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Abstract— Achieving volitional control for powered prosthe-
ses necessitates reliable sensing modalities capable of accurately
interpreting user intentions to walk, run, and transition on
and between surfaces of varying compliance. However, the
optimal amount of information and signal sources that can
be used as input to such strategies is yet a question to be
determined. In this work, we are building upon the foundations
of our prior studies and focusing on reducing the number of
sensors and recorded signals needed to reliably predict and
classify user intent to transition from rigid to compliant surfaces
of variable stiffness. Comparing two feature selection and
dimensionality reduction approaches, we show that the feature
vectors generated by the Neighborhood Component Analysis
(NCA) algorithm exceed the prediction accuracy capabilities
of Particle Swarm Optimization (PSO) by up to 15%, while
NCA reduces the number of the selected classification input
features by 91% on average. Employing a k Nearest Neighbors
classification framework in conjunction with a Naive Bayes
approach, our algorithm can achieve an average predictive
accuracy of 77.25%, leading to reliable predictions about the
upcoming steps of the user.

I. INTRODUCTION

In order for individuals with lower limb amputation to
regain mobility and achieve natural, intuitive locomotion,
it is necessary to develop predictive models capable of
understanding complex movements and mode transitions,
particularly on surfaces of varying stiffness [1]. A critical
aspect of these models lies in the sensors employed to
capture the intricate interplay of leg and body dynamics
with the environment. Sensors that measure the muscle
activity and kinematics of the wearer are usually employed
to capture the perception and proactive actions of the wearer,
as well as monitor the reactive responses evoked by various
environmental stimuli. However, as the pursuit of precision
and accuracy in predicting surface compliance transitions
continues, a need arises to reevaluate the number and types of
sensors utilized. For individuals with lower limb amputation
specifically, the added weight, complexity, and maintenance
requirements of multiple sensors suggested for most conven-
tional approaches can hinder the adoption and long-term use
of prosthetic and assistive devices [2].

Researchers have suggested employing high-level control
strategies for online classification of the user’s intended
ambulation mode, which commonly rely on onboard me-
chanical sensors, such as inertial measurement units (IMU)
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and load cells [3,4], or a combination of mechanical sensors
along with muscle activity signals, such as electromyography
(EMG) [5, 6], or sonomyography [7, 8]. The integration of
vision and depth sensing has also shown improvements in
environment and ambulation mode classification [9]. While
these studies demonstrate high accuracy levels, flawless clas-
sification in the realm of compliant surfaces and transitions
between terrains of variable stiffness remains elusive. Recent
works [10, 11] have advanced the current knowledge on
prediction systems for compliant terrain; however, experience
has shown that increasing the number of recorded signal
sources - thus increasing the level of system complexity -
does not necessarily yield analogously high performance.

In light of these challenges, there is an ongoing quest for
enhancing locomotion prediction tasks for individuals with
lower limb amputation while employing a minimal sensor
approach. By strategically selecting and fusing a minimal
number of sensors, we can develop efficient predictive mod-
els that balance accuracy with practicality. This study there-
fore aims to assess the effectiveness of various suggested data
sources for user intent recognition and identify a concise set
of informative sources for high-level prosthetic ankle control.
Building upon our previous works [10, 11], we explore and
compare the efficiency of two feature selection algorithms in
determining a reduced set of data inputs, ensuring accurate
intent recognition when transitioning between surfaces of
more than one level of stiffness for the case of compliant
terrains. Specifically, we explore the integration of EMG,
kinematic signals, and Ground Reaction Forces (GRFs),
aiming to streamline the predictive modeling process. We
endeavor to create a framework that does not only accurately
predict transitions to compliant surfaces but does so with
minimal intrusiveness. Our objective is to advance the ex-
isting knowledge regarding anticipatory mechanisms during
transitions to compliant surfaces and broaden the relevance
of our research to encompass various surfaces encountered
in activities of daily living (ADLs).

