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In single sheets of graphene, vacancy-induced states have been shown to host an effective spin-1=2 hole
that can be Kondo screened at low temperatures. Here, we show how these vacancy-induced impurity states
survive in twisted bilayer graphene (TBG), which thus provides a tunable system to probe the critical
destruction of the Kondo effect in pseudogap hosts. Ab initio calculations and atomic-scale modeling are
used to determine the nature of the vacancy states in the vicinity of the magic angle in TBG, demonstrating
that the vacancy can be treated as a quantum impurity. Utilizing this insight, we construct an Anderson
impurity model with a TBG host that we solve using the numerical renormalization group combined with
the kernel polynomial method. We determine the phase diagram of the model and show how there is a strict
dichotomy between vacancies in the AA=BB versus AB=BA tunneling regions. In AB=BA vacancies, the
Kondo temperature at the magic angle develops a broad distribution with a tail to vanishing temperatures
due to multifractal wave functions at the magic angle. We argue that scanning tunneling microscopy in the
vicinity of the vacancy can act as a probe of both the critical single-particle states and the underlying many-
body ground state in magic-angle TBG.

DOI: 10.1103/PhysRevLett.133.126503

Twisted van der Waals heterostructures have taken the
condensed matter community by storm [1–4]. Since the
first experimental evidence of the band reconstruction and
emergence of a flat band in twisted bilayer graphene (TBG)
at twist angle ∼1° [5], a wide range of experimental and
technical breakthroughs [6–9] have paved the way for the
discovery and reproducible observations of correlated
insulating states [10] and superconductivity [11] in
magic-angle TBG, highlighting the vast potential and
intriguing properties of these moiré materials [12–37].
These ideas have now been extended to twisted bilayer
transition metal dichalcogenides (TMD) [38–42], quantum
magnets [43,44], high-temperature superconductors [45–49],
and bosonic superfluids in optical lattices [50–53]. To
unravel the nature of the underlying many-body states in
moiré materials, it is essential to explore new ways to extract
electron correlations while using current experimental
capabilities.
One potentially fruitful direction is to probe the nature of

impurity states, accurately measurable with scanning tun-
neling microscopy (STM), to gain insights into the many-
body ground state that the impurity states are coupled to.
For instance, tunneling spectra of impurity-induced

resonances in superconductors reveal signatures of the
pairing symmetry [54]. For single sheets of graphene,
creating impurity states strongly coupled to the itinerant
electrons was a challenge until it was realized that vacancy-
induced bound states act like a spin-1=2 hole, originating
from the vacancy’s nearest-neighbor σ states which couple
to the π band due to the local curvature near the vacancy
site [55–60]. This represents a clear-cut realization of
the pseudogap Anderson impurity model (AIM), which
features a quantum critical point at nonzero Kondo cou-
pling [61–73]. Yet, experimentally observing this quantum
critical point has remained out of reach due to the lack of
tunability of vacancy states, despite the observation of
Kondo screening in graphene hosts [59,74].
In this work, we study vacancy-induced impurity states

in TBG away from and at the magic angle with atomic-
scale and effective lattice models. Using ab initio calcu-
lations, we show that a vacancy [75] induces an effective
spin-1=2 hole on the atomic scale and compute the
hybridization between the vacancy and the twisted pair
of π bands, showing a clear dichotomy between AA=BB
and AB=BA regions. This is in stark contrast to the recent
description of TBG as a topological Kondo lattice problem
with suitably defined “impurity” limits (i.e., realizing local
moments on the moiré scale) [30–37,76]. Here, we focus
on atomic-scale vacancies that arise in realistic experi-
mental settings across a wide array of moiré materials

*Contact author: yueqing.chang@rutgers.edu
†Contact author: jed.pixley@physics.rutgers.edu

