the assumption on
Cw,y|p)- We report the estimates of 6y p when C(w,y|p) are formulated using both simpli-
fying and conditional copula approaches.

Several noteworthy observations can be made from Table 10. First, the claim-level predic-
tors (reporting delay and cause of losses) exhibit significant effect on all three outcomes. As
anticipated, after accounting for the claim-specific covariates, the policy-level predictors are
found to have less impact on the outcomes. Second, consistent with Figure 5, the settlement
time is positively correlated with both the waiting time and payment amount. For the former
pair (W, D), the Kendall’s tau, calculated using the copula parameter, is 0.15 and 0.93 for
the two mixing components. The component with high correlation focuses on claims with a
single payment. The corresponding weight is about 0.76, which is consistent with that 72%
of claims settled with a single payment. For the latter pair (¥, D), the estimated Kendall’s
tau is around 0.16 under both the simplifying assumption and the conditional copula ap-
proach. Third, the conditional association between the waiting time and the payment amount
(W, Y)|D varies with the settlement time. The conditional association is positive for claims
that are settled within six months, whereas it is negative for claims that are settled after 12
months. For the claims with settlement time in between, the estimated association parameter
is not statistically significant. Meanwhile, the conditional association is estimated to be 0.001
under the simplifying assumption. The plausible explanation is that the positive and nega-
tive dependencies average out when pooling across different values of settlement time. The
estimated conditional dependence, which measures the residual association after accounting
for the covariates effects, is largely consistent with the patterns revealed in the raw data, as
shown in Figure 6.

5.3. Comparison with independence model. The previous section provides compelling
evidences for our hypothesis that the payment process and settlement process in claims man-
agement are interconnected. The proposed method demonstrates a flexible framework that
can accommodate such complex relation. This section is dedicated to evaluating the accu-
racy of probabilistic forecasts on an out-of-sample dataset. Our focus is comparing the cop-
ula model with a benchmark independence model using both validation and cross-validation
techniques. It is important to note that the independence model differs from the copula model
in two aspects. First, the independence model does not consider the relationship among com-
ponent processes in the claims management. Second, due to the misspecification of depen-
dence, the marginal model for each component process in the independence model is subject
to estimation bias, as we demonstrate in Section 4.
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TABLE 10
Stagewise estimation results for model parameters

Stage [ Stage II Stage 11

Est. S.E. Est. S.E. Est. S.E. Est. S.E.
Marginal Settlement Time Waiting Time Payment Amount
Intercept —4.984 0.024 8.288 0.228 8.326 0.228
log(Deductible) —0.035 0.009 —0.041 0.001 —0.012 0.012 —0.015 0.012
log(Coverage) —0.014 0.011 —0.010 0.001 —0.004 0.015  —0.007 0.014
City 0.044 0.075 0.057 0.009 —0.048 0.096 —0.024 0.096
County —0.014 0.079 —0.010 0.009 0.091 0.101 0.111 0.100
School —0.049 0.077 —0.044 0.009 —0.239 0.099 -0.211 0.099
Town —0.021 0.105 —0.003 0.012 —0.193 0.133 —-0.175 0.132
Village —0.116 0.077 —0.111 0.009 —0.111 0.099 —0.085 0.098
log(ReportDelay) 0.197 0.008 0.199 0.001 —0.068 0.010 —0.061 0.010
FireLightning 0.033 0.042 0.060 0.006 0.304 0.056 0.291 0.056
Vandalism 0.246 0.041 0.245 0.005 —1.337 0.059 —1.324 0.059
Vehicle 0.296 0.043 0.304 0.006 —0.294 0.059 —-0.303 0.059
Water —0.201 0.045 —0.190 0.006 0.665 0.062 0.650 0.062
Weather —0.364 0.050 —0.342 0.007 0.598 0.066 0.575 0.066
p (Weibull) 1.109 0.002
o (GB2) 0.761 0.062 0.778 0.064
k1 (GB2) 1.162 0.141 1.212 0.148
kp (GB2) 0.903 0.105 0.925 0.109
Dependence Simplifying Conditional
0% 0232 0018
O 0.995  0.000
q 0.243 0.006
Oyp 0.251 0.010 0.244 0.010
Oyw|D 0.001 0.013
0 wip 0.111 0018
0% p —0.037  0.023
Oy win —0.196  0.026