II. METHODS

A. Participants

This analysis includes results from 5 healthy, able-bodied
(AB) participants (3 males, 2 females) with an average age of
26.2 ± 1.1 years. Each participant provided written consent
to complete a series of walking trials on a unique robotic
treadmill following a pre-defined experimental protocol. The
experimental protocol was approved by the University of
Delaware Institutional Review Board (IRB ID# 1544521-7).



Fig. 1: VST and visual feedback setup. The subject is walking on
a low stiffness surface (red patch) preparing to step back on a rigid
surface (blue patch).

B. Experimental Setup & Protocol

All participants completed a series of 5-minute long walk-
ing trials on the Variable Stiffness Treadmill (VST), a robotic
split-belt platform that allows the alteration of the vertical
compliance of the left belt as desired [12, 13]. This unique
setup allows us to conduct in-lab experiments and simulate
walking scenarios on compliant surfaces that correspond to
ADLs.

Using the VST, the rigid (R) ground in terms of stiff-
ness is modeled as 1 MN/m, while the compliant ground
for this series of experiments was modeled between 20
kN/m and 110 kN/m. The compliant stiffness range was
further separated into three distinct levels that correspond
to scenarios of high (H, e.g., thick carpet), medium (M,
e.g., grass), and low stiffness (L, e.g., sand) (see Table I).
To achieve a similar belt displacement for all participants,
the stiffness at which each subject walked was determined
as their body weight measurement divided by the desired
belt deflection (d) for each level. Throughout the entire
experimental session, participants were required to wear a
body weight support harness, which did not counterbalance
any of the subject’s weight and was solely employed for
safety purposes.

SR SH SM SL

Upper Bound (kN/m) 1000 110 69 39
Lower Bound (kN/m) 1000 70 40 20
Belt Deflection d (cm) 0 1 2 3

TABLE I: Stiffness ranges of each tested condition (R, H, M, and
L) and their corresponding left belt deflection (d).

To familiarize the participants with the VST, we included
a training phase during which no data were recorded. The
training session served the exclusive purpose of acclimating
the participants to the variable stiffness settings of our
treadmill, introducing them to a new visual feedback setup,
as well as self-selecting a comfortable walking speed that
would remain fixed throughout the actual walking trials.
After selecting a uniform treadmill speed value of 0.90 m/s
and completing the training phase, all participants engaged

in the evaluation trials. The data analyzed throughout this
work pertains to data collected during the evaluation trials.

The experimental protocol consisted of walking on the
VST, while both treadmill belts were set to rigid. At regular
intervals of about three to five consecutive gait cycles,
expected, unilateral (left belt) stiffness perturbations of a pre-
specified stiffness level (SH , SM , or SL) would occur for
the duration of a full gait cycle, before returning to the rigid
setting. For reference purposes, in this work, a gait cycle is
defined as starting and ending at left heel strike. The right
belt was set to rigid (SR) at all times. Each trial was followed
by a 1-minute long break before progressing to the remaining
stiffness levels. The order of the conditions tested in each
trial was randomized across participants.

As outlined above, all perturbations were anticipated, and
the participants were visually informed of the upcoming
surface stiffness change three gait cycles before it occurred.
The visual feedback setup included a large monitor that was
placed in front of the treadmill at a comfortable height for
the subject to see it while walking (see Fig. 1). The visual
feedback consisted of a colored patch (green for H, yellow
for M, red for L, and blue for R) that would travel from
the top to the bottom of the screen at each completed gait
cycle. The bottom of the screen aligned with the participant’s
current left step; thus, when the bottom of the screen was
blue the left belt setting was R, but when the bottom of
the screen changed color (green, yellow, or red) the left belt
setting was set to SH , SM , or SL respectively (see Fig. 1).
Since our strategy depends on the anticipatory mechanisms
in human locomotion, it is important to emphasize that
the data analysis focuses on the gait cycles preceding each
perturbation, which are then compared with all R gait cycles,
except for the single R gait cycles following each surface
stiffness change.