PHYSICAL REVIEW LETTERS 133, 126503 (2024)
Editors' Suggestion

0031-9007=24=133(12)=126503(9) 126503-1 © 2024 American Physical Society



(e.g., graphene [77], TMD [78,79], cuprate superconduc-
tors [80,81]). We use ab initio derived vacancy states to
construct an effective quantum impurity model for a
realistic vacancy, which is solved by combining the kernel
polynomial method [82] and the numerical renormalization
group [83] (KPMþ NRG [84]). Away from the magic
angle, this realizes a tunable, pseudogap AIM where
twisting the bilayers tunes the vacancy through its quantum
phase transition. At the magic angle, the impurity is always
Kondo screened at low temperatures. We study the dis-
tribution of Kondo temperatures TK across the sample to
show how TK in the AB region is strongly suppressed
relative to the AA region.
Microscopic picture—To set the stage, we investigate

how the vacancy σ (Vσ) state in TBG at the magic angle
(θM ¼ 1.05° [85]) hybridizes with the twisted pair of π

bands using an accurate machine-learned tight-binding
model [86], combined with embedded Vσ states from den-
sity functional theory (DFT) calculations [87]. Figure 1(c)
shows the structure of TBG at θM obtained by fully relaxing
freestanding TBG using the interatomic potential model
[110–112] with the method described in Refs. [113,114],
using the molecular dynamics (MD) simulation package
LAMMPS [115]. The in-plane and out-of-plane atomic

relaxations manifest in enlarged AB=BA regions, consis-
tent with previous work [113,114,116–119]. Figure 1(a)
shows the band structure of fully relaxed pristine TBG in
the atomic-scale tight-binding model, and Fig. 1(b) the
local density of states (LDOS) projected onto the potential
vacancy sites indicated in panel (c). The flat-band states are
mostly localized in the AA regions (except at Γ) and have
decreasing projections onto sites further away from the AA
center. This indicates that an impurity in the AA (AB)
regions hybridizes more (less) with the localized flat-band
states.
To understand microscopically how vacancy states

hybridize with the π bands in TBG, we first consider a
monovacancy in single-layer graphene. Removing one
atom leaves dangling vacancy Vπ and Vσ orbitals at the
three adjacent atoms, which undergo a Jahn–Teller dis-
tortion so that one isolated atom moves further away from
the vacancy, and the other two atoms move closer to re-
bond. This leads to one Vσ state localized at the isolated
site near the Fermi level and a Vπ quasilocalized zero
mode [56,57]. In the experimentally relevant regime, the
effect of the Vπ zero mode can be qualitatively captured by
a renormalization of the Vσ Coulomb interaction [59]; we
thus focus on the Vσ state in the following.

Vac.

With local corrugation introduced

FIG. 1. Atomic-scale modeling of TBG with a vacancy. (a) Band structure of pristine TBG at θM without vacancy. K̄ and K̄0 indicate
the two valleys of the moiré Brillouin zone. (b) Projected local density of states (LDOS) at the potential vacancy sites denoted in (c),
color coded. (c) The C atoms in the relaxed pristine TBG at θM, with the center of AA and AB regions annotated. The atoms are colored
coded according to the local interlayer spacing. The hexagon represents the moiré unit cell. The 19 potential vacancy sites chosen for
computing the LDOS in (b) are indicated by thicker dots. (d) ρ↑ − ρ↓ for three typical vacancy configurations, computed in untwisted
bilayer graphene using DFT. VAB and VAB0 vacancies could be present in TBG AB regions, while VAA vacancies are typical in AA
regions. The gray (orange) circles denote the C atoms in the upper (lower) layers, and the red cross denotes the vacancy. The blue (red)
lines highlight the shorter (longer) distances between three adjacent sites. The clouds of ρ↑ − ρ↓ are plotted in red, showing that most of
the excessive spin is contributed by the σ lobe at the isolated adjacent site. (e) Hybridization function at θM between the Vσ state and the
TBG bath for the three vacancy configurations. The LDOS for the AA site is also plotted in the gray curve for comparison. The insets
show the hybridization at θ ¼ 1.35°, which features a Dirac-cone-like low-energy dispersion with larger flat-band bandwidth compared
to 1.05°. (f) Side view of AA-stacked bilayer graphene near the vacancy site, with manual vertical displacements of the three adjacent
sites away from equilibrium, denoted by u⊥. The bonded sites (connected by a blue line) are displaced downward by the same u⊥.
(g) Hybridization strength V between the Vσ state and the bath versus u⊥ for the untwisted VAA vacancy (blue) and when coupled to the
TBG bath (red). Lines are linear fits, showing that V is tunable by u⊥ and θ.
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In single-layer graphene, the coupling between the Vσ