We validate our model using two different methods. The first is out-of-time validation,
where we use data from years 2005-2011 as the training set and data from years 2012-2014
as the test set. The second is a 10-fold cross-validation where the claims are randomly split
into 10 subsets. In both cases we estimate model parameters using the training data and
calculate a score for each observation in the test set. The logarithmic score, a widely used
local proper scoring rule (Parry, Dawid and Lauritzen (2012)), is employed to evaluate the
models. Furthermore, we compare the probabilistic forecasts generated by the copula and
the independence models using the Diebold—Mariano test (Diebold and Mariano (1995)). Let
S(Fj, y;) denote the score for data y; based on the predictive model F'. The average score is
calculated using the hold-out sample as

- 1 Nout
Snow = —— 2 S(Fi, yi),
Rout ;=4
where nqy represents the number of observations in the hold-out sample. In the Diebold—
Mariano test, we use S, o and SF1 to denote the average score from the base model Fy and

Nout Nout
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TABLE 11
Diebold—Mariano statistics using out-of-time validation and 10-fold cross-validation

10-fold
tc  Out-of-time 1 2 3 4 5 6 7 8 9 10
0 —30.16 —-16.38 —19.10 —18.61 —16.11 —17.64 —18.76 —20.22 —16.47 —-20.30 —18.56
30 —26.97 —1531 —-16.83 —-16.12 —-13.46 —15.81 —16.81 —17.82 —14.80 —18.60 —16.33
91 —17.94 —12.11 —-12.87 —-11.92 —-10.56 —-12.29 —-13.69 —13.80 —11.71 —14.41 —12.85

the competing model F7. The test statistic is defined as

SvFl _ SvFo

Nout Nout
Tngu = ~/Mout >

Nout

where Unz(,m = ﬁ Z?i“{ (S(Fyi, yi) — S(Foi, yi))z. Based on this definition, a negative statistic
implies a superior performance of the competing model.

To emphasize the notion of dynamic prediction, we perform the test at three time points:
time of reporting (f. = 0), one month since reporting (z. = 30), and three months since report-
ing (t. = 91). The results are summarized in Table 11. For example, using the independence
model as benchmark, we observe a test statistic of —30.16 in the out-of-time validation at the
reporting time, and the test statistics in the cross-validation ranges from —20.30 to —16.11.
Both tests suggest that the copula model is preferred for prediction, and the conclusion is
consistent across different time points.

We conclude this section with two additional numerical illustrations emphasizing the im-
plications of dependence on insurance operations. The first example pertains to a single insur-
ance claim. Figure 7 displays the dynamic predictive distributions for the time-to-settlement
and outstanding payments for a randomly selected claim, at three time points (¢, = 0, 30, 91),
from independence and copula models. Our analysis reveals that, for this particular claim,
the dependence among the three underlying processes does not have a significant effect on
the time-to-event prediction. However, the impact of dependence on outstanding payments
is substantial. Specifically, the claim had one payment that occurred within 30 days since
reporting, and no payments between 30 days and 90 days since reporting. The predictive
distributions exhibit a probability mass at zero, indicating the possibility for the claim to be
closed without any payment. At ¢, = 0, the predictive distributions from the independence
and copula models are similar. At 7, = 30, the distribution of outstanding payments from the
copula model is higher than the distribution from independence model. This observation is
explained by the positive dependence between the payment process and settlement process
and the fact that the payment occurred early (relative to the average payment time) during the
lifetime of the claim. At #, = 91, there is a negligible update on the distribution from 7. = 30
because there were no payments between the two time points.