C. Data Collection

Throughout the evaluation trials, we collected EMG sig-
nals from the muscles of both the left and right legs. EMG
wireless sensors (Trigno, Delsys Inc.) were strategically
placed on specific muscles, including the tibialis anterior
(TA), soleus (SOL), gastrocnemius (GA), rectus femoris
(RF), vastus medialis (VM), vastus lateralis (VL), and biceps
femoris (BF). The muscles of the left limb will hereon be
marked with an L ahead of the muscle name (i.e., LTA),
while the muscles of the right limb will hereon be marked
with an R ahead of the muscle name (i.e., RTA). The muscle
locations were determined following SENIAM recommen-
dations [14], and the EMG signals were sampled at 2 kHz.
Lower-body kinematics were additionally collected using 20
reflective markers placed on the pelvis, thighs, shanks, and
feet of the subjects. Kinematic data was sampled at 100 Hz
using a VICON motion capture system integrated with the
VST implementations [15]. The full subject instrumentation
is also schematically presented in Fig. 2. Finally, ground
reaction forces (GRF) under the leading (left) foot were
recorded at a 65Hz sampling rate using high-resolution force
mats (Tekscan 3,510 Medical Sensors) inserted between



Fig. 2: Overview of the proposed research framework. The blocks
marked in red are modifications to our existing framework that we
explore in this study. The blocks marked in black are analyzed in
detail in our previous works [10, 11].

the belt and the treadmill supporting platform. In total, 35
sources of information (14 EMG, 20 kinematic, 1 GRF) were
utilized.

The raw kinematic and EMG data were synchronized by
applying a robust kinematic algorithm for heel-strike detec-
tion [16]. Force mat data were synchronized with motion
capture and EMG data using a trigger signal from VICON
Nexus. For each subject, outlier gait cycles were detected
using a systematic outlier detection method [17].

D. Data Analysis

The framework employed in this study is based on our
previous works [10, 11], where we developed a pattern
recognition (PR) and classification algorithm for predicting
transitions to compliant surfaces. Compared to our previ-
ous works, this paper focuses on exploring different signal
sources as inputs to the proposed algorithm, juxtaposing it
with an alternative feature selection methodology especially
tailored to the needs of the k-Nearest Neighbor (kNN)
classification. The schematic representation of the modified
proposed framework is depicted in Fig. 2.

1) Windowing Segmentation: The post-processed EMG
and kinematic data of each gait cycle were segmented
into 50% overlapping windows of 150ms. The window
partitioning was exclusively applied to the data between Left
Toe-Off (LTO) and Left Heel-Strike (LHS), resulting in a
total of six analysis windows per gait cycle. The goal we
are trying to achieve by employing a window segmentation
technique is to derive a prompt decision about the user’s next
step depending on gait cycle history information up until a
few milliseconds before the LHS on the compliant surface.

2) Feature Extraction: The EMG features extracted from
each muscle per window and per gait cycle included the
Mean Absolute Value, Waveform Length, Difference Vari-
ance Value, Root Mean Square, Simple Square Integrated, In-
tegrated EMG, Variance of EMG, Difference Absolute Mean
Value, Standard Deviation, Average Amplitude Change, Kur-
tosis, and Skewness [10]. The above features constitute a
non-exhaustive list of myoelectric signal features employed
in pattern recognition for prosthetic control. A new addition
to the existing pool of features is the incorporation of 6th-
order Autoregressive model coefficients which correspond
to 6 new features. The AR coefficients characterize each
sample in the EMG signal as a linear combination of its
preceding samples as shown below:

xk =
N∑
i=1

aixk−i +Wk (1)

, where xk represents the pre-processed EMG signal sample
at discrete time k = 0, 1, 2, . . . ,K , with K as the number
of samples in a specific segment. N is the order of the AR
model with ai coefficients, and Wk is white noise [18].

The kinematic variables utilized for this study included
the left and right hip, knee, and ankle flexion angles (LHF,
LKF, LAF, and RHF, RKF, RAF respectively), the left and
right knee and ankle angular velocity (LKV, LAV, RKV, RAV
respectively), and acceleration (LKA, LAA, RKA, RAA
respectively), as well as the center of mass translation in
the x, y, and z coordinates (CoMx, CoMy , CoMz). The
features extracted from each kinematic variable included the
maximum, mean, and minimum of the corresponding values
within each segmented window. The CoM was estimated as
the average between the 4 pelvis markers (see Fig. 2).