state and the π bands requires finite local corrugation that
breaks the mirror symmetry [59,60]. This coupling arises
naturally if a second, untwisted layer is stacked onto
freestanding graphene, which breaks the mirror symmetry
near the vacancy site in the lower layer. To capture this,
we performed DFT calculations using a 6 × 6 supercell of
freestanding untwisted bilayer graphene with one vacancy
in the bottom layer in three typical local environments [87],
named after the registry of the two sheets of graphene.
Note that, in AB-stacked graphene, there are two types of
vacancies, VAB and VAB0 [see Fig. 1(d)]. Similar to single-
layer graphene, the three adjacent atoms near the vacancy
site relax to a final equilibrium configuration with almost
no corrugation near the vacancy. Figure 1(d) shows the
calculated excessive spin density, ρ↑ − ρ↓ [120], which is
centered at the isolated adjacent C atom, contributed mainly
by the σ-lobe toward the vacancy. The details of the
calculations and the electronic structure of bilayer graphene
with a vacancy are summarized in [87].
In the dilute limit, we expect the 6 × 6 super-

cell simulation of the Vσ state in untwisted bilayer
graphene to mimic the actual vacancy in TBG near θM.
Using our DFT results in untwisted bilayer graphene,
we compute the hybridization function between the
dangling Vσ state and the “bath” (TBG without the
vacancy and its three adjacent sites) from the microscopic
model,ΔmicroðωÞ ¼ π

P

n;k jVnkj2δðω − ϵnkÞ. Here, Vnk ¼
hϕVσ

jHVσ -bathPbath-TBGjψnki represents the tunneling matrix
element between the Vσ state jϕVσ

i and the pristine TBG
eigenstate jψnki with eigenvalue ϵnk. HVσ -bath is the
hopping between the Vσ state and the C atoms in the
bath;Pbath-TBG projects the TBG eigenstate from the Hilbert
space of N-site TBG to that of the (N − 1)-orbital π bath.
Figure 1(e) shows ΔmicroðωÞ for the three vacancy envi-
ronments at θM and the LDOS at the AA center, with insets
showing the result at 1.35°. In comparison, VAA hybridizes
much stronger with the bath, especially with the flat-band
states.
In experiments, the substrate almost always induces

local corrugation in TBG, which is not captured in our
MD simulations. Therefore, we manually introduced local
corrugation near the vacancy to study how it changes the
hybridization. Figure 1(f) shows a schematic side view of
how the three vacancy-adjacent atoms are displaced by u⊥
either upward or downward [87] for a VAA vacancy.
Figure 1(g) shows that the hybridization strength V

increases with u⊥ and decreases with θ. For u⊥ > 0.2 Å,
a localized Vσ state can no longer be identified. We find that
VAA vacancies are more sensitive to twisting [87].
In summary, a vacancy in bilayer graphene induces a

localized spin density, which hybridizes with the π bath
with a strength tunable via the local environment, atomic
corrugation, and the twist angle, suggesting that TBG with

a monovacancy realizes a tunable, pseudogap AIM. To
make the AIM tractable, we construct an effective model
with the impurity parameters derived from the microscopic
model and the hybridization function from a simpler TBG
bath. The latter has all of the salient features we have just
found and allows us to describe the spectral properties of
TBG down to sufficiently low energy scales to treat the
Kondo effect accurately.
Quantum impurity model—We use the AIM, with the

Hamiltonian H ¼ Hhost þHhyb þHimp, to emulate TBG
with a vacancy. The host contributions are typically written
in the single-particle eigenbasis, where ϵk is the eigene-
nergy of a state created by c†kσ with a wave function
ϕkσðjÞ ¼ hj; σjϵki at lattice site j [121]. Then,

Hhost ¼
X

k;σ

ϵkc
†

kσckσ; Hhyb ¼ V
X

σ

�

d†σcRσ þH:c:
�

; ð1Þ

where R labels the impurity site, cRσ ¼
P

k ϕkðRÞckσ, and
V > 0 is the hybridization strength. The effect of the host
on the impurity is described by the hybridization function