The second example concerns the dynamic prediction for the entire portfolio of insurance
claims in the hold-out sample. Figure 8 shows the predictive distributions for the maximum
time-to-settlement and the aggregate outstanding liability from the portfolio. As foreshad-
owed by Figure 7, the result suggests that the dependence is not essential for the prediction
of the maximum settlement time but is critical to the prediction of outstanding liabilities for
the portfolio. For instance, in reserving applications an insurer often uses 75th percentile of
the distribution as a conservative approach to set the carried reserves. In this case the indepen-
dence model will overestimate the carried reserves by 103%, 75%, and 45% at t. =0, 30, 91,
respectively.
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6. Conclusion. In this article we introduced a copula-based joint modeling framework to
analyze the cash flows of insurance claims and performed dynamic prediction for outstand-
ing payments. The work was motivated by the claims management operation in insurance
companies where insurers make data-driven decisions on carried reserves and risk financ-
ing strategies. Specifically, we observed that a typical insurance claim is associated with a
sequence of payments during its lifetime and the occurrence and size of payments are fur-
ther correlated with the settlement time. In the proposed model, we adopted the viewpoint
of a marked point process, where we treated the recurrence of payments transactions of a
claim as a counting process, the payment amounts as the associated marks of the counting
process, and the settlement of the claim as a terminal event for the marked point process.
The dependence among the counting process, its marks, and the terminal event was accom-
modated using bivariate parametric copulas as building blocks. To improve computational
efficiency, we further presented a sequential approach for the estimation of model param-
eters. The proposed joint model provides the predictive distributions of risk outcomes that
could be obtained via Monte Carlo simulation when closed forms are not easily available.

In the case study, we analyzed a portfolio of insurance claims from a commercial property
insurance provider. The empirical findings provided evidence of positive correlation between
the payments (both waiting time and payment amount) and settlement of claims, which sup-
ports our hypothesis that, on average, it takes longer for insurers to close out larger and more
complex claims. More importantly, we showcased how an insurer could leverage the granular
transaction data with the joint model to improve operations in claims management.

Acknowledgments. The authors thank the anonymous reviewers and the Editor for their
feedback and suggestions that improved the paper.

Funding. Yang was supported by NSF Grant DMS-2210712.

REFERENCES

AALEN, O. O., BORGAN, @. and GJESSING, H. K. (2008). Survival and Event History Analysis: A Process
Point of View. Statistics for Biology and Health. Springer, New York. MR2449233 https://doi.org/10.1007/
978-0-387-68560- 1

AAS, K., CzADO, C., FRIGESSI, A. and BAKKEN, H. (2009). Pair-copula constructions of multiple dependence.
Insurance Math. Econom. 44 182-198. MR2517884 https://doi.org/10.1016/j.insmatheco.2007.02.001

BEDFORD, T. and COOKE, R. M. (2002). Vines—a new graphical model for dependent random variables. Ann.
Statist. 30 1031-1068. MR1926167 https://doi.org/10.1214/a0s/1031689016

BROWN, E. R., IBRAHIM, J. G. and DEGRUTTOLA, V. (2005). A flexible B-spline model for multiple longitu-
dinal biomarkers and survival. Biometrics 61 64—73. MR2129202 https://doi.org/10.1111/1.0006-341X.2005.
030929.x

CAFFO, B. S., BOOTH, J. G. and DAVISON, A. C. (2002). Empirical supremum rejection sampling. Biometrika
89 745-754. MR1946509 https://doi.org/10.1093/biomet/89.4.745

CHI, Y.-Y. and IBRAHIM, J. G. (2006). Joint models for multivariate longitudinal and multivariate survival data.
Biometrics 62 432-445. MR2227491 https://doi.org/10.1111/j.1541-0420.2005.00448.x

CoOK, R. J. and LAWLESS, J. F. (2007). The Statistical Analysis of Recurrent Events. Statistics for Biology and
Health. Springer, New York. MR3822124

Diao, L., CoOK, R. J. and LEE, K.-A. (2013). A copula model for marked point processes. Lifetime Data Anal.
19 463-489. MR3119993 https://doi.org/10.1007/s10985-013-9259-3

DIEBOLD, F. X. and MARIANO, R. S. (1995). Comparing predictive accuracy. J. Bus. Econom. Statist. 13 134—
144.

DING, J. and WANG, J.-L. (2008). Modeling longitudinal data with nonparametric multiplicative random ef-
fects jointly with survival data. Biometrics 64 546-556. MR2432425 https://doi.org/10.1111/j.1541-0420.
2007.00896.x

ELASHOFF, R., L1, N. et al. (2016). Joint Models for Longitudinal and Time-to-Event Data. CRC Press, Boca
Raton.