Finally, we concatenated the EMG and kinematic features
of each window to a final feature vector of 303 features
per window per gait cycle (EMG: 14 muscles × 18 features
= 252 features/ window; Kinematics: 17 variables × 3
features = 51 features). The resulting feature vectors were
then extended by the concatenation of three additional GRF
features. These features included the 1st GRF peak (passive
peak corresponding to weight acceptance) ,and the 2nd GRF
peak (active peak during push-off) [19]. In between these
peaks, as the subject weight is distributed from heel to toe,
there is a valley area that is formed, the minimum of which
corresponds to the third GRF feature extracted. These three
features were calculated as stand-alone features between the
right and left toe-off gait events of each gait cycle and
were subsequently added to each existing feature vector,
expanding the total number of features to 306.

3) Feature Selection with Neighborhood Component Anal-
ysis (NCA) vs Particle Swarm Optimization (PSO): To retain
the crucial features of the dataset while reducing system
complexity we turned our attention to an appropriate feature
selection method that would enable us to choose a subset
of pertinent features for incorporation into our classification
model, facilitating faster and more accurate predictions. Our
previous work concentrated on Particle Swarm Optimization
(PSO) for feature extraction. The PSO implementation and
parameters are analyzed in detail in [10].

For this study, we explored further alternatives for the
feature selection component. We specifically opted for the
Neighborhood Component Analysis (NCA) algorithm. The
implementation of the algorithm was completed in Matlab
with the built-in function fscnca. Considering the multi-
class classification problem at hand, we separated the data
into 70% training and 30% testing sets containing n observa-
tions, which, in our case, correspond to gait cycles. The train-
ing set is defined as S = {(xi, yi), i = 1, 2, . . . , n}, where
xi ∈ Rp are the feature vectors and yi ∈ {R,H,M,L}
are the class labels. The aim here is to learn a classifier
f : Rp → {R,H,M,L} that accepts a feature vector
and makes a prediction f(x) for the true label y. The



Fig. 3: NCA generated feature weights for representative subject
data. Each red circle corresponds to the feature weight assigned to
each of the 306 extracted features per window. The grey dashed
line represents the weight threshold that the features need to abide
by to be selected by NCA.

feature weight (FW) assigned to each predictor by the NCA
corresponds to the relevance of each feature for the classi-
fication process. Higher weight indicates increased feature
importance, while weight values converging to 0 represent
redundant features for the particular classification problem
(see Fig. 3). The weight threshold (θw) was determined as
θw = T ·max(FW ), where T = 0.4.

The advantages of NCA compared to the PSO and other
relevant dimensionality reduction techniques are numerous,
facilitating its easy implementation. To be exact, NCA proves
particularly advantageous when combined with a kNN ap-
proach, maximizing classifier performance by forcing a low-
rank linear transformation of the data [20]. Unlike other
methods, this classification model is also non-parametric,
meaning that it does not make any assumptions on the shape
of the class distributions or the boundaries between them
[21], while PSO requires a fine parameter selection and
tuning before its implementation. Additionally, PSO remains
vulnerable to prematurely converging and trapping into local
minima, especially as problem dimensionality increases [22].