ΔRðωÞ ¼ πV2
X

k

jϕkðRÞj2δðω − ϵkÞ≡ πV2ρRðωÞ; ð2Þ

with ρR the host LDOS per spin orientation (ϕk ≡ ϕkσ).
One approximation we consider to help gain physical
insight into the problem ignores the spatial contribu-
tion of the wave function to the LDOS, so that the
LDOS in the hybridization function is replaced by the
global DOS (GDOS, per spin orientation, per lattice
site) ρðωÞ ¼ N−1

P

k δðω − ϵkÞ.
To describe the ω dependence of ΔRðωÞ, we use a

microscopic lattice model of TBG [122] derived from the
Bistritzer–MacDonald (BM) continuum model [85,87],
which can be scaled up in system size, provides higher
resolution for the ultralow-energy features in the LDOS and
captures the emergent multifractality in TBG’s wave
functions at θM [87]. We can modify ΔRðωÞ by varying
either the twist angle θ or the interlayer tunneling w, since
only their ratio matters at small twist angles in the form
α≡ w=½2vFkD sinðθ=2Þ�. Here, the Fermi velocity is vF ¼
3ta0=ð2ℏÞ with t ¼ 2.8 eV, and the distance from the Γ to
the Dirac point is kD ¼ 4π=ð3a0Þ with a0 ≈ 2.46 Å the
graphene lattice constant. It is more convenient for us to
vary w at fixed θ ¼ 1.05° as we treat the incommensurate
twist via a rational approximation. The magic angle αM
then occurs at w ¼ 0.11 eV.
We focus on the charge neutrality point and show the

DOS of the TBG lattice model in Fig. 2(a). Relaxation in
the lattice model is accounted for by breaking the symmetry
in the tunneling between the AA and AB regions, with
wAA=wAB ¼ 0.75 [123]. In the BM model, the GDOS can
have a charge neutrality van Hove singularity at the magic
angle, which (ignoring how the impurity is embedded in
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the host) leads to Kondo screening of the impurity [76].
Incorporating the impurity location, the tunneling strengths
in the lattice model mark different sublattice tunneling
geometries dominated by AA=BB or AB=BA regions
[Fig. 2(b)]. The LDOS in each representative region,
depicted in Fig. 2(c) away from αM, reflects how the
probability density of wave functions in the miniband are
concentrated near the AA sites, consistent with our atomic-
scale model results [87] and expectations from previous
TBG Wannier-function calculations [14,15,124–126].
Finally, the impurity part in the Hamiltonian reads

Himp ¼ ϵdðn̂d↑ þ n̂d↓Þ þ Un̂d↑n̂d↓: ð3Þ

An impurity state with spin σ and on-site repulsion U,
localized at the vacancy site R, is created by d†σ, has a
number operator n̂dσ ¼ d†σdσ, and an energy ϵd measured
from the host Fermi energy EF ¼ 0. We chooseU ¼ 2.2 eV
and ϵd ¼ −0.5 eV as motivated by our microscopic analy-
sis [87]. Note that the hybridization functions already break
particle-hole symmetry and that the TBG half bandwidth
(of the full spectrum, not only the miniband) D depends
weakly on α, DðαÞ ≈ 8 eV. Below, the hybridization
strength is either varied or chosen as V ¼ 1 eV to estimate
the typical TK. The effective Kondo coupling is J ∼ V2=U.
Many-body solution—We first consider the T ¼ 0 phase

diagram for a vacancy in TBG with variable hybridization
strength V and twist parameter α. A single sheet of gra-
phene realizes a clear-cut pseudogap AIM with a local-
moment and Kondo-singlet phase. Away from αM, the
GDOS of TBG still follows the pseudogap behavior: at low
energies, ρðωÞ ∼ jωj=v2, where v ¼ vðαÞ is the renormal-
ized Dirac velocity. As vðαÞ vanishes at αM (αM ≈ 1=

ffiffiffi

3
p

for the first magic angle in [85]), we may expand it as

vðαÞ ∼ jα − αMj close to αM. From previous NRG studies,
we know that such a particle-hole asymmetric pseudogap
AIM has a critical Kondo coupling Jc with ρ0Jc ∼Oð1Þ
[63–65,70,127]. Hence, from ρ0 ∼ 1=v2ðαÞ, we expect