https://mathscinet.ams.org/mathscinet-getitem?mr=2449233
https://doi.org/10.1007/978-0-387-68560-1
https://mathscinet.ams.org/mathscinet-getitem?mr=2517884
https://doi.org/10.1016/j.insmatheco.2007.02.001
https://mathscinet.ams.org/mathscinet-getitem?mr=1926167
https://doi.org/10.1214/aos/1031689016
https://mathscinet.ams.org/mathscinet-getitem?mr=2129202
https://doi.org/10.1111/j.0006-341X.2005.030929.x
https://mathscinet.ams.org/mathscinet-getitem?mr=1946509
https://doi.org/10.1093/biomet/89.4.745
https://mathscinet.ams.org/mathscinet-getitem?mr=2227491
https://doi.org/10.1111/j.1541-0420.2005.00448.x
https://mathscinet.ams.org/mathscinet-getitem?mr=3822124
https://mathscinet.ams.org/mathscinet-getitem?mr=3119993
https://doi.org/10.1007/s10985-013-9259-3
https://mathscinet.ams.org/mathscinet-getitem?mr=2432425
https://doi.org/10.1111/j.1541-0420.2007.00896.x
https://doi.org/10.1007/978-0-387-68560-1
https://doi.org/10.1111/j.0006-341X.2005.030929.x
https://doi.org/10.1111/j.1541-0420.2007.00896.x

COPULA MODEL FOR MARKED POINT PROCESS 2703

FAUCETT, C. L. and THOMAS, D. C. (1996). Simultaneously modelling censored survival data and repeatedly
measured covariates: A Gibbs sampling approach. Stat. Med. 15 1663—-1685.

GANJALI, M. and BAGHFALAKI, T. (2015). A copula approach to joint modeling of longitudinal measurements
and survival times using Monte Carlo expectation-maximization with application to aids studies. J. Biopharm.
Statist. 25 1077-1099.

GODAMBE, V. P. (1960). An optimum property of regular maximum likelihood estimation. Ann. Math. Stat. 31
1208-1211. MR0123385 https://doi.org/10.1214/aoms/1177705693

GRUTTOLA, V. D. and Tu, X. M. (1994). Modelling progression of CD4-lymphocyte count and its relationship
to survival time. Biometrics 50 1003-1014.

JOE, H. (2005). Asymptotic efficiency of the two-stage estimation method for copula-based models. J. Multivari-
ate Anal. 94 401-419. MR2167922 https://doi.org/10.1016/j.jmva.2004.06.003

KiM, S., ZENG, D., CHAMBLESS, L. and L1, Y. (2012). Joint models of longitudinal data and recurrent events
with informative terminal event. Stat. Biosci. 4 262-281.

KROL, A., FERRER, L., PIGNON, J.-P., PROUST-LIMA, C., DUCREUX, M., BOUCHE, O., MICHIELS, S. and
RONDEAU, V. (2016). Joint model for left-censored longitudinal data, recurrent events and terminal event: Pre-
dictive abilities of tumor burden for cancer evolution with application to the FFCD 2000-05 trial. Biometrics
72 907-916. MR3545683 https://doi.org/10.1111/biom.12490

LAIRD, N. M. and WARE, J. H. (1982). Random-effects models for longitudinal data. Biometrics 38 963-974.

L1, N., ELASHOFF, R. M., L1, G. and TSENG, C.-H. (2012). Joint analysis of bivariate longitudinal ordinal
outcomes and competing risks survival times with nonparametric distributions for random effects. Stat. Med.
31 1707-1721. MR2947519 https://doi.org/10.1002/sim.4507

LIN, H., MCcCULLOCH, C. E. and MAYNE, S. T. (2002). Maximum likelihood estimation in the joint analysis of
time-to-event and multiple longitudinal variables. Stat. Med. 21 2369-2382. https://doi.org/10.1002/sim.1179

Liu, L. and HUANG, X. (2009). Joint analysis of correlated repeated measures and recurrent events processes in
the presence of death, with application to a study on acquired immune deficiency syndrome. J. R. Stat. Soc.
Ser. C. Appl. Stat. 58 65-81. MR2662234 https://doi.org/10.1111/j.1467-9876.2008.00641.x

Liu, L., HUANG, X. and O’QUIGLEY, J. (2008). Analysis of longitudinal data in the presence of informative
observational times and a dependent terminal event, with application to medical cost data. Biometrics 64 950—
958. MR2526647 https://doi.org/10.1111/j.1541-0420.2007.00954.x

MASAROTTO, G. and VARIN, C. (2012). Gaussian copula marginal regression. Electron. J. Stat. 6 1517-1549.
MR2988457 https://doi.org/10.1214/12-EJS721

MCDONALD, J. B. and XU, Y. J. (1995). A generalization of the beta distribution with applications. J. Econo-
metrics 66 133—-152.