4) kNN Classification Strategy: The kNN classification al-
gorithm has already demonstrated its potential for producing
reliable and accurate predictions in previous works [10, 11].
Its simplicity is a notable feature, employing straightforward
comparisons for identifying similar records in the training
data, thus proving effective in generating accurate predic-
tions. In our implementation, we utilized the Euclidean dis-
tance between a test and a training data point, complemented
by an inverse distance weight [23]. We selected k = 9
nearest neighbors, while each predictor variable underwent
centering and scaling based on their corresponding weighted
column mean and standard deviation. A dedicated classifier
was trained for each segmented window, resulting in a total

W1 W2 W3 W4 W5 W6 SUM

LTA 1 3 7 5 4 2 22

LSOL 6 12 5 6 4 2 35

LGA 6 4 16 14 12 11 63

LVL 6 10 11 11 14 7 59

LVM 5 3 3 4 6 8 29

LRF 6 4 5 4 2 8 29

LBF 4 12 10 10 4 2 42

RTA 5 4 3 6 4 1 23

RSOL 2 6 6 3 4 2 23

RGA 4 3 8 4 1 4 24

RVL 3 3 4 4 3 3 20

RVM 2 3 8 3 5 2 23

RRF 6 10 7 8 6 3 40

RBF 6 8 3 5 2 3 27

TABLE II: Appearance frequency of the selected EMG features per
muscle and per segmented window across subjects (i.e. 22 features
of the LTA muscle appear in total across all subjects and windows
meaning that 1 LTA feature was selected in Window 1, 3 LTA
features in Window 2, 7 LTA features in Window 3, etc.)

of six separate classifiers and decisions per gait cycle. The
input to each window classifier was the feature vector that
emerged after the NCA feature selection as described in
section II-D.3. The outlined approach for feature selection
and classification yielded six distinct decisions for each of
the six windows per gait cycle.

5) Final Decision via a Naive Bayes Implementation: To
consolidate the distinct classifier decisions into a conclusive
prediction about the stiffness (SR, SH , SM , or SL) of the
upcoming surface, we employed a Naive Bayes classifier.
Naive Bayes classification, rooted in Bayesian probability
theory, is a probabilistic machine learning algorithm that
is widely used within classification frameworks due to the
advantages it offers with respect to its quick training times.
The resulting kNN window classifiers analyzed previously
were integrated into the training process of Naive Bayes, and
the testing data initially used for assessing kNN classifiers
were also used for evaluating the performance of the Naive
Bayes.

III. RESULTS

Through the adoption of NCA as our feature selection
method, we achieved a substantial average reduction of
91% in the number of selected classification input features,
streamlining the initial count of 306 features per window to
approximately 25 ± 5. The significance of this feature reduc-
tion lies in minimizing the information channels utilized per
experiment, thereby enhancing computational efficiency. On
the contrary, employing PSO as our feature selection method,
the number of the selected classification input features was
reduced by 54 % on average, dropping the initial 306 features
to approximately 142 ± 3 per window.

A meticulous examination of the frequency of feature ap-
pearance across windows and subjects can provide valuable



W1 W2 W3 W4 W5 W6 SUM

LAF 5 3 3 5 3 4 23

LHF 2 1 4 1 3 0 11

LKF 0 2 0 4 1 2 9

RAF 2 1 2 3 1 3 12

RHF 3 3 3 2 1 2 14

RKF 2 2 2 2 2 1 11

CoM x 1 2 1 1 2 4 11

CoM y 5 3 1 4 4 6 23

CoM z 2 3 3 3 3 2 16

RAV 2 3 3 4 2 2 16

LAV 1 3 2 2 4 1 13

RKV 2 4 1 0 3 2 12

LKV 2 2 5 5 2 1 17

RAA 0 2 5 4 11 5 27

LAA 6 4 5 2 2 6 25

RKA 3 4 3 4 3 2 19

LKA 1 4 4 2 1 2 14

GRF 2 5 2 1 2 3 15

TABLE III: Appearance frequency of the selected kinematic
features per kinematic variable and per segmented window across
subjects (i.e. 23 features of the Left Ankle Flexion (LAF) variable
appear in total across all subjects and windows meaning that 5 LAF
features were selected in Window 1, 3 LAF features in Window 2,
3 LAF features in Window 3, etc.)

insights into the essential information channels required for
developing a robust and reliable high-level control frame-
work for powered prostheses and wearable devices. Tables
II and III present the appearance frequency of different
EMG and kinematic feature variables per window across
subjects, respectively. By focusing on the orange shaded
values within the ’SUM’ column in both tables, it becomes
evident that they correspond to the most consistently selected
variables across participants. For the case of the EMG
features, the below-knee muscle LGA, along with the above-
knee muscles LVL, LVM, LBF, and RRF, emerge as the top
five muscle variables chosen by NCA for achieving optimal
prediction accuracy. Assuming that the leading (left) leg is
the amputated limb, this finding substantiates the significance
of hip extensors and flexors as major power contributors
when ankle plantar flexor power is absent [24, 25].