Jc ∼ jα − αMj2 ⇔ Vc ∼ jα − αMj: ð4Þ

At αM, ρðωÞ is smooth at low ω with finite ρð0Þ. Hence, at
T ¼ 0, a Kondo-singlet phase is found for arbitrarily
small V.
We use KPM with a linear lattice size L ¼ 569a0 [122]

and an expansion order of NC ¼ 218 to calculate the
Wilson-chain coefficients. Then, from the NRG impurity
contribution to the spin susceptibility χimp, we extract the
effective magnetic moment μeff ¼ limT→0TχimpðTÞ. This
yields a phase diagram, Fig. 3(a), where the local-moment
and Kondo-singlet phases are characterized by μeff ¼ 1=4
and μeff ¼ 0, respectively. VcðαÞ for hybridization func-
tions proportional to an LDOS (with R in either the AA or
AB region) and to the GDOS (equivalent to the R-averaged
LDOS) behave qualitatively similarly. As expected, in the
AA region, the enhanced LDOS leads to a smaller Vc

relative to the AB=BA regions. For the GDOS, we can use
the asymptotic low-energy behavior mentioned before
(ρðωÞjα≠αM ∼ jωj, ρðωÞjαM ¼ const) to adjust and extend
the Wilson-chain input at energy scales below the KPM
resolution [87]. The data with adjusted input nicely
reproduces Eq. (4) and confirms our expectations:
There is a finite Vc for all α ≠ αM, decreasing linearly
with α close to αM. At α ¼ αM, any V > 0 leads to Kondo

FIG. 2. Hybridization functions for the effective lattice model
of TBG in Eq. (1). (a) The model GDOS at different twist
parameters, where α ¼ 0.081 (w ¼ 0.11 eV) corresponds to the
magic angle. (b) Tunneling map, where different colors indicate
the locally dominating tunneling according to the effective lattice
model [87]. The inset shows the microscopic lattice spacing
across a patch. (c) Comparison of GDOS and LDOS in the AA
and AB regions at α ¼ 0.067 (w ¼ 0.09 eV). The LDOS is
averaged over 200 samples of random twisted boundary con-
ditions; the GDOS is additionally averaged over the origin of
rotation in TBG across 400 samples.

FIG. 3. Solution of the quantum impurity model. (a) Phase
diagram at T ¼ 0. The critical hybridization strength Vc that
separates the local-moment (μeff ¼ 1=4) and Kondo-singlet phase
(μeff ¼ 0) as a function of α ¼ w=½2vFkD sinðθ=2Þ� vanishes
linearly at the magic angle αM ≈ 1=

ffiffiffi

3
p

[cf. Eq. (4)]. Dashed
lines show results for Δ ∝ ρ with the GDOS ρ or with an LDOS
ρR (R in the AA or AB region), see Eq. (2). For the solid lines, the
input is adjusted to match the analytically known asymptotic low-
energy behavior [87]. (b) Distribution of TK for different impurity
locations across magic-angle TBG. We consider V ¼ 1 eV and
roughly 500 (1500) sites for the AA (AB) region. The AB,
compared to the AA distribution, is broader, centered at a smaller
value, and has a tail reaching down to very low TK.
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screening, consistent with a recent study using the GDOS
in TBG [76].
Focusing on αM, where the ground state is always

Kondo-screened, we may ask below which T the
Kondo-singlet phase occurs across the sample, i.e., how
TK changes with the location of the impurity at fixed V
(say, 1 eV). We use TK ≃ 1=j4χlocj [128] as a robust and
efficient estimate, where χloc ¼ ∂hhSzijh¼0 (with hSzi the
local magnetization) is the local susceptibility computed at
T ¼ 0. In Fig. 3(b), we plot the distribution of Kondo scales
found for a large number of different sites. There is a strict
dichotomy between vacancies in the AAversus AB regions.
The LDOS throughout the AA region is rather similar,
leading to a narrow distribution of Kondo scales. By
contrast, the LDOS in the AB region varies widely at
low energies (as it includes VAB and VAB0 contributions)
and is generally smaller than in the AA region. This leads
to a broad distribution of Kondo scales, centered at a
smaller value than in the AA region, and with a tail to
vanishing TK. This tail is a signature of a broad distribution
we expect [84,129–131] to result from the multifractal
wave functions at the magic angle that arise in several
incommensurate models of TBG [51,132] including Hhost
in Eq. (1) (see [87]).
In reality, the TBG bath becomes correlated very close to