NEWEY, W. K. and MCFADDEN, D. (1994). Large sample estimation and hypothesis testing. In Handbook of
Econometrics, Vol. IV. Handbooks in Econom. 2 2111-2245. North-Holland, Amsterdam. MR1315971

PAPAGEORGIOU, G., MAUFF, K., TOMER, A. and RIZOPOULOS, D. (2019). An overview of joint modeling of
time-to-event and longitudinal outcomes. Annu. Rev. Stat. Appl. 6 223-240. MR3939519 https://doi.org/10.
1146/annurev-statistics-030718-105048

PARRY, M., DAWID, A. P. and LAURITZEN, S. (2012). Proper local scoring rules. Ann. Statist. 40 561-592.
MR3014317 https://doi.org/10.1214/12-A0S971

PENG, R. D. (2018). Advanced statistical computing. Work in Progress.

PRENTICE, R. L. (1982). Covariate measurement errors and parameter estimation in a failure time regression
model. Biometrika 69 331-342. MR0671971 https://doi.org/10.1093/biomet/69.2.331

PROUST-LIMA, C., DARTIGUES, J.-F. and JACQMIN-GADDA, H. (2016). Joint modeling of repeated multivari-
ate cognitive measures and competing risks of dementia and death: A latent process and latent class approach.
Stat. Med. 35 382-398. MR3455508 https://doi.org/10.1002/sim.6731

Ri1zopouLos, D. (2012). Joint Models for Longitudinal and Time-to-Event Data: With Applications in R. CRC
press, Boca Raton.

RizopouLos, D. and GHOSH, P. (2011). A Bayesian semiparametric multivariate joint model for multiple longi-
tudinal outcomes and a time-to-event. Stat. Med. 30 1366—1380. MR2828959 https://doi.org/10.1002/sim.4205

RizopouLos, D., VERBEKE, G. and LESAFFRE, E. (2009). Fully exponential Laplace approximations for
the joint modelling of survival and longitudinal data. J. R. Stat. Soc. Ser. B. Stat. Methodol. 71 637-654.
MR2749911 https://doi.org/10.1111/j.1467-9868.2008.00704.x

RizopouLoSs, D., VERBEKE, G., LESAFFRE, E. and VANRENTERGHEM, Y. (2008). A two-part joint model for
the analysis of survival and longitudinal binary data with excess zeros. Biometrics 64 611-619. MR2432435
https://doi.org/10.1111/j.1541-0420.2007.00894.x

R1zopPouLOS, D., VERBEKE, G. and MOLENBERGHS, G. (2008). Shared parameter models under random ef-
fects misspecification. Biometrika 95 63—74. MR2409715 https://doi.org/10.1093/biomet/asm087


https://mathscinet.ams.org/mathscinet-getitem?mr=0123385
https://doi.org/10.1214/aoms/1177705693
https://mathscinet.ams.org/mathscinet-getitem?mr=2167922
https://doi.org/10.1016/j.jmva.2004.06.003
https://mathscinet.ams.org/mathscinet-getitem?mr=3545683
https://doi.org/10.1111/biom.12490
https://mathscinet.ams.org/mathscinet-getitem?mr=2947519
https://doi.org/10.1002/sim.4507
https://doi.org/10.1002/sim.1179
https://mathscinet.ams.org/mathscinet-getitem?mr=2662234
https://doi.org/10.1111/j.1467-9876.2008.00641.x
https://mathscinet.ams.org/mathscinet-getitem?mr=2526647
https://doi.org/10.1111/j.1541-0420.2007.00954.x
https://mathscinet.ams.org/mathscinet-getitem?mr=2988457
https://doi.org/10.1214/12-EJS721
https://mathscinet.ams.org/mathscinet-getitem?mr=1315971
https://mathscinet.ams.org/mathscinet-getitem?mr=3939519
https://doi.org/10.1146/annurev-statistics-030718-105048
https://mathscinet.ams.org/mathscinet-getitem?mr=3014317
https://doi.org/10.1214/12-AOS971
https://mathscinet.ams.org/mathscinet-getitem?mr=0671971
https://doi.org/10.1093/biomet/69.2.331
https://mathscinet.ams.org/mathscinet-getitem?mr=3455508
https://doi.org/10.1002/sim.6731
https://mathscinet.ams.org/mathscinet-getitem?mr=2828959
https://doi.org/10.1002/sim.4205
https://mathscinet.ams.org/mathscinet-getitem?mr=2749911
https://doi.org/10.1111/j.1467-9868.2008.00704.x
https://mathscinet.ams.org/mathscinet-getitem?mr=2432435
https://doi.org/10.1111/j.1541-0420.2007.00894.x
https://mathscinet.ams.org/mathscinet-getitem?mr=2409715
https://doi.org/10.1093/biomet/asm087
https://doi.org/10.1146/annurev-statistics-030718-105048