Turning to the kinematic features, the RAA and LAA
followed by LAF and CoMy , as well as RKA constitute the
top five kinematic variables selected by NCA. The features
corresponding to the ankle accelerations could indicate a
modified step length as participants prepare to step on a new
surface, while the ankle angle feature could be correlated
with an increased toe clearance during such transitions.
Overall, the kinematic features selected show potential for
the non-leading leg to provide substantial information about
user intent during transitions between compliant surfaces.

Although adding the GRF stand-alone values to each
window vector does not seem to necessarily provide valuable

Fig. 4: Subject average performance evaluation metrics using
kNN window classifiers with the NCA and PSO feature selection
methods.

information as classification features, they are selected more
frequently than other features, i.e., left knee or hip flexion.
We hypothesize that the existence of GRF data from both
feet could have provided us with better insights into their
role in the classification process.

We can therefore safely deduce that out of the 14 EMGs
initially recorded, we could have selected only 5 EMG
electrodes, corresponding to the top 5 muscles as defined
in Table II, while out of the 20 markers used to record the
kinematics, we could have recorded the markers necessary to
reproduce the top 5 kinematic variables as defined in Table
III. This could lead to a drastic reduction in the number of
sensors, improving the feasibility and the simplicity of the
proposed framework.

In terms of classification accuracy, the performance anal-
ysis of each window classifier highlights a consistent trend
of increased prediction accuracy as we approach the latter
segments of each gait cycle for both the NCA and PSO
input feature sets across subjects (see Fig. 4). The mean
values for Balanced Accuracy and Macro F1 metrics show an
ascending trend with increasing window numbers, reaching
72.67% and 71.6% for NCA and 62.36% and 60.69% for
PSO, respectively for window 6. It becomes clear that NCA
exceeds the performance of PSO for this multiclass problem
throughout all of the classification windows, which justifies
the final choice of NCA for our framework.

Incorporating the Naive Bayes classification as the fi-
nal step in our framework improved the classification ac-
curacy by 4.58%. Comparative evaluations with simple
and weighted majority vote techniques demonstrated that
the Naive Bayes approach outperformed these alternatives,
though the differences were not statistically significant (Fig.
5). Notably, the weighted alternative of the simple majority
vote showed slightly improved predictions, albeit without
reaching statistical significance, as anticipated.

In addition to the drastic reduction of the used features,
comparing our current work with our previous study, we
observe an improved classification accuracy across subjects
throughout all windows. The current study achieved a peak
average kNN prediction accuracy of 72.67%, exceeding the



Fig. 5: Subject average performance evaluation metrics using k-
NN window classifiers with the NCA and PSO feature selection
methods.

equivalent reached in [10] by 3.31%. Although 3.31% might
not seem significant, we need to acknowledge the elevated
challenge of this task, which includes four distinct classes
instead of two as in our previous work.

IV. CONCLUSION

This paper investigates the selection and integration of
EMG, kinematic, and GRF signals to streamline the predic-
tive modeling process. Our goal is to harness the capabilities
of the employed sensors while minimizing their number,
creating a framework that accurately predicts user intent to
transition to compliant surfaces.

The results of this work are particularly significant as the
classification involves distinguishing between four classes,
all associated with walking on a rigid surface. The developed
framework holds potential for integration as part of a high-
level controller, informing the prosthesis or lower extremity
device and dynamically adjusting its parameters in real-time.
Through this research, we aim to contribute to the ongoing
efforts to improve the quality of life for individuals with
lower limb amputations by making assistive technologies
more accessible, efficient, and user-friendly.
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