θM, and the noninteracting bath description breaks down.
Therefore, at T ¼ 0, our results are directly applicable
across the majority of the phase diagram in Fig. 3(a), while
future work is needed to incorporate the strongly correlated
bath that can induce a gap at charge neutrality [133]. At
finite temperatures above the correlated gap, our results
serve as a description of the normal state of the defect-
induced Kondo effect in TBG.
Conclusion—Using ab initio calculations, we embedded

a vacancy into pristine TBG and demonstrated how it
hybridizes with the low-energy miniband in the vicinity of
the magic angle. From this insight, we built an effective
AIM that we solved with KPMþ NRG [84]. We found a
variety of many-body ground states and a pseudogap
quantum critical point tunable by the twist angle. At the
magic angle, the vacancy is always Kondo screened,
leading to a distribution of Kondo temperatures that is
broad in the AB region due to the underlying multifractal
single-particle eigenstates [51,132]. We propose the STM
response of such Kondo-induced vacancy states as a probe
of the underlying many-body ground states in TBG and
moiré materials more broadly.
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Magnetic impurities coupled to a fractal spectrum, Phys.
Rev. B 106, 165123 (2022).

[85] R. Bistritzer and A. H. MacDonald, Moiré bands in twisted
double-layer graphene, Proc. Natl. Acad. Sci. U.S.A. 108,
12233 (2011).

[86] S. Pathak, T. Rakib, R. Hou, A. Nevidomskyy, E. Ertekin,
H. T. Johnson, and L. K. Wagner, Accurate tight-binding
model for twisted bilayer graphene describes topological
flat bands without geometric relaxation, Phys. Rev. B 105,
115141 (2022).

[87] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.133.126503, which
includes Refs. [88–109], for additional information about
the details of atomic-scale simulations, construction of the
impurity model, discussions about emergent multifractal-
ity, and further details of numerical renormalization group
calculations.

[88] G. Kresse and J. Hafner, Ab initio molecular dynamics for
liquid metals, Phys. Rev. B 47, 558 (1993).

[89] G. Kresse and J. Furthmüller, Efficiency of ab-initio total
energy calculations for metals and semiconductors using a
plane-wave basis set, Comput. Mater. Sci. 6, 15 (1996).

[90] G. Kresse and J. Furthüller, Efficient iterative schemes for
ab initio total-energy calculations using a plane-wave basis
set, Phys. Rev. B 54, 11169 (1996).

[91] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized
gradient approximation made simple, Phys. Rev. Lett. 77,
3865 (1996).

[92] P. A. Thrower and R. M. Mayer, Point defects and self-
diffusion in graphite, Phys. Status Solidi (a) 47, 11 (1978).

[93] M. Leccese and R. Martinazzo, Anomalous delocalization
of resonant states in graphene & the vacancy magnetic
moment, Electronic structure and magnetism of inorganic
compounds 5, 024010 (2023).

[94] V. G. Miranda, L. G. G. V. Dias Da Silva, and C. H.
Lewenkopf, Coulomb charging energy of vacancy-induced
states in graphene, Phys. Rev. B 94, 075114 (2016).

[95] M. Schüler, M. Rösner, T. O. Wehling, A. I. Lichtenstein,
and M. I. Katsnelson, Optimal Hubbard models for
materials with nonlocal Coulomb interactions: Graphene,
silicene, and benzene, Phys. Rev. Lett. 111, 036601
(2013).

[96] H. J. Changlani, H. Zheng, and L. K. Wagner, Density-
matrix based determination of low-energy model Hamil-
tonians from ab initio wavefunctions, J. Chem. Phys. 143,
102814 (2015).

[97] N. Marzari and D. Vanderbilt, Maximally localized gen-
eralized Wannier functions for composite energy bands,
Phys. Rev. B 56, 12847 (1997).

[98] A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D.
Vanderbilt, and N. Marzari, wannier90: A tool for
obtaining maximally-localised Wannier functions,
Comput. Phys. Commun. 178, 685 (2008).