2704 L. YANG, P. SHI AND S. HUANG

SHI, P. (2014). Fat-tailed regression models. In Predictive Modeling Applications in Actuarial Science, Volume I
Predictive Modeling Techniques (E. W. Edward, G. Meyers and R. A. Derrig, eds.) 236-259. Cambridge Univ.
Press, Cambridge.

SHI, P. and YANG, L. (2018). Pair copula constructions for insurance experience rating. J. Amer. Statist. Assoc.
113 122-133. MR3803444 https://doi.org/10.1080/01621459.2017.1330692

SURESH, K., TAYLOR, J. M. G. and TSODIKOV, A. (2021). A Gaussian copula approach for dynamic predic-
tion of survival with a longitudinal biomarker. Biostatistics 22 504-521. MR4287165 https://doi.org/10.1093/
biostatistics/kxz049

TANG, A.-M. and TANG, N.-S. (2015). Semiparametric Bayesian inference on skew-normal joint modeling of
multivariate longitudinal and survival data. Stat. Med. 34 824-843. MR3326393 https://doi.org/10.1002/sim.
6373

TSIATIS, A. A. and DAVIDIAN, M. (2004). Joint modeling of longitudinal and time-to-event data: An overview.
Statist. Sinica 14 809-834. MR2087974

WHITE, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica 50 1-25. MR0640163
https://doi.org/10.2307/1912526

WULFSOHN, M. S. and TSIATIS, A. A. (1997). A joint model for survival and longitudinal data measured with
error. Biometrics 53 330-339. MR1450186 https://doi.org/10.2307/2533118

ZELLER, G. and SCHERER, M. (2022). A comprehensive model for cyber risk based on marked point pro-
cesses and its application to insurance. Eur. Actuar. J. 12 33-85. MR4443594 https://doi.org/10.1007/
s13385-021-00290- 1

Znu, H., IBRAHIM, J. G., CHI, Y.-Y. and TANG, N. (2012). Bayesian influence measures for joint models
for longitudinal and survival data. Biometrics 68 954-964. MR3055200 https://doi.org/10.1111/j.1541-0420.
2012.01745.x


https://mathscinet.ams.org/mathscinet-getitem?mr=3803444
https://doi.org/10.1080/01621459.2017.1330692
https://mathscinet.ams.org/mathscinet-getitem?mr=4287165
https://doi.org/10.1093/biostatistics/kxz049
https://mathscinet.ams.org/mathscinet-getitem?mr=3326393
https://doi.org/10.1002/sim.6373
https://mathscinet.ams.org/mathscinet-getitem?mr=2087974
https://mathscinet.ams.org/mathscinet-getitem?mr=0640163
https://doi.org/10.2307/1912526
https://mathscinet.ams.org/mathscinet-getitem?mr=1450186
https://doi.org/10.2307/2533118
https://mathscinet.ams.org/mathscinet-getitem?mr=4443594
https://doi.org/10.1007/s13385-021-00290-1
https://mathscinet.ams.org/mathscinet-getitem?mr=3055200
https://doi.org/10.1111/j.1541-0420.2012.01745.x
https://doi.org/10.1093/biostatistics/kxz049
https://doi.org/10.1002/sim.6373
https://doi.org/10.1007/s13385-021-00290-1
https://doi.org/10.1111/j.1541-0420.2012.01745.x

	Introduction
	Literature on joint models
	The copula approach
	Our contribution

	Joint models using copulas
	Copula model formulation
	Copula model components

	Inference and prediction
	Estimation
	Prediction

	Numerical experiments
	Settings
	Finite sample performance
	Robustness against copula misspeciﬁcation
	Predictive accuracy

	Application
	Data characteristics
	Empirical results
	Comparison with independence model

	Conclusion
	Acknowledgments
	Funding
	References