[99] A. A. Mostofi, J. R. Yates, G. Pizzi, Y.-S. Lee, I. Souza, D.
Vanderbilt, and N. Marzari, An updated version of wan-
nier90: A tool for obtaining maximally-localised Wannier
functions, Comput. Phys. Commun. 185, 2309 (2014).

[100] G. Pizzi et al., Wannier90 as a community code: New
features and applications, J. Phys. Condens. Matter 32,
165902 (2020).

[101] V. Dobrosavljević, T. R. Kirkpatrick, and B. G. Kotliar,
Kondo effect in disordered systems, Phys. Rev. Lett. 69,
1113 (1992).

[102] E. Miranda, V. Dobrosavljević, and G. Kotliar, Kondo
disorder: A possible route towards non-Fermi-liquid
behaviour, J. Phys. Condens. Matter 8, 9871 (1996).

[103] P. S. Cornaglia, D. R. Grempel, and C. A. Balseiro, Uni-
versal distribution of Kondo temperatures in dirty metals,
Phys. Rev. Lett. 96, 117209 (2006).

[104] S. Kettemann, E. R. Mucciolo, and I. Varga, Critical metal
phase at the Anderson metal-insulator transition with
Kondo impurities, Phys. Rev. Lett. 103, 126401 (2009).

[105] V. G. Miranda, L. G. G. V. Dias da Silva, and C. H.
Lewenkopf, Disorder-mediated Kondo effect in graphene,
Phys. Rev. B 90, 201101 (2014).

[106] E. C. Andrade, A. Jagannathan, E. Miranda, M. Vojta, and
V. Dobrosavljević, Non-Fermi-liquid behavior in metallic
quasicrystals with local magnetic moments, Phys. Rev.
Lett. 115, 036403 (2015).

[107] A. M. Coe, G. Li, and E. Y. Andrei, Cryogen-free modular
scanning tunneling microscope operating at 4-K in high
magnetic field on a compact ultra-high vacuum platform,
arXiv:2404.05002.

[108] R. Peters, T. Pruschke, and F. B. Anders, Numerical
renormalization group approach to Green’s functions for

PHYSICAL REVIEW LETTERS 133, 126503 (2024)

126503-8



quantum impurity models, Phys. Rev. B 74, 245114
(2006).

[109] A. Weichselbaum and J. von Delft, Sum-rule conserving
spectral functions from the numerical renormalization
group, Phys. Rev. Lett. 99, 076402 (2007).

[110] D.W. Brenner, O. A. Shenderova, J. A. Harrison, S. J.
Stuart, B. Ni, and S. B. Sinnott, A second-generation
reactive empirical bond order (REBO) potential energy
expression for hydrocarbons, J. Phys. Condens. Matter 14,
783 (2002).

[111] A. N. Kolmogorov and V. H. Crespi, Registry-dependent
interlayer potential for graphitic systems, Phys. Rev. B 71,
235415 (2005).

[112] W. Ouyang, D. Mandelli, M. Urbakh, and O. Hod,
Nanoserpents: Graphene nanoribbon motion on two-
dimensional hexagonal materials, Nano Lett. 18, 6009
(2018).

[113] T. Rakib, P. Pochet, E. Ertekin, and H. T. Johnson,
Corrugation-driven symmetry breaking in magic-angle
twisted bilayer graphene, Commun. Phys. 5, 242 (2022).

[114] K. Krongchon, T. Rakib, S. Pathak, E. Ertekin, H. T.
Johnson, and L. K. Wagner, Registry-dependent potential
energy and lattice corrugation of twisted bilayer graphene
from quantum Monte Carlo, Phys. Rev. B 108, 235403
(2023).

[115] A. P. Thompson, H. M. Aktulga, R. Berger, D. S.
Bolintineanu, W.M. Brown, P. S. Crozier, P. J. in
’t Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R.
Shan, M. J. Stevens, J. Tranchida, C. Trott, and S. J.
Plimpton, LAMMPS—a flexible simulation tool for par-
ticle-based materials modeling at the atomic, meso, and
continuum scales, Comput. Phys. Commun. 271, 108171
(2022).

[116] S. Dai, Y. Xiang, and D. J. Srolovitz, Twisted bilayer
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